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1 Introduction

In this paper, we are concerned with a backward perturbation analysis and residual-
based error bounds for the linear response eigenvalue problem (LREP):

Hzzz :=
[

0 K
M 0

] [
yyy
xxx

]
= λ

[
yyy
xxx

]
=: λzzz, (1.1)

where K and M are both n-by-n real symmetric and positive definite. The matrix H
in (1.1) is a special Hamiltonian matrix whose eigenvalues are real [1] and come in
pairs {λ,−λ}. Therefore, we can order the 2n eigenvalues of (1.1) as

− λn ≤ · · · ≤ −λ1 < λ1 ≤ · · · ≤ λn . (1.2)

LREP (1.1) is mathematically equivalent to the so-called random phase approxi-
mation (RPA) eigenvalue problem in computational quantum chemistry and physics:

[
A B

−B −A

] [
uuu
vvv

]
= λ

[
uuu
vvv

]
,

where A, B ∈ Rn×n are both symmetric matrices and
[

A B
B A

]
is positive definite. The

equivalent relationship is established through the orthogonal matrix J = 1√
2

[
In In
In −In

]

and the similarity transformation (see, e.g., [1,2])

J T
[

A B
−B −A

]
J =

[
0 A − B

A + B 0

]
=:

[
0 K
M 0

]
, and

[
yyy
xxx

]
:= J T

[
uuu
vvv

]
. (1.3)

RPA is one of the most widely used methods in studying the excitation states (energies)
of physical systems in the study of collective motion of many-particle systems [1,41,
42] which has applications in silicon nanoparticles, nanoscale materials, analysis of
interstellar clouds [1,2], among others. The heart of RPA calculations is to compute
a few eigenpairs associated with the smallest positive eigenvalues, which, by the
equivalent relationship (1.3) , are the eigenpairs associated with the eigenvalues λ1 ≤
· · · ≤ λk of (1.1).

In consistent with [1,2], throughout the rest of this paper, we relax the condition
on K , M ∈ Rn×n to that they are symmetric positive semi-definite and one of them
is definite, unless explicitly stated differently. This means that possibly λ1 = 0. Also
the assignments in (1.1) will be assumed.

As the dimension n is usually very large, LREP is generally solved by iterative meth-
ods. Roughly speaking, any large scale eigenvalue computation is about approximating
certain invariant subspaces associated with the interested part of the spectrum, and the
interested eigenvalues are then extracted from projecting the problem by approximate
invariant subspaces into much smaller eigenvalue problems. In the case of the linear
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response eigenvalue problem, it is the pair of deflating subspaces associated with the
first few smallest λi that needs to be computed [2].

For two k-dimensional subspaces U and V in Rn , we call {U ,V} a pair of deflating
subspaces of {K , M} if

KU ⊆ V and MV ⊆ U . (1.4)

This notion of the pair of deflating subspaces is a generalization of the concept of
the invariant subspace (or, eigenspace) in the standard eigenvalue problem upon con-
sidering the special structure in LREP (1.1) [1]. Whenever such a pair of deflating
subspaces is available, we can project LREP (1.1) into a much smaller problem in
the form of (1.1), an LREP by its own, whose spectrum are part of that of H (see
more discussions in Sect. 2 and [1,2]). Based on this fact, several efficient algorithms,
including the Locally Optimal Block Preconditioned 4D Conjugate Gradient Method
(LOBP4DCG) [2], the block Chebyshev-Davidson method [40], as well as the gen-
eralized Lanczos method [39,43,44], have been proposed. Each of these algorithms
generates a sequence of approximate deflating subspace pairs that hopefully converge
to or contain subspaces near the pair of deflating subspaces. The goal of this paper
is to perform a backward perturbation analysis and to establish error bounds on the
accuracy (in eigenvalue/eigenspace approximations) using proper residuals associated
with any given approximate deflating subspace pair.

A related study is presented in [46]. The main difference among the results in
[46] and those in the present paper is that the error bounds on eigenvalue/eigenspace
approximations in [46] are characterized by the canonical angles between the approx-
imate deflating subspace pair and the exact pair, whereas the error bounds in this paper
use certain computable residuals. These two types of error bounds are well-established
in the standard eigenvalue problem (see, e.g., [30,33]), and both types are useful in
analyzing the convergence and designing stopping criteria for iterative algorithms.

The rest of the paper is organized as follows. In Sect. 2, we will state some basic
properties about LREP for use later. Section 3 gives a backward perturbation analysis
for a given pair of approximate deflating subspaces or an approximate eigenquadruple,
optimizes backward perturbation errors, and shows the near optimality of the so-called
Rayleigh quotient pair. Section 4 derives several error bounds in terms of residuals
for eigenvalue approximations. In Sect. 5, we review related results for the standard
eigenvalue problem as a comparison. Finally in Sect. 6, we present our concluding
remarks.

Notation. Kn×m is the set of all n × m matrices whose entries belong to the number
field K, Kn = Kn×1, and K = K1, where K = R (the set of real numbers) or C (the
set of complex numbers). In (or simply I if its dimension is clear from the context)
denotes the n × n identity matrix. All vectors are column vectors and are in boldface.
For a matrix Z ,

1. ZT and ZH denote its transpose and the conjugate transpose, respectively,
2. R(Z) is the column space of Z , spanned by its column vectors,
3. Z† stands for the Moore-Penrose inverse and PZ = Z Z† is the orthogonal pro-

jection onto R(Z) and P⊥
Z = I − PZ [33],
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4. ∥Z∥2, ∥Z∥F, and ∥Z∥ui are the spectral norm, the Frobenius norm, and a general
unitarily invariant norm, respectively,

5. The submatrices Z(k:ℓ,i : j), Z(k:ℓ,:), and Z(:,i : j) of Z consist of intersections of row
k to row ℓ and column i to column j , row k to row ℓ, and column i to column j ,
respectively,

6. When Z is a square matrix, its trace is trace(Z), its eigenvalue set is eig(Z), and
its spectral condition number is κ(Z) = ∥Z∥2∥Z−1∥2.

The oplus-sum V ⊕ U of two subspaces V and U in Kn is a subspace of K2n and
consists of all vectors [yyyT, 0]T + [0, xxxT]T for all yyy ∈ V and xxx ∈ U .

2 Preliminaries

Many theoretical properties of LREP have been established in [1,2]. In Theorem 2.1,
we present certain decompositions on K and M , necessary for our developments later
in this paper. The reader is referred to [1, section 2] for proofs and more.

Theorem 2.1 Suppose that K is semidefinite and M is definite. Then the following
statements are true:

(i) There exists a nonsingular $ ∈ Rn×n such that

K = %&2%T and M = $$T,

where & = diag(λ1, λ2, . . . , λn) with 0 ≤ λ1 ≤ · · · ≤ λn, and % = $− T.
(ii) If K is also definite, then all λi > 0 and H is diagonalizable:

H
[
%& %&

−$ $

]
=

[
%& %&

−$ $

] [−&

&

]
.

(iii) The eigen-decompostion of K M and M K are

(K M)% = %&2 and (M K )$ = $&2, (2.1)

respectively.

As we have introduced in Sect. 1, for two given k-dimensional subspaces U ⊆ Rn

and V ⊆ Rn , the pair {U ,V} is called a pair of deflating subspaces of {K , M} if

KU ⊆ V and MV ⊆ U (1.4)

hold. This definition is essentially the same as the existing ones for the product eigen-
value problem [3,11,26,27]. It also closely relates to the deflating subspace for the
generalized eigenvalue problem in [31] in that (1.4) can be equivalently restated as

[
M

K

]
(V ⊕ U) ⊂

[
0 In
In 0

]
(V ⊕ U),
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noting that LREP (1.1) is equivalent to the generalized eigenvalue problem

[
M

K

] [
yyy
xxx

]
= λ

[
0 In
In 0

] [
yyy
xxx

]
. (2.2)

Let U ∈ Rn×k and V ∈ Rn×k be the basis matrices for U and V , respectively.
Alternatively, (1.4) can be restated as that there exist KR ∈ Rk×k and MR ∈ Rk×k

such that

KU = V KR and MV = U MR, (2.3)

and vice versa, or equivalently,

H
[

V
U

]
=

[
V

U

]
HR with HR :=

[
KR

MR

]
,

i.e., V ⊕ U is an invariant subspace of H [1, Theorem 2.4]. We call {U, V, KR, MR}
an eigenquadruple of {K , M}.

Whenever a pair of deflating subspaces {R(U ),R(V )} is at hand, part of the eigen-
pairs of H can be obtained via solving the smaller eigenvalue problem [1, Theorem
2.5]: if

HRẑzz :=
[

KR
MR

] [
ŷyy
x̂xx

]
= λ

[
ŷyy
x̂xx

]
=: λẑzz, (2.4)

then
(

λ,

[
V ŷyy
Ux̂xx

])
is an eigenpair of H . The matrix HR is the restriction of H onto

V ⊕U with respect to the basis matrices V and U of V and U , respectively. Moreover,
the eigenvalues of HR are uniquely determined by the pair of deflating subspaces
{U ,V}; in the other word, different choices of the basis matrices for U and V result in
the same eigenvalues. In fact, if Û = U D1 ∈ Rn×k and V̂ = V D2 ∈ Rn×k are new
basis matrices for R(U ) and R(V ), respectively, and

KÛ = V̂ K̂R and MV̂ = Û M̂R, (2.5)

then K̂R = D−1
2 KR D1 and M̂R = D−1

1 KR D2 by comparing (2.3) to (2.5) after
substituting in Û = U D1 and V̂ = V D2. Thus

ĤR :=
[

K̂R
M̂R

]
=

[
D2

D1

]−1

HR

[
D2

D1

]
. (2.6)

Evidently, ĤR and HR must have the same eigenvalues.
Two particular choices of {KR, MR} to satisfy (2.3) are

KR = (U TV )−1U T KU, MR = (V TU )−1V T MV ; (2.7a)

KR = (V TV )−1V T KU, MR = (U TU )−1U T MV . (2.7b)
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In (2.7a), U TV has to be assumed invertible, which is guaranteed since one of K and
M is definite [1, Lemma 2.7]. By what we just proved, the associated HR with either
(2.7a) or (2.7b) must have the same eigenvalues.

In practical computations, however, {U ,V} is usually a pair of approximate deflating
spaces, i.e., no {KR, MR} that satisfies (2.3) exists. Dependent on how good {U ,V} is as
a pair of approximate deflating spaces, the equations in (2.3) is satisfied approximately
to an appropriate level for some {KR, MR} like the ones given in (2.7). Regardless
whether {U ,V} is a pair of exact deflating spaces or approximate ones, {KR, MR}
by (2.7b) is always well-defined, but for (2.7a), it is well-defined only if U TV is
nonsingular. This requirement is automatically satisfied if {U ,V} is exact. It must also
be true when {U ,V} is a reasonably accurate approximation to an exact pair. Therefore
it is quite reasonable to assume that U TV is nonsingular from now on.

We note that {KR, MR} by (2.7a) relates to the structure-preserving projection HSR
of H in [2, (2.2)] that plays an important role numerically there. To highlight this
particular pair, we will call {KR, MR} by (2.7a) a Rayleigh quotient pair of LREP
(1.1) associated with {R(U ),R(V )} and introduce

KRQ := (U TV )−1U T KU, MRQ := (V TU )−1V T MV (2.8)

for the ease of future references. Both KRQ and MRQ vary with different selections of
U and V as the basis matrices of R(U ) and R(V ), respectively. But the eigenvalues
of the induced

HRQ =
[

KRQ
MRQ

]
. (2.9)

do not. In fact, with new basis matrices Û = U D1 and V̂ = V D2 and, accordingly,
new K̂RQ and M̂RQ, ĤRQ is similar to HRQ [an equation like (2.6) holds].

For the definition and properties of unitarily invariant norms, the reader is referred
to [5,33] for details. In this article, for convenience, any ∥ · ∥ui we use is generic to
matrix sizes in the sense that it applies to matrices of all sizes. Examples include the
matrix spectral norm ∥ · ∥2 and the Frobenius norm ∥ · ∥F. Two important properties
of unitarily invariant norms are

∥X∥2 ≤ ∥X∥ui, ∥XY Z∥ui ≤ ∥X∥2 · ∥Y∥ui · ∥Z∥2

for any matrices X , Y , and Z of compatible sizes.

3 Backward errors and optimal residuals

We recall our default assumption on K , M ∈ Rn×n : both are symmetric and positive
semi-definite and one of them is definite.

Let U ⊆ Rn and V ⊆ Rn be two k-dimensional subspaces, and let U ∈ Rn×k and
V ∈ Rn×k be the basis matrices for U and V , respectively. As discussed in Sect. 2,
{U ,V} is a pair of deflating subspaces of {K , M} if and only if the equations in (2.3)
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hold for some KR ∈ Rk×k and MR ∈ Rk×k . In this case, {U, V, KR, MR} is an
eigenquadruple.

But in practice, {U ,V} is likely a pair of approximate deflating subspaces in the
sense that the residuals

RK (KR) := KU − V KR, RM (MR) := MV − U MR (3.1)

are tiny in norm for some KR ∈ Rk×k and MR ∈ Rk×k . In this case, {U, V, KR, MR}
is an approximate eigenquadruple. Set

HR =
[

KR
MR

]
, (3.2)

associated with such KR and MR. Different from {U ,V} being exact, now eig(HR) ̸⊂
eig(H) but hopefully some or all eigenvalues of HR are good approximations to some
eigenvalues of H . Naturally if

HRẑzz :=
[

KR
MR

] [
ŷyy
x̂xx

]
= λ

[
ŷyy
x̂xx

]
=: λẑzz,

we may take
(

λ,

[
V ŷyy
Ux̂xx

])
as an approximate eigenpair of H [1,2] in view of our

discussions in the previous section.
In this section, we are interested in answering the following three questions:

1. Given an approximate eigenquadruple, what are the smallest symmetric pertur-
bations 'K and 'M (to K and M , respectively) in norm such that the given
eigenquadruple is an exact eigenquadruple of {K + 'K , M + 'M}?

2. Given a pair of approximate deflating subspaces {U ,V}, what are the smallest
residuals RK (KR) and RM (MR) in norm optimizing among all possible KR and
MR?

3. It turns out that the so-called Rayleigh quotient pair {KRQ, MRQ} is not the one
that minimizes RK (KR) and RM (MR) in norm. But how far are KRQ and MRQ
from their optimal counterparts?

Remark 3.1 The residuals defined by (3.1) for LREP (1.1) can also be recasted into
the residual for the equivalent generalized eigenvalue problem (2.2):

[
M

K

] [
V

U

]
−

[
0 In
In 0

] [
V

U

] [
KR

MR

]
=

[
RM (MR)

RK (KR)

]
.

But this connection appears of no use to us in answering the three questions we just
raised because there seems no existing results that can be simply applied to (2.2) with
its block structure taken advantage of.
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3.1 Optimal backward errors

In this subsection, we shall investigate the first question raised at the beginning of the
section.

Throughout this subsection, {U, V, KR, MR} is assumed an approximate eigen-
quadruple of {K , M} with U, V ∈ Rn×k satisfying, for convenience,

U TU = V TV = Ik, and rank(U TV ) = k, (3.3)

KR, MR ∈ Rk×k . Define RK (KR) and RM (MR) by (3.1), HR as in (3.2), and

SK := (U TV )KR, SM := (V TU )MR. (3.4)

We note that the first condition U TU = V TV = Ik is simply about normalizing the
basis matrices for the associated approximate deflating subspaces in question. While
it is not essential as far as the approximate deflating subspaces are concerned and not
required in (3.1), it removes possible ill-conditioningness in the basis matrices and
make optimal backward errors reflect better how good the subspaces are as approximate
deflating subspaces. In the case of (2.7), the eigenvalues of the associated HR are not
affected by this normalization.

Lemma 3.1 Factorize U TV as U TV = W T
1 W2, where Wi ∈ Rk×k are nonsingular.

Then

HR = diag(W2, W1)
−1

[
0 W − T

1 SK W −1
1

W − T
2 SM W −1

2 0

]
diag(W2, W1). (3.5)

In the case when {U, V, KR, MR} is an exact eigenquadruple of {K , M},

SK = U T KU, SM = V T MV . (3.6)

Proof The Eq. (3.5) can be verified straightforwardly after substituting in SK and SM
as given by (3.4). When {U, V, KR, MR} is exact, we can take KR and MR as in (2.7a).
Now use (3.4) to see (3.6). ⊓-

Perturbations 'K and 'M (to K and M , respectively) such that the given eigen-
quadruple {U, V, KR, MR} is an exact eigenquadruple of {K + 'K , M + 'M} are
the ones that satisfy

(K + 'K )U = V KR, (M + 'M)V = U MR. (3.7)

Since K and M are symmetric, we further restrict 'K and 'M to be symmetric, too.
The first and foremost question is, naturally, if such perturbations 'K and 'M exist,
and then if they do, what the smallest perturbations in norm are. For this purpose, we
need the following lemma:
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Lemma 3.2 ([36, Lemma 1.4]) Given Z1, Z2 ∈ Cn×k , define

S = {S ∈ Cn×n : SH = S, SZ1 = Z2}.

1. S ̸= ∅ if and only if Z1 and Z2 satisfy

Z2 PZH
1

= Z2 and (PZ1 Z2 Z†
1)H = PZ1 Z2 Z†

1 .

2. In the case of S ̸= ∅, any S ∈ S can be expressed by

S = Z2 Z†
1 + (Z†

1)H ZH
2 − (Z†

1)H ZH
2 PZ1 + P⊥

Z1
T P⊥

Z1
,

where T ∈ Cn×n is Hermitian and arbitrary. Moreover,

Sopt = Z2 Z†
1 + (Z†

1)H ZH
2 − (Z†

1)H ZH
2 PZ†

1
∈ S

is the unique matrix such that

∥Sopt∥F = min
S∈S

∥S∥F.

Lemma 3.3 Given approximate eigenquadruple {U, V, KR, MR} satisfying (3.3),
define

L :=
{
('K ,'M) : 'K T = 'K ∈ Rn×n,'MT = 'M ∈ Rn×n satisfying (3.7)

}
.

L ̸= ∅ if and only if SK and SM defined by (3.4) are symmetric.

Proof We first apply Lemma 3.2 with

S = 'K , Z1 = U, Z2 = V KR − KU.

Notice PZH
1

= U TU = I and

PZ1 Z2 Z†
1 = UU T(V KR − KU )U T = U

⎡

⎢⎣(U TV )KR︸ ︷︷ ︸
SK

−U T KU

⎤

⎥⎦ U T

to conclude that 'K exists if and only if SK is symmetric, as was to be shown. Next
we apply Lemma 3.2 again but with S = 'M , Z1 = V , and Z2 = U MR − MV . ⊓-

As we pointed out in Sect. 2, for any given pair of deflating subspaces, the associated
{KR, MR} may be expressed in different ways, e.g., the ones in (2.7a) and (2.7b). Now,
by Lemma 3.3, it becomes clear that (2.7a) is a good choice for any given {U, V }
because it ensures that L ̸= ∅ due to (3.3) and (3.4).

123



L.-H. Zhang et al.

In the case of L ̸= ∅, we define the optimal backward error by1

ζ(U, V, KR, MR) := min
('K ,'M)∈L

(∥'K∥ui + ∥'M∥ui) (3.8)

for the given unitarily invariant norm ∥ · ∥ui. For any particular unitarily invariant
norm, we will attach a suggestive subscript to ζ to indicate the norm used, e.g.,
ζ2(U, V, KR, MR) and ζF(U, V, KR, MR) defined under the spectral norm and the
Frobenius norm, respectively.

Theorem 3.1 Suppose SK and SM defined by (3.4) are symmetric. Then

ζF(U, V, KR, MR) =
√

2∥RK (KR)∥2
F − ∥U TRK (KR)∥2

F

+
√

2∥RM (MR)∥2
F − ∥V TRM (MR)∥2

F,

ζ2(U, V, KR, MR) = ∥RK (KR)∥2 + ∥RM (MR)∥2,

and for a general unitarily invariant norm,

∥RK (KR)∥ui + ∥RM (MR)∥ui ≤ ζ(U, V, KR, MR)

≤ 2
[
∥RK (KR)∥ui + ∥RM (MR)∥ui

]
. (3.9)

Proof Note that the minimization for ζ(U, V, KR, MR) can be separated into the K -
part and M-part. For the Frobenius norm, we can apply directly Lemma 3.2 with
Z1 = U and Z2 = −RK (KR) to get the optimal 'K as

'Kopt(KR) = [−RK (KR)]U T + U [−RK (KR)]T − U [−RK (KR)]TUU T,

(3.10)

whose Frobenius norm is
√

2∥RK (KR)∥2
F − ∥U TRK (KR)∥2

F, and similarly for the
optimal 'M in the Frobenius norm.

Expand U to an orthogonal matrix [U, U⊥] ∈ Rn×n and write

'K = [U, U⊥]
[

T11 T12
T21 T22

]
[U, U⊥]T.

Since 'KU = −RK (KR) by (3.7), we have
[

T11
T21

]
= −

[
U T

U T
⊥

]
RK (KR), and thus

'K = −[U, U⊥]
[

U TRK (KR) RK (KR)TU⊥
U T

⊥RK (KR) T22

]
[U, U⊥]T,

1 Conceivably, there are other possible ones that are equally appropriate. For example, one may define

another optimal backward error by replacing ∥'K∥ui + ∥'M∥ui in (3.8) by
√

∥'K∥2
ui + ∥'M∥2

ui. Such
ζ differs from (3.8) within a constant factor.
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where T22 is symmetric and arbitrary. Therefore

∥'K∥ui =
∥∥∥∥

[
U TRK (KR) RK (KR)TU⊥
U T

⊥RK (KR) T22

]∥∥∥∥
ui

≥
∥∥∥∥

[
U TRK (KR)

U T
⊥RK (KR)

]∥∥∥∥
ui

= ∥RK (KR)∥ui

for any T22. Setting T22 = 0, we have

∥'K∥ui ≤
∥∥∥∥

[
U TRK (KR)

U T
⊥RK (KR)

]∥∥∥∥
ui

+
∥∥∥∥

[
RK (KR)TU⊥

0

]∥∥∥∥
ui

≤ 2∥RK (KR)∥ui.

Similar inequalities hold for the optimal 'M . Together, they yield (3.9).
Finally for the spectral norm, by the dilation theorem of Kreǐn and Kahan (see,

e.g., [14,18] and [38, Theorem 1.2.3]), the optimal 'Kopt in the sense that ∥'K∥2 is
smallest as T22 varies among all possible symmetric matrices is

∥'Kopt∥2 =
∥∥∥∥

[
U TRK (KR)

U T
⊥RK (KR)

]∥∥∥∥
2

= ∥RK (KR)∥2,

and similarly for the optimal 'M in the spectral norm. ⊓-
We remark that the optimal backward perturbation matrices 'K and 'M for the

spectral norm and for the Frobenius norm may be different. In particular, the optimal
{'K ,'M} for the Frobenius norm is unique and can be explicitly stated as by (3.10),
while the optimal {'K ,'M} for the spectral norm, in general, is not unique and we
do not have an explicit expression for it.

3.2 Optimal residuals

Theorem 3.1 gives the minimal spectral norm and Frobenius norm for an approximate
eigenquadruple of {K , M}. In this subsection, we shall investigate the second question
raised at the beginning of the section.

Given a pair of approximate deflating subspaces {U ,V}, there are many KR ∈ Rk×k

and MR ∈ Rk×k , e.g., the ones in the form of (3.11) below, which, combined
with the basis matrices U and V for U and V , lead to approximate eigenquadru-
ple of {K , M}. Each approximate eigenquadruple gives rise to an optimal backward
error ζ(U, V, KR, MR) as defined by (3.8). A natural question then is how small
ζ(U, V, KR, MR) can get by varying KR and MR. Because of Lemma 3.3, we will
consider only these KR and MR:

KR = (U TV )−1SK and MR = (V TU )−1SM , (3.11)

where SK , SM ∈ Rk×k are symmetric.
Our investigation reveals a similar conclusion to that for the standard nonsymmetric

eigenvalue problem in [15]: the Rayleigh quotient pair {KRQ, MRQ} in (2.8) does not
achieve the minimum in general, but is a reasonably good and computable choice.
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We begin by the case for k = 1. In this case, KR = SK /(uuuTvvv) is a scalar, and by
calculation, the optimal KR in the spectral norm (using ∥uuu∥2 = ∥vvv∥2 = 1) is

KR = uuuT Kvvv (3.12)

which is different from

KRQ = uuuT Kuuu/(uuuTvvv)

unless uuu = ±vvv or {R(uuu),R(vvv)} is already a pair of deflating subspaces. For the
Frobenius norm, simple calculations yield the optimal KR as

KR = 2uuuT Kvvv − uuuT Kuuu(uuuTvvv)

2 − (uuuTvvv)2 (3.13)

which is not equal to KRQ, either. It is also noticed that the optimal KR in (3.12) for
the spectral norm differs from the one in (3.13) for the Frobenius norm.

In general for k > 1, it seems not easy to derive closed formulas for the optimal
KR and MR with respect to any unitarily invariant norm. But for the Frobenius norm,
the closed solutions for the optimal KR and MR can be derived as Theorem 3.2 below
shows.

Theorem 3.2 For the Frobenius norm, there is a unique {KR, MR} in the form of
(3.11) that minimizes ζF(U, V, KR, MR), and the corresponding SK and SM are

SK = 2
∫ ∞

0
e(Ik−2QT Q)t (QTV T KU + U T K V Q − U T KU )e(Ik−2QT Q)t dt,

(3.14a)

SM = 2
∫ ∞

0
e(Ik−2Q QT)t (QU T MV + V T MU QT − V T MV )e(Ik−2Q QT)t dt,

(3.14b)

where Q = (U TV )−1.

Proof First, upon using the facts2 [12, (6.7) in Chapter 15]:

∥Z∥2
F = trace(ZT Z) and

∂ trace(Z S)

∂S
= Z + ZT − Diag(Z) for S = ST,

we see that the first order optimality conditions for minimizing

2∥RK (KR)∥2
F − ∥U TRK (KR)∥2

F and 2∥RM (MR)∥2
F − ∥V TRM (MR)∥2

F

2 For a function f with a matrix argument X ∈ Rn×m , its partial derivative ∂ f (X)
∂ X ∈ Rn×m with its (i, j)th

entry ∂ f (X)
∂ X(i, j)

[12, Chapter 15].
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are

SK (2QT Q − Ik) + (2QT Q − Ik)SK − Diag(SK [2QT Q − Ik])
= −2U T KU + 2(QTV T KU + U T K V Q) + Diag(U T KU − 2QTV T KU ),

(3.15a)

SM (2Q QT − Ik) + (2Q QT − Ik)SM − Diag(SM [2Q QT − Ik])
= −2V T MV + 2(QU T MV + V T MU QT) + Diag(V T MV − 2QU T MV ),

(3.15b)

where Diag(Z) stands for the diagonal matrix whose diagonal entries are those of Z .
Equations in (3.15) are linear matrix equations. Denoting by3

X = SK (2QT Q − Ik), X̂ = −U T KU + 2QTV T KU,

and noting that

Diag(X) = Diag
(

X + XT

2

)
and Diag(X̂) = Diag

(
X̂ + X̂T

2

)
,

we can rewrite (3.15a) as

X + XT − Diag(X) = X̂ + X̂T − Diag(X̂).

By comparing the diagonals on both sides, we know Diag(X) = Diag(X̂), and thus
(3.15a) reduces to X + XT = X̂ + X̂T, or

SK (Ik − 2QT Q) + (Ik − 2QT Q)SK = 2(U T KU − QTV T KU − U T K V Q),

(3.16)

which is a Lyapunov equation. Since Ik − 2QT Q is negative definite due to (3.3),
we know that (3.16) admits a unique solution which is given by (3.14a). The same
argument leads to (3.14b) for SM . The proof is completed. ⊓-

Even though (3.14a) and (3.14b) give closed-form solutions, they still involve the
integrations over t ∈ [0,∞). For the special case R(U ) = R(V ), we can take U = V
and thus Q = I , (3.14) yields SK = U T KU and SM = V T MV .

3.3 Near optimality of the Rayleigh quotient pair

Previously, we introduced Rayleigh quotient pair {KRQ, MRQ}:

KRQ = (U TV )−1U T KU and MRQ = (V TU )−1V T MV . (2.8)

3 This idea of turning (3.15a) into the more “friendly” (3.16) is due to one of the referees.

123



L.-H. Zhang et al.

It is in general not the optimal pair that minimizes ζ(U, V, KR, MR) in the Frobe-
nius norm and the spectral norm. So for a given pair of approximate deflating
subspaces {U ,V}, there are better pairs {KR, MR}, in the sense of giving smaller
ζ(U, V, KR, MR), than the Rayleigh quotient pair to extract partial spectral informa-
tion for H from.

On the other hand, consider

HRQ =
[

KRQ
MRQ

]
. (2.9)

Factorize U TV as U TV = W T
1 W2, where Wi ∈ Rk×k are nonsingular. Recall the

structure-preserving restriction

HSR =
[

0 W − T
1 U T KU W −1

1
W − T

2 V T MV W −1
2 0

]

introduced in [1,2]. It can be verified that

HRQ = [diag(W2, W1)]−1 HSR[diag(W2, W1)],

and thus HRQ and HSR have the same eigenvalues. In [1,2], it was the eigenvalues of
HSR, and thus of HRQ, too, that were used to approximate part of the eigenvalues of
H , given the pair of approximate deflating subspaces {U ,V}. There, it was also proved
that such eigenvalue approximation is optimal in the sense of the trace minimization
principle obtained there. Therefore the Rayleigh quotient pair must be a reasonably
good pair and cannot be too far from the optimal one {KR, MR} in the form of (3.11)
that minimizes ζ(U, V, KR, MR). In this subsection, we will justify such a claim.

Recall our assumptions (3.3), and let KR and MR be in the form of (3.11), where
SK and SM are symmetric. The angle between U = R(U ) and V = R(V ) is defined
by

θmax(U ,V) := arccos σmin(U TV ),

where σmin(U TV ) is the smallest singular value of U TV .
Owing to the definition of ζ(U, V, KR, MR) and Theorem 3.1, we will focus on

minimizing the norms of RK (KR) and RM (MR), separately.

Lemma 3.4 For any KR, MR, and unitarily invariant norm ∥ · ∥ui,

∥KRQ − KR∥ui ≤ α · ∥RK (KR)∥ui, (3.17a)

∥MRQ − MR∥ui ≤ α · ∥RM (MR)∥ui, (3.17b)

where

α =
√

1 + sin θmax(U ,V)

cos θmax(U ,V)
. (3.18)
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Proof We will prove (3.17a) only since (3.17b) can be proved in the same way. Let
V⊥ ∈ Rn×(n−k) that makes [V, V⊥] an orthogonal matrix and set P = [U, V⊥]. Write

RK (KR) = KU − V KR

= (KU − V KRQ) + V (KRQ − KR)

= RK (KRQ) + V (KRQ − KR). (3.19)

Now using U TRK (KRQ) = 0 and V T
⊥ V = 0, we get

PTRK (KR) =
[

U TV (KRQ − KR)

V T
⊥RK (KRQ)

]
.

Therefore

∥PTRK (KR)∥ui ≥ ∥(U TV )(KRQ − KR)∥ui

≥ σmin(U TV ) · ∥KRQ − KR∥ui, (3.20)

∥PTRK (KR)∥ui ≤ ∥P∥2∥RK (KR)∥ui

=
√

1 + sin θmax(U ,V) ∥RK (KR)∥ui. (3.21)

In deriving (3.21), we have used

PT P =
[

Ik U TV⊥
V T

⊥U In−k

]
⇒ ∥P∥2

2 = ∥PT P∥2 = 1 + ∥U TV⊥∥2

= 1 + sin θmax(U ,V).

Combining (3.20) and (3.21), we get (3.17a). ⊓-

Theorem 3.3 For any unitarily invariant norm ∥ · ∥ui,

min ∥KRQ − KR∥ui ≤ α · min ∥RK (KR)∥ui, (3.22a)

min ∥MRQ − MR∥ui ≤ α · min ∥RM (MR)∥ui, (3.22b)

and

min ∥RK (KR)∥ui ≤ ∥RK (KRQ)∥ui ≤ (1 + α) · min ∥RK (KR)∥ui, (3.23a)

min ∥RM (MR)∥ui ≤ ∥RM (MRQ)∥ui ≤ (1 + α) · min ∥RM (MR)∥ui, (3.23b)

where the “min” in (3.22a) and (3.23a) are taken over all KR in the form of (3.11)
with symmetric SK , and the ones in (3.22b) and (3.23b) are taken over all MR in the
form of (3.11) with symmetric SM , and α is given by (3.18).
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Proof The inequalities in (3.22) are direct consequences of Lemma 3.4. In what fol-
lows, we will prove (3.23a) only since (3.23b) can be proved in the same way. The
first inequality in (3.23a) is evident. For the second inequality there, we note

RK (KRQ) = RK (KR) − V (KRQ − KR)

by (3.19) and thus

∥RK (KRQ)∥ui ≤ ∥RK (KR)∥ui + ∥V (KRQ − KR)∥ui

= ∥RK (KR)∥ui + ∥KRQ − KR∥ui

≤ (1 + α)∥RK (KR)∥ui (3.24)

for all KR in the form of (3.11) with symmetric SK . Minimizing the right-hand side
of (3.24) over all SK leads to the second inequality in (3.23a). ⊓-

Although the Rayleigh quotient pair {K RQ, MRQ} may not be optimal in the sense
of achieving min ∥RK (KR)∥ui and min ∥RM (KM)∥ui, respectively, Theorem 3.3 says
that it is not too far from the optimal, provided α is not too big: the smaller α is,
the closer to the optimal the Rayleigh quotient pair {K RQ, MRQ} will be. Note α is
proportional to θmax(U ,V) which, in the limit, approaches θmax(Uexact,Vexact), where
{Uexact,Vexact} is the pair that {U ,V} is supposed to approximate. So it is an intrinsic
quantity of the targeted deflating subspaces.

4 Residual-based error bounds for eigenvalues

As preparation, we first cite an eigenvalue perturbation result for a positive definite
pencil in Subsect. 4.1 and apply it to LREP (1.1) in Subsect. 4.2, and then come to
develop residual based error bounds in Subsect. 4.3. Results in both Subsects. 4.1 and
4.2 are of independent interests on their own from the rest of this article.

In what follows, A ≻ 0 means that A is Hermitian and positive definite.

4.1 A perturbation bound for positive definite pencil

Consider a Hermitian matrix pencil A − λB, where A, B ∈ Cn×n are Hermitian. It is
called a positive definite pencil if there is a λ0 ∈ R such that A −λ0 B ≻ 0 [16,19,25].

Suppose that A − λB is a positive definite pencil and B is nonsingular. Let n+
and n− be the numbers of positive and negative eigenvalues of B, respectively. Note
n+ + n− = n. It is known [25] that A − λB has only real eigenvalues which we will
divide into two groups {λ−

i }n−
i=1 and {λ+

i }n+
i=1 and which can be arranged in the order

as

λ−
n− ≤ · · · ≤ λ−

1 < λ+
1 ≤ · · · ≤ λ+

n+ .
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Moreover, A −λB is diagonalizable [10,25]: there exists nonsingular Z ∈ Cn×n such
that

ZH AZ = diag(−&−,&+), ZH B Z = J := diag(−In− , In+), (4.1)

where &± = diag(λ±
1 , λ±

2 , . . . , λ±
n±).

Lemma 4.1 ([24, Theorem A.2]) Let A − λB be a positive definite pencil with non-
singular B and with the eigen-decomposition (4.1). Suppose it is perturbed to another
positive definite pencil Ã − λB̃ with nonsingular B̃, and adopt the same notations for
this perturbed pencil as those for A − λB except with a tilde on each symbol. Then
for any unitarily invariant norm ∥ · ∥ui,

∥&̃ − &∥ui ≤ ∥Z∥2∥Z̃∥2

(
∥ Ã − A∥ui + ξ∥B̃ − B∥ui

)
,

where & = diag(&−,&+) and ξ = max{∥&∥2, ∥&̃∥2}.
The concept of positive definite pencil is closely related to that of the so-called

definite pencil in the past literature [32,34,35] which requires some real linear com-
bination of A and B to be positive definite. The latter is more general, encompassing
the former. In general, B may be singular, but Lemma 4.1 excludes the case. When B
is singular, infinite eigenvalues occur. In order to be able to deal with both finite and
infinite eigenvalues at the same time, in the literature number pairs (α,β) were used
to represent eigenvalues α/β which is finite if β ̸= 0 and infinite otherwise and the
chordal distance was used to measure the difference between two eigenvalues, finite
or not. Lemma 4.1 resembles various perturbation bounds in [8,22,23,32,34] for the
definite pencils.

4.2 Perturbation bounds for LREP

Consider LREP (1.1) with K ≻ 0 and M ≻ 0. It is equivalent to the generalized
eigenvalue problem for the matrix pencil [1]

AAA − λBBB ≡
[

M
K

]
− λ

[
0 In
In 0

]
. (4.2)

AAA − λBBB is a positive definite pencil because AAA − 0 · BBB = AAA ≻ 0. Recall Theorem 2.1.
We find the eigen-decomposition for AAA − λBBB:

ZT AAAZ = diag(&,&), ZTBBB Z = diag(−In, In), (4.3)

where

Z =
[

%&1/2 %&1/2

−$&−1/2 $&−1/2

]
. (4.4)

The next theorem bounds Z and its inverse from above and below.
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Theorem 4.1 For Z in (4.4) with &, $ and % defined in Theorem 2.1,

2γ1 ≤ ∥Z∥2
2 ≤ 2γ2,

1
2

γ1 ≤ ∥Z−1∥2
2 ≤ 1

2
γ2, (4.5)

where

γ1 = max
{
∥M−1∥2λ1,

∥M∥2

λn

}
, γ2 = max

{
∥M−1∥2λn,

∥M∥2

λ1

}
.

They are also valid if all occurrences of M are replaced by K .

Proof It can be verified that

Z ZT = 2
[
%&%T 0

0 $&−1$T

]
, Z− T Z−1 = 1

2

[
$&−1$T 0

0 %&%T

]
.

Therefore

∥Z∥2
2 ≤ 2 max

{

∥%∥2
2λn,

∥$∥2
2

λ1

}

= 2 max
{
∥M−1∥2λn,

∥M∥2

λ1

}
,

∥Z∥2
2 ≥ 2 max

{

∥%∥2
2λ1,

∥$∥2
2

λn

}

= 2 max
{
∥M−1∥2λ1,

∥M∥2

λn

}
,

∥Z−1∥2
2 ≤ 1

2
max

{
∥$∥2

2

λ1
, ∥%∥2

2λn

}

= 1
2

max
{∥M∥2

λ1
, ∥M−1∥2λn

}
,

∥Z−1∥2
2 ≥ 1

2
max

{
∥$∥2

2

λn
, ∥%∥2

2λ1

}

= 1
2

max
{∥M∥2

λn
, ∥M−1∥2λ1

}
,

where we have used M = $$T and M−1 = %%T. Together, they yield (4.5). To see
the last claim of this theorem, we let %̂ = %& and $̂ = $&−1. It can be verified that

K = %&2%T = %̂%̂
T
, M = $$T = $̂&2$̂

T
, Z =

[
%̂&−1/2 %̂&−1/2

−$̂&1/2 $̂&1/2

]
,

and K −1 = $̂$̂
T. Following the same lines of argument as above, we see all inequal-

ities in (4.5) are valid if all occurrences of M are replaced by K . ⊓-
In the rest of this section, we shall adopt a notational convention: any perturbed

quantity is denoted by the same symbol but with a tilde. A straightforward application
of Lemma 4.1 leads to

Theorem 4.2 For LREP (1.1) with K ≻ 0 and M ≻ 0 admitting the decompositions
in Theorem 2.1, let Z be defined by (4.4). Suppose also K̃ ≻ 0 and M̃ ≻ 0. Then for
any unitarily invariant norm ∥ · ∥ui,

∥ diag(&̃, &̃) − diag(&,&)∥ui ≤ ∥Z∥2∥Z̃∥2∥ diag(M̃, K̃ ) − diag(M, K )∥ui. (4.6)
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In particular,

max
1≤i≤n

|̃λi − λi | ≤ ∥Z∥2∥Z̃∥2 max{∥M̃ − M∥2, ∥K̃ − K∥2}, (4.7a)
√√√√

n∑

i=1

|̃λi − λi |2 ≤ 1√
2
∥Z∥2∥Z̃∥2

√
∥M̃ − M∥2

F + ∥K̃ − K∥2
F. (4.7b)

In the left-hand side of (4.6), the difference between &̃ and & appears twice. This
repetition is handily removed for the spectral and Frobenius norm in (4.7). In general,
it is not so easy to remove the repetition without weakening the inequality a little bit.
In the corollary below, we show one way of doing it.

Corollary 4.1 Under the conditions of Theorem 4.2,

∥&̃ − &∥ui ≤ ∥Z∥2∥Z̃∥2

[
∥M̃ − M∥ui + ∥K̃ − K∥ui

]
. (4.8)

Proof It is suffices to show that (4.8) holds for all Ky Fan ℓ-norm ∥ · ∥(ℓ) which is the
sum of the ℓ largest singular values of its argument [5,13,33].

Let {i1, i2, . . . , in} be the permutation of {1, 2, . . . , n} such that

|̃λi1 − λi1 | ≥ · · · ≥ |̃λin − λin |.

For 1 ≤ ℓ ≤ n, we have

∥ diag(&̃, &̃) − diag(&,&)∥(2ℓ) = 2
ℓ∑

j=1

|̃λi j − λi j |

= 2∥&̃ − &∥(ℓ),

∥ diag(M̃, K̃ ) − diag(M, K )∥(2ℓ) ≤ ∥M̃ − M∥(2ℓ) + ∥K̃ − K∥(2ℓ)

≤ 2
[
∥M̃ − M∥(ℓ) + ∥K̃ − K∥(ℓ)

]
.

By Theorem 4.2, we have

∥&̃ − &∥(ℓ) ≤ ∥Z∥2∥Z̃∥2

[
∥M̃ − M∥(ℓ) + ∥K̃ − K∥(ℓ)

]
,

as expected. ⊓-

Another way to develop perturbation bounds for λi is through noticing the fact that4

the singular values of K 1/2 M1/2 are 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn . This makes a theorem
of Mirsky [33, p.204] applicable.

4 This is actually true even for K ≽ 0 and M ≽ 0. But in stating Theorem 4.3, we stick to our default
assumption on K and M just for consistency.
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Theorem 4.3 For LREP (1.1) with K ≽ 0 and M ≻ 0, suppose K̃ ≽ 0 and M̃ ≻ 0.
Then for any unitarily invariant norm ∥ · ∥ui,

∥&̃ − &∥ui ≤ ∥K̃ 1/2 M̃1/2 − K 1/2 M1/2∥ui. (4.9)

One unsatisfactory part of this theorem is that the right-hand side of (4.9) is not
explicitly expressed in terms of the norms of K̃ − K and M̃ − M whose bounds are
usually known. But this can be overcome by writing, e.g.,

K̃ 1/2 M̃1/2 − K 1/2 M1/2 = K̃ 1/2(M̃1/2 − M1/2) + (K̃ 1/2 − K 1/2)M1/2

and then bound the norms of K̃ 1/2 − K 1/2 and M̃1/2 − M1/2 in terms of the norms
of K̃ − K and M̃ − M , respectively. For example, if K̃ 1/2 + K 1/2 ≽ 2ζ In ≻ 0, then
[4,21,45]

∥K̃ 1/2 − K 1/2∥ui ≤ 1
2ζ

∥K̃ − K∥ui.

We shall omit the detail of bounding the right-hand side of (4.9) along this line to save
space.

We note that Theorem 4.3 requires a weaker condition on K and M than Theorem 4.2
does, but there is a consequence: the right-hand side of (4.9) cannot be bounded in terms
of the norms of K̃ −K and M̃−M unless both K̃ 1/2+K 1/2 ≻ 0 and M̃1/2+M1/2 ≻ 0.

Remark 4.1 We point out that the perturbation results in [6,7,28] can be used to derive
bounds on the differences λ̃2

i − λ2
i by noticing item (iii) of Theorem 2.1: K M and

K̃ M̃ are diagonalizable and have real spectra. As an example, by [6, Theorem 3.1],
we have the following: For LREP (1.1) with K ≽ 0 and M ≻ 0, suppose K̃ ≽ 0 and
M̃ ≻ 0. Then for any unitarily invariant norm ∥ · ∥ui,

∥&̃2 − &2∥ui ≤ [κ(M)κ(M̃)]1/4∥M̃ K̃ − M K∥ui. (4.10)

Based on this result, different residual based error bounds from those in the next
subsection are readily established. But for this article, we shall limit ourselves on
bounding the differences λ̃i − λi only, and if needed, residual based error bounds on
λ̃2

i − λ2
i can be obtained in the similar way.

4.3 Residual based error bounds for LREP

In this subsection, we shall focus on residual based error bounds derivable through
Theorem 4.2 and its Corollary 4.1 only and omit those derivable through Theorem 4.3
and (4.10) in Remark 4.1 for two reasons. The first reason is similarity in technicality
and the second one is that the bounds may be in different forms but are comparable in
sharpness.
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Consider an approximate eigenquadruple {U, V, KR, MR} of {K , M}, where
U, V ∈ Rn×k satisfying, as before,

U TU = V TV = Ik, and rank(U TV ) = k, (3.3)

and KR, MR ∈ Rk×k , and define RK (KR) and RM (MR) by (3.1) and HR by (3.2). In
Subsect. 3.1, we showed that {U, V, KR, MR} of {K , M} is an exact eigenquadruple
of

{K̃ , M̃} := {K + 'K , M + 'M} (4.11)

with bounds in norm on 'K and 'M in terms of the residuals RK (KR) and RM (MR).
If the two residuals are sufficiently small, then K̃ ≻ 0 and M̃ ≻ 0 and the eigenvalue
problem for the corresponding H̃ is again an LREP, making all results in Subsect. 4.2
applicable.

Lemma 4.2 Suppose ∥RK (KR)∥2 < σmin(K ) and ∥RM (MR)∥2 < σmin(M). Then
HR given in (3.2) is similar to an LREP of 2k × 2k. Consequently, all eigenvalues of
HR are real and they come in {±λ} pairs.

Proof By Theorem 3.1, the approximate exact eigenquadruple {U, V, KR, MR} of
{K , M} is an exact eigenquadruple of {K̃ , M̃} as in (4.11) with

∥'K∥2 = ∥RK (KR)∥2 < σmin(K ), ∥'M∥2 = ∥RM (MR)∥2 < σmin(M).

Now apply Lemma 3.1 to conclude that HR is similar to

[
0 W − T

1 (U T K̃U )W −1
1

W − T
2 (V T M̃V )W −1

2 0

]

whose eigenvalue problem is an LREP, where Wi are as defined in Lemma 3.1. ⊓-

In what follows, whenever HR is similar to an LREP of 2k × 2k, we will denote its
eigenvalues by

−µk ≤ · · · ≤ −µ1 < µ1 ≤ · · · ≤ µk .

Let Z ∈ R2n×2n be the one that diagonalizes AAA − λBBB defined in (4.2) and (4.3) and
similarly Z̃ diagonalizes ÃAA − λB̃BB which is similarly defined in terms of K̃ and M̃ .

The appearance of Z̃ is the unsatisfactory part of the results below since 'K and
'M are usually unknown. But we argue that it does not necessarily invalidate the
usefulness of these results. Because for sufficiently small RK (KR) and RM (MR) in
norm, it is reasonable to expect ∥Z̃∥2 ≈ ∥Z∥2 and the latter can be bounded as in
Theorem 4.1.
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Theorem 4.4 If ∥RK (KR)∥2 < σmin(K ) and ∥RM (MR)∥2 < σmin(M), then there
are k positive eigenvalues of H:

λi1 ≤ · · · ≤ λik

such that

max
1≤ j≤k

|λi j − µ j | ≤ ∥Z∥2∥Z̃∥2 max{∥RK (KR)∥2, ∥RM (MR)∥2}. (4.12)

Proof The conditions of the theorem ensure that {U, V, KR, MR} is an exact eigen-
quadruple of {K̃ , M̃} in (4.11) with ∥'K∥2 = ∥RK (KR)∥2 and ∥'M∥2 =
∥RM (MR)∥2. Thus µ j for 1 ≤ j ≤ k are among the positive eigenvalues of H̃ . Let
µ j be the i j th positive eigenvalue of H̃ . The inequality (4.12) is now a consequence
of (4.7a). ⊓-

In a similar way, we can prove

Theorem 4.5 If
√

2∥RK (KR)∥F < σmin(K ) and
√

2∥RM (MR)∥F < σmin(M), then
there are k eigenvalues of H:

λi1 ≤ · · · ≤ λik

such that
√ ∑

1≤ j≤k

|λi j − µ j |2 ≤ 1√
2
∥Z∥2∥Z̃∥2

[
2∥RK (KR)∥2

F − ∥U TRK (KR)∥2
F

+ 2∥RM (MR)∥2
F − ∥V TRM (MR)∥2

F

]1/2
. (4.13)

Proof The conditions on ∥RK (KR)∥F and ∥RM (MR)∥F ensure that H̃ defined with
the optimal 'K and 'M in the Frobenius norm is an LREP because, by the proof of
Theorem 3.1,

∥'K∥2 ≤ ∥'K∥F =
√

2∥RK (KR)∥2
F − ∥U TRK (KR)∥2

F

≤
√

2∥RK (KR)∥F < σmin(K )

and similarly ∥'M∥2 < σmin(M). The inequality (4.13) is now a consequence of
(4.7b). ⊓-

The conditions on RK (KR) and RM (MR) in Theorem 4.5 seem to be stronger than
necessary at first sight. It would be more natural to have the same conditions as stated
in Theorem 4.4. The thing is that we don’t know if ∥'K∥2 ≤ ∥RK (KR)∥2 for the
optimal 'K in the Frobenius norm while we do know ∥'K∥2 = ∥RK (KR)∥2 for
the optimal 'K in the spectral norm. This same reasoning explains the seemingly
stronger than necessary conditions in Theorem 4.6 below for any unitarily invariant
norm ∥ · ∥ui.
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Theorem 4.6 If 2∥RK (KR)∥ui < σmin(K ) and 2∥RM (MR)∥ui < σmin(M), then
there are k eigenvalues of H:

λi1 ≤ · · · ≤ λik

such that

∥0̃ − 0∥ui ≤ 2∥Z∥2∥Z̃∥2

[
∥RK (KR)∥ui + ∥RM (MR)∥ui

]
,

where 0 = diag
(
λi1 , . . . , λik

)
and 0̃ = diag

(
µ1, . . . , µk

)
.

Proof The conditions on ∥RK (KR)∥ui and ∥RM (MR)∥ui ensure that H̃ defined with
the optimal 'K and 'M in the unitary invariant norm is an LREP because, by the
proof of Theorem 3.1,

∥'K∥2 ≤ ∥'K∥ui ≤ 2∥RK (KR)∥ui < σmin(K )

and similarly ∥'M∥2 < σmin(M). By Corollary 4.1, we have

∥0̃ − 0∥ui ≤ ∥&̃ − &∥ui

≤ ∥Z∥2∥Z̃∥2

[
∥'K∥ui + ∥'M∥ui

]

≤ 2∥Z∥2∥Z̃∥2

[
∥RK (KR)∥ui + ∥RM (MR)∥ui

]
,

as expected. ⊓-

Remark 4.2 For a given pair of approximate deflating subspaces {U ,V}, as in [1,2],
likely we will use the associated Rayleigh quotient pair {KRQ, MRQ} to make up an
approximate eigenquadruple {U, V, KRQ, MRQ} of {K , M}. Theorems 4.4, 4.5, and
4.6 can be applied with KR = KRQ and MR = MRQ to arrive at corresponding error
bounds on eigenvalue approximations by the eigenvalues of HRQ in (2.9).

Remark 4.3 The error bounds for eigenvalues we have so far are of linear order, i.e.,
proportional to norms of K̃ −K and M̃−M , or norms of KRQ and MRQ. Improvements
are conceivably possible to derive error bounds that are of the second order, i.e.,
quadratically dependent on the norms of K̃ − K and M̃ − M , or norms of KRQ and
MRQ if certain gap information between those eigenvalues being approximated and the
rest is known and positive. In part, this is because the close resemblance of LREP to the
symmetric eigenvalue problem for which quadratic residual error bounds are abundant
[9,20,29,30,33]. In fact, Kressner, Pandur, and Shao [17, (19)] presented a quadratic
residual error bound for the eigenvalue problem we discussed in Sect. 4.1. Given
the rich structure in LREP (1.1), we expect that many results in the aforementioned
literature could be extended. But since this paper is already lengthy, we shall pursue
a systematic study for quadratic residual error bounds elsewhere.
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5 Compare with the standard eigenvalue problems

Analogous questions to what we have been investigating so far had been thoroughly
studied for the standard eigenvalue problems. Our results here resemble those in the
literature. In what follows, we give a brief review on the related results.

Consider the eigenvalue problem for C ∈ Cn×n . Suppose X ∈ Cn×k whose columns
span an approximate invariant subspace, i.e., C X ≈ X D for some D ∈ Ck×k in the
sense that

R(D) = C X − X D

is relatively small in norm. Let

E1 := {E ∈ Cn×n : (C + E)X = X D}.

Each E in E1 makes R(X) an invariant subspace of C + E associated with its partial
spectrum eig(D). Define the optimal backward error by

η(X, D) := min
E∈E1

∥E∥ui.

It is shown [38, Theorem 2.4.2] that

η(X, D) = ∥R(D)∥ui.

In the other word, for any given approximate eigen-matrix pair {D, X}, the minimal
norm ∥E∥ui among all possible backward perturbations is given by ∥R(D)∥ui. The
next question is to minimize η(X, D) as D varies. If also XH X = Ik , we have (see,
e.g., [38, Theorem 2.4.1], [36, Theorem 2.1], [33, Theorem IV.1.15])

min
D∈Ck×k

∥R(D)∥ui = ∥C X − X (XHC X)∥ui,

i.e., the Rayleigh quotient matrix D = XHC X achieves the minimum of ∥R(D)∥ui
over D ∈ Ck×k , and it is unique for ∥ · ∥ui = ∥ · ∥F.

For Hermitian C ∈ Cn×n , it is often desirable to enforce that C + E remains
Hermitian too. In this case, define [37]

η(X, D) := min
E∈E2

∥E∥ui,

where

E2 :=
{

E = EH ∈ Cn×n : (C + E)X = X D
}
.
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Suppose XH X = Ik . It is shown that (a special case of the main theorem in [15, p.478])

η2(X, D) := min
E∈E2

∥E∥2 = ∥R(D)∥2,

ηF(X, D) := min
E∈E2

∥E∥F =
√

2∥R(D)∥2
F − ∥XHR(D)∥2

F ,

but no closed formula for η(X, D) for a general ∥ · ∥ui is known. Moreover, among all
Hermitian D ∈ Ck×k , the Rayleigh quotient D = XHC X achieves the minimums for
η(X, D) for all ∥ · ∥ui [36, Theorem 2.2], i.e.,

XHC X = argminD η(X, D).

Let the eigenvalues of C and those of D = XHC X be

λ1 ≤ · · · ≤ λn, µ1 ≤ · · · ≤ µk,

respectively. As a consequence of well-known perturbation results for Hermitian matri-
ces [33], there exist i1 < i2 < · · · < ik such that

max
1≤ j≤k

|λi j − µ j | ≤ ∥R(D)∥2,

√ ∑

1≤ j≤k

|λi j − µ j |2 ≤
√

2∥R(D)∥2
F − ∥XHR(D)∥2

F .

Similar inequalities in a unitarily invariant norm can be derived, too [36]. Quadratic
residual error bounds are also available if certain eigenvalue gap information is known
[9,20,29,30,33].

Finally, for (nonnormal) C ∈ Cn×n with the availability of both left and right
approximate invariant subspaces, Kahan, Parlett, and Jiang [15] analyzed the back-
ward perturbation and the residuals for a given quadruple {XL, XR, DL, DR}, where
{DR, XR} and {DL, XL} are approximate right and left eigen-matrix pairs of C , respec-
tively, and XL, XR ∈ Cn×k have orthonormal columns. Let

E3 :=
{

E ∈ Cn×n : (C + E)XR = XR DR and XH
L (C + E) = DL XH

L
}
,

RR(DR) = C XR − XR DR, RL(DL) = XH
L C − DL XH

L .

It is shown that [15] E3 ̸= ∅ if and only if DR = (XH
L XR)−1 DL(XH

L XR) and

η2(XL, XR, DL, DR) := min
E∈E3

∥E∥2 = max{∥RL(DL)∥2, ∥RR(DR)∥2},

ηF(XL, XR, DL, DR) := min
E∈E3

∥E∥F

=
√

∥RL(DL)∥2
F + ∥RR(DR)∥2

F − ∥XH
L RR(DR)∥2

F.
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In this case, the Rayleigh quotient matrices

DR;RQ = (XH
L XR)−1 XH

L C XR, DL;RQ = XH
L C XR(XH

L XR)−1

in general do not achieve the minimum of either η2 or ηF any more over all possible
DR and DL.

6 Concluding remarks

In approximations for the standard eigenvalue problem, in the past much attention
was drawn to investigate the approximation accuracy by a given approximate invari-
ant subspace. Numerous results some of which are reviewed in Sect. 5 have been
obtained and can be found in, e.g., [30,33,36,38] and references therein. They are
particularly important for today’s large scale eigenvalue computations because often
it is approximate invariant subspaces that get computed first and then the interested
eigenvalues/eigenvectors are then extracted from projecting the problems by approx-
imate invariant subspaces into much smaller eigenvalue problems.

While the linear response eigenvalue problem (1.1) is a standard eigenvalue prob-
lem, it has its own block and symmetry structures that are not exploited in the existing
theory. Keeping these special structures in mind, in this paper, we have developed a
backward perturbation analysis and error bounds for the approximation accuracy of
eigenvalues generated by a pair of approximate deflating subspaces or eigenquadruple.
Our results are specific for LREP and cannot be derived from the existing ones such as
those in Sect. 5, and they are useful for convergence analysis and designing stopping
criteria for iterative methods for LREP.

We have assumed so far that K and M in LREP (1.1) under investigation are
real and symmetric, beside assumptions on their definiteness. We remark that all
results are valid for complex Hermitian K and M , with the same assumptions on their
definiteness, after minor changes: replacing all R by C and all superscripts (·)T by
complex conjugate transposes (·)H.
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