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Abstract In this paper, we prove index theorems for integrable metrized line bundles
on projective varieties over complete fields and number fields respectively. As appli-
cations, we prove a non-archimedean analogue of the Calabi theorem and a rigidity
theorem about the preperiodic points of algebraic dynamical systems.
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1 Introduction

The Hodge index theorem for line bundles on arithmetic surfaces proved by Faltings
[13] and Hriljac [21] is one of the fundamental results in Arakelov theory. In [29], this
index theorem has been generalized by Moriwaki to higher-dimensional arithmetic
varieties. In this paper, we will give further generalizations of the index theorem for
adelicmetrized line bundles in the setting of [40]. These adelicmetrics naturally appear
in algebraic dynamical systems and moduli spaces of varieties. As applications, we
will prove a non-archimedean analogue of the Calabi theorem of [6] and a rigidity
theorem about the preperiodic points of algebraic dynamical systems. In more details,
our results are explained as follows.

1.1 Local Hodge index theorem

Let K be an algebraic closed field endowed with a nontrivial complete (either
archimedean or non-archimedean) absolute value | · |. Let X be a projective vari-
ety over K of dimension n ≥ 1. Denote by X an the associated Berkovich analytic
space (resp. complex analytic spaces) introduced in [1] if K is non-archimedean (resp.
archimedean). Then there is a theory of integrable metrized line bundles and their
intersection numbers developed in [8,17,19,40]. We will briefly review the theory in
“Appendix (Local intersections)”, and will refer to “Appendix (Local intersections)”
for our convention and terminology.

LetM be an integrablemetrized line bundle on X withM = OX , and L1, . . . , Ln−1
be n−1 semipositivemetrized line bundles on X . Thenwe show inSect. 2 the following
inequality:

M
2 · L1 · · · Ln−1 ≤ 0.

Moreover, if Li is ample and M is Li -bounded for each i , then the equality holds if
and only if M ∈ π∗

̂Pic(K ). Here π : X → SpecK denotes the structure morphism.
When K = C, the above inequality is written in terms of distributions as

−
∫

X (C)

f
∂∂̄

π i
f · c1(L1) · · · c1(Ln−1) ≤ 0, f := − log ‖1‖M .

If X is smooth and themetrics ofM and Li are also smooth, this is a simple consequence
of integration by parts.
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The arithmetic Hodge index theorem... 1125

In general, for the inequality part, it is easily reduced to the smooth case when K is
archimedean or the model case when K is non-archimedean. For the equality part, we
use a non-archimedean analogue of Błocki’s method in [3], and the works of Gubler
[19] and Chambert-Loir–Thuillier [10].

One application of our local Hodge index theorem is a non-archimedean analogue
of the theorem of Calabi [6] on the uniqueness of semipositive metrics on an ample
line bundle on X an with a given volume form.

1.2 Arithmetic Hodge index theorem

Let K be a number field and X be a normal and geometrically integral projective variety
over K of dimension n ≥ 1. There is a theory of integrable metrized line bundles
and their intersection numbers developed in [40]. We will briefly review the theory
in “Appendix (Arithmetic intersections)”, and will refer to “Appendix (Arithmetic
intersections)” for our convention and terminology.

Let M be an integrable adelic Q-line bundle on X , and L1, . . . , Ln−1 be n − 1
nef adelic Q-line bundles on X . Assume that each Li is big and the equality M ·
L1 · · · Ln−1 = 0. Then in Sect. 3, we prove the following inequality:

M
2 · L1 · · · Ln−1 ≤ 0.

Moreover, if Li is arithmetically positive and M is Li -bounded for each i , then the
equality holds if and only if M ∈ π∗

̂Pic(K )Q. Here π : X → SpecK denotes the
structure morphism.

When X is regular with a projective and flat model X over OK , and (M, L1, . . . ,

Ln−1) comes fromhermitian line bundles (M,L, . . . ,L)withL arithmetically ample,
this result is due to Faltings [13] and Hriljac [21] for n = 1 and Moriwaki [29] for
n > 1. A slight extension of Moriwaki’s result gives the inequality part in the adelic
situation. For the equality part in adelic situation, we will use the local index theorem,
the vanishing result of curvatures of flat metrics by Gubler [19] (cf. Proposition 5.17),
the integration of Green’s functions on Berkovich spaces of Chambert-Loir–Thuillier
[10], and Lefschetz-type theorems for normal varieties (cf. “Appendix (Lefschetz
theorems)”).

1.2.1 Dynamical system

Let X be a projective variety over Q. A polarizable algebraic dynamical system on
X is a morphism f : X → X such that there is an ample Q-line bundle L satisfying
f ∗L � qL from some rational number q > 1. A central invariant for such a dynamical
system is the set Prep( f ) of preperiodic points, i.e., points of X (Q)with finite forward
orbits under iterations of f . We show the following rigidity result about preperiodic
points in Sect. 4. Let f and g be two polarized algebraic dynamical systems on X ,
and Z be the Zariski closure of Prep( f ) ∩ Prep(g). Then

Prep( f ) ∩ Z(Q) = Prep(g) ∩ Z(Q).
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1126 X. Yuan, S. Zhang

We prove the result by first constructing f -admissible metrics for every line bundle
on X if X is normal, and then applying our arithmetic index theorem.

2 Local Hodge index theorem

In this section, we prove a local Hodge index theorem over complete fields. As a
consequence, we will prove a version of the Calabi theorem. When the base field isC,
all of these are essentially due to the original work of Calabi [6] and the later extension
by Błocki [3]. This local index theorem is a crucial ingredient in the proof of arithmetic
Hodge index theorem in Sect. 3.

2.1 Statements

First let us recall the theory of integrable metrized line bundles developed in [8,17,
19,40]. For more details, see “Appendix (Local intersections)”.

Let K be an algebraically closed field endowed with a complete and nontrivial
absolute value | · |, which can be either archimedean or non-archimedean. Let X be
a projective variety over K of dimension n ≥ 1, and X an the associated Berkovich
analytic space (resp. complex analytic space if K = C is archimedean). Then there
are a category ̂Pic(X) of integrable metrized line bundles L = (L , ‖ · ‖) on X and the
group ̂Pic(X) of isometry classes of these bundles. There are also notions of model
metrics and semipositive metrics. In particular, we call a metric semipositive if it is
a uniform limit of model metrics induced by relatively nef models over OK . We call
a metrized line bundle semipositive if the metric is semipositive, and call a metrized
line bundle integrable if it is the difference of two semipositive metrized line bundles.
When K was a discrete valuation field, these were defined in [40]. For general non-
archimedean fields, they were defined by Gubler [17].

If L0, . . . , Ln are integrable metrized line bundles with nonzero rational sections
�0, . . . , �n such that ∩|div(�i )| = ∅, then there is a well-defined local intersection
number ̂div(�0) · · · ̂div(�n) using a limit process. Assume that L0 � OX and �0 = 1
under this identity. Then the intersection does not depend on the choice of �1, . . . , �n .
Chambert-Loir [8] (when K contains a countable subfield) andGubler [19] (in general)
define a measure c1(L1) · · · c1(Ln) on X an so that

−
∫

Xan
log ‖�0‖c1(L1) · · · c1(Ln) = ̂div(�0) · · · ̂div(�n).

Assuming further c1(L1) · · · c1(Ln) = 0, then the local intersection does not depend
on the choice of �0, neither. This gives a well-defined intersection number

L0 · · · Ln := −
∫

Xan
log ‖�0‖c1(L1) · · · c1(Ln).

For two integrable metrized line bundles L and M on X , say that M is L-bounded
if there is a positive integer m such that both mL + M and mL − M are semipositive.
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The arithmetic Hodge index theorem... 1127

Here we write tensor product of line bundles additively, somL−M means L
⊗m ⊗M

∨

(with the induced metric). We take this convention throughout this paper. The main
result of this section is the following local index theorem.

Theorem 2.1 (Local Hodge index theorem) Let π : X → SpecK be an integral
projective variety of dimension n ≥ 1. Let M be an integrable metrized line bundle
on X with M � OX , and L1, . . . , Ln−1 be n − 1 semipositive metrized line bundles
on X. Then

M
2 · L1 · · · Ln−1 ≤ 0.

Moreover, if Li is ample and M is Li -bounded for each i , then the equality holds if
and only if M ∈ π∗

̂Pic(K ).

One application of our local index theorem is the following non-archimedean ana-
logue of the Calabi theorem. We refer to Calabi [6] for the original theorem and to
Kolodziej [23] and Błocki [3] for some regularity extensions.

Corollary 2.2 (Calabi Theorem) Let X be an integral projective variety over K . Let
L be an ample line bundle on X, and ‖ · ‖1 and ‖ · ‖2 be two semipositive metrics on
L. Then

c1(L , ‖ · ‖1)dim X = c1(L , ‖ · ‖2)dim X

if and only if
‖ · ‖1
‖ · ‖2 is a constant function on Xan.

Remark 2.3 There is an open problem about the existence of a metric on a line bundle
with a given volume form, i.e., the non-archimedean analogue of the theorem of Yau
[37]. Some partial results have been obtained by Liu [26] and Boucksom–Favre–
Jonsson [5].

Wewill prove Theorem 2.1 in the next three subsections. Here we see how it implies
Corollary 2.2.

Proof of Corollary 2.2 Write n = dim X . Set f = − log(‖ ·‖1/‖ ·‖2) as a continuous
function on X an. Then the assumption implies

∫

Xan
f c1(L , ‖ · ‖1)n =

∫

Xan
f c1(L , ‖ · ‖2)n

We need to show that f is constant.
Denote L1 = (L , ‖ · ‖1), L2 = (L , ‖ · ‖2), and M = L1 − L2. Then the difference

of two sides of the above equality is just

n−1
∑

i=0

∫

Xan
f c1(M)c1(L1)

i c1(L2)
n−1−i = 0.
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1128 X. Yuan, S. Zhang

Equivalently,

n−1
∑

i=0

M
2 · Li

1 · Ln−1−i
2 = 0.

By Theorem 2.1, every term in the sum is non-positive. It forces

M
2 · Li

1 · Ln−1−i
2 = 0, ∀ i = 0, . . . , n − 1.

It follows that

M
2 · (L1 + L2)

n−1 = 0.

Note that M is (L1 + L2)-bounded. Theorem 2.1 implies M ∈ π∗
̂Pic(K ), which is

equivalent to the statement that f is a constant. ��

2.2 Curves

In this section, we prove Theorem 2.1 when dim X = 1. Then the line bundles Li do
not show up. Considering the pull-backs of the line bundles on the normalization of
X , the problem is reduced to the case that X is smooth.

First, let us treat the case that K is non-archimedean. The result is obtained by
combining many results of Gubler.

We start with the model case; i.e., (X, M) is induced by an integral model (X ,M)

over the valuation ring OK of K . By the semistable reduction theorem of Bosch–
Lütkebohmert [4], any integral model of X over K is dominated by a semistable model
over OK . Thus we only need to consider the case X is semistable. Then the result is
proved by Gubler [18, Theorem 7.17] following the methods of Faltings and Hriljac.

Now we extend it to the non-model case. As the limit case of the model case, we
have the inequality M

2 ≤ 0 for general vertical metrized line bundles, and a Cauchy–

Schwarz inequality. To prove the equality part of the theorem, assume M
2 = 0. Then

for any vertical integrable line bundle N on X , we have

(M · N )2 ≤ (M
2
)(N

2
) = 0.

Thus for any vertical integrable line bundle N ,

M · N = 0.

We first prove that the measure c1(M) = 0. Note that the generic fibers M and N
are isomorphic toOX . Use the regular sections 1M of M and 1N of N to compute the
intersection number M · N . By the induction formula of Chambert-Loir, Gubler, and
Chambert-Loir–Thuillier recalled in “Appendix (Local intersections)”, we have

0 = M · N = ̂div(1M ) · ̂div(1N )

= ̂div(1N ) · ̂div(1M ) = −
∫

Xan
log ‖1N‖c1(M).
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The arithmetic Hodge index theorem... 1129

Here we have also used the symmetry of the intersection number in [17, Proposition
9.3]. Note that log ‖1N‖ can be any model function on X an. The space Cmod(X an) of
model functions on X an is dense in the space C(X an) of continuous functions on X an

with respect to the supremum norm. This is part of [17, Theorem 7.12], which actually
works in the current generality. Therefore, the measure c1(M) = 0.

It remains to prove that M is constant from the vanishing of the measure. The
following argument is suggested by an anonymous referee of a previous version of
this paper.

Take two points P1, P2 ∈ X (K ). Take N to be the line bundle N = O(P1 − P2)
with a flat metric as in Definition 5.10 and Theorem 5.11. Denote by � the canonical
rational section of N with divisor P1− P2. Use the rational sections 1 of M and � of N
to compute the intersection number M · N . Apply the induction formula of Chambert-
Loir, Gubler, and Chambert-Loir–Thuillier in “Appendix (Local intersections)” again.
We have

̂div(1) · ̂div(�) = −
∫

Xan
log ‖1‖c1(N ) = 0,

and

̂div(�) · ̂div(1) = log ‖1‖(P2) − log ‖1‖(P1) −
∫

Xan
log ‖�‖c1(M)

= log ‖1‖(P2) − log ‖1‖(P1).

By the symmetry of the intersection number in [17, Proposition 9.3] again, we have

log ‖1‖(P2) = log ‖1‖(P1).

This is true for any P1, P2 ∈ X (K ). Note that X (K ) is dense in X an. Hence, log ‖1‖
is constant on X an. This finishes the proof of Theorem 2.1 in the non-archimedean
case.

The theorem in the archimedean case follows from a similar argument. The theorem
is clear in the case of smooth metrics by integration by parts. In fact, denoting f =
− log ‖1‖M in the smooth case, we have

M
2 = −

∫

X (C)

f
∂∂̄

π i
f =

∫

X (C)

1

π i
∂ f ∧ ∂̄ f ≤ 0

with equality holds only if f is constant. By taking limits, this implies that M
2 ≤ 0

in the case of integrable metrics. The proof of the remaining part is also similar.

2.3 Inequality

Now we prove the inequality part of Theorem 2.1 in the general case by induction
on n = dim X . We have already treated the case n = 1, so we assume n ≥ 2 in the
following discussion. First, we can make the following two assumptions:

123



1130 X. Yuan, S. Zhang

(1) X is smooth by de Jong’s alteration [11] and the projection formula in [8,17,40];
(2) each Li is arithmetically positive by adding some multiple of an arithmetically

positive integrable line bundle A on X as follows. Take a small rational number

ε > 0 and set L
′
i = Li + εA. Then the inequality M

2 · L1 · · · Ln−1 ≤ 0 is the

limit of the inequality M
2 · L ′

1 · · · L ′
n−1 ≤ 0.

When K = C, by approximation, it suffices to prove the inequality under the
assumption that all metrics are smooth, and the curvature forms of Li are positive
definite. Let f = − log ‖1‖M . Then c1(M) = − ∂∂̄

π i f and

M
2 · L1 · · · Ln−1 = −

∫

X (C)

f
∂∂̄

π i
f c1(L1) · · · c1(Ln−1)

=
∫

X (C)

1

π i
∂ f ∧ ∂̄ f ∧ c1(L1) · · · c1(Ln−1) ≤ 0.

When K is non-archimedean, by approximation, it is reduced to prove the inequality

M2 · L1 · · ·Ln−1 ≤ 0

under the following assumptions:

(1) X is smooth and X is a normal integral model of X over OK ;
(2) M,L1, . . . ,Ln−1 are line bundles on X with generic fibers M , L1, · · · , Ln−1;
(3) Li is relatively ample on X .

We claim a Bertini-type result that, there is a positive integer m and a nonzero
section s ∈ H0(X ,mLn−1) such that Y := div(s) is horizontal on X with a smooth
generic fiber YK .

Assuming the claim, then

M2 · L1 · · ·Ln−1 = 1

m
M|2Y · L1|Y · · ·Ln−2|Y .

Thus it is non-positive by induction.
It remains to prove the Bertini-type result. We use an argument from [28]. By our

definition ofmodels, there is a noetherian local subring (R, ℘) of OK withm∩R = ℘,
where m denotes the maximal ideal of OK , so that (X ,M,L1, . . . ,Ln−1) are base
changes of models (X 0,M0,L0

1, . . . ,L0
n−1) over R. Write L for L0

n−1 for simplicity.
We first find a section s0 ∈ H0(X 0,mL) for sufficiently large m such that div(s0)
is horizontal. In fact, denote by V1, . . . , Vr the irreducible components of the special
fiber of X 0. Take a distinct closed point xi in V 0

i for every i , and denote by k(xi ) the
residue field of xi , viewed as a skyscraper sheaf on X 0. By the ampleness of L, for
sufficiently large m, the natural map

H0(X 0,mL) −→
⊕

i

H0(X 0, (mL) ⊗ k(xi ))

123



The arithmetic Hodge index theorem... 1131

is surjective. By lifting an element on the right-hand side which is non-zero at every
component, we get a section s0 ∈ H0(X 0,mL) non-vanishing at any xi . Thus div(s0)
is horizontal. Once we have s0, consider the subset

�s0 = s0 + ℘ · H0(X 0,mL) ⊂ H0(X0,mL).

Here ℘ denotes the maximal ideal of R as above, X0 denotes the generic fiber of
X , and L = L|X0 . Then any element of �s0 has a horizontal zero locus. It is easy
to check that any polynomial on H0(X0,mL) which vanishes on �s0 is identically
0. Hence, the image of �s0 in P(H0(X0,mL)) is Zariski dense. Assume that mL is
very ample. By Bertini’s theorem, there is a Zariski open subset of P(H0(X0,mL))

whose elements correspond to smooth and irreducible hyperplane sections. This open
set intersects the image of �s0 . Hence, we can find an element s0 ∈ �s0 with smooth
and irreducible zero locus on X0. The pullback of s0 to X satisfies all the required
properties.

The following Cauchy–Schwarz inequality is a direct consequence of the inequality
part of Theorem 2.1.

Corollary 2.4 Let M and M
′
be two vertical integrable line bundles on X, and

L1, . . . , Ln−1 be n − 1 semipositive line bundles on X. Then

(M · M ′ · L1 · · · Ln−1)
2 ≤ (M

2 · L1 · · · Ln−1)(M
′2 · L1 · · · Ln−1).

2.4 Equality

Now we prove the equality part of Theorem 2.1 in the general case by induction on
n = dim X . The case n = 1 is proved, so we assume n ≥ 2.

Let M, L1, . . . , Ln−1 be integrable line bundles on X such that the following con-
ditions hold:

(1) M is trivial on X ;
(2) M is Li -bounded for every i ;

(3) M
2 · L1 · · · Ln−1 = 0.

There are two key lemmas in our proof. The first one is inspired by Błocki [3].

Lemma 2.5 For any semipositive integrable line bundles L
0
i on X with underlying

bundle L0
i equal to Li , and any integrable integrable line bundle M

′
with trivial

underlying line bundle M ′, the following identities hold:

M · M ′ · L0
1 · · · L0

n−1 = 0,

M
2 · M ′ · L0

1 · · · L0
n−2 = 0.

Proof The second equality follows from the first one by taking L̄0
n−1 = L̄n−1 ± εM̄

with small ε. So it suffices to prove the first inequality. Note that condition (2) implies

123



1132 X. Yuan, S. Zhang

that every Li is semipositive. Replacing Li by a large multiple if necessary, we can
assume that both Li ± M are semipositive for each i . Denote L

±
i = Li ± M .

First, we have the following equality

M
2 · Lε(1)

1 · · · Lε(n−1)
n−1 = 0

for any sign function ε : {1, . . . , n − 1} → {+,−}. In fact, since M is Li -bounded,
there is a constant t > 0 such that

L
±
i t := Li − t L

±
i = (1 − t)Li ∓ tM

is semipositive for any i . Write

M
2 · L1 · · · Ln−1 = M

2 · t Lε(1)
1 · · · t Lε(n−1)

n−1 +
n−1
∑

�=1

M
2 ·

∏

i≤�

L
ε(i)
i t ·

∏

j>�

L
ε(i)
i .

Then the inequality part of Theorem 2.1 implies that every term on the right hand side
is non-positive. It forces

M
2 · Lε(1)

1 · · · Lε(n−1)
n−1 = 0.

Second, we claim that for any � and any sign function ε on {�, . . . , n − 1},

M
2 · L0

1 · · · L0
�−1 · Lε(�)

� · · · Lε(n−1)
n−1 = 0. (1)

When � = n, it gives

M
2 · L0

1 · · · L0
n−1 = 0.

By the Cauchy–Schwarz inequality in Corollary 2.4, it follows that

M · M ′ · L0
1 · · · L0

n−1 = 0.

We now prove the claim by induction on �. We already have the case � = 1.
Assume the equality (1) for � and for all sign functions on {�, . . . , n − 1}. Let ε be a
sign function on {�+1, . . . , n−1}which has two extensions ε+, ε− on {�, . . . , n−1}
by ε±(�) = ±. Applying Corollary 2.4 again to M , M

±
� = L

±
� − L

0
� , and semipositive

bundles L̄0
1, . . . , L̄

0
�−1, L̄

ε±(�)
� , . . . , L̄ε(n−1)

n−1 , we have four equalities:

M · Mδ1
� · L0

1 · · · L0
�−1 · Lδ2

� · · · Lε(n−1)
n−1 = 0, δ1 = ±, δ2 = ±.

Take the difference for two equations with fixed δ1 to obtain

M · Mδ1
� · L0

1 · · · L0
�−1 · M · Lε(�+1)

�+1 · · · Lε(n−1)
n−1 = 0.
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It is just

M
2 · L0

1 · · · L0
�−1 · (L

δ1
� − L

0
�) · Lε(�+1)

�+1 · · · Lε(n−1)
n−1 = 0.

The left-hand side splits to a difference of two terms. One term is zero by the induction
assumption for �. It follows that the other term is also zero, which gives

M
2 · L0

1 · · · L0
�−1 · L0

� · Lε(�+1)
�+1 · · · Lε(n−1)

n−1 = 0.

It is exactly the case � + 1. The proof is complete. ��
The second key lemma is the following induction result.

Lemma 2.6 Assume that Ln−1 is ample. For any closed subvariety Y of codimension
one in X, we have

M|2Y · L1|Y · · · Ln−2|Y = 0.

Proof Replacing Ln−1 by a multiple if necessary, we can assume that there is a global
section s of Ln−1 vanishing on Y . Write div(s) = ∑

i aiYi with ai > 0 and prime
divisorsYi . Use the non-archimedean induction formula developed byChambert-Loir–
Thuillier and Gubler reviewed in “Appendix (Local intersections)”. We have

M
2 · L1 · · · Ln−1 =

t
∑

i=1

ai M|2Yi · L1|Yi · · · Ln−2|Yi

−
∫

Xan
log ‖s‖c1(M)2c1(L1) · · · c1(Ln−2).

The integral vanishes by Lemma 2.5. In fact, take M
′
to be any vertical metrized line

bundle on X and write φ = − log ‖1‖M ′ as a real-valued function on X an. Then the
lemma gives

∫

Xan
φ c1(M)2c1(L1) · · · c1(Ln−2) = 0.

It implies that the measure c1(M)2c1(L1) · · · c1(Ln−2) = 0. Hence the integration of
− log ‖s‖ is also zero. By the proved inequality on every Yi , we have

M|2Yi · L1|Yi · · · Ln−2|Yi = 0.

Since one of Yi is Y , the lemma is proved. ��
Now are ready to prove the equality part of Theorem 2.1. Let M and Li be as in the

theorem. We need to prove that M is constant, or equivalently log ‖1‖M is constant
on X an. By induction on n, Lemma 2.6 immediately gives the following result.
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Lemma 2.7 For any integral closed subvariety Y of codimension one in X, the restric-
tion M|Y is constant on Y .

Go back to the line bundle M on X . Let |X |0 be the set of closed points of X , which
is naturally a dense subset of X an. It suffices to prove that log ‖1‖M is constant on |X |0.
By the lemma, it suffices to prove that any two points x1, x2 of |X |0 are connected
by integral subvarieties of codimension one in X . By [20, Chapter III, Corollary 7.9],
any hyperplane section is connected. It follows that any hyperplane section passing
through x1 and x2 connects them. This finishes the proof.

3 Arithmetic Hodge index theorem

In this section, we prove a Hodge index theorem for adelic metrized line bundles
on projective varieties over number fields, generalizing the following theorem in the
context of arithmetic intersection theory of Gillet–Soulé [15].

Theorem 3.1 ([13,21,29]) Let K be a number field and π : X → SpecOK be an
arithmetic variety with a regular generic fiber of dimension n ≥ 1. Let L be an
arithmetically ample hermitian Q-line bundle on X . Let M be a hermitian Q-line
bundle on X such that c1(MK ) · c1(LK )n−1 = 0 on the generic fiber XK . Then

ĉ1(M)2 · ĉ1(L)n−1 ≤ 0,

and the equality holds if and only if M = π∗M0 for some hermitian Q-line bundle
M0 on SpecOK .

The theorem was due to Faltings [13] and Hriljac [21] for n = 1 and Moriwaki
[29] for general n.

3.1 Statements

Let X a projective variety over Q̄. In [40] and as reviewed in “Appendix (Arithmetic
intersections)”, we have defined a category ̂Pic(X) of integrable metrized line bundles
as certain limits of hermitian line bundles onmodels of X over OK , the ring of integers
of number fields K in Q̄, and their intersection pairing. Then ̂Pic(X) denotes the group
of isomorphism classes of objects of ̂Pic(X), and ̂Pic(X)Q = ̂Pic(X) ⊗Z Q is the
group of integrable adelic Q-line bundles. We also refer to “Appendix (Arithmetic
intersections)” for the notions “arithmetically positive” and “Li -bounded.” The main
result of this section is the following Hodge index theorem for such metrized line
bundles.

Theorem 3.2 Let π : X → SpecQ̄ be a normal and integral projective variety of
dimension n ≥ 1. Let M be an integrable adelicQ-line bundle on X, and L1, . . . , Ln−1
be n − 1 nef adelic Q-line bundles on X. Assume M · L1 · · · Ln−1 = 0 and that each
Li is big. Then

M
2 · L1 · · · Ln−1 ≤ 0.
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Moreover, if Li is arithmetically positive and M is Li -bounded for each i , then the
equality holds if and only if

M ∈ π∗
̂Pic(Q̄)Q.

Remark 3.3 The assumption “M is Li -bounded for each i” is necessary for the con-
dition of the equality in Theorem 3.2. For a counter-example, assume n = 2 and L̄ is
induced by an arithmetically ample line bundle L on an integral model X of X over
OK , the ring of integers in a number field. Let α : X ′ → X be the blowing-up of a
closed point inX , andM the (vertical) line bundle onX ′ associated to the exceptional
divisor endowed with the trivial hermitian metric ‖1‖ = 1. Then MK · LK = 0 and

M2 · α∗L = 0 by the projection formula. ButM is not coming from any line bundle
on the base SpecOK . In this case, M is not L-bounded if we convert the objects to
the adelic setting.

Remark 3.4 A similar proof of Theorem 3.2 should give a function field analogue. In
fact, let K be an algebraic closure of the function field of a projective and smooth curve
B over an algebraically closed field k. Fixing a point x ∈ X (K ) gives a morphism
i : X → alb(X) to the Albanese variety of X over K . See discussion in Sect. A.4. Let
A be a K/k-trace of alb(X), i.e, A is an abelian variety defined over k such that AK

can be embedded into alb(X) as a maximal abelian subvariety defined over k. Then
we have a surjective homomorphism alb(X) → A ⊗k K which induces a morphism
j : X → AK over K . Then the theorem should hold over K with the last inclusion
M ∈ π∗

̂Pic(K )Q replaced by

M ∈ π∗
̂Pic(K )Q + j∗Pic0(A)Q,

where j∗ denotes the following natural composition

Pic0(A)Q −→ Pic(A)Q −→ Pic(A ×k B)Q −→ ̂Pic(AK )Q −→ ̂Pic(X)Q.

The second arrow is the pull-back via the projection A ×k B → A to the first factor,
and the last arrow is the pull-back via j : X → AK .

Denote by Picτ (X) the group of isomorphism classes of numerically trivial line
bundles on X . Assume thatM is a flat adelic line bundle on X in the sense of “Appendix
(Flat metrics)”, i.e., M is numerically trivial and the adelic metric is flat at every place.

Then by Proposition 5.19, M
2 · L1 · · · Ln−1 does not depend on the choice of the flat

metric of M and the metrics of L1, . . . , Ln−1. Then it is reasonable to write

〈M, M〉L1,...,Ln−1 = M
2 · L1 · · · Ln−1.

The definition extends to a quadratic form on M ∈ Picτ (X)R by bilinearity. In this
case, we present an R-version of the theorem as follows.
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Theorem 3.5 Let X be a normal projective variety of dimension n ≥ 1 over Q̄. Let
M ∈ Picτ (X)R and L1, . . . , Ln−1 be n − 1 nef Q-line bundles on X. Then

〈M, M〉L1,...,Ln−1 ≤ 0.

Moreover, if each Li is ample, then the equality holds if and only if M = 0.

The inequality part of Theorem 3.5 is implied by that of Theorem 3.2. In fact, it
suffices to assume M ∈ Picτ (X)Q for the inequality.

To apply Theorem 3.2, we need each Li to be big. Thereafter, take an ample line
bundle A and a positive rational number ε. Define

Li,ε = Li + εA.

Let L1,ε, . . . , Ln−1,ε be any nef adelic line bundles extending L1,ε, . . . , Ln−1,ε . Then
we have

〈M, M〉L1,...,Ln−1 = lim
ε→0

〈M, M〉L1,ε ,...,Ln−1,ε = lim
ε→0

M
2 · L1,ε · · · Ln−1,ε ≤ 0.

3.2 Curves

In this section, we prove Theorems 3.2 and 3.5 when dim X = 1. Then degM = 0
and the line bundles Li do not show up.

We first consider Theorem 3.2. Then M has a flat metric structure M0 as defined
in “Appendix (Flat metrics)”. By Proposition 5.17(2)(3), M0 is actually induced by
a hermitian line bundle M on any regular integral model X /OK of X such that
c1(M) = 0 on X (C) and that M is perpendicular to ̂Pic(X )vert. Define a vertical
adelic Q-line bundle N by

M = M0 + N .

Note M0 · N = 0 by the flatness of M0. It follows that

M
2 = M

2
0 + N

2 = M
2
0 +

∑

v

N
2
v,

where N v be the restriction of N to X ⊗K Kv for each place v of K . Now Theorems
3.2 and 3.5 follow from the index theorem of Faltings and Hriljac for M0 and the local
index theorem in Theorem 2.1 for N v as follows:

(1) By the result Faltings and Hriljac, M
2
0 = M2 ≤ 0 where the equality is attained

if and only if M0 ∈ π∗
̂Pic(K )Q.

(2) By Theorem 2.1, N
2 ≤ 0 and the equality is attained if and only if N v is constant

for every v.
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Now we consider Theorem 3.5. Then M ∈ Pic0(X)R. It still has a flat metric
structure M0, as an R-linear combinations of flat adelic line bundles. By linearity, the
result of Faltings and Hriljac still gives

M
2
0 = −2 hNT(M).

Here the Neron–Tate height function hNT : Pic0(X)R → R is extended from Pic0(X)

by bilinearity. By [34, §3.8], hNT is positive definite on Pic0(X)R. This proves the
theorem for n = 1.

3.3 Inequality

Wealready known that the inequality part of Theorem3.5 is implied by that of Theorem
3.2. Now we prove the inequality of Theorem 3.2 by induction on n = dim X . We
have already treated the case n = 1, so we assume n ≥ 2 in the following discussion.
We make the following two further assumptions:

(1) X is smooth by the resolution of singularities of Hironaka and the projection
formula in [40];

(2) each Li is arithmetically positive in the sense of Definition 5.3.

For the second assumption, fix an arithmetically positive adelic line bundle A on
X . Take a small rational number ε > 0. Set L

′
i = Li + εA and M

′ = M + δA. Here
δ is a number such that

M ′ · L ′
1 · · · L ′

n−1 = (M + δA) · L ′
1 · · · L ′

n−1 = 0.

It determines

δ = −M · L ′
1 · · · L ′

n−1

A · L ′
1 · · · L ′

n−1
.

As ε → 0, we have δ → 0 since

M · L ′
1 · · · L ′

n−1 → M · L1 · · · Ln−1 = 0,

A · L ′
1 · · · L ′

n−1 → A · L1 · · · Ln−1 > 0.

Here we explain the last inequality, which uses the assumption that Li is big and
nef for each i . We refer to [25] for bigness and nefness in the geometric setting. In
particular, the bigness of Li implies that there are ample Q-line bundles Ai such that
Li − Ai is effective. It follows that

A · L1 · L2 · · · Ln−1 ≥ A · A1 · L2 · · · Ln−1 ≥ · · · ≥ A · A1 · · · An−1 > 0.

Therefore, the inequality M
2 · L1 · · · Ln−1 ≤ 0 is the limit of the inequality M

′2 ·
L

′
1 · · · L ′

n−1 ≤ 0. Here every L
′
i is arithmetically positive. This shows that we may

assume (2).
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By approximation, it suffices to prove

M2 · L1 · · ·Ln−1 ≤ 0

for a model (X ,M,L1, . . . ,Ln−1) of (X, M, L1, . . . , Ln−1) under the following
assumptions:

(3) X is smooth and X is normal;
(4) Li arithmetically ample on X in the sense of Lemma 5.4.

Then the inequality was proved byMoriwaki [29] in the case that allLi are equal. The
current case is similar, but we still sketch a proof as follows.

Lemma 3.6 There is a smooth metric ‖ · ‖0 on M at archimedean places, unique
up to scalars, such that the curvature form of M′ = (M, ‖ · ‖0) on X (C) pointwise
satisfies

c1(M′
)c1(L1) · · · c1(Ln−1) = 0,

where we omit the symbol for the wedge product of forms of degree 2. Moreover, with
this metric, one has pointwise

c1(M′
)2c1(L1) · · · c1(Ln−2) ≤ 0.

Proof For the first equality, writeM = (M, ‖·‖) and ‖·‖0 = eφ‖·‖ for a real-valued
C∞-function φ on X (C). Then the above equation becomes

1

π i
∂∂φ · c1(L1) · · · c1(Ln−1) = −c1(M)c1(L1) · · · c1(Ln−1).

Set � = c1(L1) · · · c1(Ln−1). Then the left-hand side is a scalar multiple of the
Laplacian φ with respect to �. The right-hand side is an exact form on every con-
nected component Xσ (C) of X (C). In fact, its cohomology class is represented by
−M · L1 · · · Ln−1, which is zero in H2n(Xσ (C),C) = C. The solution φ exists by
Gromov [14, Corollary 2.2 A2].

The inequality of the lemma is implied by the equality byAleksandrov’s lemma. See
Gromov [14, Lemma2.1A] by setting� := c1(L1) · · · c1(Ln−2) andω0 := c1(Ln−1).

��
Write the original metric ‖ · ‖ of M as e−φ‖ · ‖0. Then by the above lemma, we

have

M2 · L1 · · ·Ln−1 = M′2 · L1 · · ·Ln−1 −
∫

X (C)

φ
1

π i
∂∂φ ∧ c1(L1) · · · c1(Ln−1).

By integration by parts, the second term on the right

−
∫

X (C)

φ
1

π i
∂∂φ ∧ c1(L1) · · · c1(Ln−1)=

∫

X (C)

1

π i
∂φ ∧ ∂φ ∧ c1(L1) · · · c1(Ln−1).
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It is non-positive since the volume form

1

π i
∂φ ∧ ∂φ ∧ c1(L1) · · · c1(Ln−1) ≤ 0.

Hence, it suffices to prove

M′2 · L1 · · ·Ln−1 ≤ 0.

By Moriwaki’s arithmetic Bertini theorem (cf. [28], Theorem 4.2 and Theorem
5.3), which is also stated at the beginning to [29, §1], replacing Ln−1 by a multiple
if necessary, there is a nonzero section s ∈ H0(X ,Ln−1) satisfying the following
conditions:

• The supremum norm ‖s‖sup = supx∈X (C) ‖s(x)‖ < 1;
• The horizontal part of div(s) on X is a generically smooth arithmetic variety Y;
• The vertical part of div(s) on X is a positive linear combination

∑

℘ a℘X℘ of
smooth fibers X℘ of X above (good) prime ideals ℘ of OK .

Then

M′2 · L1 · · ·Ln−1 = M′|2Y · L1|Y · · ·Ln−2|Y +
∑

℘

a℘ M′|2X℘
· L1|X℘

· · ·Ln−2|X℘

−
∫

X (C)

log ‖s‖c1(M′
)2c1(L1) · · · c1(Ln−2).

It suffices to prove each term on the right-hand side is non-positive. The non posi-
tivity of the “main term”

M′|2Y · L1|Y · · ·Ln−2|Y ≤ 0

follows from the induction hypothesis. By flatness of X /OK ,

M′|2X℘
· L1|X℘

· · ·Ln−2|X℘
= (M2 · L1 · · · Ln−2) log(#OK /℘) ≤ 0.

Herewe have used theHodge index theorem in the geometric case as stated in Theorem
5.20. By the above lemma,

−
∫

X (C)

log ‖s‖c1(M′
)2c1(L1) · · · c1(Ln−2) ≤ 0.

3.4 Equality

In this section, we prove the equality part of Theorem 3.2 and Theorem 3.5. We have
already treated the case n = 1, so we assume n ≥ 2 in the following discussion.
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3.4.1 Reduce to flat metrics

We first treat Theorem 3.2.

Lemma 3.7 Under the conditions in the equality part of Theorem 3.2, M is numeri-
cally trivial on X.

Proof Since Ln−1 is arithmetically positive, L
′
n−1 := Ln−1 − π∗N is nef for some

N ∈ ̂Pic(K ) with c = ̂deg(N ) > 0. Then

0 = M
2 · L1 · · · Ln−2 · Ln−1 = M

2 · L1 · · · Ln−2 · L ′
n−1 + c M2 · L1 · · · Ln−2.

The two terms in the right hand are both non-positive:

(1) Apply the inequality of the theorem to (M, L1, . . . , Ln−2, L
′
n−1) to obtain

M
2 · L1 · · · Ln−2 · L ′

n−1 ≤ 0.

(2) Apply the geometric Hodge index theorem in Theorem 5.20 on X to obtain

M2 · L1 · · · Ln−2 ≤ 0.

It follows that

M
2 · L1 · · · Ln−2 · L ′

n−1 = M2 · L1 · · · Ln−2 = 0.

By the geometric Hodge index theorem again, M is numerically trivial. ��

In the following discussion, we assume that M is numerically trivial. Then we can
extend M to a flat adelic Q-line bundle M0. See “Appendix (Flat metrics)” for the
definition of flat metrics again. The difference N := M − M0 is vertical. Then we
have a decomposition

0 = M
2 · L1 · · · Ln−1 = M

2
0 · L1 · · · Ln−1 + N

2 · L1 · · · Ln−1.

The inequality part of Theorem 3.2 implies

M
2
0 · L1 · · · Ln−1 = N

2 · L1 · · · Ln−1 = 0.

By the local Hodge index theorem in Theorem 2.1, N ∈ ̂Pic(K )Q. Thus we only need
to treat the case M = M0.
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3.4.2 Flat metric case

Here we prove the equality part of Theorem 3.2 assuming that M is flat. Let
M, L1, . . . , Ln−1 be as in the equality part of the corollary. The key is the following
induction result.

Lemma 3.8 For any closed integral subvariety Y of codimension one in X, we have

M|2Y · L1|Y · · · Ln−2|Y = 0.

Proof We prove this lemma by the same idea as in the proof of Lemma 2.6. Replacing
Ln−1 by a multiple if necessary, we can assume that there is a nonzero global section
s of Ln−1 vanishing on Y . Write

div(s) =
t

∑

i=1

aiYi ,

with ai > 0, Yi distinct, and Y1 = Y . Use the section s to compute the intersection

number M
2 · L1 · · · Ln−1. Then

M
2 · L1 · · · Ln−1 =

t
∑

i=1

ai M|2Yi · L1|Yi · · · Ln−2|Yi

−
∑

v

∫

Xan
v

log ‖s‖v c1(M)2c1(L1) · · · c1(Ln−2).

By the flatness of M , all the integrals above vanish. See Proposition 5.17 for more
details on flat metrics. Hence,

M
2 · L1 · · · Ln−1 =

t
∑

i=1

ai M |2Yi · L1|Yi · · · Ln−2|Yi .

Since every term on the right-hand side is non-positive, we obtain

M|2Y · L1|Y · · · Ln−2|Y = 0.

This proves the lemma. ��
Go back to the proof of Theorem 3.2. Still use induction on n = dim X . We apply

the lemma to a general hyperplane section Y of some very ample line bundle on
X . Note that X is normal. By a Bertini-type result of Seidenberg [32], Y is normal
(and projective). By Lemma 3.8 and the induction hypothesis, M|Y is constant in the
sense that it is a pull-back from a number field. In particular, M = 0 in Pic(Y )Q. By
Theorem 5.21. the natural map Pic0(X) → Pic0(Y ) has a finite kernel. Hence, M = 0
in Pic(X)Q. Replacing M by positive multiple, we may assume that M = OX . Now
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the constancy of M on X follows from the local Hodge index theorem in Theorem
2.1.

3.4.3 Proof of Theorem 3.5

The above proof also applies to the equality part of Theorem 3.5. Let L1, . . . , Ln−1
be any nef adelic line bundles extending L1, . . . , Ln−1. By Proposition 5.18, M ∈
Picτ (X)R extends to an R-linear combination M of flat adelic line bundles on X .
Lemma 3.8 still works in the current setting. By induction, we can assume M |Y = 0.
Then the injectivity of Pic0(X)R → Pic0(Y )R implies M = 0.

Remark 3.9 As a consequence of the proof of Lemma 3.8, we have the interpretation

〈M, M〉L1,...,Ln−1 = 〈M |C , M |C 〉 = −2 hNT(M |C ).

Here C is any smooth projective curve in X representing the intersection L1 ·
L2 · · · Ln−1 in that C = div(s1) · div(s2) · · · div(sn−1) for a collection of sections
si ∈ H0(X, Li ).

4 Algebraic dynamics

In this section, we present and prove the rigidity theorem (Theorem 4.1) about the
preperiodic points of algebraic dynamical systems. After the statements, we first intro-
duce a theory of admissible adelic line bundles and then prove the theorem using our
arithmetic Hodge index theorem.

4.1 Statement of the main theorem

Let X be a projective variety over Q̄. A polarizable algebraic dynamical system on
X is a morphism f : X → X such that there is an ample Q-line bundle satisfying
f ∗L � qL for some rational number q > 1. We call L a polarization of f , and
call the triple (X, f, L) with a fixed isomorphism f ∗L � qL a polarized algebraic
dynamical system.

Note that f is necessary finite, since the pull-back of the ampleQ-line bundle L by
f is still ample. The projection formula for the top intersection Ldim X further gives
that deg( f ) = qdim X .

For such an f , let Prep( f ) denote the set of preperiodic points, i.e.,

Prep( f ) := {x ∈ X (Q) | f m(x) = f n(x) for some m, n ∈ N, m �= n}.

A well-known result of Fakhruddin [12, Theorem 5.1] asserts that Prep( f ) is Zariski
dense in X .

Denote by DS(X) the set of all polarizable algebraic dynamical systems f on X .
Note that we do not require elements of DS(X) to be polarizable by the same ample
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line bundle or have the same dynamical degree q. The main theorem of this section is
the following rigidity result about preperiodic points.

Theorem 4.1 Let X be a projective variety over Q̄. Let f, g ∈ DS(X), and Z be the
Zariski closure of Prep( f ) ∩ Prep(g) in X. Then

Prep( f ) ∩ Z(Q) = Prep(g) ∩ Z(Q).

Remark 4.2 A similar proof as in the present paper should give an analogue of the
theorem over Fp(t).

Remark 4.3 When X = P
1, the theorem was previously proved by Mimar [27] fol-

lowing the method of [38] for the power map on P
1.

Remark 4.4 Let us reduce the theorem to the case that X is normal. Let ψ : X ′ → X
be the normalization of X . For any finite morphism f : X → X , the normalization
of f ◦ ψ : X ′ → X is a morphism f ′ : X ′ → X ′, which gives a (unique) lifting of
f : X → X . Moreover, if f is polarized by an ample Q-line bundle L on X , then f ′
is polarized by the ample Q-line bundle L ′ = ψ∗L on X ′. Since ψ is finite, we also
have Prep( f ′) = ψ−1Prep( f ). Hence, we can assume that X is normal by replacing
(X, f, L) by (X ′, f ′, L ′) in the theorem.

Remark 4.5 In this paper, we will often use models of a dynamical system over a
number field. More precisely, any polarized dynamical system (X, f, L) is the base
change of a dynamical system (XK , fK , LK ) over some number field K .

4.2 Semisimplicity

Let (X, f, L) be a polarized dynamical system over Q. Assume that X is normal. We
want to study the semisimplicity of f ∗ on Pic(X)Q.

By definition, f ∗ preserves the exact sequence

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0.

See “Appendix (Lefschetz theorems)” for definitions of the terms in the exact sequence.
It is clear that this exact sequence is the direct limit of the corresponding exact sequence

0 −→ Pic0(XK ) −→ Pic(XK ) −→ NS(XK ) −→ 0

for models (XK , fK , LK ) over a number field K . We further assume that X (K ) is
non-empty in the following.

Lemma 4.6 The groups NS(XK ) and Pic0(XK ) are both finitely generated Z-
modules.

Proof This is true for smooth curves, and for general normal varieties by induction
using the hard Lefschetz theorem in Theorem 5.21. In fact, the Picard functor Pic0X/K
is represented by an abelian variety A over K . See [22, Theorem 9.5.4, Corollary
9.5.14]. Then Pic0(X) = A(K ) is just the Mordell–Weil group. ��
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Theorem 4.7 Let (X, f, L) be a polarized algebraic dynamical system over Q.
Assume that X is normal.

(1) The operator f ∗ is semisimple on Pic0(X)C (resp. NS(X)C) with eigenvalues of
absolute values q1/2 (resp. q).

(2) The operator f ∗ is semisimple on Pic(X)C with eigenvalues of absolute values
q1/2 or q.

Proof When X is smooth, the result was proved by Serre [33] using the Hodge–
Riemann bilinear relation. Here we give a variation of his proof for general X using
both geometric and arithmetic Hodge index theorem. It suffices to prove (1), since (2)
is a consequence of (1). It suffices to prove the corresponding assertion for models
(XK , fK , LK ) over number fields where all the group are finite dimensional by the
above lemma. By abuse of notation, we often neglect the subscipt K in fK and LK .

We first consider NS(XK )C. Write n = dim XK as usual. Make the decomposition

NS(XK )R := RL ⊕ P(XK ), P(XK ) = {ξ ∈ NS(XK )R : ξ · Ln−1 = 0}

and define a pairing

(ξ1, ξ2) := ξ1 · ξ2 · Ln−2

on P(XK ). By Theorem 5.20, this pairing is negative definite. The projection formula
gives

( f ∗ξ1, f ∗ξ2〉 = q2〈ξ1, ξ2).

It follows that q−1 f ∗ is an orthogonal transformation (with respect to the quadratic
form). Then q−1 f ∗ is diagonalizable on NS(XK )C with eigenvalues of absolute val-
ues 1.

Next we consider Pic0(XK )C. We will use an arithmetic intersection paring on
Pic0(XK ). By the notation introduced right before Theorem 3.5, we have a pairing on
Pic0(XK )R defined by

〈ξ1, ξ2〉 = ξ1 · ξ2 · Ln−1
.

Here ξ1 and ξ2 are flat adelic line bundles extending ξ1 and ξ2, and L can be any
integrable adelic line bundle extending L . Theorem 3.5 asserts that the pairing is
negative definite on Pic0(XK )R.

On the other hand, we claim

〈 f ∗ξ1, f ∗ξ2〉 = q 〈ξ1, ξ2〉.

In fact, by the projection formula,

( f ∗ξ1) · ( f ∗ξ2) · ( f ∗L)n−1 = (deg f ) · (ξ1 · ξ2 · Ln−1
).
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Here f ∗ξ1 and f ∗ξ2 are still flat. By Proposition 5.19, we can replace f ∗L by qLK

on the left-hand side. Thus the formula gives the claim by deg f = qn .
Hence, q−1/2 f ∗ is an orthogonal transformation on Pic0(XK )R (with respect to

the negative of the pairing). Then q−1/2 f ∗ is diagonalizable on Pic0(XK )C with
eigenvalues of absolute values 1. The theorem is proved. ��

By Theorem 4.7, the exact sequence

0 −→ Pic0(X)C −→ Pic(X)C −→ NS(X)C −→ 0.

has a unique splitting as f ∗-modules by a section

� f : NS(X)C −→ Pic(X)C.

We can make this splitting overQ, i.e., it is the base change of a canonical linear map

� f : NS(X)Q −→ Pic(X)Q.

Indeed, over a model (XK , fK , LK ), let P ∈ Q[T ] and Q ∈ Q[T ] be the minimal
polynomials of f ∗ on Pic0(XK )Q and NS(XK )Q respectively. Note that P and Q
are coprime, since their roots have different absolute values. Then R = PQ is the
minimal polynomial for f ∗ on Pic(XK )Q. Moreover, Pic0(XK )Q has a complement
in Pic(XK )Q defined by

Pic f (XK )Q := ker Q( f ∗)|Pic(XK )Q .

Then the projection Pic f (XK )Q → NS(XK )Q is an isomorphism of f ∗-modules. If
K is replaced by a finite extension K ′ in the construction, then Q( f ∗) is replaced by
a multiple, and thus Pic f (XK )Q is naturally a subset of Pic f (XK ′)Q.

Denote by Pic f (X)Q the image of � f : NS(X)Q → Pic(X)Q, which is also the
direct limit of Pic f (XK )Q as K varies.

Definition 4.8 We say an element of Pic(X)Q is f -pure of weight 1 (resp. 2) if it lies
in Pic0(X)Q (resp. Pic f (X)Q).

4.3 Admissible metrics

By [40], Tate’s limiting argument gives a nef adelic Q-line bundle L f ∈ ̂Pic(X)Q

extending L and satisfying f ∗L f = qL f . We want to generalize the definition to
any line bundle M ∈ Pic(X)Q. The main theorem of this subsection is the following
result.

Theorem 4.9 Assume that X is normal. The projection

̂Pic(X)Q −→ Pic(X)Q
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has a unique section

M �−→ M f

as f ∗-modules. Moreover, the section satisfies the following properties:

(1) If M ∈ Pic0(X)Q, then M f is flat.
(2) If M ∈ Pic f (X)Q is ample, then M f is nef.

Note that this theorem furnishes the construction for the canonical height functions
for every line bundle M ∈ Pic(X)Q, not only for the polarization L .

Definition 4.10 An element M of ̂Pic(X)Q is called f -admissible if it is of the form
M f . In this case, the adelic metric of M is also called f -admissible.

For any integrable adelic Q-line bundle N on X with a model (NK , XK ) over a
number field K , recall that the height function hN : X (Q) → R is defined by

hN (x) = 1

[K (̃x) : Q]N · x̃, x ∈ X (Q).

Here x̃ denotes the image of x in XK , which is a closed point of XK . The following
simple consequences assert that the definition extends that of [40], and that preperiodic
points have height zero under f -admissible adelic line bundles.

Corollary 4.11 Let M ∈ Pic(X)Q. The following are true:

(1) If f ∗M = λM for some λ ∈ Q, then f ∗M f = λM f in ̂Pic(X)Q.
(2) For any x ∈ Prep( f ), one has M f |x̃ = 0 in ̂Pic(x̃)Q. Hence, the height function

hM f
is zero on Prep( f ).

Proof Part (1) follows from the first statement of the theorem. For (2), assume that
f m(x) = f n(x) with m > n ≥ 0. Choose a number field K such that (X, f, L) has
a model (XK , fK , LK ) over K as before, and such that x and M are defined over K .
Start with the identity

M f | f m (x) = M f | f n(x).

We have

( f ∗)mM f |x = ( f ∗)nM f |x .

It follows that N f |x = 0 for any N in the image of the linear map

( f ∗
K )m − ( f ∗

K )n : Pic(XK )Q −→ Pic(XK )Q.

It suffices to prove that the map is surjective. By Lemma 4.6, Pic(XK )Q is finite-
dimensional. Thus we need only prove that the map ( f ∗

K )m − ( f ∗
K )n is injective. This

is true because the eigenvalues of f ∗
K have absolute values q or q

1
2 . ��
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Now we prove Theorem 4.9 by the following steps, which takes up the rest
of this subsection. It suffices to prove the corresponding statement over a model
(XK , fK , LK ) over a sufficiently large number field K , with some extra care about
the compatibility between different K . In the following discussion, we assume that f
has a fixed point x0 ∈ X (K ), and omit the subscript K in the following discussion by
abuse of notation.

Step 1

Denote by ̂Pic(X)′ the group of adelic line bundles on X (with continuousmetrics), and
denote ̂Pic(X)′

Q
= ̂Pic(X)′ ⊗ZQ. In this step, we prove that the canonical projection

̂Pic(X)′
Q

−→ Pic(X)Q

has a unique section

M �−→ M f

as f ∗-modules. Note that ̂Pic(X)′ contains the group ̂Pic(X) of integrable adelic line
bundles.

Define D(X) by the exact sequence

0 −→ D(X) −→ ̂Pic(X)′
Q

−→ Pic(X)Q −→ 0.

It is an exact sequence of f ∗-modules. Recall that f ∗ has the minimal polynomial
R = PQ on Pic(X)Q.

Lemma 4.12 The operator R( f ∗) is invertible on D(X).

Assuming the lemma, then we have a unique f ∗-equivariant splitting of the exact
sequence. In fact, consider the composition

̂Pic(X)′
Q

R( f ∗)−→ D(X)
R( f ∗)|−1

D(X)−→ D(X).

It becomes the identity map when restricted to D(X), and thus gives a splitting of the
exact sequence. More precisely, if we denote

E(X) = ker(R( f ∗) : ̂Pic(X)′
Q

−→ ̂Pic(X)′
Q

),

which is also the kernel of the above composition, then we have an f ∗-equivariant
decomposition

̂Pic(X)′
Q

= D(X) ⊕ E(X).

The projection ̂Pic(X)′
Q

→ Pic(X)Q induces an isomorphism E(X) → Pic(X)Q. The
inverse of this isomorphism gives our desired f ∗-equivariant splitting Pic(X)Q →
̂Pic(X)′

Q
. This is the existence of the splitting.
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For the uniqueness, note that Pic(X)Q is killed by R( f ∗), so any f ∗-equivariant
splitting j : Pic(X)Q ↪→ ̂Pic(X)′

Q
has an image killed by R( f ∗). In other words, the

image of j should lie in E(X). But E(X) → Pic(X)Q is already an isomorphism, so
j is unique.
The splitting Pic(X)Q ↪→ ̂Pic(X)′

Q
can be written down explicitly. In fact, for any

M ∈ Pic(X)Q, let M be any lifting of M in ̂Pic(X)′
Q
. Then the f ∗-equivariant lifting

is given by

M f = M − R( f ∗)|−1
D(X)R( f ∗)M .

One checks that this expression lies in E(X) and maps to M in Pic(X)Q.
Note that our triple (X, f, L) is an abbreviation of a model (XK , fK , LK ) over a

number field K . The compatibility between different K is as follows. If we replace
K by a finite extension, then the minimal polynomial R of f ∗ on Pic(X)Q becomes
a multiple of it, and E(X) becomes a space naturally including it.

Step 2

Proof of Lemma 4.12 Recall that we have assumed that the base field is a number
field K , and x0 ∈ X (K ) is a rational point. Denote by Pic(X, x0) and ̂Pic(X, x0)′ the
isomorphism classes of bundles with a rigidification at x0. More precisely, an element
of Pic(X, x0) consists of an element M ∈ Pic(X) and an isomorphism M(x0) →
K ; an element of ̂Pic(X, x0)′ consists of an element M ∈ ̂Pic(X)′ and an isometry
M(x0) → K , where K is endowed with the trivial adelic metric at every place. Then
we have identifications:

Pic(X)Q = Pic(X, x0)Q, ̂Pic(X)′
Q

= ̂Pic(X, x0)
′
Q

⊕ ̂Pic(K )Q,

where ̂Pic(K )Q is embedded into ̂Pic(X)′
Q
by pull-back via the structure morphism

X → SpecK . The kernel of the projection ̂Pic(X, x0)′Q → Pic(X)Q can be identified
with metrics on OX rigidified at x0. By taking − log ‖1‖, it is identified with

C(X, x0) := ⊕vC(X an
v , x0),

where the sum is over all places v of K , and C(X an
v , x0) is the space of continuous

functions on X an
v vanishing at x0.

Thus we have shown the equality

D(X) = C(X, x0) ⊕ ̂Pic(K )Q.

This decomposition is stable under f ∗ since x0 is a fixed point of f . On ̂Pic(K )Q, the
operator f ∗ acts as the identity map. Thus R( f ∗) acts as R(1) on Pic(K )Q, which is
non-zero since all eigenvalues of f ∗ have absolute values q1/2 or q.

It remains to show that R( f ∗) is invertible over C(X, x0). By the action of the
complex conjugation, it suffices to show that R( f ∗) is invertible over C(X, x0)C =
C(X, x0) ⊗R C. Decompose R(T ) over the complex numbers as follows:
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R(T ) = a
∏

i

(

1 − T

λi

)

, a �= 0, |λi | = q1/2, q.

It suffices to show that 1 − f ∗/λi is invertible for each i . For that, it suffices to show
that the operator series

∞
∑

k=0

( f ∗)k

λki

is absolutely convergent on each Banach space C(X an
v , x0)C defined by the norm

‖φv‖sup, ∀ φv ∈ C(X an
v , x0)C.

By definition, f ∗ does not change this norm. Thus the operator norm ‖ f ∗‖ = 1. Then

∥

∥

∥

∥

∥

( f ∗)k

λki

∥

∥

∥

∥

∥

= 1

|λi |k ≤ 1

qk/2
.

The convergence is clear. This finishes the proof of the lemma. ��
Step 3

The previous steps have constructed a unique lifting M f ∈ ̂Pic(X)′
Q

for any M ∈
Pic(X)Q. To prove that M f actually lies in ̂Pic(X)Q, which means that M f is inte-
grable, it suffices to prove statements (1) and (2) of the theorem since Pic0(X)Q and
the ample elements of Pic f (X)Q generate Pic(X)Q.

In this step, we prove (1); namely, if M ∈ Pic0(X)Q, then M f is flat. We refer the
construction of flat adelic line bundles to “Appendix (Flat metrics)”.

We first reduce X to abelian varieties. As above, by extending K and replacing f
by an iteration, we can assume that f has a fixed point x0 ∈ X (K ). As in “Appendix
(Flat metrics)”, let i : X → A∨ be the Albanese map sending x0 to 0. Here A =
Pic0X/K is the Picard variety. Then the dynamical system f : X → X extends to
an endomorphism f ′ : A∨ → A∨. In fact, f ′ is just the dual of the endomorphism
A → A given by f ∗ : Pic0(X) → Pic0(X).

The map i : X → A∨ induces an isomorphism i∗ : Pic0(A∨) → Pic0(X). By
the expression of M f at the end of Step 1, this isomorphism carries f ′∗-admissible
adelic metrics on elements of Pic0(A∨)Q to f ∗-admissible adelic metrics on elements
of Pic0(X)Q. Hence, it suffices to prove that any f ′∗-admissible adelic metrics on
Pic0(A∨)Q is flat. In other word, we only need to treat abelian varieties.

Now assume that X is an abelian variety, and f : X → X is an endomorphism
(fixing the origin x0). Let M ∈ Pic0(X)Q be a general element. Note that f commutes
with [2] : X → X , and thus [2]∗ carries f ∗-admissible adelicmetrics to f ∗-admissible
adelic metrics. It follows that

[2]∗M f = [2]∗M f = 2M f .
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Then the adelic metric of M f is invariant under the dynamical system [2] : X → X .
It is flat by Theorem 5.16
Step 4

It remains to prove (2) of the theorem. Let M ∈ Pic f (X)Q be ample (and f -pure of
weight 2). We need to prove that M f is nef.

Let M
0
be any nef adelic Q-line bundle extending M and consider the sequence

Mm = (q−1 f ∗)mM0
of nef bundles. We will pick a subsequence “convergent” to

M f .
First, denote by Mm, f the admissible adelic line bundle extending Mm , and denote

Cm := Mm − Mm, f .

Then Cm lies in C(X) := ⊕C(X an
v ), the direct sum of the spaces of continuous

functions on X an
v . The relation Mm = (q−1 f ∗)mM gives Mm, f = (q−1 f ∗)mM f . It

follows that

Cm = (q−1 f ∗)m(M
0 − M f ).

Here M
0 − M f also lies in C(X). Since f ∗ does not change the norm of C(X), the

sequence Cm converges to 0.
Second, take a basis Ni (i = 1, . . . , r ) of Pic f (X)Q. Write

Mm − M =
r

∑

i=1

ai,mNi , ai,m ∈ Q.

Then

Mm, f − M f =
r

∑

i=1

ai,mNi, f .

It follows that

Mm − M f = Cm +
r

∑

i=1

ai,mNi, f .

This is a relation in ̂Pic(X)′
Q
.

Third, notice that the orthogonal transformation q−1 f ∗ has eigenvalues μi with
absolute values 1 on Pic f (X)Q. We can find an infinite sequence {mk}k of integers
such thatμmk

i → 1 for every i . Thus the operator (q−1 f ∗)mk converges to the identity
operator on Pic f (X)Q. In other words, ai,mk → 0 for all i . Then the theorem follows
from the nefness of the limits of nef bundles in afinite-dimensional space inProposition
5.8.
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4.4 Preperiodic points

We prove Theorem 4.1 in this subsection. We start by summarizing the canonical
height theory to be used.

Let (X, f, L) be a polarized dynamical system over Q with f ∗L � qL for some
q > 1. Assume that X is normal. Then the construction of [40] gives a nef adelic
Q-line bundle L f ∈ ̂Pic(X)Q extending L and satisfying f ∗L f = qL f . The height
function hL f

: X (Q) → R coincides with the canonical height of Call–Silverman
[9]. In particular, it has the following properties:

(1) hL f
( f (x)) = q hL f

(x), ∀ x ∈ X (Q).

(2) hL f
(x) ≥ 0, ∀ x ∈ X (Q).

(3) hL f
(x) = 0 if and only if x ∈ Prep( f ).

Theorem 4.9 extends any M ∈ Pic(X)Q to a unique f -admissible integrable adelic
Q-line bundle M f ∈ ̂Pic(X)Q, and thus defines a canonical height function hM f

:
X (K ) → R. The height function satisfies some partial properties of hL f

as described
in Corollary 4.11.

Furthermore, as a consequence of Theorem 4.7, we also have another f ∗-
equivariant linear map

� f : NS(X)Q → Pic(X)Q

Denote by

̂� f : NS(X)Q → ̂Pic(X)Q

the composition of the two liftings; i.e.,

̂� f (ξ) := � f (ξ) f , ∀ ξ ∈ NS(X)Q.

To prove Theorem 4.1, we present the following refinement.

Theorem 4.13 Let X be a normal projective variety overQ. Let f, g ∈ DS(X) be two
algebraic dynamical systems on X (with possibly different polarizations and weights),
and Y0 be an irreducible component of the Zariski closure of Prep( f )∩Prep(g) in X.
Let Y be the normalization of Y0. Then for any element ξ ∈ NS(X)Q,

̂� f (ξ)|Y = ̂�g(ξ)|Y .

In the theorem, we take the convention that M|Y denotes the image of an element
M ∈ ̂Pic(X)Q under the pull-back map ̂Pic(X)Q → ̂Pic(Y )Q.

Proof of “Theorem 4.13 ⇒ Theorem 4.1”. As in Remark 4.4, we can reduce Theorem
4.1 to the case that X is normal. It suffices to prove Prep(g)∩Y0(Q) = Prep( f )∩Y0(Q)

for any irreducible component Y0 of the Zariski closure of Prep( f ) ∩ Prep(g) in X .
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Denote by Y the normalization of Y0. Let L be an ample line bundle on X polarizing
f . Let ξ be the image of L in NS(X)Q, and M be the lifting of ξ in Picg(X)Q. By
Theorem 4.13, L f |Y = Mg|Y . For any x0 ∈ Prep(g) ∩ Y0(Q), let x ∈ Y (Q) be a
preimage of x0 in Y (Q). We have

hL f
(x0) = hL f |Y (x) = hMg |Y (x) = hMg

(x0) = 0

by Corollary 4.11. It follows that x0 ∈ Prep( f ) ∩ Y0(Q). This proves

Prep(g) ∩ Y0(Q) ⊂ Prep( f ) ∩ Y0(Q).

By symmetry, we have the other direction and thus the equality. ��
Proof of Theorem 4.13 We need to prove ̂� f (ξ)|Y = ̂�g(ξ)|Y for any ξ ∈ NS(X)Q.
By linearity, it suffices to assume that ξ is ample. Denote L = � f (ξ) and M = �g(ξ).
They are ample Q-line bundles on X . Then L f = ̂� f (ξ) and Mg = ̂�g(ξ) are nef by
Theorem 4.9.

Consider the sum N = L f +Mg and the associated height function hN . By Remark
5.2, this is an ample metrized line bundle. By the successive minima of Zhang [40,
Theorem 1.10] for N |Y on Y ,

λ1(Y, N ) ≥ hN (Y ) ≥ 0.

Here hN (Y ) and λ1(Y, N ) denote the height and the essential minimum of Y with
respect to N :

hN (Y ) = (N |Y )d+1

(n + 1) degN (Y )
, d = dim Y,

λ1(Y, N ) = sup
U⊂Y

inf
x∈U (Q)

hN |Y (x),

where the supremum is taken over all dense Zariski open subsets U of Y .
Note that hN is zero onPrep( f )∩Prep(g), which is Zariski dense inY0 by definition.

Hence, λ1(Y, N ) = 0. It forces hN (Y ) = 0.
Writing in terms of intersections, we have

(L f |Y + Mg|Y )d+1 = 0.

Note that in the binomial expansion of the left hand side, every term is non-negative
by Proposition 5.6. It follows that

L f |iY · Mg|d+1−i
Y = 0, ∀ i = 0, 1, . . . , d + 1.

It particularly gives

(L f |Y − Mg|Y )2 · (L f |Y + Mg|Y )d−1 = 0.
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Note that

(L|Y − M |Y ) · (L|Y + M |Y )d−1 = 0

since L−M ∈ Pic0(X)Q is numerically trivial.We are in a situation to apply Theorem
3.2 to

(L f |Y − Mg|Y , L f |Y + Mg|Y ).

It is immediate that (L f − Mg) is (L f + Mg)-bounded. The only condition that does
not match the theorem is that L f |Y + Mg|Y is not arithmetically positive. However,
since L − M is numerically trivial, we can take any C ∈ ̂Pic(Q̄) with ̂deg(C) > 0,
and replace

(L f − Mg, L f + Mg)

by

(L f − Mg, L f + Mg + π∗C).

Then all the conditions are satisfied. The theorem implies that

L f |Y − Mg|Y = π∗
Y N , N ∈ ̂Pic(Q̄)Q.

To finish the proof, we need to show N = 0 in ̂Pic(Q̄)Q. Take any point x in
Prep( f ) ∩ Prep(g). By Corollary 4.11, N = x∗π∗N in ̂Pic(x)Q is zero This finishes
the proof. ��

4.5 Consequences and questions

Now we consider some consequences and questions related to Theorem 4.1. The first
result concerns the case Y = X .

Theorem 4.14 Let X be a normal projective variety over Q. For any f, g ∈ DS(X),
the following are equivalent:

(1) Prep( f ) = Prep(g);
(2) gPrep( f ) ⊂ Prep( f );
(3) Prep( f ) ∩ Prep(g) is Zariski dense in X;
(4) ̂� f = ̂�g as maps from NS(X)Q to ̂Pic(X)Q.

Proof We will prove (1) ⇒ (2) ⇒ (3) ⇒ (4)⇒ (1).
First, (1) ⇒ (2) is trivial.
Second, (2) ⇒ (3). Let K be a number field such that (X, f, g) has a model

(XK , fK , gK ) over K , and such that both fK and gK have polarizations over XK .
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By abuse of notation, abbreviate (XK , fK , gK ) as (X, f, g). For any integer d > 0,
denote

Prep( f, d) := {x ∈ Prep( f ) | deg(x) < d}.

Here the degree is with respect to the base field K . By Northcott’s property, Prep( f, d)

is a finite set since its points have trivial canonical heights with respect to a polarization
of f . Assuming (2), then g stabilizes

Prep( f ) =
⋃

d>0

Prep( f, d).

Since g is also defined over K , it stabilizes the set Prep( f, d). By the finiteness, we
obtain that

Prep( f, d) ⊂ Prep(g), ∀ d.

Hence,

Prep( f ) ⊂ Prep(g).

Then (3) is true since Prep( f ) is Zariski dense in X by Fakhruddin [12, Theorem 5.1].
Third, (3) ⇒ (4) follows from Theorem 4.13 by setting Y = X .
Finally, we prove (4) ⇒ (1). Let L be an ample line bundle on X polarizing f . By

(4), L f = Lg . For any x ∈ Prep(g), we have hL f
(x) = hLg

(x) = 0 by Corollary
4.11. It follows that x ∈ Prep( f ). This proves Prep(g) ⊂ Prep( f ). By symmetry, we
have the other direction and thus the equality. ��
Semigroup

For any subset P of X (Q), denote

DS(X, P) := {g ∈ DS(X) | Prep(g) = P}.

We say that that P is a special set of X if DS(X, P) is non-empty.

Question 4.15 Let P be a special set of X. Is the set DS(X, P) a semigroup?

The question asks whether g ◦ h ∈ DS(X, P) for any g, h ∈ DS(X, P). By
Theorem 4.14, we can write:

DS(X, P) = {g ∈ DS(X) | gP ⊂ P}.

Then we have g ◦ h ∈ DS(X, P) if g ◦ h is polarizable.
The polarizability is automatically true if X = P

n . Hence, in this case DS(X, P)

is a semigroup.
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Appendix 1

For any scheme S, denote by Pic(S) the category of line bundles on S, and by Pic(S)

the group of isomorphism classes of line bundles on S. We may also work on the
groupoid Pic(S)Q ofQ-line bundles on S. The objects of Pic(S)Q are of the form aL
with a ∈ Q and L ∈ Pic(S). The isomorphism of two such objects is defined to be

Isom(aL , bM) := lim−→
N

Isom(L⊗aN , M⊗bN ),

where N runs through positive integers such that aN and bN are both integers. The
group of isomorphism classes of such Q-line bundles is isomorphic to Pic(S)Q :=
Pic(S) ⊗ Q. We will usually write the tensor products of line bundles additively.

Local intersections

Let K be an algebraic closed field with a a complete and non-trivial absolute value | · |.
In this subsection, we describe a local intersection theory for varieties over a K . If K is
archimedean, it is standard in complex geometry. If K is non-archimedean, it is due to
Gubler [17,19] based on Berkovich’s analytic spaces introduced in [1]. If the valuation
of K was discrete, this intersection theory was also constructed in [40] without using
Berkovich spaces. A measure-theoretic interpretation of local intersection numbers
has been introduced by Chambert-Loir [8], Gubler [19] and Chambert-Loir–Thuillier
[10].

Integrable metrized line bundles

Let us first consider the case K is non-archimedean. Denote by OK the ring of integers
consisting of elements a ∈ K with norm |a| ≤ 1, by m the maximal ideal of OK

consisting of elements a ∈ OK with norm |a| < 1, and by k the residue field OK /m.
Let X be a projective variety over K , and let X an be the analytification of X in the

sense of Berkovich [1]. By an integral model (or a model) of X over OK , we mean
a projective, flat, and finitely presented, integral scheme X over OK with generic
fiber X . Note that Gubler has used formal models X with generic fiber X an. Since
all formal models are dominated by the completions ̂X of projective models X along
their special fibers, the constructions using (projective) integral models are equivalent
to those using formal models. See [18, Proposition 10.5] for more details.

Let L be a line bundle on X , and let Lan be the analytification of L as a line bundle
on X an. By a continuous metric on L we mean a collection of K (x)-metrics ‖ · ‖
on Lan(x) indexed by x ∈ X an, where K (x) is the residue field of x ; the collection
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is required to be continuous in sense that for every rational section s of L , the map
x �→ ‖s(x)‖ is continuous away from the poles of s on X an. A metrized line bundle
L on X is a pair (L , ‖ · ‖) consisting of a line bundle L on X and a continuous metric
‖ · ‖ on L .

Let e be a positive integer, and let (X ,L) be an integral model of (X, eL). Namely,
X is an integral model of X and L is a line bundle on X with restriction LK = eL on
X . Then one can associate a metric ‖ · ‖ on L so that on any open set U of X with a
trivialization of L|U � OU by a section � of L|U , the induced metric on eL satisfies
‖�‖(x) = 1 for any x ∈ X an reducing to Uk . It gives the metric on L by taking the
e-th root. Such a metric is called a model metric.

A model metric on L is called semipositive if it is induced by an integral model
(X ,L) of (X, eL) (for some positive integer e) with L relatively nef on X , that is, Lk

has a non-negative degree on any closed sub-curve in the special fiber Xk . Note that it
implies that L is nef on the generic fiber X .

Definition 5.1 Let L = (L , ‖ · ‖) and M be two metrized line bundles on X .

(1) ‖ · ‖ is semipositive if it is equal to a uniform limit of semipositive model metrics.
(2) L is semipositive if ‖ · ‖ is semipositive, which implies that L is also nef.
(3) L is arithmetically positive if L is ample and ‖ · ‖ is semipositive.
(4) L is integrable if L = L1 − L2 with Li semipositive.
(5) M is L-bounded if there is a positive integer m such that both mL + M and

mL − M are semipositive.
(6) M is vertical if it is integrable and its generic fiber M is isomorphic to the trivial

bundle OX .
(7) M is constant if it is isometric to the pull-back of ametrized line bundle on SpecK .

Let ̂Pic(X) denote the category of integrable metrized line bundles on X with
morphisms given by isometries, and ̂Pic(X) the group of isometry classes of integrable
metrized line bundles.

Consider the case L = OX . The group of continuous metrics ‖ · ‖ on OX is iso-
morphic to the space C(X an) of real-valued continuous functions f on X an by the
relation f = − log ‖1‖. Under this relation, we say that f is an integrable function
(resp. model function) if ‖ · ‖ is an integrable metric (resp. model metric). Denote by
Cint(X an) (resp. Cmod(X an)) the Q-vector space of integrable functions (resp. model
functions) on X an. By definition, and using that on a projective variety over the valu-
ation ring any line bundle is isomorphic to the difference of two very ample ones, we
have

Cmod(X
an) ⊂ Cint(X

an) ⊂ C(X an).

By [17, Theorem 7.12], Cmod(X an) is dense in C(X an) under the topology induced by
the supremum norm.

For a morphism f : X → Y of projective varieties, we have an obvious notion of
pull-back functor f ∗ : ̂Pic(X) → ̂Pic(Y ) which respect properties in Definition 5.1
except arithmetic positivity.
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Intersection theory

Let Z be a cycle on X of dimension d, L0, . . . , Ld be integrable metrized line bundles
on X , and �0, . . . , �d be rational sections of L0, . . . , Ld respectively such that the
common support ∩i |div(�i )| has no intersection with |Z |. Gubler [17] and Chambert-
Loir [8] have defined the local height ̂div(�0) · · · ̂div(�d) · [Z ] of Z with respect to
�0, . . . , �d . It is characterized by the following properties:

(1) It is linear in the variables ̂div(�i ) and Z .
(2) For fixed �1, . . . , �d , it is continuous with respect to the metrics.
(3) When every Li is induced by a model Li on a common model X of X ,

̂div(�0) · · · ̂div(�d) · [Z ] = divX (�0) · · · divX (�d) · [Z],

where Z is the Zariski closure of Z on X .

ByChambert-Loir [8], Gubler [19] andChambert-Loir–Thuillier [10], if the support of
div(�0) does not contain any irreducible component of Z , the intersection number can
be computed using ameasure c1(L1) · · · c1(Ld)δZ of X an supported on Z an inductively
by

̂div(�0) · · · ̂div(�d) · [Z ] = ̂div(�1) · · · ̂div(�d) · [div(�0) · Z ]
−

∫

Xan
log ‖�0‖c1(L1) · · · c1(Ld)δZ .

In [10, Theorem 4.1], the above formula is proved over C or finite extensions of Qp,
but the proof for general K goes through, with minor adaptations as in Gubler [19].

Let L0, · · · Ld be integrable metrized line bundles on X such that the underlying
line bundles Li satisfy the following properties:

(1) L0|Z j � OZ j on every irreducible component Z j of Z ;
(2) c1(L1) · · · c1(Ld) · [Z j ] = 0 on X for every irreducible component Z j of Z .

We further assume that �0 does not vanish on any Z j . Then the local pairing
̂div(�0) · · · ̂div(�d) · [Z ] does not depend on the choice of the rational sections �i .
Thus we can define a pairing

L0 · L1 · · · Ld · Z := ̂div(�0) · · · ̂div(�d) · [Z ].

If Z = X , we will omit X in the notation.
Now we extend the above definitions to the archimedean case. If K = C, then

X an = X (C) is the complex analytic space associated to X . For a metrized line bundle
L on X , the metric is called smooth if for any analytic map φ : B → X (C) from any
complex open ball B of any dimension to X (C), the metric of the pull-back φ∗L is a
smooth hermitian metric. In that case, we say that L is semipositive if the curvature
form c1(φ∗L) is positive semi-definite pointwise on B for any such φ. If K = R, then
X an is the quotient topological space of X (C) by the action of the complex conjugate.
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A metric on X an is called smooth if its pull-back to X (C) is smooth, and a smooth
metric on X an is called semipositive if its pull-back to X (C) is semipositive.

Replacing model metrics by smooth metrics, Definition 5.1 works in the
archimedean case, and the intersection theory follows the same way.

Remark 5.2 By [39, Theorem 3.5, (2)] for non-archimedean K and [30, Theorem 2]
for K = C, the notion “arithmetically positive” is equivalent to the notion of “semi-
ample metrized” in the sense that for any ε > 0 and any closed point x ∈ X , there is
a section � of a positive power nL such that ‖�‖sup ≤ ‖�(x)‖ · enε .

Arithmetic intersections

Bundles with smooth metrics

We first review the theory of arithmetic line bundles in Gillet–Soulé [15] with some
extensions in [39] to arithmetic varieties with singular generic fibers.

Let K be a number field with the ring OK of integers. Let π : X → SpecOK be
an arithmetic variety. This means that X is an integral scheme and the morphism π is
projective and flat. By a hermitian line bundle on X , we mean a pair L = (L, ‖ · ‖)
consisting of a line bundle L on X and a smooth hermitian metric ‖ · ‖ on L(C)

over the complex analytic space X (C) = ∐

v|∞ Xv(C), invariant under the action
of the complex conjugation. Here the smoothness of the metric is as in “Appendix
(Local intersections)”. Let ̂Pic(X ) denote the category of hermitian line bundles and
̂Pic(X ) the group of isometry classes of hermitian line bundles onX .We can define the
category ̂Pic(X )Q of hermitian Q-line bundles on X . The group of isometry classes
of such bundles is again given by ̂Pic(X )Q.

For any integral subvariety Y of X of dimension d + 1, and hermitian line bundles
L0, . . . ,Ld with rational sections �0, . . . , �d such that ∩|div(�i )| has no common
point with the generic fiber YK of Y , the intersection number ̂div(�0) · · · ̂div(�d) · [Y]
can be defined as the sum of local intersection numbers over all places v of K by

̂div(�0) · · · ̂div(�d) · [Y] =
∑

v

(̂div(�0) · · · ̂div(�d) · [Y])v.

This number does not depend on the choices of �i . Thuswe have a pairing ̂Pic(X )d+1×
Zd+1(X ) → R by

L0 · · ·Ld · Z := ̂div(�0) · · · ̂div(�d) · [Z].

If Z = X , then we usually omit X in the above notation. If furthermore dimX = 1,
then it is common towritêdeg(L0) for the numberL0 ·X , which is called the arithmetic
degree.

LetL be a hermitian line bundle on an arithmetic varietyX over OK . If x ∈ X (K ),
we define the height of x with respect to L by
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hL(x) := L · x̄
[K (x) : K ] ,

where x̄ denotes the Zariski closure of the image of x in X .

Definition 5.3 Let L be a hermitian line bundle on an arithmetic variety π : X →
SpecOK .

(1) We say that L is nef if L has a non-negative (arithmetic) degree on any integral
subscheme on X , and the curvature c1(L) is positive semi-definite on the smooth
locus of X (C).

(2) We say thatL is arithmetically positive if the generic fiberLK is ample onXK , and
L−π∗M is nef for some hermitian line bundleM of SpecOK witĥdeg(M) > 0.

The intersection pairing extends to hermitian Q-line bundles by linearity. We say
that an hermitianQ-line bundleL is nef (resp. arithmetically positive) if there is a pos-
itive integer a such that aL is a hermitian line bundle which is nef (resp. arithmetically
positive).

The above notion of “arithmetic positivity” is slightly weaker that the notion of
“arithmetic ampleness” used by Zhang [39] and [29] in the case XK is regular.

Lemma 5.4 Let X → SpecOK be an arithmetic variety such that XK is regular.
Let L be a hermitian Q-line bundle on X . Then L is arithmetically positive if it is
arithmetically ample in the following sense:

(a) The line bundle L is relatively ample on X ;
(b) The curvature of L is positive definite on X (C);

(c) L is horizontally positive; i.e., the intersection number LdimY · Y > 0 for any
horizontal irreducible closed subscheme Y of X .

Proof LetM be a hermitian line bundle on SpecOK with ̂deg(M) > 0. It suffices to
prove thatNm = mL−π∗M is nef for some integerm > 0. By the arithmetic Nakai–
Moishezon criterion of [39, Corollary 4.8], for sufficiently large m, the hermitian line
bundle �(X ,Nm) has a Z-basis s1, . . . , sr with every ‖si‖sup < 1. Using this basis to
compute intersection numbers, we see that Nm is nef. ��

Bundles with adelic metrics

Now let us review the intersection theory of adelic line bundles in [40] and the exten-
sions by Chambert-Loir [8] and Chambert-Loir–Thuillier [10].

Let K be a number field, π : X → SpecK a projective variety, and L a line bundle
on X . An integral model (or a model) X of X over OK means a projective and flat
integral scheme X over OK with generic fiber X . If furthermore L is a hermitian line
bundle on X with generic fiber LK = L , we say that (X ,L) is an integral model (or a
model) of (X, L). An integral model of (X, eL) (for some positive integer e) induces
a collection ‖ ·‖L,A

= {‖·‖L,v
}v of continuous metrics ‖ ·‖L,v

of Lan
Kv

on X an
v = X an

Kv

over all places v of K . The collection is called a model adelic metric on L . In general,
by an adelic metric ‖·‖A = {‖·‖v}v on L , we mean a collection of continuous metrics
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‖ · ‖v of Lan
Kv

on X an
v over all places v of K , which is assumed to be coherent in the

sense that it agrees with some model adelic metric at all but finitely many places v.
An adelic metric ‖ · ‖A is called semipositive if it is semipositive at every place in

the sense of Definition 5.1(1). An adelic metric ‖ · ‖A on L is integrable if it is the
difference of two semipositive metrized line bundles. Let ̂Pic(X) denote the category
of integrable adelic metrized line bundles on X , and let ̂Pic(X) the isometry classes
of such bundles. We can define ̂Pic(X)Q and ̂Pic(X)Q for Q-line bundles.

Note that the definition of adelic metrics in [40] used the space X (K̄v), while
we use the Berkovich space X an

Kv
. But they give the same classes of model adelic

metrics, semipositive adelic metrics and integrable adelic metrics. We make some
new definitions not included in [40] in the following.

Definition 5.5 Let L, M be integrable metrized line bundles on X .

(1) We say that L is nef if the adelic metric is a uniform limit of model adelic metrics
induced by nef hermitian line bundles on integral models of X ;

(2) We say that L is arithmetically positive if L is ample, and L − π∗N is nef for
some adelic line bundle N on SpecK with ̂deg(N ) > 0.

(3) We say that M is L-bounded if there is an integer m > 0 such that both mL + M
and mL − M are nef.

(4) We say that L is vertical if L is trivial on X .
(5) We say that L is constant if L is isometric to the pull-back of an adelic line bundle

on SpecK .

By the above definitions, ̂Pic(X) has sub-semigroups ̂Pic(X)nef , ̂Pic(X)pos and a
subgroup ̂Pic(X)vert. We extend the definitions to adelicQ-line bundles as in the case
of hermitian Q-line bundles.

Consider the case L = OX . Similar to the local case, the group of adelic metrics
‖ · ‖A on OX is isomorphic to the space

C(X) = ⊕vC(X an
v );

the group of integrable metrics ‖ · ‖A on OX is isomorphic to the space

Cint(X) = ⊕vCint(X
an
v ).

The isomorphisms are given by

‖ · ‖A �−→ ⊕v(− log ‖1‖v).

The space C(X) has a supremum norm

‖ f ‖ := max
v

‖ fv‖sup, f = ⊕ fv.

By abuse of notations, we will write C(X) for the corresponding group of adelic line
bundles.
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LetY be an integral subvariety of X of dimension d and let L0, . . . , Ld be integrable
metrized line bundles with sections �0, . . . , �d such that ∩|div(�i )| has no intersection
with Y . Then we can define intersection pairing by summing up local intersections:

̂div(�0) · · · ̂div(�d) · [Y ] =
∑

v

(̂div(�0) · · · ̂div(�d) · [Y ])v.

This pairing does not depend on the choice of �i . Thus it defines a pairing ̂Pic(X)d+1
Q

×
Zd(X) → R by

L0 · L1 · · · Ld · Z := ̂div(�0) · · · ̂div(�d) · [Z ].

We will omit Z if Z = X , and write it as ̂deg(L0) if Z = X and dim X = 0.
The local induction formula of Chambert-Loir–Thuillier recalled in “Appendix

(Local intersections)” gives a global induction formula as follows. Let �0 be a rational
section of L0 on X such that div(�0) has a proper intersection with Z , then

L0 · L1 · · · Ld · Z = L1 · · · Ld · (Z · div(�0))
−

∑

v

∫

Xan
v

log ‖�0‖vc1(L1,v) · · · c1(Ld,v)δZ .

Notice that the summation has only finitely many non-zero terms.
In this paper, we will often study adelic metrics of line bundles on a projective

variety X over Q̄. Using base change, there is an obvious way to give the following
definitions,

̂Pic(X) = lim
XK

̂Pic(XK ), ̂Pic(X) = lim
XK

̂Pic(XK )

where limit is over models XK over number fields K , i.e., XK is a projective variety
over a number field K equipped with an isomorphism XK ⊗K Q̄ � X . Similarly we
can define the sub-semigroups ̂Pic(X)nef , ̂Pic(X)pos, and subgroups ̂Pic(X)vert,C(X),
Cint(X), etc. The intersection numbers on XK with normalization factor 1/[K : Q]
will give intersection numbers on X .

Arithmetic positivity

In this section, we collect some facts about arithmetic positivity needed in this paper.
The first one is about the positivity of intersections of nef bundles.

Proposition 5.6 Let X be a projective variety over a number field K . Let L0, L1, . . . ,

Ln be nef adelic line bundles on X. Then

L0 · L1 · · · Ln ≥ 0.

123



1162 X. Yuan, S. Zhang

Proof We prove it by induction on n. By resolution of singularity, we may assume
that X is regular. By approximation, we may assume that (L0, . . . , Ln) is induced by
a model (L0, . . . ,Ln) on an integral model X of X over OK . Adding a small positive
multiple of an arithmetically ample line bundle on X to each Li , we may assume that
each Li is arithmetically ample. By [39, Corollary 5.7(2)], replacing Li by a positive
multiple if necessary, Li is a hermitian line bundle such that H0(X ,Li ) has a Z-basis
consisting of small sections. Let �0 be such a small section of L0. Then ‖�0‖sup < 1.
We have

L0 · L1 · · ·Ln = L1 · · ·Ln · [div(�0)] −
∫

X (C)

log ‖�0‖c1(L1) · · · c1(Ln)

≥ L1 · · ·Ln · [div(�0)].

Write div(�0) as a linear combinations of integral subvarieties of X . The problem is
reduced to a lower dimension. ��

The second one is the openness of arithmetic ampleness.

Proposition 5.7 Let X → SpecOK be an arithmetic variety, and M, N 1, . . . ,N r

be hermitianQ-line bundles onX . Assume thatXK is regular andM is arithmetically
ample. Then the hermitian Q-line bundle

M +
∑

i

εiN i , εi ∈ Q

is arithmetically ample when max |εi | is sufficiently small.
Proof This can be proved by the same argument as in the geometric case in [25,
Proposition 1.3.7]. First, we claim that there is a positive integerm such thatmM±N i

are all arithmetically ample. Then for each r -tuple (ε1, . . . εr ) of sufficiently small εi ,
the sumM + ∑

i εiN i can be written as positive linear combinations ofM ± 1
mNi .

Now we prove the claim. To ease the notation, let N be a general hermitian line
bundle on X , and it suffices to prove that mM+ N is arithmetically ample for some
positive integer m. Note that for sufficiently large m, mM + N is ample and its
curvature is positive definite. By Lemma 5.4, it suffices to check the positivity of
the intersection numbers with horizontal subschemes. The rest of the proof is similar
to that of Lemma 5.4. In fact, by the arithmetic Nakai–Moishezon criterion of [39,
Corollary 4.8], for sufficiently largem, the hermitian line bundle �(X ,mM+N ) has
a Z-basis with supremum norms less than 1. Using this basis to compute intersection
numbers, we finish the proof. ��

The third one is the nefness of certain limit of nef bundles.

Proposition 5.8 Let X be a projective variety over a number field K . Suppose for
each m ∈ N, there is an equality of adelic Q-line bundles as follows:

Mm − M = Cm +
r

∑

i=1

ai,mNi , Cm ∈ C(X), ai,m ∈ Q.
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Assume the following conditions:

(1) M is ample, and every Mm is nef;
(2) Cm → 0 and ai,m → 0 as m → ∞.

Then M is nef.

Proof We need to construct a sequence M
′
m of nef adelic Q-line bundles with the

same underlying bundle M such that M
′
m converges to M (in the sense that the metric

of M
′
m converges to that of M).

Let M
0
and N

0
i be any integrable metrized Q-line bundles with underlying Q-line

bundles M and Ni . Let {εm}m be a sequence of positive rational numbers convergent
to 0, with some conditions to be imposed later. Denote

M
′
m := (1 − εm)Mm + εmM

0 − (1 − εm)

r
∑

i=1

ai,mN
0
i .

We see that the underlying line bundle of M
′
m is exactly M , and that M

′
m converges

to M (in the metric sense). It remains to pick M
0
, N

0
i and εm so that M

′
m is nef. Since

Mm is nef, it suffices to find εm such that

εmM
0 − (1 − εm)

r
∑

i=1

ai,mN
0
i

is nef for sufficiently large m. Equivalently, we need

M
′′
m := M

0 − (ε−1
m − 1)

∑

ai,mN
0
i = M

0 +
∑

bi,mN
0
i

to be nef for sufficiently large m, where

bi,m = −(ε−1
m − 1)ai,m = −ai,m

εm
(1 − εm).

Take εm = maxi |ai,m |1/2, then bi,m → 0. Thus M
′′
m is in a small neighborhood of M0

in a finite-dimensional vector space of hermitianQ-line bundles. We have reduced the
problem to the following lemma. ��
Lemma 5.9 Let X be a projective variety over a number field K . Let M, N1, . . . , Nr

be line bundles on X with M ample. Then there are integrable adelic metric structures
M, N 1, . . . , Nr of M, N1, . . . , Nr such that the adelic Q-line bundle

M +
∑

i

bi N i , bi ∈ Q

is nef when max |bi | is sufficiently small.
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Proof We first assume that X is regular. Take an integral model X of X over OK .
Extend M , N1, . . . , Nr to hermitian line bundles M,N 1, . . . ,N r on X . We can
further assume that M is arithmetically ample.

In fact, replacing M by a positive multiple if necessary, we can assume that global
sections of M give a closed embedding i : X → P

m
K with M � i∗O(1). Take X to

be the Zariski closure of X in P
m
OK

, and take M to be the restriction of the standard
arithmetically ample line bundle OPm

OK
(1) (endowed with the Fubini–Study metric).

Take M, N 1, . . . , Nr to be the adelic line bundles induced by M,N 1, . . . ,N r .
Then the conclusion follows from the openness of arithmetic ampleness in Proposition
5.7.

If X is singular, it suffices to prove that there is a closed embedding from X to a
regular projective variety P such that some multiple of Ni can be extended to a line
bundle on P , and some positive multiple of M can be extended to an ample line bundle
on P .

In fact, take a positive integer t such that N0,t := tM and N±i,t := tM ± Ni

are all very ample, and form projective embeddings X → Pi using sections of Ni,t

for i ∈ {−r, r}. Define P to be the product of all Pi and denote by πi : P → Pi

the projections. Then Ni,t extends to the line bundle N ′
i,t = π∗

i OPi (1). Hence 2Ni

extends to the line bundle N ′
i,t − N ′−i,t , and (2r + 1)tM extends to the ample bundle

∑r
i=−r N

′
i,t . ��

Flat metrics

In subsection we review a construction of flat metrics for numerically trivial line
bundles. Most of the subsection will treat the local case, except that in the end we
extend the definition to the global case. Let K be an algebraically closed field equipped
with a complete and non-trivial absolute value.

Definition 5.10 Let X be a projective variety over K , and L = (L , ‖ ·‖) an integrable
metrized line bundle on X . We say that L (resp. ‖ · ‖) is flat if for any morphism
f : C → X from a projective curve C over K , the measure c1( f ∗L) = 0 on Can.

If L is flat, then L is numerically trivial in the sense that deg L|C = 0 for any curve
C in X . This follows from the identity

deg(L|C ) =
∫

Can
c1(L|C ) = 0.

The main result of this section is the converse:

Theorem 5.11 Let K be a complete field, X a geometrically connected and geomet-
rically normal projective variety over K , and L a numerically trivial line bundle on
X. Then L has a flat metric. Moreover such a metric is unique up to constant multiple.

The uniqueness part of the theorem is equivalent to that any flat metric ‖ · ‖ on OX

gives the constant function ‖1‖. Any two closed points x1, x2 on X can be connected
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by a curve Y . Let C be the normalization of Y , it is reduced to prove the constancy
of ‖1‖ on C . This is one-dimension case of our local Hodge index theorem proved in
Sect.1.2.

Remark 5.12 If K = C and X is smooth, then c1(L) = 0 in H2(X,Q), and the
existence of the flat metric follows from complex algebraic geometry. See [16].

Remark 5.13 If K is a discrete valuation field and X is a smooth variety over K , the
existence of flat metric has been proved by Künnemann [24] by constructing regular
models of albanese alb(X). If dim X = 1 with a regular (projective and flat) model
X , then the existence of flat metric follows from a modelM for Le (e ≥ 1) which has
zero degree on every fiber of X , see [13].

Before we give a construction of the flat metric in the general case, we formulate
some functorial properties under finite and flat morphisms.

Proposition 5.14 Let f : X → Y be a morphism of projective varieties over K . Let
L, M be integrable metrized line bundles on X and Y respectively.

(1) If M is flat, then f ∗M is flat.
(2) If f is surjective and f ∗M is flat, then M is flat on X.

Proof The first part is trivial. For the second part, we notice that any curve C → Y is
dominated by a curve D → X in C ×Y X with a finite morphism π : D → C . Thus

c1(L|C ) = 1

degπ
π∗c1( f ∗L|D).

��
In the following, we prove the existence of flat metrics in Theorem 5.11 by con-

struction using algebraic dynamical systems.

Abelian varieties

Proposition 5.15 Let A be an abelian variety over K . For any algebraically trivial
line bundle L on A, there is an integrable metric ‖ · ‖ on L, unique up to constant
multiples, called the admissible metric, satisfying the isometry ([2]∗L) ⊗ L(0) � 2L.
Here L(0) is the restriction of L via the identity of A, and viewed as a metrized line
bundles on A via pull-back by the structure morphism.

Proof Replacing L by L ⊗ L(0)−1, we have a canonical isomorphism [2]∗L = 2L .
We may use Tate’s limiting argument on L as in [40] to define the metric. We refer to
Chambert-Loir [7, §2] and Gubler [19, 10.4] for discussions of the integrability. ��
Theorem 5.16 Let A be an abelian variety over K and L an algebraically trivial line
bundle on A. Then any admissible metric ‖ · ‖ is flat.
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Proof Let L = (L , ‖ · ‖) denote the corresponding integrable metrized line bundle
and let C → A be a smooth projective curve. We want to show that c1(L|C ) = 0.

If K = C, L has a smooth metric ‖ · ‖′ with c1(L , ‖ · ‖′) = 0. It is clear that this
metrized line bundle is admissible. By the uniqueness of admissible metrics, ‖·‖/‖·‖′
is constant. Then c1(L) = 0. Thus L is flat.

Assume that K is non-archimedean. Fix a point x0 ∈ C(K ) mapping to 0 ∈ A.
Denote the Jacobian variety of C by J , and the canonical embedding by

iC : C −→ Jac(C), iC (x) = OC (x − x0).

Then the morphism C → A factorizes through iC . Let M denote the pull-back of L
on J . Then it is easy to check that M is admissible. Apply [19, Remark 3.14]. We
obtain c1(M |C ) = 0. This finishes the proof. ��

General case

We are ready to prove Theorem 5.11. It is well-known that some multiple eL of
L is algebraically trivial (cf. [22, Theorem 9.6.3]). Thus we may assume that L is
algebraically trivial. The plan is to map X to its “Albanese variety”.

By [22, Proposition 9.5.3, Theorem 9.5.4], the Picard functor Pic0X/K is repre-

sented by a projective and irreducible group scheme Pic0X/K over K . Denote by

A = Pic0X/K ,red the maximal reduced subscheme of PicX/K . Then A is is an abelian
variety over K . Fix an element x0 ∈ X (K ).

Under the assumptions, there is a universal line bundle Q on X × A with rigidifica-
tions on x0 × A and X ×{0}which represents the functor Pic0,x0X/K ,red over the category

of reduced schemes over K , which takes a reduced scheme S over K to the set of the
isomorphism classes of line bundles M on X × S with a rigidification on {x0}× S such
that M is algebraically trivial over any geometric fiber of X × S → S. Let ξ ∈ A(K )

denote the point corresponding to L ⊗ L(0)−1.
Notice that every x ∈ X (K ) also defines an algebraically trivial line bundle Q|x×A.

Thus we have a morphism i : X → A∨, where A∨ is the dual of A. This morphism is
known as the Albanese map of X . It is easy to see that the bundle Q is the pull-back
of the Poincaré bundle P on A∨ × A via the morphism

i × 1A : X × A −→ A∨ × A.

In particular, we have the following identity

L ⊗ L(0)−1 = Q|X×{ξ} = i∗(P|A×{ξ}).

In other words, L = i∗M where M is an algebraically trivial bundle on A∨ defined
by M = PA×{ξ} ⊗ L(0). By Theorem 5.16, M has a flat metric. It follows from
Proposition 5.14 that L has a flat metric.
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Curvatures and intersections

Herewe introduce a propositionwhich justifies the term “flat” in terms of intersections.

Proposition 5.17 Let K be a complete field, and X be a geometrically connected and
geometrically normal projective variety over K . Let M be a flat metrized line bundle
on X. Then for any integrable metrized line bundles L1, . . . , Ln−1 on X,

c1(M)c1(L1) · · · c1(Ln−1) = 0

as a measure on X an. Here n = dim X.

Proof By the proof of Theorem 5.11, there is a finite extension K ′ of K so that MK ′
is the pull-back of an admissible metrized line bundle N on the Albanese A∨. If K is
archimedean, then c1(N ) = 0. The above identity is trivial. If K is non-archimedean,
this is just [19, Remark 3.14]. Note that the statement in [19] assumes that X is smooth,
but it quotes back to [17], which does not require the smoothness (for our purpose).
Thus the result holds in the above generality. (Alternatively, one can prove the theorem
directly by induction on n using Bertini’s theorem on integral models of X .) ��

Flat adelic line bundles

In the end, we sketch a global theory of flat metrics.
Let X be a normal projective variety over Q̄. An adelic line bundle M on X is called

flat if M is numerically trivial and the adelic metric is flat at every place. In this case,
we also call the adelic metric flat. Globally, we have the following result.

Proposition 5.18 Let M be a numerically trivial line bundle on X. There M has a
flat adelic metric, unique up to constant metrics in ̂Pic(Q̄).

Proof As in the local case, we can assume thatM is induced by a flat adelic line bundle
on A∨ via the Albanese map i : X → A∨. Then M is integrable by [7, Corollary 2.2].

��
As a dilation, we remark that M is usually not nef (in spit of the above properties).

In fact, Theorem 3.2 in the main body of this paper simply implies that M is nef only
if it is constant.

We will need the following result.

Proposition 5.19 Let X be as above, and write n = dim X. Let

M, N , L1, . . . , Ln, M
′
, N

′
, L

′
1, . . . , L

′
n

be integrable adelic line bundles on X. Assume that M, N , M
′
, N

′
are flat, and the

underlying line bundles M = M ′, N = N ′ and Li = L ′
i for every i = 1, . . . , n. Then

the following are true:
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(1)

M · L1 · · · Ln = M · L ′
1 · · · L ′

n .

(2)

M · N · L1 · · · Ln−1 = M
′ · N ′ · L ′

1 · · · L ′
n−1.

Proof We first prove (1). By induction, it suffices to prove

M · L1 · · · Ln−1 · Ln = M · L1 · · · Ln−1 · L ′
n .

Assume that everything is defined over a model XK of X over a number field K . For
any place v of K , the quotient of the metrics of L

′
n and Ln at v is of the form e− fv

for some continuous function fv : X an
Kv

→ C. The function fv = 0 for all but finitely
many v. Then

M · L1 · · · Ln−1 · (L
′
n − Ln) =

∑

v

∫

Xan
v

fv c1(Mv)c1(L1,v) · · · c1(Ln−1,v)

= 0.

Here the first equality follows from the induction formula of Chambert-Loir–Thuillier
in Sect. “Appendix (Arithmetic intersections)”, and the second equality follows from
Gubler’s result in Proposition 5.17 (1).

Now we treat (2). Applying (1) twice, we have

M · N · L1 · · · Ln−1 = M · N ′ · L ′
1 · · · L ′

n−1 = M
′ · N ′ · L ′

1 · · · L ′
n−1.

��
In the situation of (2), it is reasonable to denote

〈M, N 〉L1,··· ,Ln−1 = M · N · L1 · · · Ln−1.

For fixed L1, . . . , Ln−1, it is viewed as a pairing on the group of numerically trivial
line bundles.

Lefschetz theorems

We list several classical results on the Picard functor and two classical Lefschetz-type
results applicable to normal projective varieties over any characteristic.

Let X be a geometrically integral projective variety of dimension n ≥ 2 over a field
k. Consider the exact sequence

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0.
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Here Pic0(X) denotes the subgroup of algebraically trivial line bundles (cf. [22, Def-
inition 9.5.9]), and NS(X) denotes the quotient group.

By [22, Theorem 9.4.8], the Picard functor PicX/k is represented by a separated
group scheme, locally of finite type over k. Denote by Pic0X/k the identity component
of (the group scheme representing) PicX/k , which is a group scheme of finite type over
k.

Assume furthermore that X (k) is non-empty. By [22, Theorem 9.2.5], PicX/k(k) =
Pic(X). By [22, Proposition 9.5.10], Pic0X/k(k) = Pic0(X).

By [36, Exp. XIII, Theorem 5.1], NS(Xk̄) is a finitely generated abelian group.
The result can be passed to X . In fact, Pic0X/k is a connected scheme with a rational

point, so Pic0X/k ×Speck Speck̄ is also connected and thus isomorphic to Pic0
Xk̄/k̄

. This

implies that a line bundle L on X is algebraically trivial if and only if the base change
Lk̄ on Xk̄ is algebraically trivial. Consequently, the natural map NS(X) → NS(Xk̄)

is injective. Then NS(X) is also finitely generated.
Recall that a line bundle L on X is numerically trivial if L · C = 0 for any closed

curve C in X . It is known that a line bundle L is numerically trivial if and only if the
multiple mL is algebraically trivial for some nonzero integer m. See [22, Theorem
9.6.3] for the case that k is algebraically closed. To pass from Xk̄ to X , it suffices to
note that a line bundle L on X is numerically trivial if and only if the base change
Lk̄ on Xk̄ is numerically trivial, which can be checked by the projection formula of
intersection numbers.

The first Lefschetz-type theorem which we introduce here is the Hodge index the-
orem applicable to any projective variety.

Theorem 5.20 ([36], Exposé XIII, Corollary 7.4) Let L1, . . . , Ln−1 be ample line
bundles on an integral projective variety X of dimension n ≥ 2 over a field k. For any
M ∈ Pic(X) with M · L1 · · · Ln−1 = 0, one has

M2 · L1 · · · Ln−2 ≤ 0.

Moreover, the equality holds if and only if M is numerically trivial.

Note that the original result is only stated in the case L1 = · · · = Ln−1, but the
proof works in the current case without much more effort. It also assumes that k is
algebraically closed, but it is easy to pass from k̄ to k as above.

The second Lefschetz-type theorem is the Lefschetz hyperplane theorem for normal
varieties. Let X be a normal projective variety over an infinite field k with a very ample
line bundle L . By a general hyperplane section Y of L in X , we mean the divisor of an
element in a Zariski open and dense subset of P(�(X, L)). By the Bertini-type result
of Seidenberg [32, Theorem 7’, p. 376], if X is normal, then a general hyperplane
section Y is also normal. The following is the Lefschetz hyperplane theorem in the
current setting.

Theorem 5.21 Let X be a geometrically integral and geometrically normal projective
variety of dimension n over a field k. Assume that X (k) is non-empty. Let L be a very
ample line bundle on X. Let Y be a general hyperplane section of L.
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(1) The natural map Pic0(X) → Pic0(Y ) has a finite kernel if n ≥ 2.
(2) The natural map NS(X) → NS(Y ) has a finite kernel if n ≥ 3.
(3) The natural map Pic(X) → Pic(Y ) has a finite kernel if n ≥ 3.

Proof Part (3) is a consequence of (1) and (2). For (1), we refer to [22, Remark
9.5.8] for a historical account of the finiteness of the morphism Pic0X/k → Pic0Y/k . It
gives what we need by taking k-points. Part (2) is a consequence of Theorem 5.20.
In fact, assume that M lies in the kernel of NS(X) → NS(Y ). In Theorem 5.20, set
L1 = · · · = Ln−1 = O(Y ). We see that M is numerically trivial on X . Then some
integer multiple of M lies in Pic0(X). Hence, the kernel of NS(X) → NS(Y ) is a
torsion subgroup. It must be finite since NS(X) is a finitely generated abelian group.

��
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