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Abstract The necessary condition established in Part I of this paper for the global maximizers of the maxi-

mization problem

max
V

{

tr(V ⊤AV )

tr(V ⊤BV )
+ tr(V ⊤CV )

}

over the Stiefel manifold {V ∈ Rm×ℓ | V ⊤V = Iℓ} (ℓ < m), naturally leads to a self-consistent-field (SCF)

iteration for computing a maximizer. In this part, we analyze the global and local convergence of the SCF

iteration, and show that the necessary condition for the global maximizers is fulfilled at any convergent point

of the sequences of approximations generated by the SCF iteration. This is one of the advantages of the SCF

iteration over optimization-based methods. Preliminary numerical tests are reported and show that the SCF

iteration is very efficient by comparing with some manifold-based optimization methods.
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1 Introduction

This is the second paper of ours in the sequel. Building upon the theoretical results in [32], here we will

focus on the numerical aspect of the maximization problem:

max
V ⊤V=Iℓ

{
tr(V ⊤AV )

tr(V ⊤BV )
+ tr(V ⊤CV )

}
, (1.1)

where tr( · ) stands for the trace of a square matrix, A,B,C ∈ Rm×m are real symmetric with B positive

definite, and integer ℓ < m.

In [32], we showed that any critical point (i.e., KKT point) V of (1.1) is a solution to a nonlinear

eigenvalue problem

E(V )V = V [V ⊤E(V )V ], (1.2)
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where φH(V ) := tr(V ⊤HV ) for H ∈ {A,B}, and

E(V ) := A
1

φB(V )
−B

φA(V )

[φB(V )]2
+ C ∈ R

m×m (1.3)

is symmetric and is dependent on V . Furthermore, if V is a global maximizer, then it must be an

orthonormal eigenbasis of E(V ) corresponding to its ℓ largest eigenvalues. This together with (1.2) lends

themselves to a self-consistent-field (SCF) iteration for computing a global maximizer. The main purpose

of this part is to analyze the convergence behavior of the SCF iteration. We will prove a global convergence

result for the special case C = ηB (η > 0) and establish locally linear and quadratic convergence for the

general case. We note that there is no guarantee that the SCF iteration will deliver a global maximizer

at convergence but a KKT point that satisfies the necessary condition for the global maximizers. Despite

so, this turns out to be an advantage of the SCF iteration over some optimization-based methods [1, 14]

which in general only converge to a KKT point that may or may not satisfy the necessary condition

for the global maximizers. Numerical tests are presented and they show that the SCF iteration is very

efficient, comparing with some manifold-based optimization methods [2,5], in both accuracy and running

time.

The rest of this paper is organized as follows. Section 2 collects some preliminaries that are needed in

the convergence analysis of the SCF iteration to be given in Section 3, where, through an example, we

argue that the global convergence in general is not necessarily given. For the special case C = ηB for

some η > 0, however, we establish a global convergence result in Section 4. For the general case, various

local convergence results are given in Section 5. Section 6 reports our numerical experiments. Finally,

we present our conclusions in Section 7.

Notation. We will follow the notation as specified at the end of Section 1 in [32]. In particular,

f(V ) :=
tr(V ⊤AV )

tr(V ⊤BV )
+ tr(V ⊤CV ). (1.4)

For a matrix Z, ‖Z‖2, ‖Z‖F, and ‖Z‖ui are the spectral norm, the Frobenius norm, and a general unitarily

invariant norm, respectively.

2 Preliminaries

2.1 Angles between subspaces

Consider two subspaces X and Y of Rm and suppose

k := dim(X) 6 dim(Y) =: ℓ. (2.1)

Let X ∈ Rm×k and Y ∈ Rm×ℓ be orthonormal basis matrices of X and Y, respectively, i.e.,

X⊤X = Ik, X = R(X), and Y ⊤Y = Iℓ, Y = R(Y ),

and denote by σj for 1 6 j 6 k in descending order, i.e., σ1 > · · · > σk, the singular values of Y ⊤X . The

k canonical angles θj(X,Y) from X to Y 1) are defined by

0 6 θj(X,Y) := arccosσj 6
π

2
for 1 6 j 6 k. (2.2)

They are in ascending order, i.e.,

θ1(X,Y) 6 · · · 6 θk(X,Y).

Set

Θ(X,Y) = diag(θ1(X,Y), . . . , θk(X,Y)). (2.3)

1) If k = ℓ, we may say that these angles are between X and Y.
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It can be seen that angles so defined are independent of the orthonormal basis matrices X and Y which

are not unique. A different way to define these angles is through orthogonal projections onto X and

Y [24].

When k = 1, i.e., X is a vector, there is only one canonical angle from X to Y and so we will simply

write θ(X,Y).

In what follows, we sometimes place a vector or matrix in one or both arguments of θj( · , · ), θ( · , · ),
and Θ( · , · ) with the understanding that it is about the subspace spanned by the vector or the columns

of the matrix argument.

‖ sinΘ(X,Y)‖2 defines a distance metric between X and Y. It can be proved that [20]

‖ sinΘ(X,Y)‖2 = sin θk(X,Y) = ‖X⊤Y⊥‖2,

where Y⊥ is an orthonormal basis matrix of the orthogonal complement of Y.

2.2 Unitarily invariant norm

A matrix norm ‖ · ‖ui is called a unitarily invariant norm on Cm×n (the set of m× n complex matrices)

if it is a matrix norm and has the following two properties:

1. ‖XBY ‖ui = ‖B‖ui for all unitary matrices X and Y of apt sizes and B ∈ Cm×n.

2. ‖B‖ui = ‖B‖2, the spectral norm of B, if rank(B) = 1.

Two commonly used unitarily invariant norms are

the spectral norm : ‖B‖2 = max
j

σj ,

the Frobenius norm : ‖B‖F =

√∑

j

σ2
j ,

where σ1, σ2, . . . , σmin{m,n} are the singular values of B. The trace norm ‖B‖tr =
∑

j σj is a unitarily

invariant norm, too.

In this article, for convenience, any ‖ · ‖ui we use is generic to matrix sizes in the sense that it applies

to matrices of all sizes. Examples include the spectral norm ‖ · ‖2, the Frobenius norm ‖ · ‖F, and the

trace norm. Two important properties of unitarily invariant norms are

‖X‖2 6 ‖X‖ui, ‖XY Z‖ui 6 ‖X‖2 · ‖Y ‖ui · ‖Z‖2 (2.4)

for any matrices X , Y , and Z of compatible sizes. By [7, p.176],

| tr(X)| 6 ‖X‖tr 6 n‖X‖2 for X ∈ C
n×n. (2.5)

Lemma 2.1 (See [3]). Let H and M be two Hermitian matrices, and let S be a matrix of a compatible

size as determined by the Sylvester equation HY − YM = S. If either eig(H) is in a closed interval that

contains no eigenvalue of M or vice versa, then the equation has a unique solution Y , and moreover

‖Y ‖ui 6 1
τ
‖S‖ui, where τ = min |µ− ω| over all µ ∈ eig(M) and ω ∈ eig(H).

3 Self-consistent-field iteration

Theorem 4.1 in [32], on one hand, sheds lights on the optimization problem (1.1) by connecting it to a

special nonlinear extreme eigenvalue problem

E(V )V = VMV , eig(MV ) = {λi(E(V )), i = 1, 2, . . . , ℓ}, (3.1)

where MV = V ⊤E(V )V. On the other hand, it naturally lends itself to Algorithm 3.1, a self-consistent-

field (SCF) iterative method for solving (1.1). Several remarks are in order for the algorithm.



1552 Zhang L H et al. Sci China Math July 2015 Vol. 58 No. 7

Algorithm 3.1. A self-consistent-field iteration

Given V0 ∈ Om×ℓ and a tolerance tol, this algorithm computes an approximate maximizer for the

optimization problem (1.1).

1: for k = 0, 1, . . . do

2: compute an orthonormal eigenbasis Vk+1 of E(Vk) associated with its ℓ largest eigenvalues;

3: if rk := ‖E(Vk+1)Vk+1 − Vk+1MVk+1
‖2 6 tol then

4: BREAK;

5: end if

6: end for

7: return Vk+1 as an approximate maximizer.

1. The SCF iteration is currently one of the most widely used algorithms for solving the Kohn-Sham

equations in electronic structure calculations (see e.g., [11, 18, 21, 22, 27, 29]). Recent study on numerical

algorithms for electronic structure calculations and the convergence of the SCF iteration for solving the

Kohn-Sham equations can be found in, e.g., [10, 25, 36]. In dimension reduction and feature extraction,

the effective algorithm discussed in [13,23,33,34] is also the SCF iteration for the trace quotient (or trace

ratio) optimization problem.

2. The quantity rk defined at Line 3 is half the norm of the gradient at Vk+1 of

f|Om×ℓ(V ) : Om×ℓ → R

and serves as the residual for the approximate Vk+1 of the nonlinear eigenvalue problem (3.1).

3. If the sequence {Vk} converges to V̄ , then not only V̄ is a KKT point of (1.1), but also satisfies the

necessary condition in [32, Theorem 4.1] for a global maximizer. This is one of the major advantages of

the SCF iteration over optimization-based methods in [1, 5, 14] which primarily concern the monotonic

(or non-monotonic) change of the objective value and converge to a KKT point that may or may not

satisfy the necessary condition in [32, Theorem 4.1]. Because of this, conceivably the SCF iteration is

more likely to achieve a global maximizer than some optimization-based methods.

4. The major computational cost of Algorithm 3.1 lies at Line 2, where a dominant orthonormal

eigenbasis of m × ℓ matrix E(Vk) has to be computed every iteration. One may employ any state-of-

the-art eigensolver, for example, the QR algorithm [4, 6] if m is modest. But the QR algorithm requires

O(m3) flops and O(m2) storage, thus it is impractical for large m. In the latter case, certain iterative

method should be used, for example, the Lanczos method [15,16], the Jacobi-Davidson iteration [19], the

conjugate gradient type method [8], to name a few.

Originally, the SCF iteration is referred to the one for solving the Kohn-Sham equation in electronic

structure calculations [17,28]. The Kohn-Sham equation is a nonlinear eigenvalue problem in PDE which

after certain discretization becomes a nonlinear matrix eigenvalue problem whose matrix depends on the

eigenvectors to be computed, as opposed to the other type of nonlinear matrix eigenvalue problems whose

matrices depend on the eigenvalues to be computed. This distinguishing feature of dependency on the

eigenvectors is shared by the current nonlinear eigenvalue problem (3.1), making the SCF iteration a

natural method to use.

While the SCF iteration is simple to implement, its convergence in general is not well understood,

depending closely on the targeted nonlinear eigenvalue problem. For the trace ratio optimization problem

(the case C = 0) in the linear discriminant analysis (LDA) [33], it is shown that SCF globally converges

to a global maximizer regardless of the initial guess V0, and the convergence is locally quadratic under

a generic condition. However, in [27] an artificial nonlinear eigenvalue problem is constructed to show

that the SCF iteration may generate a sequence of approximate solutions that contain two convergent

subsequences alternating each other neither of which converges to the solution for the nonlinear eigenvalue

problem. For our problem (3.1), in general SCF can produce sequences with no subsequences converging

to a KKT point as the following example illustrates.
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Figure 3.1 (a) f(Vk) and (b) rk by SCF with V0 = [eee1, eee2] for Example 3.1

Example 3.1. Let m = 3, ℓ = 2 and

A =




11 5 8

5 10 9

8 9 5


 , B =




7 7 7

7 10 8

7 8 8


 and C =




15 10 9

10 7 6

9 6 6


 .

With V0 = [eee1, eee2], the sequences {f(Vk)} and {rk} generated by the SCF iteration oscillate and diverge

(see Figure 3.1). We observe that there are two convergent subsequences (see Figure 3.1) of {f(Vk)}, but
neither approaches a solution to (1.1).

There are some strategies to curb the oscillation behavior of SCF, for example, a trust-region SCF

iteration, which has shown some effectiveness in the case of the Kohn-Sham equation [18, 22, 29], but we

will not pursue this here but in our future work.

Despite that in general there isn’t much we can say about SCF’s global convergence behavior, for

certain special cases we do know more. One particular example is the case when C = 0 investigated

in [33]. In the next section, we will add another example to the list of special cases by establishing a

global convergence result for the case C = ηB (η > 0).

4 Global convergence for the case C = ηB (η > 0)

Lemma 4.1. Suppose V, V̄ ∈ Om×ℓ. Then there exists an orthogonal matrix Z ∈ Rℓ×ℓ such that

‖ sinΘ(V, V̄ )‖ui 6 ‖V Z − V̄ ‖2 6
√
2 ‖ sinΘ(V, V̄ )‖ui, (4.1)

for any unitarily invariant norm ‖ · ‖ui.
Proof. Suppose for the moment that 2ℓ 6 m. There exist orthogonal matrices Q ∈ Rm×m, Zi ∈ Rℓ×ℓ

such that [20, p. 40]

QV Z1 =




ℓ

ℓ I

ℓ 0

m−2ℓ 0


, QV̄ Z2 =




ℓ

ℓ Γ

ℓ Σ

m−2ℓ 0


,

where

Γ = diag(γ1, . . . , γℓ), γ1 > · · · > γℓ > 0,

Σ = diag(σ1, . . . , σℓ), 0 6 σ1 6 · · · 6 σℓ,
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γi = cos θi(V, V̄ ), σi = sin θi(V, V̄ ), for 1 6 i 6 ℓ.

Take Z = Z1Z
⊤
2 . The singular values of V Z − V̄ are

√
(1− cos θi)2 + sin2 θi = 2 sin

θi
2

for 1 6 i 6 ℓ,

where θi = θi(V, V̄ ). The inequalities in (4.1) are now simple consequences, upon noticing

sin θ 6 2 sin
θ

2
=

sin θ

cos θ/2
6

√
2 sin θ for 0 6 θ 6

π

2
.

The case for 2ℓ > m can be dealt with in the same way, except that we use [20, p. 41]

QV Z1 =




m−ℓ 2ℓ−m

m−ℓ I 0

2ℓ−m 0 I

m−ℓ 0 0


, QV̄ Z2 =




m−ℓ 2ℓ−m

m−ℓ Γ 0

2ℓ−m 0 I

m−ℓ Σ 0


,

where

Γ = diag(γ1, . . . , γm−ℓ), γ1 > · · · > γm−ℓ > 0,

Σ = diag(σ1, . . . , σm−ℓ), 0 6 σ1 6 · · · 6 σm−ℓ,

γi = cos θ2ℓ−m+i(V, V̄ ), σi = sin θ2ℓ−m+i(V, V̄ ), for 1 6 i 6 m− ℓ,

and θi(V, V̄ ) = 0 for 1 6 i 6 2ℓ−m.

The inequality (4.2) below can also be deduced from [9, Theorem 2.1], but since (4.2) is much simpler

to prove, a short proof is given for self-containedness.

Lemma 4.2. Let H ∈ Rm×m be a symmetric matrix. For V, V̄ ∈ Om×ℓ, we have

| tr(V̄ ⊤HV̄ )− tr(V ⊤HV )| 6 2
√
2 ‖H‖2ǫ̃ 6 2

√
2 ℓ‖H‖2ǫ, (4.2)

where

ǫ̃ = ‖ sinΘ(V, V̄ )‖tr, ǫ = ‖ sinΘ(V, V̄ )‖2. (4.3)

In particular, for the function f defined by (1.4),

lim
‖ sinΘ(V̄ ,V )‖2→0

f(V ) = f(V̄ ). (4.4)

Proof. Let Z be the one in Lemma 4.1, and ∆V = V̄ − V Z. We have

tr(V̄ ⊤HV̄ )− tr(V ⊤HV ) = tr(V̄ ⊤HV̄ )− tr(Z⊤V ⊤HV Z)

= tr(V̄ ⊤HV̄ )− tr(V̄ ⊤HV Z) + tr(V̄ ⊤HV Z)− tr(Z⊤V ⊤HV Z)

= tr(V̄ ⊤H∆V ) + tr([∆V ]⊤HV Z).

Therefore use (2.4) and (2.5) to get

| tr(V̄ ⊤HV̄ )− tr(V ⊤HV )| 6 ‖V̄ ⊤H∆V ‖tr + ‖[∆V ]⊤HV Z‖tr 6 2‖H‖2‖∆V ‖tr

which is the first inequality in (4.2). The second inequality there holds because ǫ̃ 6 ℓǫ.

Theorem 4.3. Suppose A ∈ Rm×m is symmetric and C = ηB ∈ Rm×m (η > 0) is symmetric and

positive definite. Let {Vk} be the sequence generated by Algorithm 3.1 with an arbitrarily given V0 ∈ O
m×ℓ.

Let Vk = R(Vk), the column space of Vk. Then the following statements hold.
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1. {Vk} has a convergent subsequence {Vkj
} in the sense that there is an ℓ-dimensional subspace V̄ ⊂ Rm

such that

lim
j→∞

‖ sinΘ(Vkj
, V̄)‖2 = 0. (4.5)

2. The sequence {f(Vk)} monotonically increases and converges to f(V̄ ), where V̄ is an orthonormal

basis matrix of V̄.

3. V̄ is an invariant subspace of E(V̄ ) corresponding to its ℓ largest eigenvalues. In the other word,

the orthonormal basis matrix of any limit point of {Vk} satisfies the necessary condition given in [32,

Theorem 4.1].

4. If λℓ(E(V̄ )) > λℓ+1(E(V̄ )), i.e., the dominant ℓ-dimensional eigenspace of E(V̄ ) is unique, then for

any positive integer q, we have

lim
j→∞

‖ sinΘ(Vkj±q, V̄ )‖2 = 0. (4.6)

As an interesting consequence, if max |kj+1 − kj | over all 1 6 j 6 ∞ is finite, then ‖ sinΘ(Vk, V̄ )‖2 → 0

as k → ∞.

Proof. All subspaces of dimension ℓ in Rm form a Grassmann manifold which is compact [12, p. 57]

with the metric given by ‖ sinΘ( · , · )‖2. {Vk} is a sequence on the manifold and thus has a convergent

subsequence {Vkj
} that converges to an ℓ-dimensional subspace V̄ ⊂ R

m in the sense of (4.5). This is

item 1.

Before we prove item 2, we notice that C = ηB leads to

MV = V ⊤E(V )V = V ⊤CV = ηV ⊤BV for any V ∈ Om×ℓ. (4.7)

Now we have from [32, (4.3)]

∆fk := f(Vk+1)− f(Vk) =
φB(Vk)[tr(V

⊤
k+1E(Vk)Vk+1)− ηφB(Vk)] + η[φB(Vk+1)− φB(Vk)]

2

φB(Vk+1)
. (4.8)

Because Vk+1 is an orthonormal eigenbasis of E(Vk) corresponding to its ℓ largest eigenvalues, implying

tr(V ⊤
k+1E(Vk)Vk+1) > tr(V ⊤

k E(Vk)Vk) = ηφB(Vk)

by (4.7), it follows that ∆fk > 0. Thus {f(Vk)} is nondecreasing and convergent since {|f(Vk)|} is

bounded. Since ‖ sinΘ(Vkj
, V̄ )‖2 → 0, as j → ∞, by (4.4) we conclude that z limk→∞ f(Vk)

= limj→∞ f(Vkj
) = f(V̄ ). This proves item 2.

Making use of ∆fk → 0, we conclude from (4.8)

lim
k→∞

[tr(V ⊤
k+1E(Vk)Vk+1)− ηφB(Vk)] = 0, (4.9)

lim
k→∞

[φB(Vk+1)− φB(Vk)] = 0. (4.10)

Again since ‖ sinΘ(Vkj
, V̄ )‖2 → 0 as j → ∞, by (4.4) and (4.10) we have

lim
j→∞

φB(Vkj+1) = lim
j→∞

φB(Vkj
) = φB(V̄ ), (4.11)

lim
j→∞

φA(Vkj
) = φA(V̄ ). (4.12)

Combine (4.9) with (4.11) to get

lim
j→∞

tr(V ⊤
kj+1E(Vkj

)Vkj+1) = η lim
j→∞

φB(Vkj
) = ηφB(V̄ ). (4.13)

According to the SCF iteration, we have

E(Vk)Vk+1 = Vk+1M̃k+1 with M̃k+1 = V ⊤
k+1E(Vk)Vk+1.
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Notice that

∆Ek := E(Vk)− E(V̄ ) =

(
1

φB(Vk)
− 1

φB(V̄ )

)
A+

(
φA(V̄ )

[φB(V̄ )]2
− φA(Vk)

[φB(Vk)]2

)
B.

Use (4.11) and (4.12) to see

lim
j→∞

∆Ekj
= 0. (4.14)

Therefore, by the continuity of eigenvalues with respect to matrix entries [20], we know

lim
j→∞

tr(M̃kj+1) = lim
j→∞

ℓ∑

s=1

λs(E(Vkj
)) =

ℓ∑

s=1

λs(E(V̄ )). (4.15)

Together, (4.13) and (4.15) yield

lim
j→∞

tr(M̃kj+1) =
ℓ∑

s=1

λs(E(V̄ )) = ηφB(V̄ ). (4.16)

This shows that ηφB(V̄ ) is the sum of the ℓ largest eigenvalues of E(V̄ ). Therefore by (4.7),

tr(V̄ ⊤E(V̄ )V̄ ) = ηφB(V̄ ) =

ℓ∑

s=1

λs(E(V̄ )).

So V̄ must be an orthonormal eigenbasis of E(V̄ ) corresponding to its ℓ largest eigenvalues. This proves

item 3.

We prove item 4 by induction on q. The assumption that λℓ(E(V̄ )) > λℓ+1(E(V̄ )) implies that the

eigenspace of E(V̄ ) associated with its first ℓ largest eigenvalues is unique, i.e., V̄ is unique even though

its orthonormal basis matrix V̄ is not. E(Vkj
) → E(V̄ ) as j → ∞ according to (4.14) and thus for

sufficiently large j, λℓ(E(Vkj
)) > λℓ+1(E(Vkj

)) and the eigenspace Vkj+1 of E(Vkj
) associated with its

first ℓ largest eigenvalues is unique and converges to V̄ by Davis-Kahan sin 2θ theorem [3], i.e., (4.6) holds

for q = 1. Suppose now (4.6) holds for q, and we need to show it is also true for q + 1. To see this, we

simply rename kj + q to kj and apply the argument we just did.

We remark that the convergence behavior of the special case C = µB is similar to that for the trace

ratio problem (i.e., C = 0): they both converge monotonically and globally. However, these two cases are

still quite different from each other and one remarkable difference is that the trace ratio problem only

admits global maximizers (i.e., any local maximizer is a global maximizer [35, Theorem 1.1], while the

case C = µB contains both local and global maximizers (see [30, Example 3.1] for an example).

5 Local convergence for the general case

We now investigate the local convergence behavior of the SCF iteration for the general case. Throughout

this section,

ǫ̃ = ‖ sinΘ(V, V̄ )‖tr, ǫ = ‖ sinΘ(V, V̄ )‖2, (4.3)

where V, V̄ ∈ Om×ℓ. Then ǫ 6 ǫ̃ 6 ℓǫ. RA and RB are as defined by (5.2) below with H ∈ {A,B}.
Lemma 5.1 is a refinement of Lemma 4.2 when R(V̄ ) is an approximate invariant subspace of H .

Lemma 5.1. Let H ∈ Rm×m be a symmetric matrix. For V, V̄ ∈ Om×ℓ, we have

|φH(V̄ )− φH(V )| 6 (2
√
2 ‖RH‖2 + 4‖H‖2ǫ)ǫ̃, (5.1)

where φH(V ) := tr(V ⊤HV ), and

RH = HV̄ − V̄ (V̄ ⊤HV̄︸ ︷︷ ︸
=:H1

). (5.2)
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Proof. Let Z ∈ Rℓ×ℓ be the one in Lemma 4.1, and ∆V = V̄ − V Z. We have

|φH(V̄ )− φH(V )| = |φH(V̄ )− φH(V Z)|
6 | tr(∆V ⊤HV̄ ) + tr(V̄ ⊤H∆V )|+ | tr(∆V ⊤H∆V )|. (5.3)

Use HV̄ = RH + V̄ H1 to get

tr(∆V ⊤HV̄ ) + tr(V̄ ⊤H∆V )

= tr(∆V ⊤RH) + tr(∆V ⊤V̄ H1) + tr(R⊤
H∆V ) + tr(H1V̄

⊤∆V )

= 2 tr(∆V ⊤RH) + tr(∆V ⊤V̄ H1) + tr(V̄ ⊤∆VH1)

= 2 tr(∆V ⊤RH) + tr([∆V ⊤V̄ + V̄ ⊤∆V ]H1)

= 2 tr(∆V ⊤RH) + tr(∆V ⊤∆VH1), (5.4)

where we have used∆V ⊤V̄ +V̄ ⊤∆V = ∆V ⊤∆V, which can be verified by the substitution ∆V = V̄ −V Z.

Combine (5.4) with (5.3) to get

|φH(V̄ )− φH(V )| 6 2| tr(∆V ⊤RH)|+ | tr(∆V ⊤∆VH1)|+ | tr(∆V ⊤H∆V )|
6 2‖∆V ⊤RH‖tr + ‖∆V ⊤∆VH1‖tr + ‖∆V ⊤H∆V ‖tr (by (2.5))

6 2‖∆V ‖tr‖RH‖2 + ‖∆V ‖2‖∆V ‖tr(‖H1‖2 + ‖H‖2),

and then use Lemma 4.1 and ‖H1‖2 6 ‖H‖2 to conclude (5.1).

Note that RH = 0 is equivalent to ‖ sinΘ(V̄ , HV̄ )‖2 = 0, i.e., R(V̄ ) is an invariant subspace of H .

To establish the main theorem, Theorem 5.9, of this section, we additionally introduce the following

notation,

ωB :=

m∑

j=m−ℓ+1

λj(B), ΩB :=

ℓ∑

j=1

λj(B). (5.5)

Recall that B is positive definite but A may be indefinite. We have for any V ∈ O
m×ℓ,

0 < ωB 6 φB(V ) 6 ΩB and |φA(V )| 6 ΩA := max

{∣∣∣∣
m∑

j=m−ℓ+1

λj(A)

∣∣∣∣,
∣∣∣∣

ℓ∑

j=1

λj(A)

∣∣∣∣
}
. (5.6)

Lemma 5.2. For V, V̄ ∈ Om×ℓ, we have

∣∣∣∣
1

φB(V )
− 1

φB(V̄ )

∣∣∣∣ 6
2‖B‖2
ω2
B

ǫ̃ 6
2ℓ‖B‖2
ω2
B

ǫ, (5.7a)

∣∣∣∣
1

φB(V )
− 1

φB(V̄ )

∣∣∣∣ 6
2[
√
2 ‖RB‖2 + 2‖B‖2ǫ]

ω2
B

ǫ̃ 6
2ℓ[

√
2 ‖RB‖2 + 2‖B‖2ǫ]

ω2
B

ǫ, (5.7b)

and

∣∣∣∣
φA(V̄ )

[φB(V̄ )]2
− φA(V )

[φB(V )]2

∣∣∣∣ 6
2

ω4
B

[2ΩAΩB‖B‖2 +Ω2
B‖A‖2] ǫ̃, (5.8a)

∣∣∣∣
φA(V̄ )

[φB(V̄ )]2
− φA(V )

[φB(V )]2

∣∣∣∣ 6
2

ω4
B

[2
√
2(Ω2

B‖RA‖2 + 2ΩAΩB‖RB‖2)

+ 2(Ω2
B‖A‖2 + 2ΩAΩB‖B‖2)ǫ]ǫ̃. (5.8b)

Proof. By Lemmas 4.2 and 5.1, we can write for H ∈ {A,B},

φH(V ) = φH(V̄ ) + ǫH , (5.9a)

|ǫH | 6 2‖H‖2ǫ̃ 6 2ℓ‖H‖2ǫ, (5.9b)
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|ǫH | 6 (2
√
2 ‖RH‖2 + 4‖H‖2ǫ)ǫ̃ 6 ℓ(2

√
2 ‖RH‖2 + 4‖H‖2ǫ)ǫ. (5.9c)

Therefore∣∣∣∣
1

φB(V )
− 1

φB(V̄ )

∣∣∣∣ =
∣∣∣∣

−ǫB
φB(V )φB(V̄ )

∣∣∣∣ ,
∣∣∣∣
φA(V̄ )

[φB(V̄ )]2
− φA(V )

[φB(V )]2

∣∣∣∣ =
∣∣∣∣
[φA(V̄ )− φA(V )][φB(V )]2 + φA(V ){[φB(V )]2 − [φB(V̄ )]2}

[φB(V )φB(V̄ )]2

∣∣∣∣

6
Ω2

B |ǫA|+ 2ΩAΩB |ǫB|
ω4
B

.

Now use (5.9b) and (5.9c) to bound ǫB to get (5.7a) and (5.7b), respectively; use (5.9b) to bound ǫA and

ǫB to get (5.8a); use (5.9c) to bound ǫA and ǫB to get (5.8b).

Remark 5.3. In this lemma and many expressions in what follows, we find ω2
B and ω4

B in the de-

nominators of various fractions, as the results of bounding φB(V )φB(V̄ ) and [φB(V )φB(V̄ )]2 from below,

respectively, simply by using (5.6). In cases where ωB is rather tiny relative to ΩB, it may make various

upper bound estimates unnecessarily too big. A better option may be to use

φB(V )φB(V̄ ) = φB(V̄ )[φB(V̄ ) + ǫB]

followed by bounding ǫB. We omit the details.

Lemma 5.4. For V, V̄ ∈ Om×ℓ, we have

‖E(V̄ )− E(V )‖2 6 (χ1 + χ2 )‖B‖2︸ ︷︷ ︸
=:χ

ǫ, (5.10)

where

χ1 =
2ℓ‖A‖2
ω2
B

and χ2 =
2ℓΩB[2ΩA‖B‖2 +ΩB‖A‖2]

ω4
B

. (5.11)

Proof. It can be verified that

∆E := E(V )− E(V̄ ) =

[
1

φB(V )
− 1

φB(V̄ )

]
A+

[
φA(V̄ )

[φB(V̄ )]2
− φA(V )

[φB(V )]2

]
B. (5.12)

Therefore

‖∆E‖2 6
∣∣∣∣

1

φB(V )
− 1

φB(V̄ )

∣∣∣∣ ‖A‖2 +
∣∣∣∣
φA(V̄ )

[φB(V̄ )]2
− φA(V )

[φB(V )]2

∣∣∣∣ ‖B‖2.

Now use (5.7a) and (5.8a) to complete the proof.

Remark 5.5. Sharper bounds than (5.10) are possible through using (5.7b) and (5.8b) instead. But

the use of these possible sharper bounds does not lead to an essentially different conclusion later in our

main theorem, Theorem 5.9.

Lemma 5.6. Let H ∈ Rm×m be a symmetric matrix, and V+, V̄ ∈ Om×ℓ, and RH be defined by (5.2).

Let V̄⊥ ∈ Om×(m−ℓ) such that [V̄ , V̄⊥] is orthogonal. Then for any unitarily invariant norm ‖ · ‖ui,

‖V̄ ⊤
⊥ HV+‖ui 6

√
2 ‖H‖2‖ sinΘ(V+, V̄ )‖ui + ‖RH‖ui . (5.13)

Proof. Let Z ∈ Rℓ×ℓ be the one in Lemma 4.1 applied to V+ and V̄ such that

‖V̄ − V+Z‖ui 6
√
2‖ sinΘ(V+, V̄ )‖ui.

Now notice

V̄ ⊤
⊥ HV+ = V̄ ⊤

⊥ H(V+Z − V̄ )Z⊤ + V̄ ⊤
⊥ HV̄ Z⊤

= V̄ ⊤
⊥ H(V+Z − V̄ )Z⊤ + V̄ ⊤

⊥ (RH + V̄ H1)Z
⊤

= V̄ ⊤
⊥ H(V+Z − V̄ )Z⊤ + V̄ ⊤

⊥ RHZ⊤

to get ‖V̄ ⊤
⊥ HV+‖ui 6 ‖H‖2‖V+Z− V̄ ‖ui+‖RH‖ui 6

√
2 ‖H‖2‖ sinΘ(V+, V̄ )‖ui+‖RH‖ui. This completes

the proof.
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Lemma 5.7. Suppose V̄ ∈ Om×ℓ is an orthonormal eigenbasis of E(V̄ ) associated with its ℓ largest

eigenvalues, and let δ := λℓ(E(V̄ ))−λℓ+1(E(V̄ )). Define RB and B1 by (5.2) with H = B. For V ∈ Om×ℓ,

let V+ ∈ O
m×ℓ be an orthonormal eigenbasis of E(V ) associated with its ℓ largest eigenvalues. If

δ > (χ+
√
2χ2‖B‖2)ǫ, (5.14)

then

‖ sinΘ(V+, V̄ )‖2 6
τ1‖RB‖2ǫ + τ2ǫ

2

δ − (χ+
√
2χ2‖B‖2)ǫ

, (5.15)

where χ and χ2 are defined in (5.10) and (5.11), and

τ1 =
2
√
2ℓ‖A‖2
ω2
B

+ χ2, τ2 =
4ℓ‖A‖2‖B‖2

ω2
B

. (5.16)

Proof. By the assumption E(V )V+ = V+Λ1, where Λ1 ∈ Rℓ×ℓ and eig(Λ1) = {λi(E(V ))}ℓi=1. Let

R1 := E(V̄ )V+ − V+Λ1 = [E(V̄ )− E(V )]V+. (5.17)

Let V̄⊥ ∈ Om×(m−ℓ) such that [V̄ , V̄⊥] is orthogonal. By the assumption, V̄⊥ is the orthonormal basis

matrix associated the smallest m − ℓ eigenvalues of E(V̄ ). So we can write V̄ ⊤
⊥ E(V̄ ) = Λ̂2V̄

⊤
⊥ , where

Λ̂2 ∈ R(m−ℓ)×(m−ℓ) and eig(Λ̂2) = {λi(E(V̄ ))}mi=ℓ+1. We have

V̄ ⊤
⊥ R1 = V̄ ⊤

⊥ [E(V̄ )V+ − V+Λ1] = Λ̂2V̄
⊤
⊥ V+ − V̄ ⊤

⊥ V+Λ1. (5.18)

Since |λi(E(V ))− λi(E(V̄ ))| 6 ‖E(V̄ )−E(V )‖2 6 χ ǫ by [20, p. 203] and Lemma 5.4, we have, for i 6 ℓ

and ℓ+ 1 6 j,

λi(E(V ))− λj(E(V̄ )) > λℓ(E(V ))− λℓ+1(E(V̄ )) > λℓ(E(V̄ ))− χǫ− λℓ+1(E(V̄ )) = δ − χǫ. (5.19)

Therefore by Lemma 2.1, we have

‖ sinΘ(V+, V̄ )‖2 = ‖V ⊤
⊥ V+‖2 6

‖V̄ ⊤
⊥ R1‖2
δ − χǫ

. (5.20)

To bound ‖V̄ ⊤
⊥ R1‖2, we have, using (5.17) and (5.12),

‖V̄ ⊤
⊥ R1‖2 = ‖V̄ ⊤

⊥ [E(V̄ )− E(V )]V+‖2

6

∣∣∣∣
1

φB(V )
− 1

φB(V̄ )

∣∣∣∣ ‖V̄
⊤
⊥ AV+‖2 +

∣∣∣∣
φA(V̄ )

[φB(V̄ )]2
− φA(V )

[φB(V )]2

∣∣∣∣ ‖V̄
⊤
⊥ BV+‖2

=: ε1 + ε2. (5.21)

For ε1, we use (5.7b) to get

ε1 6
2
√
2ℓ‖RB‖2ǫ+ 4ℓ‖B‖2ǫ2

ω2
B

‖A‖2. (5.22)

For ε2, we use (5.8a) to get

ε2 6 χ2ǫ‖V̄ ⊤
⊥ BV+‖2 6 χ2ǫ[‖B‖2

√
2‖ sinΘ(V+, V̄ )‖2 + ‖RB‖2]. (5.23)

Finally, combine (5.20)–(5.23) to arrive at, under (5.14),

‖ sinΘ(V+, V̄ )‖2 6
ε1 + χ2‖RB‖2ǫ

δ − (χ+
√
2χ2‖B‖2)ǫ

,

which, together with (5.22), leads to (5.15).
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Remark 5.8. The inequality (5.20) remains valid in any unitarily invariant norm:

‖ sinΘ(V+, V̄ )‖ui = ‖V ⊤
⊥ V+‖ui 6

‖V̄ ⊤
⊥ R1‖ui
δ − χǫ

. (5.20’)

The machinery we have built so far in various lemmas allows us to easily bound ‖V̄ ⊤
⊥ R1‖ui in the similar

way. The outcome will be theoretically interesting, but may add little to our understanding of SCF than

Lemma 5.7 as is. This same remark applies to the next theorem in which the analysis is in terms of ‖ · ‖2
but can be done in terms of any unitarily invariant norm, too.

Theorem 5.9. Suppose V̄ ∈ Om×ℓ is an orthonormal eigenbasis of E(V̄ ) associated with its ℓ largest

eigenvalues, and let δ := λℓ(E(V̄ )) − λℓ+1(E(V̄ )). Define RA, A1 and RB, B1 by (5.2) with H = A and

H = B, respectively, and let χ, χ2, τ1, and τ2 be as defined in (5.10), (5.11), and (5.16), respectively.

Apply the SCF iteration (Algorithm 3.1) to generate a sequence {Vk}, given V0.

1. Given any 0 < t < 1 and 0 < ν < 1, if

‖RB‖2 6 tν δ/τ1, (5.24)

then for any V0 ∈ Om×ℓ satisfying

‖ sinΘ(V0, V̄ )‖2 <
(1 − t)νδ

τ2 + ν(χ+
√
2χ2‖B‖2)

, (5.25)

the sequence {Vk := R(Vk)} converges to V̄ := R(V̄ ) at least linearly, and moreover

‖ sinΘ(Vk+1 , V̄ )‖2 6 ν‖ sinΘ(Vk, V̄ )‖2 for k = 0, 1, . . . (5.26)

2. If RB = 0, then for any V0 ∈ Om×ℓ such that

‖ sinΘ(V0, V̄ )‖2 <
δ

τ2 + χ+
√
2χ2‖B‖2

, (5.27)

the sequence {Vk} converges to V̄ quadratically, and moreover

‖ sinΘ(Vk+1 , V̄ )‖2 6
τ2

δ − (χ+
√
2χ2‖B‖2)‖ sinΘ(Vk, V̄ )‖2

‖ sinΘ(Vk, V̄ )‖22 (5.28)

for k = 0, 1, . . .

3. If RA = RB = 0, then for any V0 ∈ Om×ℓ satisfying

‖ sinΘ(V0, V̄ )‖2 <
2δ

χ+
√
χ2 + 4τ3δ

, (5.29)

V1 = V̄, i.e., convergence is in one step, where

τ3 :=
4
√
2‖A‖2‖B‖2ℓ

ω2
B

+
4
√
2ℓ‖B‖2
ω4
B

[‖A‖2Ω2
B + 2ΩAΩB‖B‖2]. (5.30)

Proof. It suffices to prove (5.26) and (5.28) just for k = 0 and verify that (5.25) and (5.27) hold with

V0 replaced by V1.

For clarity, we drop the subscript 0 to V0 and write V+ for V1. Let

ǫ = ‖ sinΘ(V, V̄ )‖2, ǫ+ = ‖ sinΘ(V+, V̄ )‖2.

By Lemma 5.7, we have

ǫ+ 6
τ1‖RB‖2 + τ2ǫ

δ − (χ+
√
2χ2‖B‖2)ǫ

× ǫ (5.31)

if δ > (χ +
√
2χ2‖B‖2)ǫ. As we will see, this condition is always satisfied under (5.25) or (5.27) in the

respective cases.
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For item 1, we like to have

τ1‖RB‖2 + τ2ǫ

δ − (χ+
√
2χ2‖B‖2)ǫ

6 ν

⇔ τ1‖RB‖2 + τ2ǫ 6 ν[δ − (χ+
√
2χ2‖B‖2)ǫ]

⇔ τ1‖RB‖2 + [τ2 + ν(χ+
√
2χ2‖B‖2)]ǫ 6 νδ

⇐ τ1‖RB‖2 6 tνδ, [τ2 + ν(χ+
√
2χ2‖B‖2)]ǫ 6 (1 − t)νδ. (5.32)

The two inequalities in (5.32) hold by the assumption ‖RB‖2 6 tν δ/τ1 and (5.25). Also the second

inequality in (5.32) implies δ > (χ+
√
2χ2‖B‖2)ǫ.

For item 2, RB = 0; so (5.31) becomes

ǫ+ 6
τ2ǫ

δ − (χ+
√
2χ2‖B‖2)ǫ

× ǫ. (5.33)

Now we like to have

τ2ǫ

δ − (χ+
√
2χ2‖B‖2)ǫ

< 1

⇔ τ2ǫ < δ − (χ+
√
2χ2‖B‖2)ǫ

⇔ [τ2 + (χ+
√
2χ2‖B‖2)]ǫ < δ. (5.34)

The inequality in (5.34) is equivalent to the assumption (5.27). Also this inequality implies δ > (χ

+
√
2χ2‖B‖2)ǫ.

For item 3, to exploit the additional condition RA = 0, we return to (5.20) and (5.21). By (5.7b) and

Lemma 5.6 for H = A, we have

ǫ1 6
4ℓ‖B‖2ǫ

ω2
B

·
√
2‖A‖2ǫ+ 6

4
√
2‖A‖2‖B‖2ℓ

ω2
B

ǫ2ǫ+. (5.35)

For ǫ2, we use (5.8b) and Lemma 5.6 for H = B to get

ǫ2 6

∣∣∣∣
φA(V̄ )

[φB(V̄ )]2
− φA(V )

[φB(V )]2

∣∣∣∣
√
2‖B‖2ǫ+ 6

4
√
2ℓ‖B‖2
ω4
B

[‖A‖2Ω2
B + 2ΩAΩB‖B‖2]ǫ2ǫ+. (5.36)

Combine (5.20), (5.21), (5.35), and (5.36) to arrive at

ǫ+ 6
τ3

δ − χǫ
ǫ2ǫ+,

where τ3 is defined by (5.30). Equivalently, ǫ+(δ − χǫ − τ3ǫ
2) 6 0, provided δ − χǫ > 0. Thus ǫ+ = 0 if

δ − χǫ− τ3ǫ
2 > 0. This last inequality holds under (5.29) which also ensures δ − χǫ > 0.

Remark 5.10. The condition (5.24) is rather strong, as the result of a number of upper bound

estimations. In actual computations, SCF may still converge even if it fails. However, it is very useful

to our understanding of SCF’s local convergence behaviors. The condition reveals a remarkable intrinsic

connection between the convergence speed of SCF and that V̄ being close to an eigenspace of B. The

closer V̄ is to an eigenspace of B, the faster the convergence will be. In fact, when V̄ is an eigenspace of

B, the convergence is quadratic. Even more extreme is when V̄ is an eigenspace of both A and B, the

convergence is instant for a sufficiently accurate V0. A very particular case: AB = BA and CB = BC

falls into item 3 of Theorem 5.9. Under these assumptions, for any V ∈ Om×ℓ, E(V )H = HE(V ) for

H ∈ {A,B} and thus E(V̄ )V̄ = V̄ MV̄ ⇒ E(V̄ )HV̄ = HV̄MV̄ which implies that HV̄ is also an eigenbasis

of E(V̄ ) corresponding to its ℓ largest eigenvalues. With the aid of λℓ(E(V̄ )) > λℓ+1(E(V̄ )), we conclude

that for H ∈ {A,B}, sinΘ(V̄ , HV̄ ) = 0 ⇔ RH = 0.



1562 Zhang L H et al. Sci China Math July 2015 Vol. 58 No. 7

6 Numerical experiments

We report in this section our numerical experiments on the SCF iteration. We recall Example 3.1,

purposely constructed to demonstrate that global convergence cannot be guaranteed in general. But our

experience on randomly generated problems has been always fast and globally convergent.

With various pairs (m, ℓ), we have tested the SCF iteration on numerous random symmetric and

positive definite matrices A,B,C and random initial V0 as generated in MATLAB by

A = randn(m, m); A = A′ ∗ A; B = randn(m, m); B = B′ ∗ B;
C = randn(m, m); C = C′ ∗ C; V0 = orth(randn(m, ℓ), 0).

We mentioned before that making C positive definite does not loss any generality. The same can be said

about A through shifting A to A+ ξB so that it is positive definite and at the same time, the maximizers

remain unchanged.

For comparison purpose, we also tested two MATLAB packages for generic Stiefel manifold-based

optimization methods for minimizing the objective function 2) −f(V ): one is OptM 3) [26], and the other

is sg min 4) [2, Subsection 9.4] (see also [5]). OptM [26] implements a feasible Barzilai-Borwein (BB)

method which uses a Crank-Nicolson-like updating scheme to preserve the orthogonality constraints and a

curvilinear search with lower per-iteration cost compared to those based on projections and geodesics. The

other Stiefel manifold-based optimization package sg min contains four methods, including the Fletcher-

Reeves CG iterative search, the Polak-Ribière CG iterative search, the Newton iterative search, and the

dog-leg Newton iterative search, all accessible through sg min by

[f,V]=sg min(V0, ‘frcg’,‘euclidean’);

[f,V]=sg min(V0, ‘prcg’,‘euclidean’);

[f,V]=sg min(V0, ‘newton’,‘euclidean’);

[f,V]=sg min(V0, ‘dog’,‘euclidean’);

respectively. In order to run sg min, we provide

1. the objective function −f(V ) in the MATLAB file F.m ,

2. the first derivative information in dF.m,

dF(V ) := −∂f(V )

∂V
= −2E(V )V,

3. the second derivative information in ddF.m

ddF(V,X) :=
d

dt
dF(V (t))

∣∣∣∣
t=0

= −2{E(V )X + DE(V )[X ]V }

= −2{E(V )X +G(V,X)V },

where V (t) is any smooth curve on Om×ℓ with V = V (0) and X = V̇ (0) ∈ TV O
m×ℓ, and G(V,X) is

defined in [32, Theorem 2.2] (see also [31]).

All calculations are carried out in MATLAB 7.13.0 (R2011b) on a MacBook Pro laptop with Intel

Core i5@2.50GHz. For the SCF iteration, when m 6 500, we use the MATLAB function eig to find an

orthonormal eigenbasis Vk+1 of E(Vk) associated with its ℓ largest eigenvalues at Line 2 of Algorithm 3.1,

and use eigs if m > 500. The SCF iteration is terminated whenever the norm of the gradient of
1
2f|Om×ℓ(V ) at Vk+1 satisfies

rk := ‖E(Vk+1)Vk+1 − Vk+1MVk+1
‖2 6 tol = 10−8.

2) Because both sg min and OptM minimize a function on Om×ℓ, we use −f(V ) instead of f(V ).
3) The MATLAB code OptM is available at: http://optman.blogs.rice.edu/.
4) The MATLAB code sg min (version 2.4.3) is available at: http://web.mit.edu/∼ripper/www/sgmin.html.
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For OptM, we observed numerically that in order to achieve the same small rk, we need to set OptM’s

tolerances:

tolxk :=
‖Vk − Vk+1‖F√

m
and tolfk :=

|f(Vk)− f(Vk+1)|
|f(Vk)|+ 1

,

to about the square of tol. This in theory can be explained because the relation (6.1) to be established

later suggests

f(Vk)− f(Vk+1) = O(r2k) + O(r2k+1).

But we noticed that OptM had difficulty with both tolxk and tolfk set to tol2 = 10−16 which turns out to

be too tiny for OptM to use. So in our testing, we relaxed the tolerances to tolxk 6 10−8, tolfk 6 10−10 as

the stopping criteria. Finally, for sg min, the default options are used.

For ℓ = 3, 5 and various m, Tables 1–3 report the numbers of outer iterations, the residuals rk, and

the CPU times (measured by the MATLAB function cputime), averaged over 20 random tests, for each

method. Similar numerical behaviors are also observed for other ℓ.

Because both OptM and sg min are generic black box packages for Riemannian optimization algorithms,

it is expected that the customarily designed SCF iteration will outperform them. This is clearly demon-

strated in Tables 1–3 in terms of accuracy, the number of iterative steps, and the running time as well.

It deserves to point out that SCF shows a remarkable global convergence behavior: we observed that

numerically, all the methods converge to the same objective value for each testing problem, but SCF can

reach a solution with a residual about 10−9 in only about 5 iterations, while OptM takes from 14 up to 34

times, and the Fletcher-Reeves CG (frcg) takes from 10 up to 28 times, the Polak-Ribière CG (prcg)

takes from 48 up to 150 times, the Newton iteration (Newton) takes from 1.8 up to 2.9 times, and the

dog-leg Newton iteration (dog) takes from 2.3 up to 4 times as many outer iterations to reduce residuals

to only about 10−4.

Our last remark of this section is about the relationship between the accuracy of the objective value

f(V ) and the residual rk of the computed solution for each method. Note

rk = ‖E(Vk+1)Vk+1 − Vk+1MVk+1
‖2

6 ‖E(V̄ )Vk+1 − Vk+1MVk+1
‖2 + ‖[E(Vk+1)− E(V̄ )]Vk+1‖2

= ‖E(V̄ )Vk+1 − Vk+1MVk+1
‖2 + O(ǫk+1),

rk > ‖E(V̄ )Vk+1 − Vk+1MVk+1
‖2 − ‖[E(Vk+1)− E(V̄ )]Vk+1‖2

= ‖E(V̄ )Vk+1 − Vk+1MVk+1
‖2 + O(ǫk+1),

by Lemma 5.4, where ǫk+1 := sinΘ(Vk+1, V̄ ). For sufficiently tiny ǫk, if

δ := λℓ(E(V̄ ))− λℓ+1(E(V̄ )) > 0,

Table 1 The numbers of outer iterations averaged over 20 random tests

SCF
sg min

OptMℓ m
frcg prcg Newton dog

100 5.20 51.80 252.10 9.20 12.10 72.10

200 5.00 61.10 297.60 9.80 13.20 81.20

3 500 4.70 111.12 653.90 11.30 15.70 97.70

1000 4.60 110.90 875.60 11.30 16.70 123.80

2000 4.00 110.50 601.50 11.60 16.90 137.70

100 5.20 44.40 231.50 9.00 11.70 61.80

200 4.90 62.60 384.20 9.80 14.00 83.50

5 500 4.50 86.60 448.90 10.60 15.10 108.80

1000 4.00 152.30 1183.50 11.60 17.10 150.20

2000 4.00 124.80 737.20 11.90 17.40 151.60
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Table 2 Residuals rk averaged over 20 random tests

SCF
sg min

OptMℓ m
frcg prcg Newton dog

100 2.0866e−09 9.6073e−05 1.0243e−04 7.2286e−05 1.0136e−04 3.9433e−05

200 2.8450e−09 2.0088e−04 2.1039e−04 1.5021e−04 2.1498e−04 3.1963e−04

3 500 1.2366e−09 5.1486e−04 5.1702e−04 3.9649e−04 5.9318e−04 6.7840e−04

1000 2.8957e−09 1.0428e−03 1.0215e−03 8.1522e−04 1.2606e−03 1.7737e−04

2000 1.8831e−09 2.0440e−03 2.0367e−03 1.7409e−03 2.6061e−03 4.7989e−04

100 3.5332e−09 1.0265e−04 1.0983e−04 7.5412e−05 1.2384e−04 5.6502e−05

200 9.9221e−10 2.3758e−04 2.1842e−04 1.7443e−04 2.5598e−04 2.1490e−04

5 500 3.6224e−09 5.7844e−04 5.3591e−04 5.0324e−04 7.8546e−04 8.0341e−04

1000 2.1719e−09 1.2014e−03 1.0986e−03 8.9469e−03 1.6402e−03 1.5912e−04

2000 4.1370e−10 2.4211e−03 2.0863e−03 1.7516e−03 3.3055e−03 4.2530e−04

Table 3 CPU time averaged over 20 random tests

SCF
sg min

OptMℓ m
frcg prcg Newton dog

100 0.0260 0.6730 2.5400 0.5740 1.0710 0.0690

200 0.0970 1.8519 6.2239 1.2130 3.4610 0.2080

3 500 0.8360 10.7350 48.6730 6.5850 38.2220 1.4190

1000 1.4820 46.8770 219.1930 30.9820 261.3340 6.5720

2000 4.4930 167.3610 616.7079 132.1800 1861.3160 28.3600

100 0.0240 0.7890 2.9840 0.6530 1.1410 0.1100

200 0.1040 2.0870 8.8760 1.4710 4.4920 0.2770

5 500 0.8000 12.6340 43.1360 8.2330 45.9890 1.8090

1000 1.3070 77.9170 431.3919 38.2249 316.8010 9.1970

2000 4.3160 220.5770 876.4220 159.2719 2134.8820 34.2160

then by Davis-Kahan sin θ theorem [3],

ǫk+1 6
1

δ
‖E(V̄ )Vk+1 − Vk+1MVk+1

‖2 + O(ǫk+1);

moreover, by using Lemma 4.1 and the facts that f(V̄ ) = f(V̄ Z) and E(V̄ ) = E(V̄ Z) for any orthogonal

matrix Z ∈ Rℓ×ℓ, it is true that

‖E(V̄ )Vk+1 − Vk+1MVk+1
‖2 = O(ǫk+1).

Hence roughly speaking, rk and ǫk are about in the same order of magnitude. Since the gradient of f(V )

at V̄ vanishes, we have

f(Vk) = f(V̄ ) + O(ǫ2k) = f(V̄ ) + O(r2k). (6.1)

This explains well Table 4 in which the objective values f(Vk) by Stiefel manifold-based optimization

methods match the respective ones by SCF to about 9 to 11 decimal digits, even though the residuals by

the former methods are about the square roots of the ones by SCF.

In the comparisons so far, although both OptM and sg min didn’t perform as well as our SCF on the

maximization problem (1.1), we point out that the methods in the two packages are not limited to (1.1)

and have wider applicability, and can succeed on problems that are difficult for our SCF. One of these

problems is Example 3.1 for which our SCF comes close to an optimum and then starts to oscillate while

both OptM and sg min seem to be able to make progress towards an optimum.
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Table 4 The computed objective values at convergence of a typical test problem with ℓ = 5

SCF
sg min

OptMm

frcg prcg Newton dog

100 1.732631226491e–3 1.732631226491e–3 1.732631226491e–3 1.732631226491e–3 1.732631226489e–3 1.732631226491e–3

200 3.638994886711e–3 3.638994886709e–3 3.638994886710e–3 3.638994886709e–3 3.638994886705e–3 3.638994886710e–3

500 9.505544535005e–3 9.505544534995e–3 9.505544535000e–3 9.505544535002e–3 9.505544534946e–3 9.505544534980e–3

1000 1.939209465567e–4 1.939209465562e–4 1.939209465565e–4 1.939209465566e–4 1.939209465553e–4 1.939209465555e–4

2000 3.930154578537e–4 3.930154578533e–4 3.930154578536e–4 3.930154578534e–4 3.930154578504e–4 3.930154578514e–4

7 Concluding remarks and future research

Based on a theoretical result in [32], a self-consistent-field (SCF) iteration for solving the maximization

problem (1.1) is proposed and analyzed in detail. For the special case C = ηB (η > 0), it is proved that

the SCF iteration is globally convergent, but in general global convergence is not guaranteed. However,

various local convergence results for the general case are obtained. Our numerical tests (not all are

reported here) suggest that the method is very efficient and superior to generic Stiefel manifold-based

optimization methods when it works and it usually does.

Still there are certain theoretical and numerical issues that remain unanswered for the SCF iteration.

These issues include (1) sufficient conditions for the global maximizers, (2) further convergence analysis

for the SCF iteration (like Algorithm 3.1 but for the more general case), and (3) some modifications, if

any, of the SCF iteration to ensure its global convergence. They, among others, will be the subjects of

our future research.
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