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Abstract—In the research of computer vision and machine perception, 3D objects are usually represented by 2-manifold triangular

meshesM. In this paper, we present practical and efficient algorithms to construct iso-contours, bisectors, and Voronoi diagrams of

point sites onM, based on an exact geodesic metric. Compared to euclidean metric spaces, the Voronoi diagrams onM exhibit many

special properties that fail all of the existing euclidean Voronoi algorithms. To provide practical algorithms for constructing geodesic-

metric-based Voronoi diagrams onM, this paper studies the analytic structure of iso-contours, bisectors, and Voronoi diagrams onM.

After a necessary preprocessing of model M, practical algorithms are proposed for quickly obtaining full information about

iso-contours, bisectors, and Voronoi diagrams on M. The complexity of the construction algorithms is also analyzed. Finally, three

interesting applications—surface sampling and reconstruction, 3D skeleton extraction, and point pattern analysis—are presented that

show the potential power of the proposed algorithms in pattern analysis.

Index Terms—Shape, geometric transformations, triangular meshes, exact geodesic metrics, point patterns.

Ç

1 INTRODUCTION

VORONOI diagram is an elegant spatial structure which
has found diverse applications in a variety of dis-

ciplines in natural science, including pattern recognition,
motion planning, operational research, information retrie-
val, biological morphology, and so on. Various extensions
and derived distance transforms make the Voronoi diagram
a basic and appealing tool. In euclidean space, medial axis
transformations [34], [66], [20] and generalized euclidean
distance transformations [19], [41], [46] are widely studied
for digital images and volume data. For spaces with non-
euclidean metrics, the domain of Voronoi diagrams has also
been extended to spheres [4], [50], polyhedral surfaces [49],
[30], [67], parametric surfaces [33], hyperbolic spaces [53],
and the general Riemannian manifolds [65], [36], [52]. For
detailed surveys, the reader is referred to [5], [51] and the
references therein. In this paper, we study a class of Voronoi
diagrams on a triangulated 2-manifold setting and propose
practical and efficient algorithms to compute them.

Recently, with the rapid development of remote sensing

and laser scanning techniques, many complex 3D objects,

terrains, and scenes have been modeled by dense triangular

meshes [16], [31]. Shifting Voronoi diagrams from euclidean

space such as images to 2-manifold triangulated surfaces

presents significant challenges and plays an important role

in point pattern analysis and spatial optimization (see Fig. 1

for an example). The first challenge concerns the distance
metric. On 2-manifold surfaces, a natural and widely used
metric is the geodesic distance. Research on geodesic
computation of mesh models can be dated back to 20 years
ago [45] and our presented work makes use of the MMP
algorithm [45] that outputs exact geodesic paths on
triangulated surfaces. The second challenge is regarding
the special structures inherent in the Voronoi diagram on
triangulated surfaces that make it unique and distinct from
its euclidean counterpart. For example, in euclidean plane,
three points not lying on a line uniquely determine a
circumcircle. However, there may be no such geodesic circle
or many geodesic circles existing on 2-manifolds. The
special analytic structure of Voronoi diagram on triangu-
lated surfaces is analyzed in this paper.

We make two contributions in this paper:

1. An analytic structure is analyzed and presented
for Voronoi diagrams on triangulated surfaces M.
The relations between iso-contours, bisectors, and
Voronoi diagrams on M are also established.
Details are presented in Section 4.

2. Efficient and practical algorithms are presented to
compute iso-contours, bisectors, and Voronoi dia-
grams with the proposed analytic structure. Details
are presented in Section 5.

The distinct properties of Voronoi diagrams on triangu-
lated surfaces M make them interesting and attractive in
many pattern analysis applications. In Section 6, three
interesting applications, surface sampling and reconstruc-
tion, 3D skeleton extraction, and point pattern analysis, are
presented that show the potential power of applying
Voronoi diagrams on M in pattern analysis.

2 RELATED WORK

On a 2-manifold surface M, the shortest path between two
points onM is a geodesic onM. While the general problem
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of computing the shortest paths among polyhedral ob-
stacles in IR3 is NP-hard [9], computing a geodesic on M
can be solved in polynomial time. Notably, two classes exist
for geodesic computation on M—approximation and exact
algorithms. Approximation algorithms are characterized by
the approximation ratio �, i.e., the length of computed
approximation solution is at most 1þ � times the exact
solution. Two typical 1þ � approximation algorithms
running in subcubic time are proposed in [1], [21]. A
polyhedral surface can also be viewed as a linear
approximation of an underlying smooth 2-manifold, and
thus numerical algorithms for solving the Eikonal equation
on triangular or quadrilateral grids can be used. The work
in this direction is exemplified by the fast marching
methods [56], [29]. A survey on approximate geodesic
computation is presented in [44].

Exact geodesic computation on general polyhedral
surfaces was first studied by Mitchell et al. [45], in which
an Oðn2log2nÞ algorithm was proposed, where n is the face
number in M. Later, several researchers improved this
bound to Oðn2Þ [11], [27] and Oðnlog2nÞ [28]. Recently,
Surazhsky et al. [59] presented a novel implementation of
the MMP algorithm in [45] and showed that, in practice, it
runs much faster than the other algorithms. Between two
points on M, there could be several geodesics connecting
them. Balasubramanian et al. [7] proposed an LOS-Floyd
algorithm that runs in cubic time and can report all geodesic
paths between two arbitrary points on M.

In this paper, we propose practical algorithms for
computing the Voronoi diagrams on 2-manifold triangular
meshes based on exact geodesic distance [45], [59]. Distinct
from euclidean cases, Voronoi diagrams on triangulated
surfaces possess many unique properties. Mount [49] first
studied some of these properties, showing that Voronoi
diagrams on M with m point sites have the complexity
Oðmðmþ nÞÞ. In the worst case, the bisector between two
point sites on M has the complexity �ðn2Þ [48]. A recent
study [10] reveals that the sum of the combinatorial
complexities of the order-j Voronoi diagrams on S, for

j ¼ 1; 2; . . . ; k, is Oðk2n2 þ k2mþ knmÞ. Moet et al. [48] and
Aronov et al. [3] studied a class of realistic terrains, which is
a special kind of triangulated surface, showing that the
worst-case complexity is �ðnÞ for a bisector and �ðnþ
m

ffiffiffi
n
p
Þ for a Voronoi diagram, respectively, on realistic

terrains. Although rigorous constructive proofs are pre-
sented in [49], [48], [3], [10], they are nevertheless of greater
theoretical than practical interest because the constructions
did not offer practical algorithms to explicitly build Voronoi
diagrams on general triangulated surfaces M with concise
data structures.

In terms of applications in pattern analysis for Voronoi
diagrams on M, little work exists since there have been no
practical construction algorithms in previous work. Peyre
and Cohen [54] use recursively farthest points [15], [47] to
sample the surfaces and use Voronoi-Delaunay duality [36] to
remesh and parameterize the triangulated surfaces. Approx-
imate geodesic computation using the fast marching method
[29] was adopted in [54] for sampling. Since the work in [54]
uses the approximate geodesic distance and the work in [38]
uses the euclidean distance instead of geodesic distance, both
methods can produce potentially large errors if the triangles
inM are extremely slivered. In this work, we reexamine the
uniform sampling strategy in Section 6.1, using the exact
geodesic computation. Hilaga et al. [22] proposed a multi-
resolutional Reeb graph to estimate the similarities of 3D
shapes by topological matching. In [22], single-source short-
est paths along edges on M, output from the classical
Dijkstra’s algorithm [12], are used as a rough approximation
of geodesic paths and, therefore, the meshes of shapes have to
be uniformly densified, which also lead to a high computa-
tional load. In Section 6.2, with the tools of building Voronoi
diagrams on M, we propose a surface skeletonization
method that simplifies the skeleton’s topological structure
from a mixed cell-complex in IR3 [20] to a 1D axis structure
akin to the planar smooth ones in [61], [6]. Voronoi diagrams
onM can also be used in point pattern analysis [64], and we
examine this case with examples in Section 6.3.

3 EXACT GEODESIC METRIC ON M BASED ON THE

MMP ALGORITHM IN [45], [59]

To make the paper self-contained and more easily readable, in
this section, we briefly summarize the novel implementation
in [59] of the MMP algorithm [45] to establish the exact
geodesic metric on triangulated 2-manifold surfacesM. The
surfacesM studied in this paper are compact piecewise flat
surfaces. The Hopf-Rinow theorem [24] and its adaption to
general piecewise flat surfaces [2] ensure that a minimal
geodesic exists between two arbitrary points on this kind of
surfaces. Denote the topology of a triangular mesh surfaceM
by ðV ;E; F Þ, where V ;E; F are the vertex, edge, and face sets,
respectively.

Given a surface M and one vertex v 2 V , the MMP
algorithm [45] establishes a distance function Dv onM such
that for any point q 2 M, DvðqÞ is the exact geodesic
distance from q to v on M. The basic idea of the MMP
algorithm is to partition all faces in F 2 M into a 2D
subdivision structure. To establish this structure, the
following property is used: Inside every triangle in M,
the geodesics must be straight lines. When crossing a

LIU ET AL.: CONSTRUCTION OF ISO-CONTOURS, BISECTORS, AND VORONOI DIAGRAMS ON TRIANGULATED SURFACES 1503

Fig. 1. Iso-contours, distance field, and Voronoi diagram of seven point
sites on a 2-manifold terrain model of 32,258 triangles. Top left: The
texture mapped model. Top right: The iso-contours with seven point
sources. Bottom left: The distance field mapped by a color index. Bottom
right: The Voronoi diagram on the terrain surface.



triangle edge e, a geodesic must also be a straight line if the
previous triangle is unfolded along e into the plane
containing the next triangle (Fig. 2b).

Definition 1. The vertices through which geodesics pass are called

pseudosources in this paper. Singular vertices are those in V

whose total surrounding angle is larger than or equal to 2�.

Definition 2. Given a source p and any strip of unfolded

triangles starting at p, a visibility wedge is the set of points

on the strip that are visible from p.

From the triangles containing one or multiple sources p,
a set of initial visibility wedges (VWs) are identified. These
VWs are propagated (Fig. 2a) until all the edges E inM are
covered. During the VW propagation, three different cases,
as shown in Fig. 2a, would arise. It is proved in [45] that the
pseudosource of each VW can only be the singular vertices
in V . To store the VW information in the local plane defined
by each triangle, an 8-tuple ðb0; b1; d0; d1; � ; �; Idnv; IdptÞ is
used in this paper (Fig. 2c), where b0; b1 are parameters
measuring the distance along the edge, the 2D unfolded
position of the nearest pseudosource s is encoded by its
distances d0; d1 to the endpoints b0; b1, respectively, Idnv and
Idpt are the identifiers of s and the original point site p,
respectively, � specifies the side of edge on which s lies, and
� is the length of the geodesic path from s ¼ Idnv back to the

site p ¼ Idpt. During the VW propagation, the new emer-
ging wedges may intersect some existing wedges. Any two
intersected wedges ðbi0; bi1; di0; di1; �iÞ, i ¼ 1; 2, are updated by
solving the equation with unknown w (Fig. 2d)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw� s1:xÞ2 þ ðs1:yÞ2

q
þ �1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw� s2:xÞ2 þ ðs2:yÞ2

q
þ �2:

The solution is the intersection point of a branch of
hyperbola with the x axis.

Given one source point p,1 the VW propagation builds a
2D subdivision structure ðD1; D2; . . . ; DnÞ onM that satisfiesSn
i¼1 Di ¼M and Di \Dj ¼ ;, i 6¼ j, i; j ¼ 1; 2; . . . ; n. Each

subdivisionDi has a corresponding IdnvðiÞ that is stored as a
local 2D projection nvi on each Di. Given an arbitrary target
position q on M, the geodesic path between p and q is
computed as follows:

1. Find the subdivision cell Dq containing q. Set
Dl ¼ Dq, r ¼ q.

2. Connect r and the 2D position of nvl by a line l, in the
plane defined by Dl.

3. If nvl 6¼ p, find the intersection x of the ray l with the
boundary of Dl; otherwise stop.

4. Find the adjacent subdivision Dj of Dl along the
intersection x. Set Dl ¼ Dj, r ¼ x. Go back to point 2.

In the Supplementary Material A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2010.221, the
complete 2D subdivision structure of a 3D star model is
illustrated. Due to the extreme complexity of the 2D
subdivision structure with curved boundaries on M, we
only store the 1D subdivision with VWs on each edge of
M and propose in the following sections practical
algorithms to compute the iso-contours, bisectors, and
Voronoi diagrams of multiple point sites on M. It was
shown in [40] that the 1D subdivision on edges of M can
completely induce the correct 2D subdivision on faces of
M.

4 STRUCTURES OF ISO-CONTOUR, BISECTOR, AND

VORONOI DIAGRAM ON M
Given a set of distinct point sources P ¼ ðp1; p2; . . . ; pmÞ on
M, the geodesic distance DP ðxÞ for x 2M is defined as
arg minifDpiðxÞ; pi 2 Pg. An iso-contour of the distance field
DP is the trace of those points on M that have the same
value of distance. A bisector of two points pi; pj 2 P is the
trace of points q on M satisfying DpiðqÞ ¼ DpjðqÞ. The
Voronoi diagram of P on M is a set VDðP Þ ¼ ðV Cðp1Þ;
V Cðp2Þ; . . . ; V CðpmÞÞ, where V CðpiÞ ¼ fqjDpiðqÞ � DpjðqÞ;
q 2 M; i 6¼ j; j 2 Img. In this section, we present four
properties that show the interstructures and relationships
among iso-contours, bisectors, and Voronoi diagrams on
M. Fig. 1 illustrates an example of distance field (bottom-
left), iso-contours (top-right), and Voronoi diagram with
trimmed bisectors (bottom-right).

4.1 Structure of Iso-Contours

Due to the exitance of pseudosources, the iso-contours on
M have the following analytic structure: For a closed
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Fig. 2. Geodesic paths encoding with visibility wedge propagation [59].
(a) Three cases in visibility wedge (VW) propagation. (b) VW in Flatten
triangle strips. (c) Encoding VW in a local plane. (d) Updating the
intersecting VWs.

1. Multiple source points are handled in a similar way.



surface M without boundary, each iso-contour of the
distance field on M consists of at least one closed curve.
Each closed curve consists of circular arc segments joined at
singular points.

Definition 3. The singular points are locations, where the
nearest pseudosource is changing from one to another. The
singular points can be grouped into segments; each segment is
continuous onM and is called a singular locus in this paper.

The iso-contours can only be C0-continuous at a singular
locus. Definition 3 is based on the following observations:
The exact geodesic path on M is a polyline and the only
possibility of vertices in V (except for the source points)
existing along a geodesic path is that they are singular
vertices. Between each pair of sequential singular vertices,
the path goes through a series of triangles, which can be
unfolded into a common plane without overlap (Fig. 2b)
and the geodesic path in the plane is a single straight line
segment. So, except for the locations of singular points,
locally in each triangle an iso-contour is a circular arc. The
existence of singular points is shown in Fig. 3; it is readily
seen that the iso-contour at the singular points can have C0

or C1 continuity.

Definition 4. A point p 2M is a critical point of the distance
field function D, if the partial derivatives of D vanish at p. The
index d of a critical point p is the number of negative
eigenvalues of a Hessian matrix of D at p.

Property 1. The number of closed curves in an iso-contour of
multiple sources on the surface of a general genus-r (r � 0)
object depends on the indices of critical points of the distance
field function on M.

This property is drawn from Morse theory and algebraic
topology [17]. At d ¼ 1 critical point, a minimum increases
and a maximum decreases the circle number of iso-contours
by one. At d ¼ 3 critical points, a saddle splits or merges
circles in iso-contours.

A genus-2 model with 10 iso-contours is shown in Fig. 4.
It clearly shows the tangent discontinuities at the singular
points and an iso-contour that is separated into three
disjoint closed segments. Based on the Definition 3 and
Property 1, we propose the data structure listed in Fig. 5 for
iso-contours on M.

4.2 Bisectors of Point Sites on M
The bisector Bðp; qÞ defined by point sites p and q is the
trace of points onM, which have equal geodesic distance to
p and q. The bisectors on M may not be 1D, as revealed in
the following property:

Property 2. If a singular vertex ofM lies on Bðp; qÞ, then Bðp; qÞ
contains a 2D region on M.

To see Property 2, we develop the geodesic paths from p
and q, respectively, onto a plane. The shaded 2D area shown
in Fig. 6 lies in Bðp; qÞ. In this paper, we assume that all
source points are distinct from each other and no vertices of
M have the same geodesic distance to two or more source
points. So the bisectors ofM consist of 1D curve segments.
By Definition 3, the singular loci of iso-contours contain all
the bisectors. In addition, singular loci also contains
pseudobisectors on which the points have the same
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Fig. 3. The existence of singular points in an iso-contour. For closed
surfaces, the hole shown in the figure can be a polygonal obstacle such
as a prism with sufficient height.

Fig. 4. The front and back views of iso-contours of a single source point
on an eight model. The maximal geodesic distance onM is normalized
to 1 and the iso-contour with value 0.5 is shown in red color, which
consists of three distinct closed curves.

Fig. 5. The data structure of iso-contours on M.

Fig. 6. Illustration of Property 2.



geodesic distance to an identical source point, but from
different directions (Fig. 7 shows an example). Bisectors of
source points have the following structure:

Property 3. The bisector of two distinct source points on a
genus-r ðr � 0Þ object’s surface can have at most rþ 1
distinct closed curves.

Property 3 is based on the following observations: One
complete bisector cuts the surface into two parts. Each part
has shorter geodesic paths to one source point, and thus
must contain that source point. On a genus-r model, rþ 2
nonintersected closed curves cut the surface into at least
three distinct parts and there are only two source points, a
contradiction.

One example of a bisector on a genus-2 model consisting
of three closed curves is shown in Fig. 7.

Definition 5. Each distinct closed curve of a bisector can be
decomposed at breakpoints. A breakpoint is the location at
which the nearest pseudosource is changing along the bisector
from one side of a source point.

Pseudosources make the bisector behavior an additive
weighted Voronoi diagram in a local 2D plane. So, between
breakpoints, a bisector consists of hyperbolic and line
segments. The bisector is C0 continuous at break points.

An illustration of Definition 5 is shown in Fig. 8. Based
on Property 3 and Definition 5, we propose the data
structure listed in Fig. 9 for bisectors on M.

4.3 Voronoi Diagram of Point Sites on M
Let P ¼ fp1; p2; . . . ; pmg � S and pi 6¼ pj for any i 6¼ j. The
region defined by

V CðpiÞ ¼ fqjDpiðqÞ � DpjðqÞ; i 6¼ j; q 2 Mg

is called the Voronoi cell of pi. For 2-manifold meshes
without boundary, all Voronoi cells are bounded by
bisectors, mutually exclusive or semi-exclusive, andSn
i¼1 V CðpiÞ ¼ M. The set given by

VDðP Þ ¼ fV Cðp1Þ; V Cðp2Þ; . . . ; V CðpmÞg

is defined as the Voronoi diagram of point sites P on M.
Quite different from the euclidean space cases, the Voronoi
diagram on 2-manifoldMpossesses some unique properties.

Property 4. Each Voronoi cell onM is connected, but it may not
be singly connected.

Property 4 is based on the following observation: By
definition, each Voronoi cell V CðpiÞ must contain its point
site pi and 8p 2 V CðpiÞ, the geodesic path between p and pi
must also be contained in V CðpiÞ. So, V CðpiÞ is connected.
Since, according to Property 3, the boundaries of the cell can
have more than one closed curve, it could be multiple-
connected; an example is shown in Fig. 10. Based on
Property 4, we have the following definition:

Definition 6. Each Voronoi cell in VDðP Þ is bounded by one or
more closed curves. Each closed curve consists of bisectors. The
bisectors are trimmed and joined into closed curves at the
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Fig. 7. The front and back views of a bisector of two point sites with
color-mapped distance field, respectively. Note that in the bottom-right
figure, pseudobisectors exist on which the points have the same
geodesic distance to an identical source point, but from different
directions.

Fig. 8. Illustration of Definition 5.

Fig. 9. The data structure of bisectors on M.

Fig. 10. An illustration of a Voronoi diagram of three point sites on an
eight model; each Voronoi cell has more than one closed curve on the
boundaries.



branch points. A branch point is the location onM, which has
the same distance value to its three closest sites. The boundary
of a Voronoi cell does not have to contain a branch point.

One example showing the existence of branch points is
presented in Fig. 1. For the model shown in Fig. 10, none of the
Voronoi cells have any branch points on the boundary. Given
Property 4 and Definition 6, we propose the data structure
listed in Fig. 11 for Voronoi diagrams of point sites onM.

As a short summary, some of the definitions and proper-
ties presented in this section are not new. Property 1 is well
explained in [17] but in a different form; Property 4 and
Definition 6 have been given and studied in a much broader
scope in Riemannian manifold [65], [66]. Nevertheless, we
present and study these definitions and properties system-
atically persisting on triangulated 2-manifold M so they
benefit us in constructing the practical algorithms proposed
in the next section.

5 PRACTICAL COMPUTATION ALGORITHMS

Based on the properties and data structures stated in
Section 4, in this section we propose efficient and practical
algorithms to explicitly construct the iso-contours, bisec-
tors, and Voronoi diagrams of point sites on triangulated
surface M. Recall that we use an 8-tuple ðb0; b1; d0; d1; � ; �;
Idnv; IdptÞ, explained in Section 3, to represent a visibility
wedge on an edge e of M, where Idpt is the ID of source
point and Idnv is the nearest pseudosource, which may or
may not be identical to Idpt. Throughout this section, n and
m denote the number of triangles in M and the number of
point sites in VDðP Þ, respectively.

The arrangement of triangles on M can exhibit various
wild scenarios that lead to high-complexity iso-contours
and bisectors. In the following sections, we preprocess the
triangular meshes such that pathological worst cases can be
avoided in these more realistic models, which also make
efficient and practical algorithms feasible.

5.1 Iso-Contours

Property 5. For an edge e of M, the distance function on e can
have in the worst-case OðnÞ extrema.

This property is proven in [40] and an example is
constructed in Fig. 12. Assume that triangles T; t1; . . . ; tn lie

in the same plane pl. Referring to Fig. 12a, each ti has vertices
v0
i ; v

1
i ; v

2
i and the edge e of T consists of the edges ðv1

i ; v
2
i Þ,

i ¼ 1; 2; . . . ; n. All of the vertices v0
i sit on the same circle

centered atO of radius r. Define the distance fromO to edge e
to be h, h > r; r!1, so all the isosceles triangles ti can be
regarded congruent to each other. Referring to Fig. 12b,
between each pair ðti�1; tiÞ of triangles in tandem, let point pti
be out of plane pl with sufficient distance and edges
ðpti; v0

i Þ; ððpti; v0
i�1ÞÞ be perpendicular to edges ðv0

i ; v
1
i Þ;

ðv0
i�1; v

2
i�1Þ, respectively, so the geodesics from O to edge e

can only go through triangles t1; . . . ; tn. It is readily seen that,
as shown in Fig. 12c, the distance field function DOðxÞ along
edge e has OðnÞ extrema. To complete the triangulated
2-manifold setting, let triangle T be partitioned by an interior
point c; c is very close to v1 and the angle ffcv0v1 is very close to
0 (Fig. 12d). So, the edge e0 ¼ ðc; v0Þ has the same distribution
of values of distance field function of e.

Preprocess. Since the distance field value on an edge e of
M can have, in the worst case, OðnÞ extrema, we partition e
into subedges such that the distance field value on each
subedge is monotone and linear. For each triangle t
containing partitioned edges, t is subdivided by constrained
Delaunay triangulation and the geodesic visibility wedges
on the new added edges in t are locally updated (Fig. 13).
Since the number of 2D subdivision regions (see Supple-
mentary Material A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2010.221) in each triangle is bounded
by OðnÞ [40], the complexity of the preprocess is Oðn2Þ in
the worst case, while in all our experiments, it runs in only
linear time; an example is shown in Fig. 14. Denote the
number of triangles in a preprocessed mesh by n0.
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Fig. 11. The data structure of Voronoi diagrams of point sites on M.

Fig. 12. A constructive example shows that the distance field values on
e0 can have worst-case OðnÞ extrema.



After preprocessing, each triangle has three edges on

which the geodesic distance is linear. Without loss of

generality (subject to a shift by a scalar value), explicit

construction of the iso-contour 0 is considered below.

Property 6. On a preprocessed mesh, the 0-value iso-contour only

passes through the triangles that have opposite signs at two of

its three vertices. If, at two edges, the two wedges which

contain 0 geodesic distance value have the same nearest

pseudosource Idnv, then the triangle contains one single arc

segment. Otherwise, the triangle contains one singular point,

which is the intersection point of two arc segments.

Given Definition 3, a sketch illustrating Property 6 is

shown in Fig. 15. While, in a carefully constructed artificial

model (Fig. 12), an iso-contour can have �ðn2Þ complexity, it

has only Oðn0Þ complexity in a preprocessed model since
each triangle can have at most one connected piece in an
iso-contour.

Based on whether critical points exist or not, below we
classify 2-manifold models into two classes and propose two
corresponding algorithms. To determine the critical points
and index number on M, the OðnÞ algorithm proposed by
Takahashi et al. [60] is adopted. Their method scans the
circular list of neighbors for each vertex v inM in counter-
clockwise order and reduces the sequence of neighbors by
computing the sums of all positive �i and all negative �i,
respectively, where �i is the distance field value difference
between neighbors nbi and v. Finally, the elements in a
reduced vertex list Lc are the extracted critical points.

5.1.1 Models with Single-Piece Iso-Contour

If a triangulated surfaceM has no critical points with indices
1 or 3, by Property 1, any iso-contour on it is a single closed
curve. To explicitly construct the iso-contour with any
prescribed value on this kind of models, we preprocess the
model as follows: Given a source point p, we compute the
geodesic distance field onM and find the farthest point q on
M. Then, we construct a geodesic path from p to q. The path
goes through a set of triangles, each of them covers a distance
interval, and all of the intervals in them are continuous in
tandem. We sort these triangles into a binary tree indexed by
the distance interval. To construct a particular iso-contour,
we search the binary tree and find the triangle whose
distance interval contains the iso-contour value.

Given a starting triangle, the algorithm runs in a
marching process. Without loss of generality, we assume
that the iso-contour value is 0. Given the first triangle
through which the iso-contour passes, we trace the iso-
contour using the edge which has the opposite signs at its
two vertices. Each such edge guides the iso-contour from
one triangle to another triangle. For each marched triangle,
the inside iso-contour is determined by Property 6. If the
iso-contour goes through a vertex v of M, the 1-ring
neighbor triangles of v is checked to find the next triangle to
be marched. Our marching method is topology-oriented
since we first check the sign of vertices of each marched
triangle. So, our method is robust to degeneracy and is
topologically consistent.

Property 7. The iso-contour construction algorithm for pre-
processed models with single-piece iso-contours takes
Oðlogn0 þ kÞ time, where k is the number of triangles through
which the iso-contour passes.

To see the above property, note that the geodesic path
and the iso-contour both have the Oðn0Þ complexity in
preprocessed models. So, searching the binary tree takes
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Fig. 13. Model preprocess. (a) A triangle with the distribution of distance
field value shown in green for three edges. (b) The triangle is subdivided
using bold black new edges. (c) The triangulation in neighbor triangles is
completed using red edges. (d) New created edges with multiple
extrema of distance field value are further subdivided.

Fig. 14. Preprocess triangular meshes. Left column: A coarse mesh
before preprocess. Right column: Two views of the preprocessed mesh
with the same iso-contours as those in Fig. 4.

Fig. 15. Two situations of iso-contour in one triangle. Left: The triangle
contains only one arc iso-contour. Right: Two arcs are intersected at a
singular point and are made up of an iso-contour in a triangle.



Oðlogn0Þ time to identify the starting triangle and the
marching process takes OðkÞ time. Finally, the overall
complexity is Oðlogn0 þ kÞ.

5.1.2 Arbitrary Genus-r (r � 0) Models

The algorithm for arbitrary genus-r models is more
complicated than that for models studied in Section 5.1.1.
We preprocess the model as follows: We compute the
geodesic distance field with a prescribed source p on M.
Each triangle in M covers a distance interval. We sort all
triangles inM into an interval tree [13], [42] indexed by the
distance interval of each triangle.

The genus-r iso-contour algorithm also runs in a
marching process. Given a particular iso-contour value,
we search the interval tree for stabbing query and sort all of
the triangles whose distance interval covers the iso-contour
value into a queue Que. The following algorithm reports the
inquired iso-contour with the number of closed curves.

Property 8. Algorithm 1 for arbitrary genus-r models takes
Oðlogn0 þ k log kÞ time, where k is the number of triangles
through which the iso-contour passed.

Algorithm 1: genus_r_isocontoursðM; cÞ
Input. An iso-contour value c, a preprocessed meshMwith

constructed distance field and interval tree.

Output. The requested iso-contour with the number of

closed curves.

1. Stabbing query in the interval tree and output the

result in a queue Que;
2. Set curve number cn ¼ 0;

3. While (Que is not empty)

3.1. cn ¼ cnþ 1;

3.2. Pop the first element t of Que;

3.3. Marching triangles with the initial triangle t;

3.4. Remove all the marched triangles from Que.

We sketch the proof of Property 8 as follows: An interval
tree for a set of n0 intervals reports all intervals that contain
a query point in Oðlogn0 þ kÞ time, where k is the number of
reported intervals [13], [42]. The Que can be built in OðkÞ
time and removing an element with a specified key from
Que takes Oðlog kÞ time [12]. So, Algorithm 1 runs in
Oðlogn0 þ k log kÞ time.

Before running Algorithm 1, the distance field on M is
constructed in Oðn2 lognÞ time [45] and an interval tree is
constructed for all the triangles in M in Oðn0 logn0Þ time.
Since multiple point sources behave like pseudosources, the
construction of iso-contours of multiple sources is identical
to that of a single source.

5.2 Bisectors

According to Definition 3, the singular loci of a multisource
geodesic distance field contain the trimmed bisectors that
contribute to the Vornoi diagram of the point source set P
onM. In this section, we explicitly construct the bisector of
two source points p and q on M.

Property 9. The bisector Bðp; qÞ goes through an edge e at the
location that delimits two visibility wedges at e and the two
wedges have the source point ID Idpt ¼ p and Idpt ¼ q,
respectively.

Preprocess. In the worst case, one bisector can go through
a triangle as many as n times [48], [40]. Similarly to iso-
contour construction, the mesh model is also preprocessed
to avoid this hypothetical worst-case complexity. We first
examine each edge in M and guarantee that each edge
contains at most one intersection point with the bisector; if
this is not the case, the edge is subdivided. Denote the
number of triangles in a preprocessed mesh by n0. Starting
from p and q, we propagate the visibility wedges in a
continuous-Dijkstra fashion. During propagation, we use a
list to store those edges at which a visibility wedge is
updated with a neighbor wedge belonging to a different
source. To the end, the edge list is converted into a queue
Que which contains all the triangles through which the
bisector passes. Similar to iso-contours, the following
marching algorithm is used to construct the bisector on a
general genus-r model:

Property 10. Algorithm 2 runs in Oðn2 lognÞ time.

Algorithm 2. genus_r_bisectorðM; p; qÞ
Input. A preprocessed mesh M and two point sites

p; q.
Output. The requested bisector with the number of closed

curves.

1. Build the distance field onM with point sites p; q and

output the queue Que;

2. Set curve number bn ¼ 0;

3. While (Que is not empty)

3.1. bn ¼ bnþ 1;

3.2. Pop the first element t of Que;
3.3. Marching triangles with the initial triangle t;

3.4. Remove all the marched triangles from Que.

The proof of Property 10 is sketched as follows: It takes
Oðn2 lognÞ time to compute the geodesic distance field [45]
and report all triangles containing the bisector Bðp; qÞ with
the triangle number k < n0 < n2. The marching process
takes OðkÞ time and the queue Que operations in Oðk log kÞ
time. So, the total running time is Oðn2 lognÞ.

5.3 Voronoi Diagrams

The preprocess step for constructing Voronoi diagrams on
M is the same as that for the bisector construction. Also
similarly to the bisector case, we record a list to store those
edges at which a visibility wedge is updated with a
neighbor wedge belonging to a different source. After the
geodesic distance field construction, the list of edges LE is
converted into a list of triangles LT incident to LE. From
Definition 6 and Property 9, the following property holds:

Property 11. If any triangle in LT has all three of its edges
contained in LE, then it contains a branch point. Each triangle
in LT that does not contain a branch point is passed through
by a single piece of a bisector.

Property 11 gives us a valuable means to compute the
analytic structure of the Voronoi diagram on M. We
separate the list LT into two sublists: One is LBT , whose
elements contain branching points, and the other is
LTT ¼ LTnLBT . The following algorithm constructs the
Voronoi diagram of point set P on M using the data
structure as shown in Figs. 9 and 11:

LIU ET AL.: CONSTRUCTION OF ISO-CONTOURS, BISECTORS, AND VORONOI DIAGRAMS ON TRIANGULATED SURFACES 1509



Property 12. Algorithm 3 runs in Oðn2 lognÞ time.

Algorithm 3. genus_r_Voronoi_diagramðM; P Þ
Input. A preprocessed mesh M and a point site set P .

Output. The requested Voronoi diagram using the data

structure depicted in Figs. 9 and 11.

1. Build the distance field on M with the set P and

output the lists LE and LT ;

2. Separate LTT into LBT and LTT ;
3. Create a branch-point list BP : each point bpi with

sources ðsið1Þ; sið2Þ; sið3ÞÞ corresponds to a triangle ti
in LBT .

4. For all the branch points bpi 2 BP .

4.1. For m ¼ 1 to 3

4.1.1. If the bisector BðsiðmÞ; siððmþ 1Þ%3ÞÞ is not

computed

4.1.1.1. Marching BðsiðmÞ; siððmþ 1Þ%3ÞÞ started
from ti and ended at another tj in LBT .

4.1.1.2. Remove all marched triangles from LTT .

5. While (LTT is not empty) //some bisectors do not

//have branch points by Definition 6.

5.1. Create a new entry in the bisector list;

5.2. Pop one element t in LTT ;

5.3. Marching triangles with the initial triangle t;

5.4. Remove all of the marched triangles from LTT .

The proof of Property 12 is sketched as follows: It takes
Oðn2 lognÞ time to compute the geodesic distance field [45]
and report the set LE, LBT , and LTT . Let k be the number
of triangles passed by the boundaries of VDðP Þ. The two
loops in Steps 4 and 5 take time Oðk log kÞ. So, the total
running time is Oðn2 lognÞ.

5.4 Experiments

We test the proposed algorithms on diverse triangulated

surfaces which are chosen from two classes: The first class

contains shapes with simple topological types (Fig. 16) and

the second contains topologically complex shapes (Fig. 17).

All of the shapes in two classes have the triangle numbers

ranging from 3,000 to 10,000. For each shape, using the

random point sampling method presented in Section 6.3,

30 points are sampled and used as the point set P to

generate the Voronoi diagram VDðP Þ. The Voronoi dia-

grams of different numbers of samples on a genus-1 cat

model are shown in Fig. 18. The performance data of output

Voronoi diagrams are summarized in Tables 1 and 2. The

running time is measured on a laptop with Intel Core 2 Duo

CPU running at 2.13 GHz.
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Fig. 16. The Voronoi diagrams of 30 randomly generated points on different models of genus-0. The statistical data are summarized in Table 1.

Fig. 17. The Voronoi diagrams of 30 randomly generated points on different models of genus-r, r � 1. The statistical data are summarized in Table 1.



Our first observation is drawn from the sphere model in
Fig. 16. Although the exact bisector of two spherical points
is a great circle on an ideal sphere, triangulated spherical
surfaces only provide a linear approximation. Induced from
Definition 5, each bisector on a triangulated surface consists
of hyperbolic and line segments, and it may not be tangent
continuous at break points.

Define the combinatorial complexity of the Voronoi
diagram to be the total number of point sites, bisectors,
and branch points. If a sufficiently dense sampling Pdense
on S is used, the VDðPdenseÞ will behave locally as for the
euclidean plane case in which the complexity is �ðnÞ (see
[52] for a detailed discussion on dense sampling and the
linear complexity). If a mild sampling is used, Tables 1 and
2 empirically reveal that the VDðP Þ complexity is linear;
this can be explained by 1) each bisector can have at most
rþ 1 distinct circles on a genus-r model,2 2) the boundary
of a Voronoi cell may not contain a branch point (see
Definition 6).

We measure the time complexity of the Voronoi diagram
VDðP Þ in an output-sensitive manner. The term cplx in
Tables 1 and 2 is defined as 1000� timesec

numptri
, where timesec is

the running time measured in second and numptri is the
number of triangles passed by the VDðP Þ boundaries. In
Table 2, exp is defined as 8� cplxffiffi

s
p , where s is the number of

random sample points. The results show that our marching
algorithm is empirically Oðnumptri

ffiffiffi
s
p Þ for preprocessed

meshes, i.e., linear to the number of triangles passed by
bisectors and increase with the number of samples with
exponential rate 0.5.

6 APPLICATIONS

Geodesic-metric-based Voronoi diagrams reveal an intrinsic
structure of point sites on triangulated surfaces M. Below,
we present three applications that show the power of the
Voronoi diagrams on M as a basic tool in pattern analysis.

6.1 Geodesic Remeshing

Nowadays, 3D reconstruction from range data often pro-
duces dense triangle meshes with nonuniform triangle aspect
ratio [16]. For many applications, partial differential equa-
tions need to be solved on these triangulated surfacesM [57].
To achieve better numerical precision, it is often required to
remeshM intoM0 such that the triangles inM0 are as close
as possible to equilateral triangles.

To uniformly sample the surface M, farthest point
samples are used [15], [47]. Given a set of samples P ¼
fp1; p2; . . . ; pmg on M, we define the dispersion in P by

�ðP Þ ¼ sup
x2S

min
p2P

DpðxÞ
� �

;

where DpðxÞ is the geodesic distance between p and x. To
find a new sample pmþ1 that minimizes the dispersion
�ðP [ pmþ1Þ, the position of pmþ1 must be at one of the
branch points of VDðP Þ or lie on the bisector which does
not end at branch points. This property dramatically
reduces the search space in M. Starting from an arbitrary
sample, more samples are added one by one by incremen-
tally updating the Voronoi diagram. Leibon and Letscher
[36] show that if the samples are sufficiently dense, the dual
triangulation of the Voronoi diagram onM exists, and thus
offers us a solution to the geodesic remeshing problem. An
example is shown in Fig. 19.
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TABLE 1
The Complexity (Number of Triangles, Branch Points, Bisectors,
Break Points, and Time in Seconds) of the Voronoi Diagrams

on Diverse Shapes Shown in Figs. 16 and 17

The time is measured in two parts, for distance field construction and
Voronoi diagram construction, respectively. See Section 5.4 for cplx.

TABLE 2
The Complexity of the Voronoi Diagrams on the Cat Model

Shown in Fig. 18, with Different Sample Points

See Section 5.4 for exp.
2. When using different graphics models, r could be different and we

assume that r is small and less than a fixed integer.

Fig. 18. The front and side views of Voronoi diagrams on the cat model
with 60, 75, and 90 random samples, respectively. The statistic data are
summarized in Table 2.



Peyre and Cohen [54] presented an approach similar to
ours, but used an approximate geodesic metric which is
computed by Kimmel and Sethian’s fast marching algo-
rithm [29]. Since the original meshes can have extremely
slivered triangles before remeshing, the numerical fast
marching methods might be contaminated by numerical
errors, while our method is more accurate and robust3 since
we use the exact geodesic metric.

6.2 Tree Skeleton Extraction and Classification

Skeletons of 3D articulated models reveal rich topological
information and play an important role in pattern recogni-
tion and computer animation. Many elegant mathematical
tools have been investigated for extracting skeletons from
3D models, including medial axis, shock graphs, Reeb
graphs with Morse functions, etc., [17], [58]. Despite the
novelties in these tools, the resulting skeletons do not take
the full advantage of vision perception and are not visually
simple. For example, mixed 1D and 2D cell types appear in
the medial axis/surface of 3D objects and are sensitive to
tiny noises on surfaces [20].

Observing that the human vision system is able to infer
visually simple skeletons with full functionality, regardless
of noises or wrinkles on object surfaces [32],4 we use the
following guidelines in human vision to design a computer
program of skeleton extraction:

. Human perceives a global shape structure by
integrating local pattern elements [8], [55].

. At the early visual process of human beings, the
primate visual cortex selectively filters signals
according to the spatial frequencies and orientations
of local patterns [8].

. A theory called minima rule was examined in [23] in
which human vision detects local patterns along
negative minima of the principal curvatures on
surfaces.

The overall algorithm is sketched in the following two

steps and is illustrated in Fig. 20:

. Step 1. A three-pass computation is used to simulate
the filtering process in the primate visual cortex.
First, the potential critical points (extrema and
saddle points) are weighted by perceptual salience
[35]. Only the most salient points5 are used to
identify local parts of a 3D shape. Second, each
segmented local part is evaluated for its perceptual
salience when compared to the overall shape. Third,
each most salient part is clustered and represented
by one prototype to be used in Step 2.

. Step 2. A multisource geodesic distance field on
surface is established for all prototypes. The Reeb
graph of the distance field provides the desired,

1512 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 8, AUGUST 2011

Fig. 20. The process of tree-skeleton extraction. (a) A branched 3D
model. (b) Mesh saliency computation [35]: the most salient areas are
circled in red. (c) Candidate critical point determination by clustering:
saddle points (green) and extreme points (yellow). (d) Critical point
filtering by protrusion part saliency [55]. (e) Geodesic distance field with
extreme points: Voronoi diagram on surface (brown curves) and iso-
contours (black curves). (f) Perceptual salient skeleton extracted from
iso-contours.

Fig. 19. Geodesic remesh of a tooth model. The first row shows two
views of uniform samplings (red points) on an original mesh. The second
row shows the remesh with the uniform samples.

3. To robustly handle the degenerate cases arisen in numerical
computation of our constructive algorithms, we use the toolkit proposed
in [39], which classifies and handles degeneracies in two types:
degeneracies on geometric intersection and degeneracies on geodesic
discontinuities.

4. We emphasize that Kovacs et al.’s work [32] is mainly for 2D dynamic
shape, and the related studies on 3D perception remain to be done.

5. We use the standard deviation at top scale � ¼ 2" in the Gaussian filter
in [35], where " is 0.3 percent of the diagonal length of bounding box of the
model.



perceptually salient tree skeleton. The Reeb graph
can be efficiently constructed by tracing the changes
in the number of closed curves in each iso-contour.

Step 2, using the iso-contour construction algorithm
proposed in this paper, is illustrated in Fig. 21. Our obtained
1D tree skeleton is similar to the medial scaffold in [37] and
the skeletal curves in [63]. While the methods in [37], [63]
extract skeletons from the general 3D point cloud, our
proposed method is concentrated on triangulated 2-mani-
foldsM and the obtained skeletons are perceptually simple.

Given the 1D tree skeletons, we use the graph matching
method in [6] to measure the similarity between the 3D
objects. We choose the method in [6] since it does not
consider the topological structure of skeleton trees and is
suitable in our application.6 The skeletons of six articulated
objects, two dolphins, two cats, and two humans with
different poses, are extracted (Fig. 21) and are used for
shape similarity measures (Table 3). From the similarity
values, the threshold 0.8 well classifies the objects into the
three correct classes.

To test our approach in large databases, we use the
McGill 3D Shape Benchmark [43]. One hundred ninety
models are selected and categorized into 19 classes, each of
which contains an equal number of models. Five represen-
tative matching methods are performed and compared with
our approach—extended Gaussian images [25], spin images
[26], D2 shape distribution [18], bending invariant signature
[14], and geometric moment invariants [68]. Two perfor-
mance measures in [18] are used in our test; given an

inquiry model in class C and a number K of top matches,
precision is the ratio of the top K matches that are members
of class C and recall is the ratio of models in class C returned
within the top K matches. The curves of precision versus
recall (averaged over all models in the database) are plotted
in Fig. 22. Ideally, a perfect matching result corresponds to a
horizontal line at precision being 1 in the plot. Generally,
the more area enclosed under the plot of precision versus
recall, the better the matching performance is. The skeleton
extraction and matching result using our approach is
summarized in the Supplementary Material B, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2010.221. Ob-
served from Fig. 22, our approach and D2 shape distribu-
tion [18] have better performances than other methods.

To assess the noise-insensitivity, we generate a noised
version of database by disturbing each vertex along its normal
direction; the magnitude of disturbance is randomly chosen
between ð�L;LÞ with the 0 mean, and L is 0.1 times the
diagonal length of the bounding box of the model. The plots of
precision versus recall of the six approaches are shown in
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TABLE 3
The Skeleton Similarity of Six Models Shown in Fig. 21

Fig. 21. Iso-contour-based tree skeleton extraction of six models: cat1, cat2, dolphin1, dolphin2, human1, human2.

6. Visually similar skeletons may have different topological structures, as
shown in Fig. 21.



Fig. 23, from which we conclude that our Voronoi-skeleton
matching (V-SKEL), D2 shape distribution [18] and bending
invariant signature G2 [14] are robust to noise, while
geometric moment invariants GMT [68], extended Gaussian
images EGI [25], and spin images [26] are more sensitive to
noise. This can be interpreted by the fact that noises heavily
change the normals and areas of models and GMT uses
integral of area and EGIs and spin images use normals.

6.3 Point Pattern Analysis on M
The Voronoi diagrams on triangulated 2-manifolds M can

also be used to examine whether or not a pattern exists in a

set of sampling points on M. The sampling may represent

the population of a state (geography), artifacts in a site

(archaeology), subcellular localization in tissues (biology),

etc. Using the Voronoi diagram construction algorithm

proposed in this paper, the polygonal-based method in [64]

can be extended to the domain of 2-manifold surfaces M.
We use the following methods to generate different point

patterns on M:

. Random Point Sampling. An array A is generated with
the number of triangles inM, i.e.,A½i� corresponds to
the triangle ti. Each element in A stores the triangle
areas accumulated so far, i.e., A½i� ¼

Pi
j¼1 �tj, where

�tj is the area of triangle tj. A random number
generator is used to sample between 0 and A½n�. Each
generated number x corresponds to a sample point
on M, which lies in the triangle tk with A½k� 1� <
x � A½k�.

. Uniform Point Sampling. The farthest point sampling
method on M presented in Section 6.1 is used.

. Clustering Point Sampling. First, the cluster origins oi
are randomly distributed. Second, a number of points
are generated for each cluster i from a random
distribution with mean �. Third, the points in a
cluster i are distributed according to a Gaussian
function centered at oi and with standard deviation !.

Four patterns (one random, one uniform, and two cluster

distributions with different �; !) are generated in a

2-manifold model and shown in Fig. 24. We generate the

Voronoi diagrams for different point samples. For each
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Fig. 24. Four simulated point patterns on a 2-manifold model. Top: Top views of color-mapped distance field. Bottom: Voronoi diagrams of sample
points. From left to right: uniform sampling, random sampling, small cluster sampling (� ¼ 12; ! ¼ 8), and big cluster sampling (� ¼ 40; ! ¼ 20).

Fig. 22. Plots of precision versus recall of six approaches (D2 [18],
G2 [14], EGI [25], GMT [68], SPIN [26], and the Voronoi-based skeleton
match V-SKL).

Fig. 23. Plots of precision versus recall of six approaches, testing with
the noised database.



Voronoi cell V CðpiÞ, denote its area by AðiÞ and its
perimeter by LðiÞ. Three measures are defined below
(ARF and RFH are adopted from [64]) to test the pattern
in the sampling

ARF ¼ 1

n

Xn
i¼1

RF ðiÞ; RF ðiÞ ¼ 4�AðiÞ
L2ðiÞ ;

RFH ¼ 1� �RF
RFav

;

AD ¼ 1� �A
Aav

;

where �A is the area standard deviation,Aav is the mean area,
and �RF is the standard deviation ofRF ðiÞ. The performance
data of the three measures on the patterns, shown in Fig. 24,
are collected. To test the stability of the measured values, we
run 10 simulations with the four different patterns. The mean
and the standard deviation of the measured values are listed
in Tables 4 and 5, respectively. We also test the three measures
ARF , RFH, and AD in a large US geological survey (USGS)
database [62]. Ten geographic models, on each of which 10
simulations have been run with the four different patterns,
are selected from [62]. These testing models and performance
data (the mean and standard deviations of three measures)
are summarized in the Supplementary Material C, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2010.210. The
results are similar to the ones in Tables 4 and 5. From these
results, it is observed that AD is the most significant
measure to discriminate between the four patterns (ref.
Table 4) and it is also very stable with small deviation
(compared to the mean values), as observed in Table 5.

7 CONCLUSION

Analytical structures of the Voronoi diagram and practical
algorithms to compute them are often desired in diverse
pattern analysis applications. In this paper, we system-
atically study some important properties of iso-contours,
bisectors and Voronoi diagrams on triangulated 2-manifold
surfaces M. Based on these properties, a concise data
structure is established to facilitate the explicit description
of the Voronoi diagram and practical algorithms are
proposed to efficiently construct the isocontours, bisectors,
and Voronoi diagrams of a set of point sites on M.

Our proposed algorithms are based on the exact geodesic
metric on M, and thus, compared to previous work [30],
[56], [57], are insensitive to triangle shape and triangle
density in M. Experiments and three selected applications
are presented to demonstrate the effectiveness and novelty
of the Voronoi diagram on M as a basic tool in pattern
analysis. In future work, more applications of Voronoi

diagrams onM should be explored, including the study of

spatial-temporal processes of Voronoi diagrams on a time-

varying 2-manifoldMðtÞ and the locational optimization of

observation points on MðtÞ.
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