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Abstract

This work is devoted to the numerical computation of complex band structure
k = k(ω) ∈ C3 for positive ω of three dimensional isotropic dispersive or non-
dispersive photonic crystals from the perspective of structured quadratic eigen-
value problems (QEPs). Our basic strategy is to fix two degrees of freedom in
k ∈ C3 and to view the remaining one as the eigenvalue of a quadratic operator
pencil derived from Maxwell’s equations. Then Yee’s scheme is employed to dis-
cretize∇× and k× operators in this quadratic operator pencil. Distinct from the
others’ works which either ignore or directly exploit the Hamiltonian structure
of the spectrum of the resulting QEP, we reformulate this QEP into an equiv-
alent >-palindromic QEP to facilitate the use of superior structure-preserving
algorithms. Ultimately we rely on the structured Arnoldi algorithm, namely
the G>SHIRA algorithm, to compute eigenvalues of a >-skew-Hamiltonian pair
which are near or in [−2, 2], a much narrower region than the whole positive real
axis in the origin problem. Moreover, to accelerate the inner iterations of the
G>SHIRA algorithm, we propose the preconditioning technique, making most
of the eigenmatrix, which can essentially be seen as the Kronecker product of
three discrete Fourier transformation matrices, of the commutative discretized
∂x, ∂y, ∂z operators. The advantage of our method is discussed in detail and
corroborated by several numerical results.
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1. Introduction

Photonic crystals (PCs) and other metamaterials have been drawing huge
attention in last three decades due to their wide applications in optics and
engineering. They play a pivotal role in designing fascinating optical devices and
manipulating the electromagnetic waves [21]. Briefly speaking, PCs are optical
media with heterogeneous refractive indices which are repeated periodically in
real spaces. Especially, a three dimensional (3D) PC must belong to one of
the fourteen Bravais lattices with specific lattice translation vectors a1,a2 and
a3. characterized by ε and µ only. Intrinsic properties of 3D PCs, of which
only the permittivity ε and permeability µ are of our concern in this article, are
lattice-periodic functions. That is, ε and µ satisfy

ε(x + a`) = ε(x), µ(x + a`) = µ(x), ` = 1, 2, 3, x ∈ R3. (1)

Moreover, ε and µ depend only on x for the non-dispersive PC, and they addi-
tionally depend on the frequency ω for the dispersive PC.

The electromagnetic fields in PCs are governed by the following source-free
Maxwell’s equations (MEQs) in the frequency domain [21],

∇×E = ıωµH, ∇×H = −ıωεE, (2a)

∇ · (µH) = 0, ∇ · (εE) = 0, (2b)

where ı =
√
−1 and ω is the frequency. It follows from (1) and the Bloch

theorem [12] that E and H in (2) can be factorized into

E(x) = eık·xEp(x), H(x) = eık·xHp(x), (3)

where k ∈ R3 is the wave vector in the first Brillouin zone (FBZ) [12] and Ep(x)
and Hp(x) are periodic in conformity with (1), i.e.,

Ep(x + a`) = Ep(x), Hp(x + a`) = Hp(x), ` = 1, 2, 3. (4)

Plugging (3) into (2) and noticing the following vector calculus identities

e−ık·x∇× (eık·xEp) = (ık +∇)×Ep, e−ık·x∇ · (eık·xEp) = (ık +∇) ·Ep,

MEQs (2) can be recast into

(ık +∇)×Ep = ıωµHp, − (ık +∇)×Hp = ıωεEp, (5a)

(ık +∇) · (µHp) = 0, (ık +∇) · (εEp) = 0. (5b)

In the case of non-dispersive PCs, usually the wave vector k ∈ R3 is cho-
sen beforehand, and MEQs (2) are discretized into a constrained eigenvalue
problems w.r.t. ω. By solving a few smallest positive ω’s for different k, we
obtain the dispersion curves ω = ω(k) or the standard band structures (SBSs).
Notably, we have recently established a fast algorithm in [6, 7] for this task.
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In the case of dispersive PCs, due to the highly nonlinear dependence of ε
or µ on ω, it is far more challenging to compute the dispersion curves ω = ω(k),
as shown in [8]. However, as evidenced by several works [3, 4, 13], for dispersive
PCs, it is much more convenient to adopt an opposite perspective that the wave
vector k is viewed as a function k = k(ω) of the real frequency ω. In other words,
in this case, it is much easier to compute the complex band structure (CBS)
k = k(ω), i.e., to solve k ∈ C3 such that ω(k) is equal to a positive constant,
as well as the associated field quantities which satisfy MEQs (5). Moreover,
among applications mentioned in [4], the CBS is fundamentally important for
computing the density of states of PCs, which is similar to the case in solid-state
physics and mesoscopic electron transport [10]. In practice, to further simplify
the computation, we may fix the direction vector k̃ = [k̃1, k̃2, k̃3]> ∈ R3 with
k̃ · k̃ = 1 and let k = λk̃ in (5) [3, 4, 13]. Then, by assuming µ(x) = µ0 = 1
and eliminating Hp, (5) can be reduced into the following constrained quadratic
operator pencil (QOP) w.r.t. λ [1],

(ıλk̃+∇)× (ıλk̃+∇)×Ep = ω2εEp, with (ıλk̃+∇) · (εEp) = 0, ω ∈ R+. (6)

The aim of this article is to develop an efficient method to solve (6) for
the 3D dispersive PC and non-dispersive PC. For simplicity, hereafter, we only
consider isotropic ε, i.e., ε = ε(x, ω) : R3 × R→ C or ε = ε(x) : R3 → C.

Plenty of works have been published during the last three decades on CBS
computations, mainly for 2D PCs, using several methods to discretize (6), such
as variants of the plane-wave expansion method [5, 13], diagonalizing the transfer
matrix [20], and the prevalent finite element method (FEM), etc. In [2, 3, 4],
using FEM, the QOP in (6) is discretized into a QEP(

τ2M + τG+K
)
e = 0, (7)

w.r.t. τ = ıλ, whose coefficient matrices are large sparse. As mentioned in [3],
if ε ∈ R, then the coefficient matrices of (7) are real, and they satisfy

M> = M, G> = −G, K> = K, (8)

where M> denotes the transpose of M . A QEP (7) with the special structure
specified in (8) is called a gyroscopic QEP (GQEP). It is known that if τ is an
eigenvalue of the GQEP with real coefficients, then so are −τ and their complex
conjugates, ±τ̄ , which is the Hamiltonian structure of the spectrum of a GQEP.

In [2, 4], the GQEP (7) is arbitrarily linearized into a generalized eigenvalue
problem (GEP), to which some general purpose sparse eigensolver is applied. It
is pointed out in [17] that an arbitray linearization that disrespects the Hamilto-
nian structure in finite arithmetic will lose pairing of the computed eigenvalues
and may cause generally backward stable methods to become unstable. In con-
trast, the authors of [3] are aware of the Hamiltonian structure of the spectrum
of the GQEP (7) for real ε, and literally adopt the structure-preserving approach
developed in [17] to solve eigenvalues of the GQEP (7) near or on the imaginary
axis but away from the origin. There, the skew-Hamiltonian isotropic implicitly
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restarted Arnoldi (SHIRA) algorithm is the workhorse. However, we find that
if those eigenvalues the GQEP (7) are desired, it is hard to choose the suitable
positive shift needed in the SHIRA algorithm. Besides, the price of extraction
of the associated eigenvectors, which are often desired, is high. In addition, it is
unclear how to address the problem stemmed from complex ε using the SHIRA
algorithm. One main motivation of our present work is to present a superior
structure-preserving algorithm that are free from these drawbacks.

Besides, in [1, 6, 7], the merits of using Yee’s scheme (YS) [22], which is
a special finite difference (FD) scheme, to discretize MEQs (2), especially in
3D cases, have been emphasized. Notably, with YS, the discretized Gauss’
and Stokes’ laws hold exactly, and the fast Fourier transformation (FFT) can
come into play in accelerating SBS computations of 3D non-dispersive PCs. In
contrast, if FEM with commonly used basis functions is employed for such tasks,
there is hardly any arena for popular fast algorithms. From this perspective, YS
is much more attractive. Thus, it is another motivation of this work to develop
a fast algorithm with YS for computing CBSs of 3D PCs.

In brief, contributions made in this work are as follows.

• Using YS to discretize (6) yields a large sparse GQEP (7), whose coeffi-
cient matrices M and G are always real while K is not real if ε is not real.
Consequently, the spectrum of the resulting GQEP always has the Hamil-
tonian structure no matter whether ε is real or complex. Moreover, the
resulting discretized divergence-free condition in (6) holds automatically.

• The GQEP is mapped to a >-parlindromic QEP (>-PQEP) (ν2A>−νQ+
A)e = 0 with Q>= Q, under the Cayley transformation [10]. Accordingly,
the target eigenvalues of the GQEP which are close to the imaginary
axis are transformed into eigenvalues of the >-PQEP which are near the
unit circle. It is much easier to determine the shift when computing the
target eigenvalues of the latter. Via the >-symplectic linearization and
the (S + S−1)-transform [14], the >-PQEP is transformed into a >-skew-
Hamiltonian pencil, to which a structure-preserving Arnoldi algorithm
called G>SHIRA algorithm is applied to practically compute the partial
spectrum close to the given shift. Moreover, the associated eigenvectors
of (7) can be cheaply computed from those of the >-skew-Hamiltonian
pencil that the G>SHIRA algorithm also provides.

• In each iteration of the G>SHIRA algorithm, we need to sequentially solve
two linear systems efficiently. To this end, we propose the preconditioning
techniques based on explicit eigen-decompositions of three components of
discretized k̃× and ∇× operators in (6), respectively. More importantly,
we show that the preconditioners can be realized using FFT-accelerated
matrix-vector multiplications [6, 8, 11]. As manifested by numerical re-
sults, the efficiency of our preconditioners turns out to be almost indepen-
dent of the mesh size of the problem.

This article is outlined as follows. In Sec. 2, discretization of (6) using YS
incorporated with (4) is presented. In Sec. 3, our unique way to solve the GQEP
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in a fully structure-preserving manner is detailed. In Sec. 4, the preconditioner
to speed up the convergence of inner iterations of the G>SHIRA algorithm is
put forward. In Sec. 5, we present some numerical examples to demonstrate the
efficiency and accuracy of our method, including the preconditioner. In Sec. 6
we conclude this work and discuss potential generalizations of our method.

We close this section by introducing some terminologies and notations. A,A>

and A∗ denote the complex conjugate, the transpose and the conjugate trans-
pose of A, respectively. Im denotes the identity matrix of dimension m ∈ N.
T := {z ∈ C : ‖z‖ = 1} refers to the unit circle with ‖ · ‖ being the Euclidean
norm. σ(A,B) denotes the spectrum of the matrix pair (A,B). = denotes the
imaginary part. R+ := {x ∈ R : x > 0}. A ⊕ B and A ⊗ B denote the direct
sum and the Kronecker product of matrices A and B, respectively. Below is the

ABC of structured eigenvalue problems. Denote J2m :=

[
0 Im
−Im 0

]
.

(i) H ∈ C2m×2m is called a>-skew-Hamiltonian matrix if (HJ2m)> = −HJ2m.
K − λN ∈ C2m×2m is called a >-skew-Hamiltonian pencil if both K and
N are >-skew-Hamiltonian.

(ii) U ∈ C2m×2m is called a >-symplectic matrix if U>J2mU = J2m;M−λL ∈
C2m×2m is called a >-symplectic pencil if MJ2mM> = LJ2mL>.

(iii) X,Y ∈ C2m×l, 1 ≤ l ≤ n, are called >-bi-isotropic if X>J2mY = 0.

Hereinafter, for convenience, we will drop the subscripts of notations Im, J2m

and Ep whenever no confusion arises. We will frequently employ the MATLAB
programming language in this work without prior notification. The vectorization
of an array X of any shape is denoted by vec(X), i.e., vec(X) = X(:). δji is the

Kronecker delta function, i.e., δji := (i==j).

2. Discretization of (6) with YS

Recently in [7], we have presented the discretization of MEQs (2) using YS
and developed some fast algorithms of SBS computations for 3D isotropic non-
dispersive PCs with all fourteen Bravais lattices. There, the Bloch condition is
imposed on E(x) and H(x) in (3), i.e., E(x+a`) = exp(ık·a`)E(x), H(x+a`) =
exp(ık · a`)H(x), ` = 1, 2, 3. We notice that by simply setting k = 0 in (3),
the discretized ∇× operators obtained in [7] can be literally employed as the
discretization of ∇× operators appearing in (5) and (6). From [7] we know
that the contents of the coefficient matrices in (7) are specific to the underlying
Bravais lattice, however, it is not the objective of this work to list all possible
results. Throughout this work we decide to take the body centered cubic (BCC)
lattice for example to illuminate the discretization of (6). For comparison, we
also put some formulas for the simple cubic lattice in AppendixA. Other Bravais
lattices can be processed likewise.

Lattice translation vectors a1,a2 and a3 of the BCC lattice [19] (also see

Fig. 2(a)) are [a1,a2,a3] = ã
2

−1 1 1
1 −1 1
1 1 −1

, where ã is the lattice constant.
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In order to apply YS, usually orthogonal meshes are needed. Following [7], an

appropriate set of orthogonal basis {a,b, c} of {a`}3`=1 should be determined.
Actually, in this case, a = a1, b = a2 + a1/3, and c = a3 + a1/2 + a2/2, with
a := ‖a‖ =

√
3ã/2, b := ‖b‖ =

√
6ã/3 and c := ‖c‖ =

√
2ã/2.

Naturally, we identify a/a,b/b, c/c as unit vectors of x-,y-,z-axes of an or-
thogonal coordinate system, and dub the cuboid cell Ωc = [0, a] × [0, b] × [0, c]
as the computational cell, where YS can be conveniently applied. The com-
putational cell Ωc is uniformly partitioned into small cuboid cells whose edge
lengths along x-, y- and z-directions are δx = a/n1, δy = b/n2 and δz = c/n3,
respectively, with n1, n2, n3 ∈ N. For convenience, we introduce the function

x(r, s, t) := (rδx, sδy, tδz), r, s, t ∈ R,

to represent a point (rδx, sδy, tδz) in this orthogonal coordinate system. Since
only points x(r, s, t) ∈ Ωc with (r, s, t) ∈ [0, n1]× [0, n2]× [0, n3] are involved in
the simulation, we have to reformulate (4) in terms of a,b and c.

Specifically, with r ∈ [0, n1), s ∈ [0, n2), t ∈ [0, n3), we have

E(x(n1, s, t)) = E(x(0, s, t) + a) = E(x(0, s, t)), (9a)

E(x(r, n2, t)) = E(x(r, 0, t) + b) = E(x (r̃2, 0, t)), (9b)

E(x(r, s, n3)) = E(x(r, s, 0) + c) = E(x (r̃3, s̃3, 0)), (9c)

where in (9b) r̃2 = r + 2n1/3 if r < n1/3, while r̃2 = r − n1/3 if r ≥ n1/3;
in (9c) r̃3 = r + n1/2 if r < n1/2, while r̃2 = r − n1/2 if r ≥ n1/2; in (9c)
s̃3 = s+ n2/2 if s < n2/2, while s̃3 = s− n2/2 if s ≥ n2/2. In passing, we can
always make n1/3, n1/2 and n2/2 integers. (9a)–(9c) constitute the periodic
boundary condition of our problem in Ωc, which H(x) also satisfies.

In YS, the components E are sampled at midpoints of all edges, and the
components of H are sampled at all face centers. To conveniently index all
these sampling points, we introduce three index sets

N` := {0, 1, . . . , n` − 1}, ` = 1, 2, 3, (10)

and the shorthand notations î := i+1/2, ĵ := j+1/2, k̂ := k+1/2. For example,
{x(̂i, j, k) : i ∈ N1, j ∈ N2, k ∈ N3}—the set of coordinates of midpoints of all
edges along x-direction, is naturally viewed as a three-way array stored in the
column-major order, i.e., the index i varies fastest and k varies slowest. So is the
set of corresponding samples of electric field {E1(x(̂i, j, k)) : i ∈ N1, j ∈ N2, k ∈
N3}. The set of samples of E2, E3, H1, H2 and H3 are similarly treated. Then,
we can compactly define the following six column vectors of length n := n1n2n3,

el = vec(El(x(0 :n1 − 1, 0:n2 − 1, 0:n3 − 1) + (δ1
l , δ

2
l , δ

3
l )/2)), l = 1, 2, 3, (11)

hl = vec(Hl(x(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, 0̂ : n̂3 − 1)− (δ1
l , δ

2
l , δ

3
l )/2)), l = 1, 2, 3, (12)

using the Kronecker delta δll′ .
Besides the curl operator ∇×, whose discretization has been detailed in [7],

here in (5) and (6) we have to consider the discretization of the cross-product
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operator k̃× as well. The resemblance between ∇ × E and k̃ × E suggests
that the components of k̃×E at all face centers be approximated by the linear
interpolation between two points. For example, corresponding to

∂xE2

∣∣∣
x(̂i,ĵ,k)

≈ E2(x(i+ 1, ĵ, k))− E2(x(i, ĵ, k))

δx
, (13a)

we have the approximation

k̃1E2

∣∣∣
x(̂i,ĵ,k)

≈ k̃1
E2(x(i+ 1, ĵ, k)) + E2(x(i, ĵ, k))

2
. (13b)

Therefore, to discretize the cross-product operator k̃×, we change the subtrac-
tion in the FD formula to the summation and then replace the factor 1/δx, 1/δy
and 1/δz by k̃1/2, k̃2/2 and k̃3/2, respectively.

The periodic boundary condition (9) do cause complications in determining
the correct indices in el and hl, l = 1, 2, 3, when partial derivatives of E and H
are sampled near Ωc’s boundary surfaces. These difficulties have been system-
atically resolved in [6, 7]. So here we tersely present the discretization of (5a)
with k = λk̃, using (12) and (11), as follows:

−ıωDε,lel =

3∑
p,q=1

εlpq(−C>p )hq + ıλ

3∑
p,q=1

εlpqC̃
>
p hq, l = 1, 2, 3, (14a)

ıωhl =

3∑
p,q=1

εlpqCpeq + ıλ

3∑
p,q=1

εlpqC̃peq, l = 1, 2, 3, (14b)

where εlpq is the Levi-Civita symbol in 3D, and

Dε,l = diag(vec(ε(x(0 :n1 − 1, 0:n2 − 1, 0:n3 − 1) + (δ1
l , δ

2
l , δ

3
l )/2))), l = 1, 2, 3,

C1 = In3 ⊗ In2 ⊗ (K1 − In1)/δx, C̃1 = k̃1In3 ⊗ In2 ⊗ (K1 + In1)/2, (15a)

C2 = In3 ⊗ (K2 − In1n2)/δy, C̃2 = k̃2In3 ⊗ (K2 + In1n2)/2, (15b)

C3 = (K3 − In)/δz, C̃3 = k̃3(K3 + In)/2, (15c)

with

K1 =

[
0 In1−1

1 0

]
, K2 =

[
0 In1(n2−1)

J2 0

]
, K3 =

[
0 In1n2(n3−1)

J3 0

]
, (15d)

J2 =

[
0 I2n1/3

In1/3 0

]
, J3 =

 0 In2/2 ⊗
[

0 I2n1/3

In1/3 0

]
In2/2 ⊗

[
0 In1/3

I2n1/3 0

]
0

 .

7



Further, we define

e := [e>1 e>2 e>3 ]>, h := [h>1 h>2 h>3 ]> ∈ C3n, Dε := Dε,1 ⊕Dε,2 ⊕Dε,3,

C :=

 0 −C3 C2

C3 0 −C1

−C2 C1 0

 , and C̃ :=

 0 −C̃3 C̃2

C̃3 0 −C̃1

−C̃2 C̃1 0

 , (16)

then we can recast (14) into

(−ıλC̃ + C)>h = −ıωDεe, (ıλC̃ + C)e = ıωh. (17)

Elimination of h in (17) yields the discretization of the QOP in (6) as follows,

(−ıλC̃ + C)>(ıλC̃ + C)e = ω2Dεe, (18)

which is a QEP w.r.t. λ, for a given ω ∈ R+. Moreover, following (13) and (14),
we can easily discretize the divergence-free constraint in (6) into(

ıλ
[
C̃>1 C̃>2 C̃>3

]
−
[
C>1 C>2 C>3

])
Dεe = 0. (19)

Thus, (6) is discretized into a QEP (18) with the constraint (19). Here, analo-
gous to the SBS calculations of 3D non-dispersive PCs with YS [6, 7], we can
show that (19) holds automatically if the same e satisfies (18) with ω > 0, so
that we are merely concerned about (18).

First of all we would like to point out some basic facts.

Lemma 1. {C`, C
>
` , C̃`, C̃

>
` }3`=1 in (15) is a set of commutative matrices, and

C commutes with C̃ in (16).

The elegant proof of Lemma 1 can be found in [7], which draws on some nice
properties of unitary (block) companion matrices. Denote

P0(τ) = τ
[
C̃>1 C̃>2 C̃>3

]
+
[
C>1 C>2 C>3

]
, τ ∈ C, (20)

then from Lemma 1 one can easily verify the following identity,

P0(τ)(τC̃ + C)> = 0. (21)

Multiplying both sides of (18) by P0(−ıλ) and using (21), we immediately have

Theorem 1. The discretized divergence-free constraint in (19) holds automat-
ically for an eigenvector e of (18) with ω ∈ R+.

3. The structure-preserving algorithm for large >-PQEP

In fact, we let τ = ıλ and define

K := ω2Dε − C>C = K> ∈ C3n×3n, (22a)

G := C̃>C − C>C̃ = −G> ∈ R3n×3n, (22b)

M := C̃>C̃ = M> ∈ R3n×3n, (22c)
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then the QEP (18) proves a GQEP w.r.t. τ as follows,

Qg(τ)e := (τ2M + τG+K)e = 0. (23)

It is worth recognizing the Hamiltonian structure of the spectrum of a GQEP.

Proposition 1. The eigenvalues of a GQEP form doublet {τ,−τ}, and they
form quadruplet {τ, τ ,−τ,−τ} if the coefficient matrices are real and τ /∈ R∪ıR.

Remark 1. Even if the permittivity ε is not a real function, and more generally,
even if K,M and G in (22) are all complex matrices, the Hamiltonian structure
of the spectrum of the GQEP (23) persists.

3.1. Cayley transformation and the >-PQEP

Assuming τ 6= ±1, we can introduce the Cayley transformation

ν = ±1 + τ

1− τ
, i.e., τ =

ν ∓ 1

ν ± 1
, (24)

to achieve the bijection between a GQEP (23) and a >-PQEP. Specifically,
substitution of (24) into (23) yields a >-PQEP w.r.t. ν,

Qp(ν)e :=
1

4
(ν ± 1)2Qg

(
ν ∓ 1

ν ± 1

)
e := (ν2A> − νQ+A)e = 0, (25a)

where

A = (M −G+K)/4 ∈ C3n×3n, Q = ±(M −K)/2 = Q> ∈ C3n×3n. (25b)

Similar to Proposition 1, one should recognize the symplectic structure of
the spectrum of a >-PQEP (25a).

Proposition 2. The eigenvalues of a >-PQEP form doublet {ν, ν−1} and they
form quadruplet {ν, ν, ν−1, ν−1} if the coefficient matrices are real and ν /∈ T.

By introducing ĕ = Ae/ν, we linearize the >-PQEP (25a) into,

M
[
e
ĕ

]
= νL

[
e
ĕ

]
, (26)

where

M =

[
A 0
Q −I

]
, L =

[
0 I
A> 0

]
. (27)

It is easy to see that the matrix pair (M,L) in (27) satisfiesMJM> = LJL>,
i.e., it is a >-symplectic pair [9]. Thus, the twin eigenvalues (ν, 1/ν) of (M,L)
always come together, including (0,∞) := (0, 1/0), which exactly inherits the
symplectic property mentioned in Proposition 2.

The (S+S−1)-transform (Ms,Ls) of the matrix pair (M,L) defined as [14]

Ms :=MJL> + LJM>, Ls := LJL>,
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is further equivalent to a >-skew-Hamiltonian pair (K,N ) with

K :=MsJ> =

[
Q A−A>

A> −A Q

]
, N := LsJ> =

[
A 0
0 A>

]
. (28)

In other words, solving the GEP (26) is now reduced to solving the GEP

Ku = ηNu (29)

of a >-skew-Hamiltonian pair K and N . The relation between eigenpairs of
(M,L) and those of (K,N ) is unveiled in Theorem 2, also in [9].

Theorem 2. Let (M,L) defined in (27) and (K,N ) in (28), then

(i) η is a double eigenvalue of (K,N ) if and only if ν, 1/ν are eigenvalues of
(M,L), where ν, 1/ν are two roots of the equation η = ν + 1/ν.

(ii) If (η, [u>1 u>2 ])> is an eigenpair of (K,N ) with η = ν + ν−1 6= 2, then[
v1

v̆1

]
=

[
ν−1u1 − u2

Qv1 − νA>v1

]
,

[
v2

v̆2

]
=

[
νu1 − u2

Qv2 − ν−1A>v2

]
are the eigenvectors of (M,L) corresponding to ν and 1/ν, respectively.

Before discussing the eigensolver for the large sparse >-skew-Hamiltonian
pencil, we would like to summarize several relevant eigenvalue problems we
have encountered in this section as follows,

(i) the QEP (18) w.r.t. λ;
(ii) the GQEP (23) w.r.t. τ = ıλ;

(iii) the >-PQEP (25a) and >-symplectic GEP (26) w.r.t. ν = ±(1+τ)/(1−τ);
(iv) the >-skew-Hamiltonian GEP (29) w.r.t. η = ν + 1/ν.

They are briefly put in the following chains

λ ∈ R⇐⇒ τ ∈ ıR⇐⇒ ν ∈ T⇐⇒ η ∈ [−2, 2],

|=λ| � 1, λ /∈ R⇐⇒ 0 <
∣∣|ν| − 1

∣∣� 1⇐⇒ 0 < dist(η, [−2, 2])� 1,

where dist(η, [−2, 2]) denotes the distance between η ∈ C and the segment
[−2, 2] ⊂ R. To give the reader a perception of how the distribution of the
spectrum changes under the above mentioned spectral transformations, we just
take the QEP (18) with matrix dimension 3n = 192 for example. In Fig. 1, we
plot some λ’s, i.e., eigenvalues of this QEP, with small magnitude, and their
images under the mapping ν = −(1 + ıλ)/(1− ıλ) and η = −2(1−λ2)/(1 +λ2),
respectively. We can clearly see that in Fig. 1(c) the target eigenvalues are well
separated from the unwanted eigenvalues, compared with those in Fig. 1(a).
Moreover, in Fig. 1(b) the unwanted eigenvalues are clustered around −1, there-
fore it is better to choose the suitable shift to the right of ±1ı in order to stay
away from the singularity. When a shift is given, the G>SHIRA algorithm will
likely converge much faster than other eigensolvers that directly deal with λ.

In a word, the desired eigenvalues of the original problem (18) are trans-
formed into the eigenvalues of the resulting >-skew-Hamiltonian pencil (K,N )
in (28) which are located near or in [−2, 2]. As a consequence, in effect we can
concentrate on the interval [−2, 2] to choose the suitable shifts that are needed
in the G>SHIRA algorithm discussed below to compute eigenvalues of (K,N ).
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Figure 1: The partial distribution of (a) λ and (b) ν = ν(λ) = −(1 + ıλ)/(1 − ıλ) and (c)
η = η(λ) = −2(1 − λ2)/(1 + λ2). The desired eigenvalues are marked in red, while the
unwanted are in grey.

3.2. G>SHIRA algorithm for (K,N )

Suppose some eigenvalues of the>-symplectic pair (M,L) near ν0 are wanted,
with ν0 6∈ σ(M,L). Letting η0 = ν0 + 1/ν0 6∈ σ(K,N ), the shift-and-invert

transformation (K̂ − η̂N̂ ) of (K − ηN ) with shift η0 ∈ C is defined as

K̂ ≡ −ν0N = −ν0LJ2nL>J>2n, (30a)

N̂ ≡ −ν0 (K − η0N ) = (M− ν0L)J2n

(
M> − ν0L>

)
J>2n, (30b)

where both K̂ and N̂ are still >-skew-Hamiltonian and η̂ = 1/(η − η0). The
G>SHIRA, which is short for the generalized >-skew-Hamiltonian implicitly
restarted shift-and-invert Arnoldi, algorithm has been developed in [9] to com-

pute the outermost spectrum of (K̂, N̂ ). The G>SHIRA algorithm in Algo-
rithm 1 generates a generalized Arnoldi factorization of order m:

K̂Zm = YmHm + hm(m+ 1)ym+1Im(m, :),

N̂Zm = YmR(1 :m, 1:m),

where Ym and Zm are >-bi-isotropic and Hm is an upper Hessenberg matrix
which stores h1, · · · ,hm, and R(1 :m, 1:m) is an upper triangular matrix.

Note that the step 1 in Algorithm 1, i.e., to solve the linear system N̂zj = yj ,
is the main difficulty of this algorithm. Substituting the following decomposition

M− ν0L =

[
I ν0I
0 I

] [
Qp(ν0) 0

0 −I

] [
I 0

−Q+ ν0A
> I

]
into (30b), we see that the task of solving the linear system N̂zj = yj is in
effect reduced into sequentially solving two linear systems of halved dimension,

Qp(ν0)u1 = b1 and Qp(ν0)>u2 = b2. (31)

We conclude this section with Algorithm 2 to compute eigenpairs of the
GQEP (23) via the equivalent >-PQEP (25a). In passing, we also call ν0 in (31)
as shift, since it gives the shift η0 directly needed in the G>SHIRA algorithm.
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Algorithm 1 [9] The m-th generalized >-isotropic Arnoldi step

Input: >-skew-Hamiltonian K̂ and N̂ , upper triangular R(1 :m− 1, 1:m− 1),
orthonormal frames Zm−1(:, 1:m− 1) and Ym(:, 1:m) with Y >mJZm−1 = 0.

Output: hm(1 :m+ 1), R(1 :m,m),ym+1 and zm.

1: Solve N̂zm = ym;
2: Compute rm := Z∗m−1zm, zm = zm − Zm−1rm;

3: Reorthogonalize zm to J Y m as Step 4 does:
4: zm = zm − J Y mY

>
mJ>zm;

5: Set R(m,m) := ‖zm‖−1, zm := R(m,m)zm and
R(1 :m− 1,m) := −R(m,m)R(1 :m− 1, 1:m− 1)rm;

6: Compute ym+1 = Kzm;
7: Compute hm(1 :m) = Y ∗mym+1, ym+1 = ym+1 − Ymhm(1 :m);
8: Reorthogonalize ym+1 to J [Zm−1, zm] as Step 9 does:
9: ym+1 = ym+1 − J [Zm−1, zm][Zm−1, zm]>J>ym+1;

10: Set hm(m+ 1) := ‖ym+1‖ and ym+1 := ym+1/hm(m+ 1).

Algorithm 2 Computing eigenpairs of a GQEP via symplectic linearization

Input: Given matrices A,Q in (25a), a shift ν0 and the number of desired
eigenpairs nw ∈ N.

Output: nw desired eigenpairs with eigenvalues closest to η0 = ν0 + ν−1
0 .

1: Compute eigenpairs {(η̂m, [u>1,m u>2,m]>)}nw
m=1 of the >-skew-Hamiltonian

pair (K̂, N̂ ) using the G>SHIRA algorithm and set ηm = η̂−1
m + η0.

2: For m = 1, . . . , nw, determine νm, ν
−1
m by solving ν2− (ηm + η−1

m )ν + 1 = 0,
and form the twin eigenpairs of the >-PQEP (25a), i.e., (νm, ν

−1
m u1,m −

u2,m) and (ν−1
m , νmu1,m − u2,m).

3: For m = 1, . . . , nw, compute τm = (νm ∓ 1) / (νm ± 1) the twin eigenpairs
of the GQEP (23), i.e., (τm, ν

−1
m u1,m − u2,m) and (−τm, νmu1,m − u2,m).

4. Preconditioners for (31)

In most cases, the size of the coefficient matrices in Qp(ν0) is so large that
only the iterative linear solver [18] is affordable for (31) and generally some
preconditioning is indispensable. The following facts, which derive from Lemma
1, will give us some inspiration for the preconditioning.

Theorem 3. With C, C̃ in (16) and P0(τ) in (20), we have

(−τC̃ + C)>(τC̃ + C) = I3 ⊗ (P0(−τ)P0(τ)>)− P0(τ)>P0(−τ), (32a)

C>C = I3 ⊗ (P0(0)P0(0)>)− P0(0)>P0(0). (32b)

Based on (32b), an FFT-based preconditioner has been proposed in [8, 11]
for Qg(0) = K with the Bloch condition imposed. Now, with the striking
analogy between (32b) and (32a), it is expected that a similar preconditioner
exists for Qp(ν0), ν0 ∈ C. To show how the FFT finds application here, we need

eigen-decompositions of C̃`, C`, ` = 1, 2, 3, in (15) as the foundation.
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4.1. Eigen-decompositions of C̃`, C`, ` = 1, 2, 3

Properties of the Kronecker product allows us to reduce eigen-decompositions
of C̃`, C`, ` = 1, 2, 3 in (15) to those of K1,K2 and K3 in (15d). As mentioned
previously, by setting k = 0, the relevant results in [7] can be easily translated
into eigen-decompositions of K1,K2 and K3. So we will just present the key
results below without proof. Denote ζ(θ) := exp(ı2πθ).

Theorem 4. Let the index sets N1,N2 and N3 defined in (10). The circulant
matrix K1 in (15d) satisfies, for i ∈ N1,

K1xi = ζ

(
i

n1

)
xi, xi =

[
1, ζ

(
i

n1

)
, · · · , ζ

(
(n1 − 1)i

n1

)]>
. (33)

The matrix K2 in (15d) satisfies

K2(yji ⊗ xi) = ζ((j + i/3)/n2)(yji ⊗ xi), i ∈ N1, j ∈ N2,

where

yji =

[
1, ζ

(
j + i/3

n2

)
, · · · , ζ

(
(n2 − 1)(j + i/3)

n2

)]>
. (34)

The matrix K3 in (15d) satisfies

K3(zkji ⊗ yji ⊗ xi) = ζ((k + i/2 + j/2)/n3)(zkji ⊗ yji ⊗ xi),

where, for i ∈ N1, j ∈ N2, k ∈ N3,

zkji =

[
1, ζ

(
k + i/2 + j/2

n3

)
, · · · , ζ

(
(n3 − 1)(k + i/2 + j/2)

n3

)]>
. (35)

Theorem 5. Eigen-decompositions of C` and C̃` are

C` = TΛ`T
∗, C̃` = T Λ̃`T

∗, ` = 1, 2, 3, (36)

respectively, where TT ∗ = In and

Λ1 = (Λn1
⊗ In2

⊗ In3
− In)/δx, Λ̃1 = k̃1(Λn1

⊗ In2
⊗ In3

+ In)/2, (37a)

Λ2 = (⊕n1
i=1Λin2

⊗ In3
− In)/δy, Λ̃2 = k̃2(⊕n1

i=1Λin2
⊗ In3

+ In)/2, (37b)

Λ3 =
(
⊕n1

i=1 ⊕
n2
j=1 Λijn3

− In
)
/δz, Λ̃3 = k̃3

(
⊕n1

i=1 ⊕
n2
j=1 Λijn3

+ In
)
/2, (37c)

with

Λn1
= diag

(
ζ([0 :n1 − 1]>/n1)

)
, Λin2

= diag
(
ζ(([0 :n2 − 1]> + i/3)/n2)

)
,

Λijn3 = diag
(
ζ(([0 :n3 − 1]> + i/2 + j/2)/n3)

)
,

and for i ∈ N1, j ∈ N2, k ∈ N3, with xi,yji, zkji in (33), (34), (35), respectively,

T (1 :n, 1 + k + jn3 + in2n3) = (zkji ⊗ yji ⊗ xi)/
√
n. (38)
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4.2. Preconditioner for Qp(ν0) and Qp(ν0)>

Following [8, 11], to make full use of the eigen-decompositions in Theorem 5,
we deliberately replace Dε in (22a) by αI with α := mean(diag(Dε)), and
define the following quadratic matrix polynomial

Pg(τ) = ω2αI − (−τC̃ + C)>(τC̃ + C) = Qg(τ) + ω2(αI −Dε), (39)

which resembles Qg(τ) very much. Similar to (25a), here we let

Pp(ν0) =
1

4
(ν0 ± 1)2Pg(τ0) with τ0 =

ν0 ∓ 1

ν0 ± 1
, (40)

and regard Pp(ν0)−1 and Pp(ν0)−> as the preconditioner for the two linear
systems in (31), respectively. Since Qp(ν0)> = ν2

0Qp(1/ν0) and Pp(ν0)> =
ν2

0Pp(1/ν0) for ν0 6= 0, below we only discuss how to solve the linear system
Pp(ν0)v = d when an iterative solver is applied to (31).

Theorem 6. With Λ`, Λ̃`, ` = 1, 2, 3 defined in (37a)–(37c) and T in (38) and
P0(τ) in (20), the linear system

Pp(ν0)v = d (41)

can be transformed into(
(ν0 ± 1)2ω2αI ∓ ν0I3 ⊗ (P0Λ(ν−1

0 )P0Λ(ν̄0)∗)
)
ṽ

= 4
(
I ∓ ν0(ν0 ± 1)−2ω−2α−1P0Λ(ν̄0)∗P0Λ(ν−1

0 )
)

(I3 ⊗ T )
∗
d, (42)

where ṽ = (I3 ⊗ T )
∗
v and

P0Λ(ν) := [(ν∓1)Λ̃1+(ν±1)Λ1 (ν∓1)Λ̃2+(ν±1)Λ2 (ν∓1)Λ̃3+(ν±1)Λ3]. (43)

Proof. With (32a), (39) and (40), it holds that

Pp(ν0) =
1

4
(ν0 ± 1)2

[
ω2αI − I3⊗(P0(−τ0)P0(τ0)>) + P0(τ0)>P0(−τ0)

]
,

which implies that the linear system (41) is equivalent to

(ν0±1)2
(
ω2αI−I3⊗(P0(−τ0)P0(τ0)>)

)
v=4d−(ν0±1)2P0(τ0)>P0(−τ0)v. (44)

Multiplying both sides of (41) by 4P0(τ0)>P0(−τ0) and using (21), we have

(ν0±1)2ω2αP0(τ0)>P0(−τ0)v = 4P0(τ0)>P0(−τ0)d,

thus (44) becomes{
(ν0 ± 1)2ω2αI − I3 ⊗

[
((ν0 ± 1)P0(−τ0))((ν0 ± 1)P0(τ0))>

]}
v

= 4
{
I − (ν0 ± 1)−2ω−2α−1((ν0 ± 1)P0(τ0))>((ν0 ± 1)P0(−τ0))

}
d. (45)
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Recalling the eigen-decompositions (36) and P0Λ(ν) in (43), we have

(ν0 ± 1)P0(−τ0) = (ν0 ± 1)P0

(
−ν0 ∓ 1

ν0 ± 1

)
= ±ν0(ν−1

0 ± 1)P0

(
ν−1

0 ∓ 1

ν−1
0 ± 1

)
= ±ν0TP0Λ(ν−1

0 )(I3 ⊗ T )∗, ν0 6= 0. (46)

On the other hand, since C̃` and C`, ` = 1, 2, 3, are real matrices, we have

((ν0 ± 1)P0(τ0))> = ((ν̄0 ± 1)P0(τ̄0))∗ = (I3 ⊗ T )P0Λ(τ̄0)T ∗. (47)

Substituting (46) and (47) into (45), it is easy to see the solution v in (45)
can be retrieved from (42).

Remark 2. Thanks to Theorem 6, multiplying a column vector by Pp(ν0)−1

and Pp(ν0)−> is essentially reduced to Tq and T ∗p, where q and p are some
intermediate vectors. Notably, Tq and T ∗p can be computed via the backward
and forward FFTs, respectively, details of which can be found in Algorithm 1
and 2 in [6], respectively. This is one remarkable benefit brought by YS. In
passing, I3 ⊗ (P0Λ(ν−1

0 )P0Λ(ν̄0)∗) in (42), after a suitable permutation of rows
and columns, becomes the direct sum of n matrices of size 3-by-3.

5. Numerical Results

5.1. Problem settings

In our numerical experiments, we only consider the 3D PC with the BCC
lattice specified in the beginning of Sec. 2. In the primitive cell of the BCC
lattice, as shown in Fig. 2(a), there are two different media, separated by the
interface {x ∈ R3 : g(x) = 1.1}, with g(x) = g(x, y, z) defined by [15]

g(x) = sin(2πx/ã) cos(2πy/ã) + sin(2πy/ã) cos(2πz/ã) + sin(2πz/ã) cos(2πx/ã),

with ã being the lattice constant. Here, ã is simply set to 1. The permittivity of
the media inside the single gyroid region {x ∈ R3 : g(x) > 1.1} is ε1(ω), while
the rest space of the primitive cell is just air. That is, in our problem,

ε(x, ω) =

{
ε1(ω), if g(x) > 1.1

ε0, otherwise
. (48)

We will separately consider a non-dispersive model [15]

ε1(ω) = 16ε0, ε0 = 1, (49a)

and a dispersive model called Drude model [4, 8, 16]

ε1(ω) =

(
1−

ω2
p

ω(ω − ıΓp)

)
ε0, ε0 = 1, (49b)
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with ωp = 9 and Γp = 0.054 [4].
With reciprocal lattice vectors {b`}3`=1 of this lattice which satisfy b` ·a`′ =

δ``′ for `, `′ = 1, 2, 3, we can define the FBZ of this lattice. Usually, for the BCC
lattice, it suffices to consider the irreducible FBZ, which, as shown in Fig. 2(b), is
the tetrahedron with four vertices Γ = [0, 0, 0]>, N = b3/2, H = (b1−b2+b3)/2
and P = (b1 + b2 + b3)/4 [19]. Furthermore, like the famous Gauss map
in differential geometry, we can map the wave vector k whose end point lies
within 4PHN to the unit sphere, resulting in a spherical 4P̃ H̃Ñ , illustrated
in Fig. 2(c), where Ñ = N/‖N‖, H̃ = H/‖H‖ and P̃ = P/‖P‖. We will take

the normal vectors of this spherical 4P̃ H̃Ñ as those k̃’s in (6).
All computations below are carried out on the Matlab R2019a platform.

Unless otherwise stated, the dimension of the QEP (18) below is set to 3×1203 =
5, 184, 000, which is larger than 106, and the stopping criterion of the G>SHIRA
algorithm is set to 10−10. Moreover, we require that Algorithm 1 be restarted
[9] every 30 iterations until all target eigenpairs converge.

(a) The primitive cell of the BCC
lattice with a gyroid region inside.

(b) The FBZ of the BCC lattice.

(c) The deformed FBZ. (d) A snapshot of the SBS.

Figure 2: (a) Illustration of the BCC lattice and the gyroid region. (b) The solid polyhedron
with black edges denote the FBZ of the BCC lattice, and green arrows denote reciprocal
lattice vectors b1, b2 and b3. (c) The region enclosed by red line denotes the corresponding
deformed irreducible FBZ. (d) Illustration of SBS of the 3D non-dispersive PC which has a
bandgap, with ε in (49a).
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5.2. The two-stage strategy to solve (31)

There are many iterative methods to solve large sparse linear systems [18],
and it is unlikely to tell in advance which is best for a particular job. Here, we
just practically compare the performance of some commonly used linear solvers
such as tfqmr, bicgstab, bicgstabl and gmres, with and without the pre-
conditioner (40), when solving (31) to the tolerance 10−12 for the dispersive
model (49b) with ω = 0.4π, ν0 = exp(ı0.1π). As shown in Fig. 3, the precon-
ditioner (40) is indispensable, comparing the behavior of bicgstabl with the
preconditioner (40) and that without the preconditioner.

From Fig. 3, we find that tfqmr, bicgstab and bicgstabl, aided with the
preconditioner (40), are nearly equally efficient. They can make the residual of
the linear systems (31) drop to a plateau at almost the same speed, except that
tfqmr suffers from the stagnation more frequently during the iterative process.
Unfortunately, none of them is eventually able to maintain the desired residual
norm as the iteration continues. By contrast, it takes more iterations to reach
the target tolerance if gmres aided with the preconditioner (40) is utilized, but
no oscillating residual norm is observed. In other words, gmres is quite stable.

These preliminary investigations suggest us combining the advantages of
bicgstabl and gmres to devise a two-stage strategy to solve (31). Specifically,
we first call bicgstabl to solve the linear systems (31), with the tolerance set
to 10−9, then we take the approximate solution from the former as the initial
vector for gmres, and take the approximate solution from gmres with a tighter
tolerance 10−12, as the final solution to (31). As witnessed in Fig. 3, bicgstabl
plus gmres is not plagued with the stagnation and especially can maintain the
desired residual norm robustly. That is to say, this strategy works quite well.

10 20 30 40 50 60 70 80 90 100
number of iterations

10-10

10-5

100

re
si

du
al

 n
or

m

bicgstabl(without precond.)
tfqmr
bicgstab

bicgstabl
gmres
bicgstabl(1e-9) + gmres

Figure 3: The convergence behavior of some iterative solvers when solving (31).
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5.3. The CBS of a 3D non-dispersive PC

To verify our method, here we compute the CBS of a 3D non-dispersive PC
whose ε is specified in (48) and (49a), with lattice parameters specified in the
beginning of Sec. 5.1. In this case, we can routinely compute its SBS, from which
the bandgap information is directly accessed. Furthermore, for the BCC lattice,
it suffices to consider the irreducible FBZ illustrated in Fig. 2(b) to compute the
SBS. Recall that, by saying that [ω1, ω2] ⊂ R+ is a bandgap of a PC, we mean
for any k ∈ R3 no ω ∈ [ω1, ω2] satisfies (2) or (5). As is shown in Fig. 2(d), the
SBS analysis of this 3D PC clearly indicates the existence of the bandgap.

It is anticipated that by solving eigenvalues τ which are closest to or on the
imaginary axis of the GQEP (23) for ω outside the bandgap, we can obtain at
least one −ıτ k̃ with τ ∈ ıR that coincides with the k used in the SBS calculation
to produce the same ω. This partially explains why we only consider k̃’s within
the spherical 4P̃ H̃Ñ . In return, via computing the CBS of this 3D PC we
can obtain the same bandgap, because the GQEP (23) has no purely imaginary
eigenvalues for ω within the bandgap.

Specifically, for this model, we first set k̃ to P̃ and generate 112 samples of
ω’s that are evenly distributed in [0.6π, 1.3π]. For each given ω, we compute
6 eigenvalues {νi}6i=1 nearest or on T of the >-PQEP (25a) with =νi ≥ 0.
After transforming {νi}6i=1 back to eigenvalues {λi}12

i=1 of the QEP (18), which
are shown in Fig. 4, it is estimated that no ω ∈ [0.838π, 1.3π] correspond to a
k = λk̃ ∈ R3. To obtain more accurate bounds of bandgaps of this model, then
we sample more k̃’s within the spherical 4P̃ H̃Ñ . For each k̃ and ω mentioned
above, we similarly compute 6 eigenvalues {νi}6i=1 of (25a) nearest or on T with
=νi ≥ 0, and transform them back to {λi}12

i=1 of (18). To provide a synthetic
vision of all data prepared for this model, we only choose two =λ’s whose moduli
are the minimal among the imaginary part of {λi}12

i=1 computed for each k̃ and
ω, and show a 3D plot of the surface of =λ versus k̃ and ω in Fig. 5(a). Owing
to the real ε, there are two surfaces in Fig. 5(a) which are symmetric about a
plane =λ = 0. More importantly, it is completely hollow between these two
surfaces, which is the signature of the bandgap.

Furthermore, the vertical view of Fig. 5(a) is shown in Fig. 5(b). Here we
regard an eigenvalue λ as a real number if |=λ| ≤ 10−6. Then we can draw two
red lines attached to the ω-axis which denote the lower and upper bound of the
bandgap inferred from the CBS computations. As expected, the bandgap shown
in Fig. 5(b) is in good agreement with that from the SBS analysis in Fig. 2(d).

5.4. The efficiency of the preconditioner (40)

In each iteration of the G>SHIRA algorithm, we adopt the two-stage strat-
egy mentioned in Sec. 5.2, i.e., bicgstabl followed up with gmres and both
armed with the preconditioner (40), to solve two linear systems in (31). Here,
we use the total iteration number (TIN) of these two preconditioned solvers
to characterize the efficiency of the preconditioner (40). We test our precon-
ditioner separately on the non-dispersive and dispersive model, with various
matrix dimensions 3n and shifts ν0 = exp(ı2πθ) ∈ T, where θ ∈ (0, 1).
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Figure 4: The (a) imaginary part and (b) real part of {λi}12i=1 which are closest to λ0 = 1 for

ω ∈ [0.7π, 1.3π], given k̃ = P̃ .

(a) Surfaces of =λ vs. k̃ and ω. (b) The estimate of bounds of the bandgap.

Figure 5: The bandgap estimated from CBS computations.

We first discuss the results in Fig. 6(a) and Fig. 6(b) of the dispersive model
(49b). In Fig. 6(a), we set ω = 0.2π in (18) and (49b), and the dimension of the
linear system is 3n = 3n3

1 with n1 = 30 : 10 : 120, which ranges from 81, 000 to
5, 184, 000. We can see that when θ is away from 0 and 1, the TIN for solving
(31) falls between 40 and 65, which shows little variance compared with the
matrix dimension. In other words, the TIN is almost independent of the matrix
dimension and the shift ν0. Amazingly, even the size of the linear system is of
the order of magnitude of five million, we can still reach the tolerance of 10−12

with TIN no more than 65. On the other hand, when θ is very near 1, which is
not shown in Fig. 6(a), the TIN is supposed to increase a lot, since the >-PQEP
(25a) and the linear systems (31) become singular when θ = 1 exactly.

In Fig. 6(b), we set the matrix dimension to 5, 184, 000 and examine the
performance of our preconditioned iterative solver applied to (31) for different
ω ∈ [0.2π, 0.6π] as well as θ ∈ (0, 1). As shown in Fig. 6(b), we can see that the
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Figure 6: TIN of solving (31) with tolerance 10−12 for (a)-(b) the dispersive model and (c)
the non-dispersive model.

TIN ranges from 50 to 110, which certainly depends on ω but is less sensitive
to θ. In other words, without more information of the underlying model, there
is not much sense to choose a particular shift ν0 as long as θ is not near 0 or 1.
To sum up, the TINs shown in Fig. 6(a) and Fig. 6(b) for solving linear systems
(31) are remarkably small in view of the dimension being as large as 5.2 million,
which implies that the preconditioner (40) is quite effective for the dispersive
model for any shift ν0 away from 1 and various ω of interest.

Next, we discuss the results of the non-dispersive model (49a). In Fig. 6(c),
similarly, the matrix dimension being set to 5, 184, 000, we examine how the
TIN for (31) changes with ω ∈ [0.6π, 1.4π] for various θ. We can see that on the
whole the TIN shown in Fig. 6(c) increases from 30 to 250 as ω increases. This
is because in this case, the larger ω is, the greater disparity between Pp(µ0)
and Qp(µ0) is. Hence, the efficiency of the preconditioner (40) is negatively
correlated with ω, which agrees with the trend of curves in Fig. 6(c). Anyhow,
all the TINs are impressively small compared with the matrix dimension, which
indicates that the preconditioner (40) is also very effective for the non-dispersive
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k P (3P+H)/4 (P+H)/2 (P+3H)/4 H (3H+N)/4
ANR 3.7 2.4 2.5 2.8 3.5 2.5

k (H+N)/2 (H+3N)/4 (N+P )/2 (3N+P )/4 N (N+3P )/4
ANR 2.4 2.8 2 2.8 2.3 2

Table 1: The average number of restarts (ANR) of G>SHIRA for the non-dispersive model.

model for any shift ν0 away from 1 and various ω of interest.

5.5. The efficiency of the G>SHIRA algorithm

In Sec. 5.3, to compute the 3D non-dispersive PC, the G>SHIRA algorithm
is the workhorse, and the shift is always set to η0 = ν0 + 1/ν0 = 1ı+ 1/(1ı) = 0.
Here we report its performance. Since Algorithm 1 is required be restarted
every 30 iterations, the most straighforward characterization of the efficiency of
the G>SHIRA algorithm is the number of restarts. Recall that to obtain the
surfaces in Fig. 5(a) we sample 112 different ω’s in [0.6π, 1.3π] for a given k̃. For
each k̃, we average the corresponding 112 numbers of restarts of the G>SHIRA
algorithm and show the results in Table. 1, where k instead of k̃ = k/‖k‖ is
provided. Clearly, the average number of restarts is no more than 4 for each k̃.

In addition, for the dispersive model (49b), we have also carried out several
illustrative calculations. Specifically, we set ω = 0.2π in (49b), and only calcu-
late two eigenvalues of the >-PQEP (25a) nearest to the shift ν0 = exp(ı2πθ)
with θ = 0.1, 0.2, 0.3 and 0.4, respectively, as well as the corresponding eignvec-
tors. We find that the number of restarts of the G>SHIRA algorithm is just 3
for these shifts ν0 to fully resolve the desired eigenvalues ±(0.0542 + ı0.1111)
and ±(0.0536− ı0.1107) of the >-PQEP (25a).

In summary, all the numbers of restarts for both the non-dispersive and the
dispersive models are tiny, considering the size of the pair (K,N ), which means
the G>SHIRA algorithm is highly efficient for our problem.

6. Conclusion

In this work, in conjunction of YS to discretize the constrained QOP (6)
derived from source-free MEQs (5), we propose a fast structure-preserving al-
gorithm to compute CBSs of 3D dispersive and non-dispersive isotropic PCs,
with not only the real but also the complex permittivity ε(ω). Although in this
article only 3D PCs with the BCC lattice are expounded, our method can be
easily adapted for those with other Bravais lattices.

As is demonstrated in this work, YS indeed brings in several benefits for
CBS computation of 3D PCs, which is similar to case of SBS computations of
3D non-dispersive PCs. The validity of the discretized divergence-free condition
(19) is a natural consequence of YS. The explicit eigen-decompositions presented
in Theorem 4 and 5 of components of discretized k̃× and ∇× operators profit
from YS, too. Grounded on these eigen-decompositions, we propose the FFT-
based preconditioning techniques to significantly accelerate the convergence of
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the inner iterations of the G>SHIRA algorithm. Additionally, the efficiency of
our preconditioners is almost independent of the dimension of the linear system.

In a nutshell, our task in this work comes down to solving several eigenvalues
of the resulting GQEP (23) which are closest to or on the imaginary axis but
away from the origin. To this end, we carry forward the guiding principle used
in our recent work [10]. That is, the GQEP and >-PQEP can be mapped to
one another via the Cayley transformation (24), at the cost of addition of a few
matrices. Since we have a well-established computational framework for the >-
PQEP, which is outlined in Sec. 3, then via the Cayley transformation, we can
naturally apply this framework to the GQEP. As shown in Sec. 5.5, the number
of outer iterations of the G>SHIRA algorithm remains remarkably small for
both the non-dispersive and the dispersive model, even though the dimension
of the GQEP rises up to five million. This is attributed to a series of spectral
transformations described in Sec. 3.1 which greatly widen the distance between
the desired eigenvalues and the unwanted ones. In consequence, the efficiency
of CBS computations of 3D PCs has been greatly improved.

To sum up, our structure-preserving method looks very promising for cal-
culating CBSs of 3D PCs. Currently, generalization of our structure-preserving
method to calculating CBSs of 3D anisotropic PCs and bi-isotropic and bian-
isotropic metamaterial crystals is under consideration.
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AppendixA. Some formulas for the simple cubic lattice

Corresponding to (15a)–(15c), we have very simple expressions of C`, C̃`, ` =
1, 2, 3 for the simple cubic lattice as follows,

C1 =In3⊗In2⊗(K1(n1)−In1)/δx, C̃1 = k̃1In3⊗In2⊗(K1(n1)+In1)/2, (A.1a)

C2 =In3⊗(K1(n2)−In2)⊗In1/δy, C̃2 = k̃2In3⊗(K1(n2)+In2)⊗In1/2, (A.1b)

C3 =(K1(n3)−In3)⊗In2 ⊗ In1/δz, C̃3 = k̃3(K1(n3)+In3)⊗In2⊗In1/2, (A.1c)

where K1(m) :=

[
0 Im−1

1 0

]
m×m

, m ∈ N.

Corresponding to Theorem 5, here, we only need to consider the eigen-
decomposition of the circulant matrix K1(m), which is quite trivial.
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Theorem 7. Eigen-decompositions of C` and C̃`, ` = 1, 2, 3 in (A.1) are

C` = TΛ`T
∗, C̃` = T Λ̃`T

∗, ` = 1, 2, 3, (A.2)

respectively, where

Λ1 = (In3
⊗ In2

⊗ Λn1
− In)/δx, Λ̃1 = k̃1(In3

⊗ In2
⊗ Λn1

+ In)/2, (A.3)

Λ2 = (In3
⊗ Λn2

⊗ In1
− In)/δy, Λ̃2 = k̃2(In3

⊗ Λn2
⊗ In1

+ In)/2, (A.4)

Λ3 = (Λn3
⊗ In2

⊗ In1
− In)/δz, Λ̃3 = k̃3(Λn3

⊗ In2
⊗ In1

+ In)/2, (A.5)

Λn`
= diag

(
exp(ı2π[0 :n` − 1]>/n`)

)
, ` = 1, 2, 3, (A.6)

and T = Fn3 ⊗ Fn2 ⊗ Fn1 with Fm being the discrete Fourier transform matrix
[Fm]p,q = m−1/2 exp(ı2π(p− 1)(q − 1)/m), 1 ≤ p, q ≤ m, m ∈ N.
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