
Pacific Graphics 2014

J. Keyser, Y. J. Kim, and P. Wonka

(Guest Editors)

Volume 33 (2014), Number 7

Polyline-sourced Geodesic Voronoi Diagrams on
Triangle Meshes

Chunxu Xu1, Yong-Jin Liu†1, Qian Sun2, Jinyan Li3 and Ying He†2

1TNList, Department of Computer Science and Technology, Tsinghua University, Beijing, China
2School of Computer Engineering, Nanyang Technological University, Singapore

3Advanced Analytics Institute, University of Technology, Australia

Abstract
This paper studies the Voronoi diagrams on 2-manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi
diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more
complicated than conventional 2D Euclidean Voronoi diagrams as well as point-source based GVDs, since a
typical bisector contains line segments, hyperbolic segments and parabolic segments. To tackle this challenge,
we introduce a new concept, called local Voronoi diagram (LVD), which is a combination of additively weighted
Voronoi diagram and line-segment Voronoi diagram on a mesh triangle. We show that when restricting on a single
mesh triangle, the GVD is a subset of the LVD and only two types of mesh triangles can contain GVD edges.
Based on these results, we propose an efficient algorithm for constructing the GVD with polyline generators.
Our algorithm runs in O(nNlogN) time and takes O(nN) space on an n-face mesh with m generators, where
N = max{m,n}. Computational results on real-world models demonstrate the efficiency of our algorithm.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

2-manifold triangle meshes such as terrains and surfaces

bounding 3D physical objects are widely used in com-

putational geometry, computer graphics and robotics re-

search. Computing Voronoi diagrams on 2-manifold mesh-

es, which serve as a fundamental spatial data structure,

can find a wide range of applications in motion planning

[KKB98], graphical model remeshing [LWL∗09], skeleton

extraction [LCT11], and shape segmentation using line-

segment Voronoi diagrams [LLW12], etc.

The Voronoi diagram in Euclidean space have been wide-

ly studied and understood [OBSC00]. However, Voronoi

diagrams defined on 2-manifold triangle meshes based on

geodesic metric (also known as geodesic Voronoi diagram

or GVD) received only little attention. Due to the fundamen-

tal difference between Euclidean metric and geodesic met-

ric, many 2D Euclidean properties do no hold on meshes.

† Corresponding authors

For example, a 2D Euclidean Voronoi cell is always convex,

whereas a geodesic Voronoi cell is often concave.

Figure 1: The polyline-sourced geodesic Voronoi diagram
(GVD) on triangle meshes. The generators, bisectors and
iso-distance contours are drawn in pink, red and black, re-
spectively. The color indicates the distance to the generators.

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John

Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12484

C. Xu et al. / Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

In this paper, we investigate the GVDs in a more gener-
al setting, where the generators are polylines (Figure 1). We

show that a typical GVD bisector may contain line segments,

hyperbolic segments and parabolic segments. To tackle this

challenge, we introduce a new concept, called local Voronoi
diagram, or LVD, which is a combination of additively

weighted Voronoi diagram and line-segment Voronoi dia-

gram defined locally in the plane of a single mesh triangle.

We show that when restricting on a mesh triangle, the GVD

is a subset of the LVD. Moreover, only two types of mesh

faces can contain GVD edges.

Guided by these results, we propose an efficient algorith-

m for constructing the exact GVD with polyline generators.

Our algorithm can be integrated into the MMP framework

[MMP87] in a seamless manner: once the MMP algorith-

m terminates, both the geodesic distance and the GVD are

readily available. Such a feature fundamentally distinguish-

es our method from the existing GVD methods, which of-

ten separate the geodesic distance computation and Voronoi

diagram construction. Inheriting the high performance of

the MMP algorithm [SSK∗05,LZH07,Liu13], our algorithm

runs in O(nN logN) time and takes O(nN) space on an n-

face mesh with m generators, where N = max{m,n}. Com-

putational results on real-world models demonstrate the effi-

cieny and robustness of our algorithm.

The rest of the paper is organized as follows. Section 2

briefly reviews the realted work. Section 3 presents prelimi-

nary background on geodesic distance computation. Section

4 documents our main results on GVD with polyline gen-

erators, followed by our algorithm for constructing GVD in

Section 5. Section 6 shows the experimental results and Sec-

tion 7 concludes the paper. Due to the space limit, we present

the lengthy proof and some implementation details in the

Supplemental Material.

2. Related Work

2.1. Discrete Geodesics

Finding shortest paths on triangle meshes is often re-

ferred to as discrete geodesic problem [MMP87]. The dis-

crete geodesic can be computed by either PDE method-

s [KS98, CWW13] or computational geometry methods

[MMP87, CH90, Liu13, YWH13]. Although PDE methods

are fast, they provide only the approximate solutions (e.g.,

the first-order approximation by the fast marching method

[KS98]). Since we need geometric structures that provide

exact discrete geodesic information and sufficient informa-

tion of trimmed bisectors for mutiple sources [LCT11], in

this work we focus on the MMP method [MMP87].

The MMP method partitions each mesh edge into a set of

intervals, called windows, over which the exact geodesic dis-

tance and path can be computed. The windows are propagat-

ed across the mesh faces using a priority queue in a conitn-

uous Dijkstra-like manner, and child windows are generated

during the propagation. Different implementation techniques

have been proposed [SSK∗05, LZH07, Liu13] that make the

MMP method one of the fastest exact geodesic computation

methods.

2.2. Voronoi Diagrams

There is a large body of literature of Voronoi diagrams with

non-point sources in Euclidean space, including line seg-

ments, circular arcs, parametric curves, etc. The reader is

referred to [OBSC00] as an overview.

For non-Euclidean domains, a few research efforts have

been devoted to constructing Voronoi diagrams with point-

sources on smooth manifolds, such as the sphere S
2

[AP85, NLC02], regular parametric surfaces [KWR97], the

hyperbolic space H
2 [OT96] and Riemannian manifold-

s [BDG13], where one can measure the geodesic distance

analytically using differential forms.

In computer graphics and related fields, many models are

represented by the non-differentiable polyhedral surfaces.

Computing Voronoi diagrams on discrete surfaces is chal-

lenging, since many properties on the smooth manifold do

not hold any longer. Kimmel and Sethian [KS99] computed

Voronoi diagrams on meshes using the fast marching method

(FMM) [KS98]. It is known that the FMM provides only

the first-order approximation of the geodesic distance and it

may produce poor results on meshes with irregular triangu-

lation. Based on the exact discrete geodesic distance, Liu et

al. [LCT11, LT13, LXHK14] studied the analytic structure

of isocontours, bisectors and GVD with point sources. They

also proposed practical algorithm for computing GVD with

point sources in O(n2 logn) time, where n is the number of

triangle faces. The medial residue, a concept related to GVD,

was studied in [CJL13] that is a finite curve network homo-

topy equivalent to the original mesh.

Unlike existing research efforts, which were devoted to ei-

ther Voronoi diagrams with non-point sources in Euclidean

domain, or Voronoi diagrams with point sources on surfaces,

our paper focuses on geodesic Voronoi diagrams with poly-

line sources, a more general and challenging problem.

3. Preliminary

Let M = (V,E,F) be the triangle mesh, where V , E and F
are the set of vertices, edges and faces, respectively. Given

points p,q ∈ M, denote by γ(p,q) the geodesic path between

p and q, and d(p,q) the geodesic distance.

3.1. Point-source geodesic distance

Given an internal vertex v ∈V , we call v convex, Euclidean,

or saddle, if v’s total angle is less than, equal to, or greater
than 2π. Assume s ∈ V is the source point. Imagine a point

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

162

C. Xu et al. / Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

light source is placed at s, the geodesic paths can be visual-

ized as rays emanating from the source s in all tangent direc-

tions. Mitchell et al. [MMP87] showed that a geodesic path

from the source s to a vertex vi passes through a sequence

of mesh faces. Inside a triangle, a geodesic path must be a

straight line. When crossing over an

edge, a geodesic path must corre-

spond to a straight line if the two ad-

jacent faces are unfolded into a com-

mon plane. It is well known that a

geodesic path cannot pass through a

spherical vertex, since perturbing the

path a bit off the spherical vertex re-

duces the path length. When passing

through a saddle vertex q, a geodesic

path γ(s,q) can split into multiple

paths, which form a fan shaped area,

denoted by �γ(s,q). See the right in-

set. Saddle vertex is also called pseu-
do source in the discrete geodesic algorithm, since it can il-

luminate the fan shaped area.

To compute the geodesic paths and distances on meshes,

the MMP algorithm partitions each mesh edge into a set of

intervals (called windows), in which all geodesic paths to the

source share the same face sequence.

Definition A window w associated to a half edge e is a 6-

tuple (a,b,d0,d1,σ,e), where

•a and b are the left and right endpoints of the interval;

•σ is the distance from the source to the pseudo source,

which is the nearest saddle vertex (if exists) to w; σ = 0

when there is no saddle vertex on the geodesic path;

•d0 and d1 are the distances from the edge endpoints to the

pseudo source.

To simplify the expression, we also use 2-tuple w =
(A,B) to represent the endpoints of window w. Clearly,

the geodesic distance from the source to a window w can

be computed by positioning the (pseudo-)source in R
2 and

measuring the Euclidean distance. To compute the single-

source geodesic distance on M, we need to iteratively prop-

agate the windows across the adjacent triangle, which yields

new windows on the opposite half edge(s).

The MMP algorithm maintains a priority queue Q of win-

dows, which represents the wavefront. The window’s prior-

ity is determined by its distance to the source. The shorter

the distance, the higher the priority the window has. Initial-

ly, Q consists of the windows that cover the edges facing

the source. The algorithm computes the geodesic distance

iteratively. For each iteration, it takes the window w with the

highest priority from Q, propagates w across the adjacent tri-

angle to produce child window(s) ŵ. The algorithm repeats

the above steps until the set Q is empty.

Figure 2: Left: the point-source window w0 on edge v1v2

admits light rays emanating from the (pseudo-)source into
the triangle �v1v2v3 and its borders define the illuminat-
ed regions (child windows w1 and w2) on the other sides of
�v1v2v3. Middle: the line-source window acts similarly to
the point-source window, except all the light rays are par-
allel. Right: consider two line-sources g1 and g2 in a trian-
gle �v1v2v3. There are 10 windows covering the three sides
of �v1v2v3. Among them, w2, w3, w5, w8 and w9 are line-
source windows, which are created by orthogonal projection
of the line sources onto the sides. The other windows are
point-source windows, where the sources are the end points
of the generators.

3.2. Polyline-source Geodesic Distance

The window defined in Section 3.1 is also called point-

source window, since it admits light rays emanating from

a point light source. The polyline-source geodesic distance

was studied in [BK07,FS07,XYH11]. To compute geodesic

distance with polyline generators, one needs to extend the

point-source window to the line-source window so that di-

rectional light can come into the window. Similar to the

point-source window, a line-source window associated to a

half edge e is also a 6-tuple (
−→
d ,a,b,d0,d1,e), where

−→
d is

the light direction (i.e., perpendicular to the source line seg-

ment), and the other 5 arguments are the same as the point-

source window. Figure 2 shows an example of point- and

line-source windows in a triangle. However, unlike the point-

source window, a line-source window does not have pseudo-

source, since all of the light rays emanate directly from the

line segment.

We denote by s(w) the pseudo-source of a window w if it

is a point-source window, or the source line segment if w is a

line-source window. Furthermore, when we use the symbol

s(w) in a 2D context, i.e., parameterizing the window w onto

R
2, it refers to the 2D position of the pseudo-source or the

source line segment.

When two windows w1 and w2 on edge e have a nonempty

intersection δ = w1 ∩w2, we must decide which of the win-

dows defines the minimal distance for each point in δ. This

can be done by finding the point p ∈ δ where the distance

provided by w1 and w2 are equal.

4. GVD with Polyline Generators

Let G = {gi|gi ∈ M, i = 1, · · · ,m} be the set of generators

(either points or polylines). The geodesic Voronoi cell asso-

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

163

C. Xu et al. / Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

(a) (b) (c) (d) (e)

Figure 3: The bisector of generators g1 and g2. (a) The bisector is a 2D region, when both g1 and g2 are points, a saddle
vertex v is equidistant from the sources (i.e., σ1 = σ2), and the two fan shaped regions overlap (i.e., �γ(g1,v)∩�γ(g2,v) �= ∅).
Then any point in the overlapped region (in yellow) is on the bisector. (b) The bisector is a line segment when both generators
are points and σ1 = σ2 = 0. (c) The bisector is a hyperbolic segment when both generators are points and σ1σ2 �= 0. Assume
σ1 > σ2, then the bisector is the branch close to g1; (d) The bisector is a parabolic segment when one generator (say g1) is a
point and the other is a line. The focus of the parabola is the pseudo source of the point-source window w1, while the directrix L
is parallel to the line-source window w2, and is σ1 apart. (e) The bisector is a line segment when both w1 and w2 are line-source
windows and β(g1,g2) bisects the angle formed by the (extension) of two generators.

ciated with generator gi is defined as

{VC(gi)|x ∈ M,d(x,gi)≤ d(x,g j),∀g j ∈ G}
In this section, we first investigate the geometry of bisectors,

and then introduce a concept, called local Voronoi diagram,

which is built upon the local information inside a single tri-

angle. We show that a GVD restricted on a triangle is a sub-

set of an LVD. Next, we show that there are only two types

of triangles that can contain GVD bisectors.

4.1. Bisectors

We denote by β(p,q) the bisector between generators p and

q. We also abuse the notation by using β(wi,w j) to denote

the bisector between wi and w j’s pseudo-sources. The fol-

lowing property shows that the bisectors of GVDs with poly-

line generators have more complicated situation than 2D Eu-

clidean Voronoi diagrams and GVDs with point sources.

Property 4.1 Let g1,g2 ∈ M be two distinct generators

(points or polylines) on the mesh M. Bisector β(g1,g2) can

contain line segments, hyperbolic segments, parabola seg-

ments and even a 2D region.

Proof Let p ∈ β(g1,g2) be a point on the bisector. The locus

of p depends on the following conditions:

Case 1: when both g1 and g2 are points. Let si be the pseudo-

source on path γ(gi, p), i = 1,2. Note si coincides with gi if

γ(gi, p) does not pass through any saddle vertex.

• Case 1.1: when σ1 = σ2 = 0, p is on the line segment

bisecting the parameterized points g1 and g2. See Fig-

ure 3(b).

• Case 1.2: when σ1 +σ2 > 0, i.e., at least one of them is

non-zero. Point p satisfies σ1 + d(s1, p) = σ2 + d(s2, p)
and it is on a hyperbola with foci s1 and s2. See Fig-

ure 3(c).

• Case 1.3: when s1 = s2 � v. This implies the pseudo-

source v is equidistant to the two generators. Thus, any

Figure 4: Given a point light at the pseudo-source or a di-
rectional light from the line-source, the endpoints of the win-
dow w define the illuminated region l(w).

point q ∈ �γ(g1,v)∩�γ(g2,v) is equidistant to g1 and

g2. See Figure 3(a).

Case 2: when one generator (say g1) is a line segment and

the other is a point. Let s2 be the pseudo-source on path

γ(p,g2). Then p satisfies d(p,g1) = d(g2,s2)+d(p,s2) and

p is on a parabola with foci g1 and directrix parallel to g2.

See Figure 3(d).

Case 3: when both generators are line segments. Then p is

on the bisector of the angle formed by the g1 and g2 or their

extensions. See Figure 3(e).

Due to floating-point computation, it is very unlikely that

two geodesic paths are of exactly the same length. There-

fore, Case 1.3 is extremely rare in reality and we ignore it to

simplify our analysis and computation.

To measure how much light can admit into the window,

we define the window’s illuminated region.

Definition Let w be a window on edge e. The illuminated
region of w, denoted by l(w), is the region lying on the side

which is opposite to s(w). The border of l(w) consists of w
and the two rays emanating from s. See Figure 4.

Definition Given an edge e and two adjacent windows w1 =

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

164

C. Xu et al. / Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

(a) (b) (c) (d) (e) (f)

Figure 5: Co-illuminated regions are defined for two adjacent windows w1 = (a,b) and w2 = (b,c) on edge e. If the generators
are on the same side of e, the co-illuminated region (in yellow) is the intersection of w1 and w2’s illuminated region. Otherwise,
let w3 be the parent window that can illuminate e from the other side. w2 is obtained by trimming w3’s child window with w1.
Then the co-illuminated region (in yellow) is c(w1,w3) = l(w1)∩ l(w3). (a)(b) Both generators are points. (c)(d) One generator
is a point and the other is a line segment. (e)(f) Both generators are line segments.

(a,b) ∈ e and w2 = (b,c) ∈ e, their co-illuminated region,

denoted by c(w1,w2), is defined as follows:

(1) if s(w1) and s(w2) are on the same side of e, c(w1,w2) is

the intersection of their illuminated regions, i.e., c(w1,w2) =
l(w1)∩ l(w2).
(2) otherwise, assume s(w2) is a generator on the other side

of e and w3 is the parent window of w2. Then c(w1,w2)
is the intersection of w1 and w3’s illuminated regions, i.e.,

c(w1,w2) = l(w1)∩ l(w3). See the yellow regions in Fig-

ure 5.

Property 4.2 Upon the termination of the MMP algorith-

m, two adjacent windows wi and w j have a non-empty co-

illuminated region. Moreover, bisector β(w1,w2) is in the

co-illuminated region c(w1,w2).

Proof See the Supplemental Material.

4.2. Local Voronoi Diagrams (LVDs)

Consider a triangle t = (v1,v2,v3) ∈ F . Upon the termina-

tion of the MMP algorithm, each edge of t is covered by

a set of non-overlapping windows. Let P(t) = {s(w)|∀w ∈
e(vi,v j), i, j = 1,2,3, i �= j} denote the set of pseudo-sources

and line-sources for all windows on t’s edges.

Definition A local Voronoi diagram on a triangle t, denoted

by L(t), is the combination of additively weighted Voronoi

diagram and line-segment Voronoi diagram restricted on t
with P(t) as generators. The weight of a window w is the

distance from its pseudo-source to the source if w is a point-

source window, and 0 otherwise.

Property 4.3 Each LVD edge bisects two windows, and it

does not intersect their borders.

Proof See the Supplemental Material.

Property 4.3 tells us that the window’s sources or pseudo-

sources can fully determine the bisector and there is no need

to trim an LVD edge with window’s borders. This observa-

tion can simplify the LVD construction significantly.

(a) (b)

Figure 6: The relationship between GVD and LVD. The
point-source windows and line-source windows are drawn in
yellow and purple respectively. (a) The LVD edges consist of
hyperbolic segments (green), parabolic segments (red) and
line segments (cyan). (b) The GVD edges (blue) are a subset
of the LVD edges.

Let us denote by G(t) the GVD restricted on triangle

t. The following property reveals the relationship between

LVD and GVD.

Property 4.4 The GVD restricted on a triangle t is a subset

of the LVD on t, i.e., G(t)⊆ L(t).
Proof See the Supplemental Material.

Remark Note that the converse of Property 4.4 is not true

in general. For example, consider two point-source win-

dows w1 ∈ e and w2 ∈ e, which share the same generator

but have different pseudo-sources s(w1) �= s(w2). Obvious-

ly, β(w1,w2) ∈ L(t) and β(w1,w2) /∈ G(t). Figure 6 shows

an example of the LVD and the GVD on a triangle.

4.3. Triangles Containing GVD Edges

Since the GVD restricted on a triangle is just a subset of the

LVD on the same triangle, one can adopt a simple approach

for constructing the GVD: first, construct the LVD on each

mesh face and then find the LVD edges which belong to the

GVD. However, this naïve method is not efficient at all, since

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

165

C. Xu et al. / Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

Figure 7: The blue curve is the bisector of sources s0 and
s1, and the red curves are geodesic paths. In the inset, the
regions with the same color indicate the geodesic paths com-
ing from the same pseudo-source. Point a, the common point
of a yellow window and a green window, is a Category 1
point, since the two adjacent windows have distinct sources.
Point b, the common point of a green window and a blue win-
dow, is a Category 2 point, since both windows are lit from
the same source s0, but their pseudo-sources are different.
Point c is in Category 3, since the corresponding windows
share the same source and pseudo-source.

only a small number of mesh triangles contain GVD edges.

Therefore, to develop an efficient algorithm for constructing

GVD, it is important to know which triangles contain the

GVD edges, instead of a brute force search of all triangles.

We add the generator’s identifier to the 6-tuple representa-

tion of a window structure. As each edge is covered by win-

dows without any gap or overlap, we can classify the com-

mon point of two adjacent windows into three categories: 1)

the two sources are distinct; 2) the two sources are identi-

cal, but their pseudo-sources are different; 3) both sources

and pseudo-sources are the same. Figure 7 illustrates the

common points in the three categories. We call the common

points in Category 1 the key points. Obviously, for any key

point there exists some GVD edge passing through it.

Property 4.5 Only two types of triangles, namely, the ones

having at least one key point on its side, or the ones having

a source inside, can contain GVD edges.

Proof See the Supplemental Material.

Triangles that can contain GVD edges are called candi-
date triangles.

5. Practical Algorithm

The input of the algorithm is a triangle mesh M = (V,E,F)
and a set of generators G. The user also specifies a parame-

ter c, which controls the algorithm’s performance (will be

explained later). The result of the algorithm is the undis-

cretized geodesic Voronoi diagram on M. As Algorithm 1

shows, our algorithm also uses a window propagation frame-

work as the MMP algorithm does. It organizes windows in

two data structures, namely, a priority queue Q, which rep-

resents the wavefronts, and an array windows[1..|E|], where

windows[e] stores the windows on edge e.

Algorithm 1 Constructing polyline-sourced GVD

Input: M = (V,E,F) the triangle mesh; G = {g j}m
j=1: the

set of generators defined on M; c: the performance con-

trol parameter;

Output: the geodesic Voronoi diagram on M.

// n: the number of triangles in M;

// Q: the priority queue containing windows on the

wavefront;

// windows[1..|E|]: windows[e] is a list storing windows

on edge e;

// marked[1..|F|]: marked[i] is a boolean value to indi-

cate the status of face i;
1: for each generator gi do
2: Add the windows that are directly illuminated by gi

into Q;

3: end for
4: Initialize each face’s marked label to f alse;

5: i ← 0;

6: while Q is not empty do
7: i ++;

8: Pop a window w from Q;

9: Propagate w across its adjacent triangle to produce

children window(s) {ŵi};

10: for each ŵi do
11: Push ŵi into Q and update windows for the cor-

responding edge;

12: end for
13: if i ≡ 0 mod [cn] or Q is empty then
14: for each triangle t with marked[t] = f alse do
15: if all edges of t have distances smaller than

w’s distance then
16: if # key points > 0 or ∃g j ∈ G, g j ∈ t

then
17: Compute the LVD and the GVD on t;
18: end if
19: marked[t] = true;

20: Free all windows stored on t’s edges;

21: end if
22: end for
23: end if
24: end while

Initially, Q contains the windows that are directly illumi-

nated by the generators. The algorithm then iteratively com-

putes both the geodesic distance and the GVD by performing

the following steps in each iteration:

1. It takes the top window w from Q, and propagates w
across its adjacent triangle to produce child window(s)

ŵi.

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

166

C. Xu et al. / Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

Figure 8: Some examples of the geodesic Voronoi diagram (GVD) with polyline generators on triangle meshes. The generators,
the bisectors and the iso-distance contours are drawn in red, pink and black, respectively. The background color also indicates
the distance to the generators.

2. For each child window ŵi, it updates the geodesic dis-

tance of the vertex covered by ŵ, inserts ŵ to Q and up-

dates the window list of the corresponding edge.

3. If the current iteration number is a multiple of [cn] or the

priority queue is empty (i.e., when MMP algorithm ter-

minates), check the candidate triangles and compute the

LVD and GVD on them.

The algorithm repeats the above steps until the priority

queue Q is empty. Upon termination, each edge is covered

by a set of non-overlapping windows, from which one can

compute the geodesic distance to arbitrary point.

Thank to the properties in Section 4, we can determine

candidate triangles and compute GVD during the window

propagation process in the MMP algorithm. Observe that in

each iteration, the MMP algorithm propagates the window

with the least geodesic distance. Thus, the distance for the

top window in the priority queue Q is non-decreasing. Con-

sider a triangle t. If each edge of t has a distance shorter

than the distance of the current top window, we can guaran-

tee that the triangle t has been fully covered by the geodesic

wavefronts. In other words, the windows on t’s sides are fi-

nal, and we are ready to check whether or not t contains the

GVD. Since each edge contain O(n) windows, computing

the exact distance from the source to the edge may be expen-

sive. In our implementation, we measure the upper bound of

the distance to edge e = (a,b) by (d(a) + d(b) + ‖e‖)/2,

where d(v) is the geodesic distance to vertex v and ‖e‖ is

the length of e. Our algorithm inherits the high performance

of the MMP algorithm.

Property 5.1 On an n-face mesh with m generators, Algo-

rithm 1 has an O(Nn logN) time complexity and an O(Nn)
space complexity, where N = max{m,n}.

Proof See the Supplemental Material.

There are two key issues in a practical implementation

of geometric algorithms: numerical errors and degenerate

cases. Since we use floating-point computation, there are t-

wo sources of numerical errors and degenerate cases: one

is from the MMP algorithm itself and the other is from the

GVD in each candidate triangle. For the MMP algorithm,

we use the method in [LZH07] to handle degenerate cas-

es that is also robust to numerical errors. To robustly com-

pute the LVD L(t) and the GVD G(t) on a triangle t, note

that the LVD is a combination of two types of Euclidean

Voronoi diagrams: additively weighted Voronoi diagram and

line-segment Voronoi diagram. We use the plane sweep al-

gorithm in [For87] (also know as Fortune’s algorithm) that

can efficiently construct both types of Voronoi diagrams in a

unified way. By Property 4.1, a bisector is one of three differ-

ent conic curves. So we choose to use the rational quadratic

Bézier curve for representing bisectors [KHP95] and use the

cocktail algorithm in [KLS98] to compute the planar Bézier

curve intersections. To handle the degenerate cases in con-

structing Voronoi diagram, we use the symbolic perturba-

tion technique in [EM90, Yap88]. The computed LVD L(t)
is represented as a graph. Then we compute the GVD by

traversing L(t) using depth-first-search (DFS). Specifically,

for every LVD edge (i.e., a bisector), check whether the two

associated windows come from different sources; if so, put

the edge and its two endpoints into the GVD edge and node

sets. Upon the termination of the DFS, the GVD structure

is available. More implementation details are presented in

Supplementary Material.

6. Experimental Results

We implemented our algorithm in C++ and tested it on real-

world models. Some examples are shown in Figure 8. The

source code is available upon request and the executable

program can be downloaded on the internet†. Timing was

measured a PC with an Intel Core i7-2600 3.40GHz CPU

and 8GB memory. Our algorithm adopts the parameter c to

balance the performance and memory consumption. In Al-

gorithm 1, we look for the candidate triangles every [cn] it-

erations (see lines 13-23). A small c means that we do the

checking more frequently, and thus, can identify and discard

the useless windows at the early stage (see line 20). As a re-

sult, the memory consumption is low. However, frequent in-
progress checking obviously slows down the performance.

† http://cg.cs.tsinghua.edu.cn/people/∼Yongjin/yongjin.htm

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

167

C. Xu et al. / Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

c 4-kid Gargoyle Bunny Armadillo Buddha
Time Mem. Time Mem. Time Mem. Time Mem. Time Mem.

0.5 30.18 1,013 42.25 1,561 8.50 363 17.11 751 38.66 1,597

1.0 29.65 1,034 38.43 1,593 8.09 385 16.05 782 37.45 1,678

1.5 27.98 1,115 38.39 1,721 7.91 407 15.50 844 33.36 1,743

2.0 27.02 1,153 35.59 1,783 7.73 418 15.47 876 31.01 1,798

2.5 26.94 1,186 32.73 1,824 7.59 425 14.77 887 30.22 1,870

3.0 26.69 1,217 33.79 1,882 7.21 435 14.12 889 29.66 1,904

3.5 25.91 1,245 31.87 1,910 7.13 445 14.16 914 29.39 1,964

4.0 25.53 1,276 32.29 1,919 6.94 448 13.85 943 28.82 1,979

4.5 25.02 1,305 31.52 1,971 6.84 456 13.63 948 28.71 2,006

5.0 24.85 1,311 30.44 1,984 6.80 461 13.58 954 28.42 2,024

5.5 24.72 1,345 30.34 2,001 6.73 474 13.33 961 28.04 2,055

6.0 23.91 1,353 30.62 2,005 6.71 482 13.16 969 27.57 2,060

Table 1: The parameter c balances the memory consump-
tion and the performance. Time is measured in seconds and
memory is measured in MB.

Model n
Memory (MB) Time (s)

c =∞ c = 1 c =∞ c = 1

Botijo 23K 67 52 0.90 1.04

Kitten 33K 98 78 1.27 1.39

Bone 40K 108 86 1.46 1.70

Horse 97K 310 230 3.66 4.76

Bunny 144K 490 385 6.36 8.20

Armadillo 346K 1,022 782 12.26 16.49

4-kid 400K 1,437 1,034 23.13 30.61

Gargoyle 700K 2,131 1,593 30.28 39.96

Buddha 800K 2,163 1,678 28.94 38.22

Table 2: Setting c = ∞ leads to the best performance and
the most memory consumed.

On the other hand, a large c means less-frequent checking.

An extreme case is that a sufficiently large c (e.g., c > n) re-

sults in a delayed checking, i.e., when the MMP algorithm is

done. So one can achieve the best performance but with the

most memory consumed. See Tables 1 and 2.

Table 3 reveals the relationship between the number of

generators m and the performance/consumed memory. In-

creasing m to a reasonable extent usually reduces the com-

putational cost, since each geodesic wavefront only need to

cover a small portion of the surface. On the other hand, a

very large m means that the GVD and the LVD are more

complicated, which take more time to compute.

Below we present the comparisons of our polyline-

m
Bunny Armadillo

Time (s) Mem. (MB) Time (s) Mem. (MB)

2 8.81 925 15.76 1,744

8 8.93 860 16.10 1,725

32 7.20 699 16.56 1,639

128 5.72 561 15.76 1,452

512 4.95 474 13.24 1,229

2,048 5.11 427 12.11 1,072

8,192 6.76 480 14.75 1,091

32,768 8.77 692 18.02 1,203

Table 3: The performance and memory consumption vs the
number of generators m.

Figure 9: Leftmost: original mesh. Middle left: original
offsets. Middle: refined mesh. Middle right: refined offset-
s. Rightmost: GVD. Mesh refinement does not help with the
construction of GVD.

.

sourced GVD algorithm with three closedly related work

(i.e., the geodesic offset structure of polyline generators

[BK07], the accurate GVD with point generators [LCT11]

and the fast approximate GVD [XYH12]).

6.1. Comparison with [BK07]

As another important structure, geodesic offsets are usually

created by using only distance information at vertices, and

approximating the geodesic distance inside the triangles by

interpolating. This method is only suitable for regular and

high resolution meshes. In [BK07] an adaptive refinemen-

t scheme is proposed that re-meshes the model for the re-

gion where the interpolating generates an obvious error and

smoothes the geodesic offsets.

It is quite convenient to construct the structure of Voronoi

diagram from offsets in 2D with only point generators by

connecting the ridges on the offsets. However, this is not

the case in GVD and geodesic offsets. First, the complex

structure of GVD, including line segments, hyperbolic seg-

ments and parabolic segments, makes the building of ac-

curate GVD very difficult. Second, the method that creates

GVD from geodesic offsets itself has an accuracy problem

too: an arbitrarily accurate GVD cannot be obtained with a

fixed number of geodesic offsets. These problems cannot be

solved by any re-meshing method (including [BK07]) be-

cause it is an intrinsic defect of the method itself. For exam-

ple, Figure 9 gives the results generated by the refinement

in [BK07]. We can see that although the refinement indeed

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

168

C. Xu et al. / Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

Model n Our algorithm Liu’s algorithm

Kitten 33K 1.27 3.51

Horse 97K 3.66 12.74

Bunny 144K 6.36 22.47

Armadillo 346K 12.26 45.64

Table 4: Running time comparison (in seconds) between our
algorithm (c =∞) and Liu’s algorithm [LCT11].

improves the appearance of the offsets, constructing accu-

rate GVD structure from offsets cannot be achieved with the

current accuracy of offsets.

6.2. Comparison with [LCT11]

Liu et al. [LCT11] proposed a practical algorithm (called

Liu’s algorithm in the following) to construct GVDs with

point sources. Our algorithm differs from Liu’s algorithm in

two aspects.

First, Liu’s algorithm does not apply to the case with

sources of line segments. In details, a necessary preprocess-

ing in Liu’s algorithm is to subdivide triangles of mesh until

the bisectors cross each face at most one time. This condition

is judged by the windows on each edge (or in this paper, key

points number provides this information). However, when

line segments exist as generators, there are cases when the

preprocessing procedure will fail.

Second, our algorithm reveals the deep relationship be-

tween the structure of the MMP algorithm itself and the

GVD structure. Accordingly our algorithm has a better per-

formance than Liu’s algorithm. See Table 4.

6.3. Comparison with [XYH12]

Xin et al. [XYH12] proposed an approximate method for

constructing GVDs with point sources, which performs as

follows:

1. Taking all generators as sources, compute the multi-

source geodesic distance field on the subdivided mesh.

Upon the termination, each vertex is labeled its nearest

source (generator).

2. Identify the edges whose end points have different labels,

since these edges intersect the bisectors. Use linear inter-

polation to approximate the intersection.

3. Construct the bisectors by checking all triangles contain-

ing at least two intersection points. If there are two inter-

section points, use a line segment to connect them. For

the case with three intersection points, find a point inside

the triangle and then connect it to all three intersections.

4. Finally, trace the bisectors to form the Voronoi cells.

This approximate algorithm is efficient, easy to imple-

ment and works fairly well for high resolution mesh with

regular triangulation and a large amount of uniformly dis-

tributed sites. However, it produces very poor results on

(a) Exact (b) Approximate

bisectors bisectors

meshes with irregular

triangulations or when

the number of sites is

small. The right in-

set shows a case that

the exact GVD bisec-

tor has a sharp cor-

ner (see (a)), where-

as the approximate bi-

sector simply follows

iso-distance contours,

leading to a wrong re-

sult (see (b)). Simply

improving the triangu-

lation quality and/or

increasing mesh reso-

lution can only partial-

ly solve the problem, since there is no guarantee that tracing

the cut locus can produce the correct GVD bisectors. More-

over, the overhead of remeshing and computing the geodesic

would be very high. Therefore, it is highly desirable to use

our proposed algorithm for computing accurate GVD on ar-

bitrary triangle meshes.

6.4. Limitations

The GVD with polyline generators computed by our method

is exact if numerical operations are exact. However, in our

current implementation, we use floating-point computation

due to its high efficiency. Although our method uses the

robust implementation [KLS98] for intersection of ratio-

nal quadratic Bézier curves representing bisectors [KHP95]

and handle degenerate cases using the symbolic perturba-

tion technique [EM90,Yap88], our method cannot guarantee

theoretically that for the LVD retricted in each candidate tri-

angle, the numerical results are topologically consistent with

theoretically correct solutions. We will address this issue us-

ing some topology-oriented techniques in a future work.

7. Conclusion

This paper investigates the GVDs in a general setting, where

the generators are polylines. We show that a typical bisector

contains line segments, hyperbolic segments, and parabolic

segments, therefore, computing GVD with polyline genera-

tors is more challenging than the GVD with point sources as

well as the 2D Euclidean Voronoi diagrams. We introduce a

new concept, called local Voronoi diagram, or LVD, which

is a combination of weighted and line-segment Euclidean

Voronoi diagrams. We show that when restricting on a mesh

triangle, the GVD is a subset of the LVD, which can be com-

puted by using the existing 2D Euclidean techniques. More-

over, only two types of mesh faces can contain GVD edges.

Guided by these results, we propose an efficient algorith-

m for constructing the exact GVD with polyline generators.

Our algorithm distinguishes with the existing GVD work in

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

169

C. Xu et al. / Polyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes

that it is integrated into the MMP framework seamlessly:

once the MMP algorithm terminates, both the geodesic dis-

tance and the GVD are readily available. We demonstrate the

efficacy of our method on real-world models.

Acknowledgement

This work was supported by the Natural Science Founda-

tion of China (61322206, 61272228), the National High

Technology Research and Development Program of China

(2012AA011802), Tsinghua University Initiative Scientific

Research Program (20131089252) and Beijing Higher In-

stitution Engineering Research Center of Visual Media In-

telligent Processing and Security. Ying He is supported by

Singapore MOE Grants RG40/12 and MOE2013-T2-2-011.

References
[AP85] AUGENBAUM J. M., PESKIN C. S.: On the construc-

tion of the Voronoi mesh on a sphere. Journal of Computational
Physics 59, 2 (1985), 177–192.

[BDG13] BOISSONNAT J.-D., DYER R., GHOSH A.: Construct-
ing intrinsic Delaunay triangulations of submanifolds. Research
Report RR-8273, INRIA arXiv: 1303.6493 (2013).

[BK07] BOMMES D., KOBBELT L.: Accurate computation of
geodesic distance fields for polygonal curves on triangle meshes.
In Proceedings of the Vision, Modeling, and Visualization Con-
ference (VMV ’07) (2007), pp. 151–160.

[CH90] CHEN J., HAN Y.: Shortest paths on a polyhedron. In
Proceedings of the Sixth Annual Symposium on Computational
Geometry (1990), pp. 360–369.

[CJL13] CHAMBERS E. W., JU T., LETSCHER D.: Medial
residues of piecewise linear manifolds. In Proc. Canadian Con-
ference on Computational Geometry (CCCG’13) (2013), p. Ses-
sion 1A.

[CWW13] CRANE K., WEISCHEDEL C., WARDETZKY M.:
Geodesics in heat: A new approach to computing distance based
on heat flow. ACM Transactions on Graphics 32, 5 (2013), 152.

[EM90] EDELSBRUNNER H., MÜCKE E. P.: Simulation of sim-
plicity: A technique to cope with degenerate cases in geometric
algorithms. ACM Trans. Graph. 9, 1 (Jan. 1990), 66–104.

[For87] FORTUNE S.: A sweepline algorithm for Voronoi dia-
grams. Algorithmica 2, 1-4 (1987), 153–174.

[FS07] FORT M., SELLARES J. A.: Generalized source shortest
paths on polyhedral surfaces. In Proceedings of the 23rd Eu-
ropean Workshop on Computational Geometry (2007), pp. 186–
189.

[KHP95] KIM D.-S., HWANG I.-K., PARK B.-J.: Representing
the Voronoi diagram of a simple polygon using rational quadratic
Bézier curves. Computer-Aided Design 27, 8 (1995), 605–614.

[KKB98] KIMMEL R., KIRYATI N., BRUCKSTEIN A. M.: Multi-
valued distance maps for motion planning on surfaces with mov-
ing obstacles. IEEE Transactions on Robotics and Automation
14, 3 (1998), 427–436.

[KLS98] KIM D.-S., LEE S.-W., SHIN H.: A cocktail algorithm
for planar Bézier curve intersections. Computer-Aided Design
30, 13 (1998), 1047–1051.

[KS98] KIMMEL R., SETHIAN J.: Computing geodesic path-
s on manifolds. Proceedings of National Academy of Sciences
95 (1998), 8431–8435.

[KS99] KIMMEL R., SETHIAN J. A.: Fast Voronoi diagrams and
offsets on triangulated surfaces. In Proc. of AFA Conf. on Curves
and Surfaces (1999).

[KWR97] KUNZE R., WOLTER F.-E., RAUSCH T.: Geodesic
Voronoi diagrams on parametric surfaces. In Computer Graphics
International (1997), vol. 97, pp. 230–237.

[LCT11] LIU Y.-J., CHEN Z., TANG K.: Construction of iso-
contours, bisectors, and Voronoi diagrams on triangulated sur-
faces. IEEE Transactions on Pattern Analysis and Machine In-
telligence 33, 8 (2011), 1502–1517.

[Liu13] LIU Y.-J.: Exact geodesic metric in 2-manifold triangle
meshes using edge-based data structures. Computer-Aided De-
sign 45, 3 (2013), 695–704.

[LLW12] LU L., LÉVY B., WANG W.: Centroidal Voronoi tes-
sellation of line segments and graphs. Comp. Graph. Forum 31,
2pt4 (May 2012), 775–784.

[LT13] LIU Y.-J., TANG K.: The complexity of geodesic Voronoi
diagrams on triangulated 2-manifold surfaces. Information Pro-
cessing Letters 113, 4 (2013), 132–136.

[LWL∗09] LIU Y., WANG W., LEVY B., SUN F., YAN D.-M.,
LU L., YANG C.: On centroidal Voronoi tessellation – energy s-
moothness and fast computation. ACM Transactions on Graphics
28, 4 (2009), Article No. 101.

[LXHK14] LIU Y.-J., XU C.-X., HE Y., KIM D.-S.: The dual-
ity of geodesic Voronoi/Delaunay diagrams for an intrinsic dis-
crete laplace-beltrami operator on simplicial surfaces. In Proc.
Canadian Conference on Computational Geometry (CCCG’14)
(2014), pp. Session 4A, paper 19.

[LZH07] LIU Y.-J., ZHOU Q.-Y., HU S.-M.: Handling degener-
ate cases in exact geodesic computation on triangle meshes. The
Visual Computer 23, 9-11 (2007), 661–668.

[MMP87] MITCHELL J. S., MOUNT D. M., PAPADIMITRIOU

C. H.: The discrete geodesic problem. SIAM Journal on Com-
puting 16, 4 (1987), 647–668.

[NLC02] NA H.-S., LEE C.-N., CHEONG O.: Voronoi diagrams
on the sphere. Computational Geometry 23, 2 (2002), 183–194.

[OBSC00] OKABE A., BOOTS B., SUGIHARA K., CHIU S. N.:
Spatial Tessellations: Concepts and Applications of Voronoi Di-
agrams. Wiley, 2000.

[OT96] ONISHI K., TAKAYAMA N.: Construction of Voronoi
diagram on the upper half-plane. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences
79, 4 (1996), 533–539.

[SSK∗05] SURAZHSKY V., SURAZHSKY T., KIRSANOV D.,
GORTLER S. J., HOPPE H.: Fast exact and approximate
geodesics on meshes. In ACM Transactions on Graphics (TOG)
(2005), vol. 24, pp. 553–560.

[XYH11] XIN S.-Q., YING X., HE Y.: Efficiently computing
geodesic offsets on triangle meshes by the extended xin-wang
algorithm. Comput. Aided Des. 43, 11 (2011), 1468–1476.

[XYH12] XIN S.-Q., YING X., HE Y.: Constant-time all-pairs
geodesic distance query on triangle meshes. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (I3D ’12) (2012), pp. 31–38.

[Yap88] YAP C. K.: A geometric consistency theorem for a sym-
bolic perturbation scheme. In Proceedings of the Fourth Annu-
al Symposium on Computational Geometry (1988), SCG ’88, p-
p. 134–142.

[YWH13] YING X., WANG X., HE Y.: Saddle vertex graph
(SVG): a novel solution to the discrete geodesic problem. ACM
Transactions on Graphics (SIGGRAPH ASIA 2013) 32, 6 (2013),
170:1–170:12.

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

170

