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Abstract—The skeleton of a 2D shape is an important geometric structure in

pattern analysis and computer vision. In this paper we study the skeleton of a

2D shape in a two-manifold M, based on a geodesic metric. We present a formal

definition of the skeleton SðVÞ for a shape V inM and show several properties

that make SðVÞ distinct from its Euclidean counterpart in R2. We further prove that

for a shape sequence fVig that converge to a shape V inM, the mapping

V ! SðVÞ is lower semi-continuous. A direct application of this result is that we

can use a set P of sample points to approximate the boundary of a 2D shape V in

M, and the Voronoi diagram of P inside V � M gives a good approximation to

the skeleton SðVÞ. Examples of skeleton computation in topography and brain

morphometry are illustrated.

Index Terms—2D shape sequence, Voronoi skeleton, two-manifold, geodesic

Ç

1 INTRODUCTION

THE skeleton of a 2D shape is an important geometric structure
which has found a wide range of applications in pattern analysis
and computer vision. Many previous works focus on the skeleton
of a shape defined in a Euclidean space, such as a 2D shape in the
plane R2 and a 3D solid in R3. In recent years, the study of 2D
shapes in a general two-manifold M has received increased atten-
tion for many applications; e.g., (1) 2D shapes in images that are
embedded as two-manifolds in various high-dimensional spaces
for geometric flow analysis of images [14]; (2) 2D shapes such as
ridge, basin and lake regions in a terrain domain (Fig. 1) for motion
planning [13]; (3) sulcal and gyral regions on cortical surfaces for
medical image analysis [31].

In this paper, we study the skeleton of a 2D shape defined in M
based on a geodesic metric. There are several closely related terms
of skeletons in literature, including medial axis [4], shock graph

[12], [34] and cut locus [37], [38]. For a 2D shape V in the plane R2,
the skeleton is the set of centers of maximal open disks contained in
V [24], [28]; the medial axis is the set of points in V which have at

least two closest points in R2 nV and is always a subset of the skel-
eton [4], [28]; the shock graph is a directed, acyclic graph of shock
groups where the loci of shock positions are the medial axis [12],
[34]; the cut loci is the closure of the set containing all points which
have at least two closest paths to the boundary of V [37]. Based on
a geodesic metric, we present a formal definition of the skeleton of
a 2D shape inM in Section 4.

The challenge of defining and studying the skeleton of a 2D
shape in M stems from the geodesic metric dg. For example,

the skeleton definition in R2 relies on an open disk which is
always bounded by a planar circle. However, only if a radius r
is smaller than the injectivity radius at a p 2 M, a geodesic
disk DrðpÞ ¼ fq 2 Mjdgðp; qÞ < rg is homeomorphic to a planar

disk [6]. It was shown in [20] that in M of genus g, the bound-
ary of DrðpÞ can have up to gþ 1 separated closed curves. In
this paper we further show that, distinct from its Euclidean

counterparts, the skeleton of a shape that encloses a connected
region in M can be disconnected.

In this paper we study a mapping S from a given 2D shape
V � M to a skeleton SðVÞ � M and prove the following result:
For a shape sequence fVig converging to a shape V inM, the map-
ping from fVig to fSðViÞg is lower semi-continuous. A direct
application of this result is that we can sample the boundary of V
using a sequence of dense sample points fPig, then the Voronoi
diagrams fV ðPiÞg inside V � M give good approximations to the
skeleton SðVÞ. The two-manifold M studied in this paper is gen-
eral, i.e., either a smooth surface with bounded principal curva-
tures or a piecewise linear surface (e.g., a two-manifold triangular
or quadrilateral mesh) embedded in Rn; n � 3.

2 RELATED WORK

The medial axis or the skeleton of a shape in Euclidean spaces has
attracted considerable attention in computer vision and pattern
analysis [33]. Lieutier [18] proved that any bounded open subset
O � Rn has the same homotopy type as its medial axis. The stabil-
ity of the medial axis and skeleton of O have been investigated in
[7], [8]. An elegant �-medial axis was further proposed in [9],
showing that for regular values of �, the �-medial axis remains sta-
ble under Hausdorff distance perturbations of O. All these works
focus on the domain of open subsets in Rn. In this paper, we study
the convergence of skeletons of open subsets in a two-manifold M
based on a geodesic metric.

For any two points p and q in M, the shortest path joining p
and q is a geodesic. The Hopf-Rinow theorem [6] for smooth
surfaces and its adaption [1] to piecewise linear surfaces ensure
that a geodesic always exists for any two points in M. The geo-
desic offers a metric dg in M, such that 8p; q 2 M, the geodesic

distance dgðp; qÞ is the length of the shortest path in M joining

p and q. Wolter [37] studied the geodesic metric in a bordered
Riemannian manifold and showed that, the geodesic distance

function dgðA; �Þ to a closed set A � M is C1-smooth in the com-

plement of CA in M n ð@M[ AÞ, where CA is the cut loci of A
and @M is the boundary of M. For piecewise linear surfaces,
the geodesic metric was studied in [19], [25], which shows
dgðA; �Þ is uniformly Lipschitz continuous.

Numerical methods had been proposed for computing geode-
sics in both smooth parametric surfaces [22] and piecewise linear
surfaces [15], [25]. Geodesic-based distance functions in M can be
characterized by level sets or equivalent iso-contours. The structure
of iso-contours in piecewise linear surfaces was studied in [20]. By
regarding piecewise linear surfaces as linear approximations of
smooth two-manifolds, the fast marching [29] and level set meth-
ods [27], [30] by solving the Eikonal equation in two-manifold
meshes have been studied. Shi et al. [31] extended the method of
Hamilton-Jacobi skeleton [32] from a Euclidean plane to a piece-
wise linear surface, and its application in medical image analysis
was also presented in [31].

Some researchers studied the geometric properties related to
skeletons in M. Notably, Wolter [37] studied the cut loci and
used it to characterize the regularity of a geodesic distance func-
tion dgðA; �Þ in general Riemannian manifolds. Lai [16] systemati-

cally investigated the variational problem with Laplace-Beltrami
eigen-geometry in 2D smooth surfaces and showed that a novel
skeleton of a subset in a smooth two-manifold can be obtained
from Reeb graphs. In this paper, we study the convergence of
skeletons of a shape sequence in a general two-manifold M, and
show that the Voronoi diagram of dense sampling of the shape
boundary can well approximate the skeleton of the shape. For
two-manifold triangular meshes, the exact geodesic [19], [25],
[36] and Voronoi diagram [20] can be computed efficiently
using computational geometry methods. As a comparison, the
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numerical solutions of the Hamilton-Jacobi equation or Laplace-
Beltrami operator may be sensitive to the triangular shape and
triangle density of the mesh.

3 PRELIMINARY ON HIT OR MISS TOPOLOGY

Let M be a connected, closed two-manifold.1 V is a bounded and

connected 2D region in M. @V ¼ V \ ðM nVÞ is the boundary of
V. Based on the geodesic metric dg inM, a geodesic r-disk centered

at a p 2 M is defined by

DrðpÞ ¼ fq 2 Mjdgðp; qÞ < rg: (1)

Whenever there is no risk of confusion, we omit the term
“geodesic” and simply call Dr an r-disk. An r-disk in M may not
be homeomorphic to a planar disk (Fig. 2).

A set U � M is open if and only if 8p 2 U , 9d > 0 such that
DdðpÞ � U . Let O be the collection of all the open sets in M and
C ¼ fM n ojo 2 Og be the collection of all the closed sets in M. The
empty set ; andM are both open and closed.

Let X 2 fO; Cg. X can be regarded as a space X in which the
“points” are sets in M. A hit or miss topology [23], [28] is defined
on X using a definition of neighborhoods,2 which consist of packed
points in the spaceX equivalent to a collection of sets inM.

The main result in the hit or miss topology that we use in this
paper follows.

Definition 1 [28]. Let I be an index set. A sequence fxig, i 2 I, converge
to x in X if and only if it satisfies two conditions:

1) If an open set o intersects x, then there exists an n such that o
intersects all the xi, 8i > n.

2) If a closed set c is disjoint from x, then there exists an m such
that c is disjoint from all the xi, 8i > m.

x is called the limit of this sequence, written as limfxig ¼ x.

4 SKELETON OF AN OPEN SET IN M
Matheron [24] chose to define the skeleton in R2 using open sets
due to the reason that the closure of the skeleton is connected if the
planar shape is connected.3 We follow [24] to use open sets for
defining the skeleton inM.

Denote by D the collection of all r-disks DrðpÞ � M, 8p 2 M
and r > 0. Based on the geodesic metric dgð�Þ inM, we have

Property 1.Dr1 ðp1Þ � Dr2ðp2Þ if and only if dgðp1; p2Þ � r2 � r1.

Proof. 8q 2 Dr1 ðp1Þ, dgðq; p2Þ � dgðq; p1Þ þ dgðp1; p2Þ. Since q can be
chosen arbitrarily, dgðq; p2Þ can reach r1 þ dgðp1; p2Þ. If Dr1ðp1Þ �
Dr2 ðp2Þ, then dgðq; p2Þ < r2. Thus dgðp1; p2Þ � r2 � r1. On the

other hand, if dgðp1; p2Þ � r2 � r1, then r2 � r1 þ dgðp1; p2Þ >
dgðq; p1Þ þ dgðp1; p2Þ � dgðq; p2Þ and thus q 2 Dr2ðp2Þ. tu

The relation “is a proper subset of” is a strict partial order on D.
By Zorn’s lemma [26], we have:

Property 2. Any disk in a subset of D is contained in a maximal disk in
that subset.

Definition 2. Let V be an open set in M. The skeleton of V, denoted
by SðVÞ, is the set of centers of maximal geodesic open disks contained
in V.

A key difference of Definition 2 between M and R2 follows. If a
point s 2 SðVÞ has at least two different closest points in MnV, s

is called a medial axis point. In R2, medial axis points are dense in
SðVÞ; while in M, SðVÞ may have no medial axis points at all. One
example is illustrated in Fig. 3.

In most cases, SðVÞ is a closed set. However, it was shown in
[24] that SðVÞ is not necessarily a closed set and an example of

SðVÞ being an open set was given in R2. Thus, following [24], we

study the mapping V ! SðVÞ from O to C, where SðVÞ is the
closure of SðVÞ.

Distinct from its Euclidean counterpart in R2, SðVÞ in M has
some specific properties. Below we show that a connected open

region V � M may have a disconnected skeleton SðVÞ. As a com-

parison, Matheron [24] proved that in R2, if V is connected, SðVÞ
is also connected.

First we show that the bisector of two points in M is not neces-
sarily a curve but may contain 2D regions. Let p and q be two

points in R2. r lies on the bisector of p and q with angle ffprq ¼ a.

Then we cut a region in R2 and plug in a folded triangle fan with a
spanning angle g > 2a (the shaded region shown in Fig. 4) to form
a two-manifoldMT . The geodesic distance in the area of the folded
triangle fan in MT is determined by unfolding the triangle fan
along the boundary lines pr and qr, respectively [25]. Then, as
shown in Fig. 4, inside the folded triangle fan, the yellow (or blue)
region has a shorter geodesic distance to point p (or q), and the

Fig. 1. Skeletons on a two-manifoldM. A stratigraphic ridge V inM is bounded by
a red curve (having the same altitude) and the skeleton of V is shown in blue.
Voronoi skeletons 1 and 2 are at granularities 20 and 3 (detail about granularity is
presented in Section 6.2).

Fig. 2. Geodesic disks DrðpÞ in M: disks of r ¼ 1; 2; 3 are homeomorphic to a
planar disk while disks of r ¼ 4; 5 are not.

1. A closed manifold is a compact manifold without boundary.
2. Formally, given two finite sequences O ¼ fo1; . . . ; oi; . . . ; omg of open sets

and C ¼ fc1; . . . ; cj; . . . ; cng of closed sets in M, the collection of all the elements
in X which intersect every oi and are disjoint from every cj defines an open
ðO;CÞ-neighborhood in X [23], [28]. Note that in the general hit or miss topology,
C is a sequence of compact sets. In this study, the space M is always bounded
and we directly use the terminology of closed sets.

3. In R2 a connected closed set may have a disconnected skeleton; see the
example at page 219 in [24].
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uncolored area with spanning angle g � 2a lies on the bisector of p
and q inMT .

Nextwe show that the skeleton of a connected region inM and its
closure are not necessarily connected. Let the shaded region in Fig. 5
be the 2D bisectorwith a spanning angle g � 2a as identified in Fig. 4.
Note that the shaded region is a folded polygonal region which does
not lie in the same plane spanned by points p, q and r. In the shaded
region, if points x1, x2 and r are not in the same line, then x1 and
x2 satisfy the triangle inequality jdgðx1; rÞ � dgðx2; rÞj < dgðx1; x2Þ.
By Property 1, Ddgðx1 ;pÞðx1Þ 6� Ddgðx2 ;pÞðx2Þ and Ddgðx2 ;pÞðx2Þ 6�
Ddgðx1;pÞðx1Þ

4. Then along any direction in the spanning angle g � 2a

(middle left in Fig. 5), there is a maximal disk whose boundary
touches points p and q. Let Arc be a circular arc in the shaded region
which has equal distance to r, and LS be a line segment which is the
bisector part of p and q in the planar region (middle right in Fig. 5).
Note that one endpoint of LS is open (hollow circle in Fig. 5). It is
readily seen thatV ¼

S
x2Arc

S
LS Ddgðx;pÞðxÞ is a connected open set

inMT and SðVÞ ¼ Arc
S

LS. SðVÞ is not closed due to the open end

inLS and SðVÞ consists of twodisjoint subsetsArc andLS. As a com-

parison, the skeleton of R2 n fp; qg is the bisector of p and q (far right
in Fig. 5), since any two points x1 and x2 in the bisector satisfying
dgðx1; x2Þ > jdgðp; x1Þ � dgðp; x2Þj. We have:

Property 3. For a connected open set V 2 M, the skeleton SðVÞ is not
necessarily closed and SðVÞ is not necessarily connected.

5 SEMI-CONTINUITY OF MAPPING V ! SðVÞ
Recall that O and C are the collections of all the open sets and
closed sets in M respectively. For an open set V 2 O, the mapping

V ! SðVÞ from O to C maps V to the closure of the skeleton SðVÞ.
We consider a sequence fVig that converge to V in O, i.e.,

limfVig ¼ V. There is a corresponding sequence fSðViÞg and in

this section we study the convergence of fSðViÞg in C.
Let fcig be a sequence in C. Denote by limfcig (resp. limfcig) the

intersection (resp. union) of the accumulation points of fcig in M.
Let foig be a sequence in O that converge to o.

Definition 3 ([28] ). For a mapping F from O to C,

� F is upper semi-continuous if and only if F ðoÞ 	
limfF ðoiÞg. i.e., if a closed set A is disjoint from F ðoÞ, there
exists a NA such that A is disjoint from all the F ðoiÞ,
8i > NA.

� F is lower semi-continuous if and only if F ðoÞ �
limfF ðoiÞg. i.e., if an open set B intersects F ðoÞ, there exists
a NB such that B intersects all the F ðoiÞ, 8i > NB.

Property 4. The mapping V ! SðVÞ from O to C is lower semi-
continuous.

We prove Property 4 in two steps.

� Step 1. For each maximal diskMD � V, we prove that there
exists a sequence fMDig of maximal disks, which converge
toMD in O, whereMDi � Vi and limfVig ¼ V.

� Step 2. Prove Property 4 using the result of Step 1.
A similar result was presented in [24] for skeletons of open sets

in R2. Our study extends their result from R2 to M, with a more
general proof.

5.1 Proof of Step 1

For a maximal disk MD � V, let OMD be the collection of all the
open sets in M that intersect MD, i.e., 8oi 2 OMD, oi \MD 6¼ ;. Let
CMD be the collection of all the closed sets in M that are disjoint
from MD, i.e., 8ci 2 CMD, ci \MD ¼ ;. By Definition 1, to prove
Step 1, we need to show that (1) 8o 2 OMD, there exists an NO such
that 8i > NO, o intersects all the MDi (Proposition 1), and (2)
8c 2 CMD, there exists an NC such that 8j > NC , c is disjoint from
all theMDj (Proposition 2).

Proposition 1. 8o 2 OMD, there exists an NO and a maximal disk
sequence fMDig such that 8i > NO, MDi intersects o, where
MDi � Vi and limfVig ¼ V.

Proof. Let p be the center of MD with a radius rMD, i.e., MD ¼
DrMD

ðpÞ ¼ fq 2 Mjdgðp; qÞ < rMDg. Let frig be a sequence of

positive scalar values, which monotonic-sequentially converge
to rMD, i.e., ri " rMD, ri < riþ1 < rMD. Correspondingly there is a
sequence fDigi2J with an index set J , Di ¼ Dri ðcÞ, of concentric
disks in V such that 8i 2 J , Di � Diþ1, and limfDig ¼ MD.
Then there exists an N1 such that 8i > N1,Di intersects o.

Next we show that there exists an N2 such that 8i > N2,
Di � Vi. If it is not true, then there exists an open set o0 2 O that
intersects all the Di, but does not intersect all the Vi, 8i > N2

(note that Di � Diþ1). Since Di � MD, MD � V, o0 must

Fig. 3. A skeleton does not have medial axis points. Place a circle in the coordinate
system as shown in left and ab is a diameter of the circle in x-axis. Rotate the circle
around y-axis to get a torus M, and a is rotated into a circle Cblue and b into a circle
Cred. Cred is the skeleton of open set Mn Cblue and Cred has no medial axis points.
Centered at each point in Cred, there is a maximal disk whose boundary touches
only one point in Cblue twice.

Fig. 4. 2D bisector. r lies on the bisector of points p and q in R2 and ffprq ¼ a. A pla-
nar triangle fan with a spanning angle g > 2a is folded into the gray-shaded area
(middel left). When unfolding the triangle fan from the lines pr and qr, respectively,
inside the triangle fan, the yellow (or blue) region has a shorter geodesic distance
to point p (or q), and the uncolored area with a spanning angle g � 2a has equal
geodesic distance to both p and q.

Fig. 5. A disconnected skeleton in M and a connected skeleton in R2. See text for
full description.4. Note that dgðx1; rÞ þ dgðr; pÞ ¼ dgðx1; pÞ and dgðx2; rÞ þ dgðr; pÞ ¼ dgðx2; pÞ.
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intersect MD and V. On the other hand, since o0 does not inter-
sect all the Vi, 8i > N 0 > N2, and fVig converge to V, o0 cannot
intersect V. A contradiction.

By Property 2, 8i > N2, each Di is contained in a maximal
disk MDi � Vi. Let NO ¼ maxfN1; N2g. That completes the
proof. tu

Proposition 2. For the same sequence fMDig as in Proposition 1,
8c 2 CMD, there exists a NC > NO such that 8i > NC , MDi is dis-
joint from c.

Proof. We prove this proposition by contradiction. Suppose for
any sufficiently large N 00, 9i > N 00, MDi intersects some
c 2 CMD. Then there exists at least a point x 2 c which satis-
fies x 2 MDi and x 62 MD. Since Di � MDi, there is a contra-
diction in that fDig converge to MD and MD is a maximal
disk in V. tu

5.2 Proof of Step 2

In the proof of Step 1, we show that for any maximal diskMD � V,
there exists a sequence fMDig of maximal disks, MDi � Vi, that
converge to MD. Let the centers of MD and MDi be p and pi,

respectively. For each point p 2 SðVÞ, there exists a sequence fpig
of points that converge to p, such that 8i, pi � SðViÞ. Accordingly,

if an open set B intersects SðVÞ, there exists a NB such that B inter-

sects all the SðViÞ, 8i > NB. Thus the mapping V ! SðVÞ is lower
semi-continuous.

5.3 Manifold with Boundary

The above proof of Property 4 requires that M is a connected,

closed two-manifold. LetM0 is a connected, compact two-manifold
with boundary. In this section we show that Property 4 also holds

forM0.
Denote the boundary of M0 by @M0. First, note that an open set

V in M0 cannot contain a point in @M0, i.e., V \ @M0 ¼ ;. Let
G ¼ fg1; g2; . . . ; gng, n � 1, be the set of connected components in

@M0. Each gi 2 G is a closed curve and we can always glue a capmi

(i.e., another two-manifold with the same boundary gi) to remove

gi from G. Then M ¼ M0 [ ð[n
i¼1miÞ is a connected, closed two-

manifold.
By Property 4, the mappingV ! SðVÞ is lower semi-continuous

inM. Since V \ @M0 ¼ ;, for any sequence fVig that converge to V

in M, there exists an N such that 8i > N , Vi \ @M0 ¼ ;
and Vi � M0. Therefore the mapping V ! SðVÞ is also lower semi-

continuous inM0.

6 SKELETON APPROXIMATION

The result in Property 4 is useful in pattern analysis and computer
vision. Below we list some applications, in each of which a shape
sequence fVig converge to a shape V. Then by Property 4, the limit

of fSðViÞg contains SðVÞ.

� Curve evolution. Based on a psychophysically relevant
representation of visual parts, a novel decomposition rule
was proposed in [17] for shape contour evolution. The
shape is defined in R2 and can be extended to a two-mani-
fold M. The process of shape evolution forms a sequence
of shapes from the coarse level to fine detail level that con-
verge to the original shape.

� Morphology on two-manifolds. For a shape V 2 M, we
define the dilation as V
Dr ¼

S
p2VDrðpÞ and the

erosion as V�Dr ¼ fp 2 MjDrðpÞ � Vg. Then given a

sequence frig of disk radii which converge to r ¼ 0, the
dilation V
Dr or erosion V�Dr gives a sequence fVig
that converge to V.

� Point approximation. Let @V be the boundary of a shape
V � M. If we sample @V using points and make the sam-
ples denser and denser, the sequence of point sets converge
to @V.

In these applications, if the skeleton SðViÞ in the shape sequence

fVig can be computed much easier than SðVÞ, we can use SðViÞ as
an approximation of SðVÞ. In this section we show that this
approximation is good in the sense that the skeletons of Vi contain
the skeleton of a small perturbation of V.

6.1 Voronoi Skeleton of Point Sampling

Let V be a connected open set in M. Note that V� ¼ M n @V is also
open. If P ¼ fp1; p2; . . . ; pmg, pi 6¼ pj, is a set of sample points of @V,

SðM n P Þ is an approximation of SðV�Þ and SðM n P Þ
T
V is an

approximation of SðVÞ.
The Voronoi cell of pi 2 P inM is defined as

VCðpiÞ ¼ fqjdgðq; piÞ � dgðq; pjÞ; i 6¼ j; q 2 Mg:

A boundary-based Voronoi diagram of P is defined as

VDðP Þ ¼
[
i

@VCðpiÞ

where @VCðpiÞ is the boundary of VCðpiÞ. For each point pi 2 P , we
denote by PBðpiÞ � VCðpiÞ the set of points which satisfy
8x 2 PBðpiÞ, the boundary of a maximal disk centering at x touches
pi at least twice (Fig. 3). PBðpiÞ is actually the cut loci of pi [37] and
is called the pseudo-bisector in [20]. We define an extended bound-
ary-based Voronoi diagram of P as

EVDðP Þ ¼ VDðP Þ
[ [

i

PBðpiÞ
 !

:

Property 5. SðM n P Þ � EVDðP Þ.

Proof.V0 ¼ M n P is an open set inO. By Definition 2, SðV0Þ is a set
of centers of maximal disks in V0. Note that the interior of any
maximal disk contains none of the points in P . There are two

cases of maximal disks in V0. The first case is the boundary of a
maximal disk touches at least two different points in P . In this
case, the centers of maximal disks are in VDðP Þ. The second
case is the boundary of a maximal disk touches one point in P

twice (Fig. 3). In this case, the centers of maximal disks are inS
iPBðpiÞ. That completes the proof. tu

Note that SðM n P Þ may not be equal to EVDðP Þ. For example,
the shaded region in Fig. 5 is the 2D bisector of points p and q, but

only the Arc is in the skeleton. By Property 3, SðVÞ may be discon-
nected. Note that the boundary-based Voronoi diagram VDðP Þ of a
sampling P may be also disconnected; two examples are shown in
Fig. 6.

Let VSðP Þ ¼ EVDðP Þ
T
V. If P is a dense sampling of @V, we

use EVDðP Þ and VSðP Þ as approximations of SðM n @VÞ and SðVÞ
respectively. We call VSðP Þ the Voronoi skeleton of V under the
sampling P .

6.2 A Hierarchy of Voronoi Skeletons

Let P be a sampling of @V. If there are g holes inside V, @V consists
of gþ 1 disjoint closed curves and let P ¼ fðp11; . . . ; p1m1

Þ; . . . ;
ðpi1; . . . ; pimi

Þ; . . . ; ðpðgþ1Þ1; . . . ; pðgþ1Þmgþ1
Þg. We define an ordering

in P as follows: (1) the sampling in each closed curve is periodic,
i.e., 8i, piðmiþ1Þ ¼ pi1; (2) when one walks along the boundary from

pij to piðjþ1Þ, 8i; j, V is always on the left-hand side. Whenever there

is no risk of confusion, we use the concise form P ¼ fp1;
p2; . . . ; pmg and set the number of sample pointsm � 3.
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We use the r-regular model in [28] to study a sampling criterion
of P :

Definition 4. The shape V is called r-regular, if V ¼ ðV �
DrÞ 
Dr ¼ ðV
DrÞ �Dr, where V
Dr ¼

S
p2VDrðpÞ and

V�Dr ¼ fp 2 MjDrðpÞ � Vg.

Definition 5. P is called an "-sampling of @V, if 8x 2 @V, min
fdgðx; piÞjpi 2 Pg � ".

Denote by Bðpi; pjÞ � M the bisector between pi and pj. Let
Ciðiþ1Þ be the segment in @V that has two endpoints pi and piþ1 and

does not pass through any other points in P .

Property 6. For an "-sampling P of an r-regular shape V in M, if
" < 2r, then 8x 2 Ciðiþ1Þ, the closest sample point in P is either pi or

piþ1.

Proof. Note that if V is an r-regular shape, all the maximal disks in
V and MnV have radii no smaller than r. Below we show that
if Property 6 is not true, then there exists a maximal disk in
either V orMnV such that its radius is smaller than r.

Refer to Fig. 7a. If Property 6 is not true, then there exists a
point x 2 Ciðiþ1Þ such that the closest sample point to x is pj,
j 6¼ i, j 6¼ iþ 1. Since P is "-sampling, dgðx; pjÞ � ". Denote by

xpj the shortest path between x and pj in M. Let a be the mid-

point of xpj, i.e., a 2 xpj and dgða; xÞ ¼ dgða; pjÞ < r. Below we

show that if a 2 V, then in V there exists a maximal disk whose
radius is smaller than r. If a =2 V, a similar argument can show
that in MnV there exists a maximal disk whose radius is
smaller than r.

Assume a 2 V. If the diskDra ðaÞ of radius ra ¼ dgða; xÞ < r is
a maximal disk in V, then we are done. Otherwise, the disk
Dra ðaÞ contains two connected components of @V, since Dra ðaÞ
cannot contain any sample point pk 2 P in its interior. Refer to
Fig. 7b. Denote these two connected components by l1 and l2.
Denote by b the closest point of a on @V. Without loss of general-
ity, assume b 2 l1. Let b0 be the closest point of a on l2. If
dgða; bÞ ¼ dgða; b0Þ, then Dr0¼dgða;bÞðaÞ is a maximal disk in V

whose radius r0 ¼ dgða; bÞ < r. Otherwise, for any point in the

shortest path ab0, its closest point on @Vmust be on l1 or l2. Refer

to Fig. 7c. Now moving a to b0 along the path ab0. During this

movement, the closest point of a is changed from l1 to l2 and

there must exist a critical point a0 in ab0 such that it has two clos-
est points on @V: one is in l1 and the other is b0 2 l2. ThenDra0 ða

0Þ
is a maximal disk in Vwhose radius ra0 ¼ dgða0; b0Þ < r. tu

Note that the proof of Property 6 is similar to the ones in [2], [3],
[5] in which, however, a different result of a ball containing at least
one skeleton point is obtained.

Property 7. For an "-sampling P of an r-regular shape V in M, if
" < 2r, then VCðpiÞ

T
@V ¼ VCðpiÞ

T
ðCði�1Þi

S
Ciðiþ1ÞÞ.

Proof. Suppose in addition to Cði�1Þi
S

Ciðiþ1Þ, there is another por-
tion C0 of @V inside VCðpiÞ. Since C0 is disjoint from VCðpiÞ

T
ðCði�1Þi

S
Ciðiþ1ÞÞ, when walking around @V in a counterclock-

wise order, piþ1 must be in-between VCðpiÞ
T

ðCði�1Þi
S

Ciðiþ1ÞÞ
and C0, and pi�1 must be in-between C0 and VCðpiÞ

T
ðCði�1Þi

S
Ciðiþ1ÞÞ. Then by Property 6, the closest sample point

to x 2 C0 is pj, j 6¼ i; however x 2 VCðpiÞ, a contradiction. tu

Based on Property 7, the Voronoi diagram VDðP Þ of an "-sam-
pling P is well structured since we can reconstruct a piecewise lin-

ear approximation @V0 of @V from P such that the approximation

error Errorð@V0; @VÞ ¼ supx2@V infy2@V0 dgðx; yÞ � ". Some similar

results that reconstruct a curve from dense sample points in a

Euclidean plane R2 had been studied (e.g., [10]). Our result extends

them from R2 to a two-manifoldM.
Since for limfPig ¼ @V, SðVÞ � limfVSðPiÞg and some subsets

in VSðP Þ may be redundant (e.g., the bisector Bðpi; piþ1Þ locally
around @V is usually redundant), we present a hierarchy of Voro-
noi skeletons which give a level-of-detail approximation of SðVÞ.

Definition 6. For any bisector Bðpi; pjÞ � VDðP Þ, the granularity of
Bðpi; pjÞ is defined as gðBðpi; pjÞÞ ¼ jj� ij.

Definition 7. The boundary-based Voronoi diagram of P at granularity
k is defined as VDðP Þjk ¼ fBðpi; pjÞjBðpi; pjÞ � VDðP Þ; jj �
ij � kg. The Voronoi skeleton at granularity k is VSðP Þjk ¼
ðVDðP Þjk

S
ð
S

iPBðpiÞÞÞ
T
V.

For an "-sampling P ¼ fp1; p2; . . . ; pmg of an rð> "=2Þ-regular
shape V � M, the Voronoi skeletons VSðP Þjk from granularity

k ¼ dm=2e � 1 to 1 give a hierarchy of approximations to SðVÞ.
One example of VSðP Þjk at k ¼ 20 and 3 is illustrated in Fig. 1.

8x 2 SðVÞ, let rMDðxÞ be the radius of the maximal disk in V

centered at x and S�ðVÞ ¼ fx 2 SðVÞjrMDðxÞ � �g. Inspired by a
novel �-medial axis in Rn [9], below we show that the Voronoi skel-
eton VSðP Þ is a good approximation since it contains the skeleton
of a small perturbation of V:

Property 8. For an "-sampling P of @V, if � > ", then S�ðV0Þ � VSðP Þ,
where V0 ¼ ðV
D"Þ n P .

Proof. We prove this property by showing that for all maximal
disks MD in V0, @MD \ @ðV
D"Þ ¼ ;. If it is not true, let

Fig. 6. Disconnected boundary-based Voronoi diagrams in M. Some sample
points are at the back of the model (right) and cannot be viewed when the surface
is shaded (left). Top: Two-manifold of genus 2. Bottom: Two-manifold of genus 0.

Fig. 7. Proof of Property 6. The shaded area isV and the blank area isMnV. (a) If
the closest sample point to x is pj (or pj2), the midpoint a of the shortest path xpj (or
xpj2) is inside V (orMnV). (b) DiskDra ðaÞ of radius ra ¼ dgða; xÞ < r contains two
connected components of @V, i.e., l1 and l2 (green colored curves). b is the closest
point of a on @V, b 2 l1, and b0 is the closest point of a on l2. (c) a

0 is a point in the

path ab0 which has equal distance to l1 and l2. Dra0 ða0Þ is a maximal disk in V

whose radius ra0 ¼ dgða0; b0Þ < r.
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MDrðxÞ, x 2 SðV0Þ and r > ", be such a maximal disk whose
boundary contains a point z 2 @ðV
D"Þ. Then in a geodesic

path from z to x in V0 there exists a point y 2 @V. By Property 1,

D"ðyÞ � MDrðxÞ. Since P is an "-sampling of @V, D"ðyÞ as well
as MDrðxÞ contain at least a point in P ; a contradiction to the

fact thatMDrðxÞ is inside V0. tu

6.3 Applications

If V is bounded by piecewise smooth curves in a smooth two-
manifold M, it is generally difficult to compute SðVÞ exactly.
One practical way to compute an approximation of SðVÞ is to
approximate M by a two-manifold triangular mesh T and use
numerical solutions of Hamilton-Jacobi equations on T [27],
[30], [31]. However, these numerical solutions may suffer from
the triangular shape and triangle distribution in T ; e.g., the
numerical error may be much smaller in congruent triangles of
equal sizes than that in sliver triangles of non-uniform sizes. In
this study, we use the computational geometry method [20], [21]
based on an exact geodesic [19] to compute the Voronoi skeleton
as a good approximation to SðVÞ. Compared to the numerical
solutions to PDEs, the computational geometry method is accu-
rate and not sensitive to the triangular shape and triangles’
distribution in T .

Let V be the mesh vertex set in T . T is said to be non-degen-
erated if 8vk 2 V , 8pi; pj 2 P , i 6¼ j, dgðvk; piÞ 6¼ dgðvk; pjÞ. It was

shown in [20] that if T is non-degenerated, 2D bisectors can
not appear in VDðP Þ and VDðP Þ is a collection of finite 1D

curve segments. If a mesh T 0 is degenerated, we can slightly
disturb the positions of those violated vertices such that the
resulting mesh T is non-degenerated. In all the examples pre-
sented in this section, we preprocess each mesh surface T such
that T is non-degenerated.

Skeletons can find a wide range of applications in pattern analy-
sis [33], from the large scale such as the stellar arrangement in
galaxies to the small scale such as the pattern representation
of molecular structures. Below we present two applications in
topography and brain morphometry.

In topography, skeletons in a topographical surface can be used
to estimate a drainage network from basin boundaries, or estimate
the lengths of mountain chains, canyons, rivers, roads and other
elongated structures. A method that uses the medial axis in a topo-
graphical mesh was proposed in [11] for designing continuous car-
tograms. Fig. 8 shows topographical surfaces of two continents,
Asia and North America. The boundary of one connected compo-
nent in each topographical surface is sampled by points (the num-
ber of sample points is summarized in Table 1). A Voronoi
skeleton for each boundary is computed only once and can be illus-
trated at different granularities (Fig. 8). The Voronoi skeletons of
five continents are illustrated in supplemental material A, which
can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2015.2430342. The
data in Table 1 demonstrates that the computation of Voronoi skel-
etons is fast; i.e., less than ten seconds for two-manifold meshes of

nearly 100k triangles.
In brain morphometry, recent advances have attracted consider-

able attention for constructing a graphical representation of cortical
folding patterns [35]. Skeleton-based methods on the cortical sur-
face became popular due to the representation of intrinsic geome-
try [31]. The cortical surface can be segmented into labeled gyri by
a set of sulci (Fig. 9). We sample the boundaries of sulcal regions
by points and build the Voronoi skeletons. Fig. 10 illustrates Voro-
noi skeletons of three sulci at different granularities. The Voronoi
skeletons of 14 major sulci are illustrated in supplemental material
B, available online. All sulcal shapes have hundreds of triangles
and the computation of all sulcal Voronoi skeletons are less than
one second.

7 CONCLUSION

In this paper we study the skeleton in a two-manifoldM and show
several properties that distinguish it from its Euclidean counterpart

in R2; i.e., the closure SðVÞ of skeleton is not necessarily connected
for a connected region V � M and a skeleton in M may have no
medial axis points at all. We prove that when a sequence fVig

Fig. 8. Voronoi skeletons in topographical surfaces of Asia and North America at
different granularities. Full illustrations of Voronoi skeletons of five continents,
including Africa, Asia, Europe, North America and South America, are presented
in supplemental material A, available online.

TABLE 1
The Statistical Data of Computing Voronoi Skeletons in Topographical

Surfaces in Fig. 8 and Supplemental Material A, Available Online

Model name Tri. No Boundary Sample Pt. Time (sec.)

Africa 88,163 596 5.878
Asia 63,684 981 7.614
Europe 50,464 754 3.309
North America 60,788 1,158 4.211
South America 45,748 522 4.759

The running time is measured using a PC with Intel(R) i7-2600 CPU running
at 3.4 GHz.

Fig. 9. Parts of sulcal shapes in the cortical surface of human brain.
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converge to a shape V � M, the mapping V ! SðVÞ is lower semi-
continuous. Finally some applications of these results on sample-
point-based Voronoi skeleton approximations are presented.
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