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0. Introduction

The theory of convexity is a cornerstone of geometry, analysis and related areas in
mathematics. Recently in a series of articles ([18–20] and references therein), Harvey and
Lawson systematically explored the notions of plurisubharmonicity and convexity in the
context of differential geometry. It has a long history for the concepts of pseudoconvex-
ity and plurisubharmonicity in several complex analysis and complex geometry, but it
has rare attention in more geometric situations until Harvey and Lawson’s innovative
development in geometric convexity. They also studied potential theory for geometric
plurisubharmonic functions and interesting applications to the theory of nonlinear par-
tial differential equations. A number of results in complex analysis and complex geometry
turn out to carry over to more general setting. In [20], Harvey and Lawson introduced
the notion of p-convexity and p-plurisubharmonicity on Riemannian manifolds. They ob-
tained a deep result which is an analogue of the Levi problem in complex analysis, i.e.,
local p-convexity implies global p-convexity. This hopefully will enrich the function the-
ory in geometric analysis. For a compact Riemannian manifold with smooth boundary,
the concept of p-convexity was first introduced by Sha [29]. In [29], it was proved that
any Riemannian manifold with nonnegative sectional curvature and p-convex bound-
ary has the homotopy type of a CW-complex of dimension < p. This result was later
strengthened by Wu [32]. Note that in [29], the p-convexity of a Riemannian manifold
(M,ds2) with boundary is equivalent to that ∂M is strictly p-convex in the sense of
Harvey and Lawson. The notion of p-convexity in the sense of Harvey and Lawson is
different from that introduced by Andreotti and Grauert (cf. [1] and [2]) in the context
of complex analytic geometry which is defined by certain conditions on the number of
negative or positive eigenvalues of the Levi form. The main difference is that the notion
of p-convexity in the sense of Andreotti and Grauert only depends on the underlying
complex structure (which is used to define the Levi form), while in the Riemannian
case the notion of p-convexity of Harvey and Lawson does depend on the given metric,
and this feature brings difficulties in introducing complete metric because the p-convex
property may not be preserved.

Since the L2-method has many profound applications in several complex analysis and
complex geometry (see [7,13,14,22,23,25,27,30,31] and references therein), we will estab-
lish in the present paper various L2-estimates for the exterior differential operator on
p-convex Riemannian manifolds in the sense of Harvey and Lawson. In many situations,
the choices of weight functions and estimates for solutions in L2-method are crucial in
applications (see, e.g., [11,13,16,17,25,27]). Hence we will make emphasis on several dif-
ferent types of L2-estimate. In [21], the author considered the ∂̄-problem on (weakly)
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q-pseudoconvex domains in C
n, but no effort was made to obtain good estimates for

solutions. The method developed here can be used to establish estimates for ∂̄-problem
on (weakly) q-pseudoconvex Kähler manifolds. To explain the technique clearly, we will
first prove L2-estimates and existence results in Euclidean spaces, and then we will show
how the technique still works on Riemannian manifolds. We also discuss geometric ap-
plications of the L2-method on p-convex Riemannian manifolds. We only consider the
problems of existence and interior regularity (for the minimal L2-solutions) in the present
paper, we plan to consider the problems of extension of closed forms, boundary regularity
of minimal solutions and more geometric applications in subsequent work.

This paper is arranged as follows. In Section 1, we will recall related notions of
p-convexity and p-plurisubharmonicity in the sense of Harvey and Lawson and prove
some results of exterior algebra which will be used later in our estimate. This section
is ended with a lemma concerning the choices of weight functions. Section 2 is devoted
to proving a theorem on the existence of certain defining functions which shows that
we also have the Diederich–Fornæss type exponent in this case. From this result, we
can reproduce a theorem due to Harvey and Lawson [20] which says that boundary
p-convexity implies p-convexity. In Section 3, we will establish the basic L2-estimate
and existence theorem for the exterior differential operator on p-convex open sets in R

n.
Based on the a priori estimate obtained in Section 3, we prove a Berndtsson type result in
Section 4. This kind of estimate involves two p-plurisubharmonic weights with opposite
signs in the exponent. Such an estimate for ∂̄-problem on pseudoconvex domains was
originally obtained by Donnelly and Fefferman (see [16,4,8,10]). In Section 5, we discuss
the minimal L2-solution and estimate for the minimal L2-solution with respect to a fixed
weight function. In Section 6, we establish an estimate by using non-plurisubharmonic
weights, the idea of our proof goes back to [5]. In Section 7, these L2-estimates obtained
in Sections 2–6 will be generalized to p-convex Riemannian manifolds in the sense of
Harvey and Lawson. As geometric applications, we consider topological restrictions for
a Riemannian manifold to be p-convex in the last section. We will prove vanishing and
finiteness theorems for the de Rham cohomology groups for p-convex Riemannian mani-
folds (without additional curvature assumptions). A uniform estimate of Carleman type
(Lemma 8.4) plays an important role in establishing these results. Following Hörmander’s
idea [22] and using a uniform Gårding type estimate, we prove this Carleman type esti-
mate which is uniform with respect to domains and weights. Lemma 8.4 is different from
Hörmander’s original estimate in the complex analytic case which was proved on a fixed
domain. This estimate allows us to prove, without using the approximation theorem for
closed forms, a finiteness theorem for non-compact manifolds which are strictly p-convex
at infinity (not only for relatively compact domains with strictly p-convex boundary, and
the underlying metric is not assumed to be complete). In fact, Lemma 8.4 applied to a
fixed weight function and an increasing sequence of domains gives the finiteness theorem
(Theorem 8.1), by a similar argument, Lemma 8.4 applied to a fixed domain and an
increasing sequence of weight functions also gives the approximation theorem for closed
forms (Theorem 8.2).
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1. Preliminaries

In this section, we will collect some facts on exterior algebra for later use and recall
the notions of p-convexity and p-plurisubharmonicity in the sense of Harvey and Lawson
[18–20].

Here and throughout this paper, the convention is adopted for summation over pairs
of repeated indices. Let (V, 〈·, ·〉) be an n-dimensional Euclidean space, then we denote
by {e1, . . . , en} an orthonormal basis of (V, 〈·, ·〉) and by {ω1, . . . , ωn} its dual basis. For
any multi-index J = (j1, . . . , jp), we set ωJ = ωj1 ∧ · · · ∧ ωjp .

Definition 1.1. A quadratic form θ = θijω
i⊗ωj ∈ V ∗⊗V ∗ is called p-positive (semi-)def-

inite if any sum of p eigenvalues of the symmetric matrix (θij) is positive (nonnegative)
where 1 � p � n.

By using the inner product 〈·, ·〉, we identify the space of symmetric endomorphisms
of V with the space of quadratic forms. Then, a self-adjoint endomorphism F is p-positive
definite (resp., semi-definite) if and only if for any p-plane W ⊆ V , the W -trace trW F :=
tr(F |W ) is positive (resp., nonnegative).

Denote by
∧p the linear space of p-forms on V . For any quadratic form θ = θijω

i⊗ωj ,
we introduce a self-adjoint linear operator on

∧p by setting

Fθ = θjkω
k ∧ ej� (1.1)

where � means the interior product. It follows directly from the definition of Fθ that

θjkgjKgkK = (θjkej�g)K · (ek�g)K
= 〈θjkej�g, ek�g〉

= 〈Fθg, g〉, (1.2)

for any g = gJω
J ∈

∧p where K runs over all strictly increasing multi-indices of length
p− 1.

Now we compute the eigenvalues of Fθ in terms of those of θ. Let us denote the
eigenvalues of (θij) by

λ1 � · · · � λn,

after an orthogonal transformation, we have

Fθ =
n∑

λjω
j ∧ ej�.
j=1
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For any multi-index J with |J | = p, set

λJ =
∑
j∈J

λj , (1.3)

then we have

Fθω
J =

n∑
j=1

λjω
j ∧ ej�ωJ

=
n∑

j=1
λjω

j ∧
p∑

a=1
(−1)a−1δjjaω

j1 ∧ · · · ∧ ω̂ja ∧ · · · ∧ ωjp

=
p∑

a=1
λjaω

J = λJω
J

where δjj1 is the Kronecker delta and the circumflex over a term means that it is to be
omitted. Therefore, we have

the set of eigenvalues of Fθ are given by
{
λJ

∣∣ |J | = p
}
. (1.4)

Let F :
∧p →

∧p be a self-adjoint linear map, then we have the following orthogonal
decomposition ∧p

= KerF ⊕ ImF, (1.5)

which implies that F induces an isomorphism F |Im F : ImF → ImF . We can therefore
define

F−1 := (F |Im F )−1 : ImF → ImF (1.6)

for any self-adjoint linear map F . Notice that F itself is not required to be invertible in
the above definition.

The following lemma records the basic estimate concerning the self-adjoint opera-
tor Fθ.

Lemma 1.1. Let θ = θijω
i⊗ωj be a quadratic form. If θ−τ⊗τ is p-positive semi-definite

where τ = τiω
i is a 1-form on V and 1 � p � n, then

τ ∧ ξ ∈ ImFθ

for any (p− 1)-form ξ and we have the following estimate

〈
F−1
θ f, τ ∧ ξ

〉
�
〈
F−1
θ f, f

〉 1
2 |ξ|
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for any p-form f ∈ ImFθ, in particular〈
F−1
θ (τ ∧ ξ), τ ∧ ξ

〉
� |ξ|2.

Proof. By definition, we have Fτ⊗τ = τ ∧Xτ� where Xτ := τiei. Let η, η̃ be arbitrary
p-forms, it is clear that

〈Fτ⊗τη, η̃〉 = 〈Xτ�η,Xτ�η̃〉.

Now we assume Fθη = 0, since the quadratic form θ − τ ⊗ τ is p-positive semi-definite,
we obtain

0 = 〈Fθη, η〉 � |Xτ�η|2

which implies Xτ�η = 0. Therefore, we get

〈τ ∧ ξ, η〉 = 〈ξ,Xτ�η〉 = 0.

Altogether, we have proved that

τ ∧ ξ ∈ (KerFθ)⊥ = ImFθ.

According to (1.6), F−1
θ (τ ∧ ξ) is well-defined.

Finally, we turn to the desired inequality. The Cauchy–Schwarz inequality gives〈
F−1
θ (τ ∧ ξ), τ ∧ ξ

〉
=
〈
Xτ�F−1

θ (τ ∧ ξ), ξ
〉

�
〈
Xτ�F−1

θ (τ ∧ ξ), Xτ�F−1
θ (τ ∧ ξ)

〉 1
2 |ξ|

=
〈
Fτ⊗τ ◦ F−1

θ (τ ∧ ξ), F−1
θ (τ ∧ ξ)

〉 1
2 |ξ|

�
〈
Fθ ◦ F−1

θ (τ ∧ ξ), F−1
θ (τ ∧ ξ)

〉 1
2 |ξ|

=
〈
τ ∧ ξ, F−1

θ (τ ∧ ξ)
〉 1

2 |ξ|.

Dividing both sides by 〈F−1
θ (τ ∧ ξ), τ ∧ ξ〉 1

2 gives〈
F−1
θ (τ ∧ ξ), τ ∧ ξ

〉 1
2 � |ξ|.

This is the second inequality claimed in this lemma. Since 〈F−1
θ ·, ·〉 defines a positive

semi-definite bilinear form on ImFθ ∩
∧p, for any p-form f ∈ ImFθ, we have

〈
F−1
θ f, τ ∧ ξ

〉
�
〈
F−1
θ f, f

〉 1
2
〈
F−1
θ (τ ∧ ξ), τ ∧ ξ

〉 1
2

�
〈
F−1
θ f, f

〉 1
2 |ξ|,

which implies the first inequality, and the proof is complete. �
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Now let us recall the notions of p-plurisubharmonicity and p-convexity in the sense of
Harvey and Lawson.

Let (M,ds2) be an n-dimensional oriented Riemannian manifold. Let {e1, . . . , en}
be locally orthonormal frame with dual coframe {ω1, . . . , ωn}. With the Levi-Civita
connection D, the Hessian of a function ϕ on M is given by D2ϕ(X,Y ) = XY ϕ−DXY ϕ.

Definition 1.2. A smooth function ϕ defined on an open set Ω ⊂ M is said to be
p-plurisubharmonic if its Hessian D2ϕ is p-positive semi-definite on Ω and we call ϕ

strictly p-plurisubharmonic if D2ϕ is p-positive definite on Ω.

It is easy to see that for a Kähler manifold (M,ds2) the notion of p-plurisubharmonicity
is defined by the Levi form of the given function which only depends on the underlying
complex structure. In the general case, it depends on the given Riemannian metric.

In [20], it was proved that a smooth function ϕ is p-plurisubharmonic if and only if
the restriction of ϕ to any p-dimensional minimal submanifold is subharmonic. In what
follows, (strict) plurisubharmonicity means (strict) 1-plurisubharmonicity.

Given a smooth function ϕ, we denote

Fϕ = FD2ϕ = ϕjkω
k ∧ ej�

where D2ϕ := ϕijω
i ⊗ ωj is the Hessian of ϕ. It is easy to show that the operator Fϕ,

acting on differential forms, is exactly given by the difference of the Lie derivative and
covariant derivative with respect to the gradient of ϕ (see Lemma 7.1). This observation
will be useful to allow us to carry out Morrey’s trick handling the boundary term.

Due to (1.4), we have the following criterion for p-plurisubharmonicity of a smooth
function: ϕ is p-plurisubharmonic (resp., strictly p-plurisubharmonic) on a domain
Ω ⊆ M if and only if Fϕ (acting on p-forms) is positive semi-definite (resp., positive
definite) at each point of Ω.

If ϕ is strictly p-plurisubharmonic on Ω, by choosing ei’s to be eigenvectors of D2ϕ(x)
at a given point x ∈ Ω, it follows from (1.4) that

(
F−1
ϕ g

)
J

= λ−1
J gJ (1.7)

holds for any g = gJω
J ∈

∧p and any given multi-indices J satisfying |J | = p where λJ

is defined by (1.3) with θ = D2ϕ(x). If the function ϕ is further assumed to be strictly
plurisubharmonic, we denote by (ϕjk) the inverse matrix of the Hessian matrix (ϕjk),
then we have

〈
F−1
ϕ g, g

〉
= λ−1

J |gJ |2

=
(∑

λj

)−1

|gJ |2

j∈J
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� 1
p2

∑
j∈J

λ−1
j |gJ |2

= 1
p2ϕ

jkgjKgkK (1.8)

for arbitrary g = gJω
J ∈

∧p where we have used (1.2) and (1.3) in the last equality.

Definition 1.3. A Riemannian manifold (M,ds2) is called (strictly) p-convex if it ad-
mits a smooth (strictly) p-plurisubharmonic proper exhaustion function. It is called
strictly p-convex at infinity if it admits a proper exhaustion function which is strictly
p-plurisubharmonic outside a compact subset of M .

Let Ω ⊂ M be a compact domain with smooth boundary ∂Ω. Let II ∂Ω(X,Y ) =
〈DXY, ν〉 be the second fundamental form of the boundary with respect to the inward
pointing unit normal vector ν.

Definition 1.4. The boundary ∂Ω is said to be p-convex if trW II x � 0 for any tangential
p-plane W ⊆ Tx(∂Ω) and any x ∈ ∂Ω. If the above inequality is strict for any tangential
p-plane W , ∂Ω will said to be strict p-convex.

The notion of boundary convexity can be described in terms of a defining function
as follows. Let ρ be a defining function for Ω, by (1.2) and (1.4), we know that ∂Ω is
p-convex if and only if

ρijgiKgjK � 0

holds on ∂Ω for every p-form g = gJω
J which satisfies

n∑
i=1

ρigiK = 0

for all multi-indices K with |K| = p−1. In [20], it was proved that if the boundary ∂Ω is
p-convex, then the domain Ω is p-convex (this also follows from our Theorem 2.1 below).

The following lemma is useful for choosing weight functions in various applications of
L2-estimates.

Lemma 1.2. Let (M,ds2) be an n-dimensional Riemannian manifold and ω be a contin-
uous function on M . We have the following conclusions:

(i) If (M,ds2) is strictly p-convex, then there is a strictly p-plurisubharmonic proper
exhaustion function ϕ ∈ C∞(M) such that Fϕ + ω Id is p-positive definite on M .

(ii) If (M,ds2) is strictly p-convex at infinity, then there is a p-plurisubharmonic proper
exhaustion function ϕ ∈ C∞(M) such that Fϕ + ω Id is p-positive definite outside
some compact subset of M . In particular, (M,ds2) is p-convex.
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(iii) Let ϕ ∈ C∞(M) be a p-plurisubharmonic proper exhaustion function. For any con-
stant c ∈ R and η ∈ L2(M,Loc), there is a function ψ ∈ C∞(M) such that 0 � ψ−ϕ

is p-plurisubharmonic, ϕ ≡ ψ when ϕ < c and
∫
M

|η|2e−ψ < +∞.

Proof. (i) Let us begin with any strictly p-plurisubharmonic exhaustion function φ ∈
C∞(M). Set

Λφ := λ1 + · · · + λp

where λ1 � · · · � λn are the eigenvalue functions of the Hessian D2φ with respect to the
underlying metric ds2, then we know by definition that Λφ > 0. Assume, without loss of
generality, infM φ = 0 and denote

Ων :=
{
x ∈ M

∣∣ φ(x) < ν
}

for ν = 1, 2, . . . .

Since the functions Λφ > 0 and ω are both continuous on M , one can always find for
each ν = 1, 2, . . . a positive constant σν such that

σνΛφ + pω > 0 holds on Ων+1 \Ων . (1.9)

Now we choose a function κ ∈ C∞[0,+∞) such that

κ′(t) > 0, κ′′(t) > 0 for t � 0, κ′(ν) > σν for ν = 1, 2, . . . , (1.10)

and

κ′(0) inf
Ω1

Λφ + p sup
Ω1

ω > 0. (1.11)

Set ϕ = κ ◦ φ, then D2ϕ = κ′ ◦ φ ·D2φ + κ′′ ◦ φ · dφ⊗ dφ and consequently we have

Λϕ � κ′ ◦ φ · Λφ.

The construction of κ implies that Fϕ + ω Id is p-positive definite on M .
(ii) In this case, the proof is a slight modification of the proof given above and we

will keep the notations the same as above. By definition, we have a proper exhaustion
function φ and a compact subset S ⊆ M such that φ is strictly p-convex in M \ S.
Without loss of generality, we assume S ⊆ Ω 1

2
. Choose χ ∈ C∞(R) such that

χ′(t) > 0, χ′′(t) > 0 for t >
1
2 and χ(t) = 0 for t � 1

2 .

It is easy to see that χ◦φ is a p-plurisubharmonic proper exhaustion function and strictly
p-plurisubharmonic outside Ω 1 , in particular, we have proved that (M,ds2) is p-convex.
2
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Let κ ∈ C∞[0,∞) be a function which satisfies (1.9) and (1.10) with φ being replaced
by χ ◦ φ, then it is easy to check that ϕ := κ ◦ χ ◦ φ is a p-plurisubharmonic proper
exhaustion function and that Fϕ + ω Id is p-positive definite outside Ω1 (note that in
this case, we can not have (1.11) because infΩ1 Λφ is not necessarily positive).

(iii) Choose a smooth function γ defined on R such that

γ′(t) � 0, γ′′(t) � 0 for t ∈ R, γ(t) ≡ 0 for t < c

and

γ(c + ν) > ν + log
∫

Ωc+ν+1

|η|2 for ν = 1, 2, . . .

where Ωc+ν+1’s are sub-level sets of ϕ. Set φ = γ ◦ ϕ, then we know by definition that
0 � φ is p-plurisubharmonic and∫

M

|η|2e−φ =
( ∫
Ωc+1

+
∑
ν�1

∫
Ωc+ν+1\Ωc+ν

)
|η|2e−φ

�
∫

Ωc+1

|η|2e−φ +
∑
ν�1

e−γ(c+ν)
∫

Ωc+ν+1\Ωc+ν

|η|2

�
∫

Ωc+1

|η|2e−φ +
∑
ν�1

e−ν < +∞.

It is easy to see that ψ := ϕ + φ is a desired function. The proof is complete. �
2. The Diederich–Fornæss type exponent

In this section, we prove a Diederich–Fornæss type result on the defining function for
p-convex open set with smooth boundary.

Theorem 2.1. Let Ω � R
n be a p-convex open set with smooth boundary and let r ∈

C∞(Ω) be a defining function for Ω. Then for any strictly p-plurisubharmonic function
ϕ ∈ C∞(Ω), there exist constants K > 0, η0 ∈ (0, 1) such that for any η ∈ (0, η0) the
function ρ := −(−re−Kϕ)η is strictly p-plurisubharmonic on Ω.

Proof. It suffices to show that 〈Fρg, g〉 > 0 for any 0 �= g ∈
∧p.

By direct computation, we obtain

〈Fρg, g〉 = η(−r)η−2e−Kηϕ
[
Kr2(〈Fϕg, g〉 −Kη〈∇ϕ�g,∇ϕ�g〉

)
+ (−r)〈Frg, g〉 + (1 − η)〈∇r�g,∇r�g〉 + 2Kηr〈∇r�g,∇ϕ�g〉

]
. (2.1)
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Throughout the proof, we denote by A1, A2, . . . various constants which are independent
of η,K.

Since the boundary of Ω is assumed to be smooth, for any sufficiently small ε > 0
there is a smooth map π : Nε → ∂Ω such that

dist(x, ∂Ω) =
∣∣x− π(x)

∣∣, ∀x ∈ Nε, (2.2)

where Nε := {x ∈ Ω | r(x) > −ε}. As the function r ∈ C∞(Ω) is a defining function for
Ω, there exists a constant A1 > 0 which only depends on ε such that

dist(x, ∂Ω) � −A1r(x), A1 �
∣∣∇r(x)

∣∣, ∀x ∈ Nε. (2.3)

For any g ∈
∧p, x ∈ Nε, we define p-forms g1(x), g2(x) as follows:

g1(x) = 1
|∇r(x)|2∇r(x)�dr(x) ∧ g

and

g2(x) = 1
|∇r(x)|2 dr(x) ∧∇r(x)�g.

It is easy to see that

g = g1(x) + g2(x), |g|2 =
∣∣g1(x)

∣∣2 +
∣∣g2(x)

∣∣2
and

∇r(x)�g1(x) = 0,
∣∣g2(x)

∣∣ � 1
|∇r(x)|

∣∣∇r(x)�g
∣∣ (2.4)

for every x ∈ Nε. From (2.2) and the first inequality in (2.3), there is a constant A2 > 0
such that

∣∣〈Frg1, g1〉(x) − 〈Frg1, g1〉
(
π(x)

)∣∣ =

∣∣∣∣∣
1∫

0

d

dt
〈Frg1, g1〉

(
tx + (1 − t)π(x)

)
dt

∣∣∣∣∣
� −A2r(x)|g|2 (2.5)

holds for any x ∈ Nε. By using the identity in (2.4) and the definition of p-convexity, we
get

〈Frg1, g1〉
(
π(x)

)
� 0, ∀x ∈ Nε.

Therefore, for any x ∈ Nε, the following estimate follows from (2.5)
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〈Frg1, g1〉(x) � A2r(x)|g|2.

Taking into account the inequality in (2.4) and |g1(x)| � |g|, the above estimate implies
that

〈Frg, g〉(x) � A2r(x)|g|2 − A3

|∇r(x)|
∣∣∇r(x)�g

∣∣ · |g| (2.6)

holds for any x ∈ Nε where A3 > 0 is another constant.
Since ϕ is strictly p-plurisubharmonic on Ω, there is a constant σ > 0 such that

〈Fϕg, g〉(x) − ηK
∣∣∇ϕ(x)�g

∣∣2 � (σ −A4ηK)|g|2 (2.7)

holds for any x ∈ Ω where A4 := supΩ |∇ϕ|2. From (2.1) and (2.7), there exists a
constant A5 > 0 such that

〈Fρg, g〉(x) � η(−r)η−2e−ηKϕ

[
Kr2(x)

(
σ − η

1 − η
A4K

)
−A5

]
|g|2 (2.8)

holds for any x ∈ Ω.
When K > 4A5

σε2 and η ∈ (0, σ
2A4K+σ ), (2.8) implies that

〈Fρg, g〉 � 1
4η(−r)η−2e−ηKϕKε2σ|g|2 (2.9)

holds on Ω \Nε.
Similarly, for any constants η ∈ (0, σ

2A4K
) and K > 4

σ (A2+ σ2

4A4
+2A2

6+σ2), A6 := A3
2A1

,
from (2.1), (2.6) and (2.7) it follows that the following inequality holds on Nε

〈Fρg, g〉 � η(−r)η−2e−ηKϕ
{[

K(σ −A4ηK) −A2
]
r2|g|2

+ 2(A6 + A4ηK)|∇r�g|r|g| + (1 − η)|∇r�g|2
}

� η(−r)ηe−ηKϕ

[
K(σ −A4ηK) −A2 −

2A2
6 + 2A2

4η
2K2

1 − η

]
|g|2

� η(−r)ηe−ηKϕ

(
Kσ

2 −A2 − 4A2
6 − σ2

)
|g|2

� 1
4η(−r)ηe−ηKϕKσ|g|2

= Kησ

4 (−ρ)|g|2. (2.10)

By combining (2.9) and (2.10), we know Theorem 2.1 is true for any constant K >
4
σ (A2 + σ2

4A4
+ A5

ε2 + 2A2
6 + σ2) and η0 := σ

2A4K+σ . �
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Remark 2.1. (i) The constant η is an analogue of the Diederich–Fornæss exponent in
several complex variables (see [15]).

(ii) By Theorem 3.1, we know that ψ := − log(−ρ) is a strictly p-plurisubharmonic
proper exhaustion function on Ω, and this implies Theorem 3.10 in [20].

3. The L2-existence theorem

Let Ω ⊆ R
n be an open subset, ϕ ∈ C1(Ω). Following [22], the weighted L2-Hermitian

inner product of p-forms will be denoted by (·, ·)ϕ and the corresponding Hilbert space
will be denoted by L2

p(Ω,ϕ). We will still denote by d the maximal (weak) differential
operator (from L2

p−1(Ω,ϕ) to L2
p(Ω,ϕ)) of the exterior differential. It is easy to see that

the formal adjoint of d with respect to the weight ϕ is given by δϕ := eϕ ◦ δ ◦ e−ϕ where
δ is the codifferential operator on R

n. If Ω � R
n has smooth boundary and ϕ ∈ C1(Ω),

integration by parts shows that C∞
p (Ω) ∩ Dom(d∗ϕ) = {g ∈ C∞

p (Ω) | ∇ρ�g = 0 on ∂Ω}
where d∗ϕ is the Hilbert space adjoint of d with respect to the weight ϕ and ρ is a defining
function of Ω.

The following Kohn–Morrey–Hörmander type identity is crucial in establishing basic
a priori estimate.

Proposition 3.1. Let Ω � R
n be a domain with smooth boundary. Assume that the defining

function satisfies |∇ρ| = 1 when restricted to ∂Ω. Then we have the following identity:

‖dg‖2
ϕ + ‖δϕg‖2

ϕ =
∫
Ω

|∂jgI |2e−ϕ +
∫
Ω

〈Fϕg, g〉e−ϕ +
∫
∂Ω

〈Fρg, g〉e−ϕ (3.1)

for g ∈ C∞
p (Ω) ∩ Dom(d∗ϕ) (1 � p � n).

Proof. Let δk = eϕ∂k(e−ϕ·), then it is easy to see that

[δk, ∂j ] = ∂j∂kϕ

holds on functions. By definition, we have the following equalities

|dg|2 = |∂jgI |2 − ∂jgkK∂kgjK ,

|δϕg|2 = δjgjKδkgkK .

Repeated use of the formula∫
Ω

∂jvwe
−ϕ =

∫
Ω

−vδjwe
−ϕ +

∫
∂Ω

∂jρvwe
−ϕ

gives that
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∫
Ω

∂jgkK∂kgjKe−ϕ = −
∫
Ω

gkKδj∂kgjKe−ϕ +
∫
∂Ω

gkK∂kgjK∂jρe
−ϕ

= −
∫
Ω

gkK
(
∂kδjgjK + [δj , ∂k]gjK

)
e−ϕ +

∫
∂Ω

gkK∂kgjK∂jρe
−ϕ

=
∫
Ω

δkgkKδjgjKe−ϕ −
∫
∂Ω

gkKδjgjK∂kρe
−ϕ

−
∫
Ω

gkK∂j∂kϕgjKe−ϕ +
∫
∂Ω

gkK∂kgjK∂jρe
−ϕ.

From the boundary condition

∂kρgkK = 0 on ∂Ω,

we know that, for any fixed K with |K| = p− 1,

gjK
∂

∂xj
defines a tangent vector field of ∂Ω.

Consequently, we obtain

0 =
n∑

k=1

gkK∂k

(
n∑

j=1
gjK∂jρ

)
=

n∑
j,k=1

(gkK∂kgjK∂jρ + ∂j∂kρgkKgjK) on ∂Ω.

Therefore, we get

‖dg‖2
ϕ + ‖δϕg‖2

ϕ =
∫
Ω

|∂jgI |2e−ϕ +
∫
Ω

∂j∂kϕgjKgkKe−ϕ

+
∫
∂Ω

∂kρgkKδjgjKe−ϕ −
∫
∂Ω

gkK∂kgjK∂jρe
−ϕ

=
∫
Ω

|∂jgI |2e−ϕ +
∫
Ω

∂j∂kϕgjKgkKe−ϕ +
∫
∂Ω

∂j∂kρgjKgkKe−ϕ

=
∫
Ω

|∂jgI |2e−ϕ +
∫
Ω

〈Fϕg, g〉e−ϕ +
∫
∂Ω

〈Fρg, g〉e−ϕ

which gives the desired identity (3.1). �
To establish L2-existence theorem, we also need the following basic lemma from func-

tional analysis due to Hörmander:
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Lemma 3.1. (See Theorem 1.1.4 in [22].) Let H1
T−−→ H2

S−−→ H3 be a complex of closed
and densely defined operators between Hilbert spaces and let L ⊆ H2 be a closed subspace
which contains Im(T ). For any f ∈ L ∩ Ker(S) and any constant C > 0, the following
conditions are equivalent

1. there exists some u ∈ H1 such that Tu = f and ‖u‖H1 � C.
2. |(f, g)H2 |2 � C2(‖T ∗g‖2

H1
+ ‖Sg‖2

H3
) holds for any g ∈ L ∩ Dom(T ∗) ∩ Dom(S).

Now we can prove an L2-existence result for the exterior differential operator.

Theorem 3.1. Let Ω ⊂ R
n be a p-convex domain and ϕ ∈ C2(Ω) be a p-plurisubharmonic

function over Ω. Then for any closed p-form f ∈ L2
p(Ω,Loc) satisfying∫

Ω

〈
F−1
ϕ f, f

〉
e−ϕ < ∞

there exists a (p− 1)-form u ∈ L2
p−1(Ω,ϕ) such that

du = f, ‖u‖2
ϕ �

∫
Ω

〈
F−1
ϕ f, f

〉
e−ϕ

where F−1
ϕ is defined by (1.6) and it is assumed implicitly that F−1

ϕ f is defined almost
everywhere in Ω.

Proof. First we suppose Ω � R
n has smooth p-convex boundary. Then we have, in

formula (3.1), 〈Fρg, g〉 � 0 on ∂Ω, which implies that

‖dg‖2
ϕ + ‖δϕg‖2

ϕ �
∫
Ω

〈Fϕg, g〉e−ϕ (3.2)

holds for any g ∈ C∞
p (Ω)∩Dom(d∗ϕ). By Hörmander’s density lemma [22,23], the above

estimate (3.2) holds for any g ∈ Dom(d∗ϕ) ∩ Dom(d).
We will apply Lemma 3.1 to

H1 = L2
p−1(Ω,ϕ), H2 = L2

p(Ω,ϕ), H3 = L2
p+1(Ω,ϕ)

and S, T both given by the maximal differential operators of exterior differentials. Since
the 〈Fϕ·, ·〉 is positive semi-definite, it follows from Schwarz inequality that∣∣∣∣ ∫

Ω

〈f, g〉e−ϕ

∣∣∣∣2 =
∣∣∣∣ ∫
Ω

〈
FϕF

−1
ϕ f, g

〉
e−ϕ

∣∣∣∣2
�
(
FϕF

−1
ϕ f, F−1

ϕ ff
)

(Fϕg, g)ϕ
ϕ
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=
(
F−1
ϕ f, f

)
ϕ
(Fϕg, g)ϕ

�
(
F−1
ϕ f, f

)
ϕ

(∥∥T ∗g
∥∥2
H1

+ ‖Sg‖2
H2

)
.

Now from Lemma 3.1, it follows that there is a (p− 1)-form u ∈ L2
p−1(Ω,ϕ) such that

du = f, ‖u‖2
ϕ �

∫
Ω

〈
F−1
ϕ f, f

〉
e−ϕ.

For the general case, by Theorem 3.4 in [20], there exists a sequence of domains Ων

(ν = 1, 2, . . .) with smooth p-convex boundary such that Ω =
⋃

ν�1 Ων . For each ν � 1,
we have a solution uν ∈ L2

p−1(Ων , ϕ) of duν = f such that∫
Ων

|uν |2e−ϕ �
∫
Ων

〈
F−1
ϕ f, f

〉
e−ϕ.

By the estimate on uν we obtain the desired solution by taking weak limit. The proof is
complete. �

Starting from any strictly p-plurisubharmonic proper exhaustion function ϕ and then
using Lemma 1.2(iii), we have the following corollary of Theorem 3.1.

Corollary 3.1. Let Ω ⊂ R
n be a p-convex domain. For any closed p-form f ∈ L2

p(Ω,Loc),
there exists a (p− 1)-form u ∈ L2

p−1(Ω,Loc) such that du = f .

4. A Berndtsson type estimate

In this section, we will establish a Berndtsson type result which involves two
p-plurisubharmonic weights with opposite signs in the exponent. This kind of estimates
for ∂̄-problem was first obtained by Berndtsson (see [4,6,8–10] and references therein)
and had its root in Donnelly–Fefferman estimate [16]. The key for our proof is to establish
the following a priori estimate.

‖δϕ+σψg‖2
ϕ+ψ + ‖dg‖2

ϕ+ψ � σ2
∫
Ω

〈Fψg, g〉e−ϕ−ψ, (∗)

for any g ∈ Dom(d∗) ∩ C∞
p (Ω) where ϕ ∈ C∞(Ω) is a p-plurisubharmonic function,

ψ ∈ C∞(Ω) with −e−ψ being p-plurisubharmonic and σ ∈ (0, 1
2 ] is a constant. The

following proof involves a useful procedure to introduce a twist factor into a known
a priori estimate (see also [24] and references therein).

Theorem 4.1. Let Ω be a p-convex domain in R
n (1 � p � n) and let ϕ be a

p-plurisubharmonic function on Ω, ψ ∈ C2(Ω) be a function such that −e−ψ is
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p-plurisubharmonic. For any constant α ∈ [0, 1) and any closed p-form f ∈ L2
p(Ω,Loc),

if ∫
Ω

〈
F−1
ψ f, f

〉
e−ϕ+αψ < ∞

then there exists a (p− 1)-form u ∈ L2
p−1(Ω,ϕ− αψ) such that

du = f, ‖u‖2
ϕ−αψ � 4

(1 − α)2

∫
Ω

〈
F−1
ψ f, f

〉
e−ϕ+αψ,

where F−1
ψ is defined by (1.6) and it is required implicitly that F−1

ψ f is defined almost
everywhere in Ω.

Proof. We consider first the case where Ω is a bounded domain in R
n with smooth

boundary and ϕ,ψ ∈ C∞(Ω).
We will apply Lemma 3.1 to the following weighted L2-spaces of differential forms

H1 = L2
p−1

(
Ω,ϕ + 1 − α

2 ψ

)
, H2 = L2

p

(
Ω,ϕ + 1 − α

2 ψ

)
,

H3 = L2
p+1

(
Ω,ϕ + 1 − α

2 ψ

)
and

T = d ◦ e− 1+α
4 ψ, S = e−

1+α
4 ψ ◦ d.

In order to use Lemma 3.1, we need to show that the following estimate

∣∣(f, g)ϕ+ 1−α
2 ψ

∣∣2 �
4(F−1

ψ f, f)ϕ−αψ

(1 − α)2
(∥∥e− 1+α

4 ψδϕ+ 1−α
2 ψg

∥∥2
ϕ+ 1−α

2 ψ

+
∥∥e− 1+α

4 ψdg
∥∥2
ϕ+ 1−α

2 ψ

)
(4.1)

holds for arbitrary g ∈ Dom(d∗) ∩ C∞
p (Ω).

Let g ∈ Dom(d∗) ∩ C∞
p (Ω), then the basic estimate with φ = ϕ + ψ gives

‖dg‖2
ϕ+ψ + ‖δϕ+ψg‖2

ϕ+ψ �
∫
Ω

〈Fϕ+ψg, g〉e−ϕ−ψ. (4.2)

Since

δϕ+ψg = δϕ+ 1−αψg + 1 + α∇ψ�g,

2 2
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it follows that

‖δϕ+ψg‖2
ϕ+ψ � 1 + ε

ε
‖δϕ+ 1−α

2 ψg‖2
ϕ+ψ + (1 + ε)(1 + α)2

4
‖∇ψ�g‖2

ϕ+ψ

for any positive constant ε.
By choosing

ε = 1 − α

1 + α
,

the above inequality becomes

‖δϕ+ψg‖2
ϕ+ψ � 2

1 − α
‖δϕ+ 1−α

2 ψg‖2
ϕ+ψ + 1 + α

2 ‖∇ψ�g‖2
ϕ+ψ. (4.3)

Since −e−ψ is p-plurisubharmonic and

F−e−ψ = e−ψ(ψjk − ψjψk)dxk ∧ ∂

∂xj
�

= e−ψ(Fψ − dψ ∧∇ψ�),

we know that Fψ − dψ ∧ ∇ψ� defines a positive semi-definite operator on the space of
p-forms. This implies ∫

Ω

〈Fψg, g〉e−ϕ−ψ � ‖∇ψ�g‖2
ϕ+ψ. (4.4)

Substituting (4.3), (4.4) into (4.2), the p-plurisubharmonicity of ϕ gives

2
1 − α

‖δϕ+ 1−α
2 ψg‖2

ϕ+ψ + ‖dg‖2
ϕ+ψ � 1 − α

2

∫
Ω

〈Fψg, g〉e−ϕ−ψ

which further implies the desired Donnelly–Fefferman type estimate (∗) with the constant
σ = 1−α

2 as follows

∥∥e− 1+α
4 ψδϕ+ 1−α

2 ψg
∥∥2
ϕ+ 1−α

2 ψ
+
∥∥e− 1+α

4 ψdg
∥∥2
ϕ+ 1−α

2 ψ
= ‖δϕ+ 1−α

2 ψg‖2
ϕ+ψ + ‖dg‖2

ϕ+ψ

� ‖δϕ+ 1−α
2 ψg‖2

ϕ+ψ + 1 − α

2 ‖dg‖2
ϕ+ψ

� (1 − α)2

4

∫
Ω

〈Fψg, g〉e−ϕ−ψ.

Since ψ is p-plurisubharmonic, the Cauchy–Schwarz inequality applied to the positive
semi-definite Hermitian form (Fψ·, ·)ϕ+ψ gives
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∣∣(f, g)ϕ+ 1−α
2 ψ

∣∣2 =
∣∣(Fψ ◦ F−1

ψ e
1+α

2 ψf, g
)
ϕ+ψ

∣∣2
�
(
e

1+α
2 f, e

1+α
2 F−1

ψ f
)
ϕ+ψ

(Fψg, g)ϕ+ψ

�
4(F−1

ψ f, f)ϕ−αψ

(1 − α)2
(∥∥e− 1+α

4 ψδϕ+ 1−α
2 ψg

∥∥2
ϕ+ 1−α

2 ψ
+
∥∥e− 1+α

4 ψdg
∥∥2
ϕ+ 1−α

2 ψ

)
where F−1

ψ is defined by (1.6). Thus the estimate (4.2) has been proved for g ∈ Dom(d∗)∩
C∞

p (Ω). By using the density lemma (Proposition 1.2.4 in [22]), we know that (4.2)
holds for any g ∈ Dom(T ∗) ∩ Dom(S). Consequently, by Lemma 3.1, there exists some
v ∈ L2

p−1(Ω,ϕ + 1−α
2 ψ) such that

Tv = f, ‖v‖2
ϕ+ 1−α

2 ψ
� 4

(1 − α)2
(
F−1
ψ f, f

)
ϕ−αψ

.

Set u = e−
1+α

4 ψv, then we get u ∈ L2
p−1(Ω,ϕ− αψ) and

du = f, ‖u‖2
ϕ−αψ = ‖v‖2

ϕ+ 1−α
2 ψ

� 4
(1 − α)2

(
F−1
ψ f, f

)
ϕ−αψ

. (4.5)

Theorem 4.1 now follows, in its full generality, from (4.5) and the standard argu-
ment of smooth approximation followed by taking weak limit as we did in the proof of
Theorem 3.1. �
Corollary 4.1. Let Ω be a p-convex domain in R

n (1 � p � n) and let ϕ be a
p-plurisubharmonic function on Ω, ψ ∈ C2(Ω) be a strictly plurisubharmonic function
such that −e−ψ is p-plurisubharmonic. For any constant α ∈ [0, 1) and closed p-form
f ∈ L2

p(Ω,Loc), if ∫
Ω

ψjkfjKfkKe−ϕ+αψ < ∞

then there exists a (p− 1)-form u ∈ L2
p−1(Ω,ϕ− αψ) such that

du = f, ‖u‖2
ϕ−αψ � 4

p2(1 − α)2

∫
Ω

ψjkfjKfkKe−ϕ+αψ

where (ψjk) := (ψjk)−1.

Proof. Corollary 4.1 follows directly from Theorem 4.1 and the pointwise inequal-
ity (1.8). �

As a consequence of Theorem 4.1, we have the following analogue of the Donnelly–
Fefferman estimate [16].
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Theorem 4.2. Let Ω be a p-convex domain in R
n (1 � p � n) and let ϕ be a

p-plurisubharmonic function on Ω, ψ ∈ C2(Ω) be a strictly p-plurisubharmonic func-
tion such that −e−ψ is p-plurisubharmonic. For any closed p-form f ∈ L2

p(Ω,Loc), if

∫
Ω

〈
F−1
ψ f, f

〉
e−ϕ < ∞

then there exists a (p− 1)-form u ∈ L2
p−1(Ω,ϕ) such that

du = f, ‖u‖2
ϕ � 4

∫
Ω

〈
F−1
ψ f, f

〉
e−ϕ.

Proof. Theorem 4.2 follows directly from Theorem 4.1 by choosing the constant α to
be 0. �
Corollary 4.2. Let Ω be a bounded p-convex domain in R

n (1 � p � n) and let ϕ be a
p-plurisubharmonic function on Ω. For any closed p-form f ∈ L2

p(Ω,ϕ), there exists a
(p− 1)-form u ∈ L2

p−1(Ω,ϕ) such that

du = f, ‖u‖ϕ � 2D
p

‖f‖ϕ,

where D is the diameter of Ω.

Proof. Without loss of generality, we assume that Ω contains the origin of Rn. Let

ψ = p|x|2
2D2 ,

then (1.7) implies that

F−1
ψ = D2

p2 Id holds on p-forms.

Since the Hessian of −e−ψ is given by

p

D2 e
−ψ

(
dxi ⊗ dxi − p

D2x
i dxi ⊗ xj dxj

)
,

we know that any sum of p eigenvalues of the Hessian of −e−ψ is no less than

p
2 e

−ψ

[(
1 − p

2 |x|
2
)

+ p− 1
]

= p2

2 e
−ψ

(
1 − |x|2

2

)
� 0.
D D D D
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So −e−ψ is, by definition, a p-plurisubharmonic function on Ω (but not plurisubhar-
monic). Applying Theorem 4.2 with the weight function ψ = p|x|2

2D2 , we obtain the
following estimate for the solution u

‖u‖2
ϕ � 4D2

p2 ‖f‖2
ϕ.

This completes the proof of Corollary 4.2. �
5. Minimal L2-solutions

Let Ω be an open subset of R
n and ϕ ∈ L∞(Ω,Loc), then the de Rham complex

induces the following complex of closed and densely defined operators

· · · → L2
p−2(Ω,ϕ) dp−2−−−−→ L2

p−1(Ω,ϕ) dp−1−−−−→ L2
p(Ω,ϕ) → · · · ,

where d�’s denote the maximal (weak) differential operators defined by the exterior
derivatives. Then we have

Ker d∗p−2,ϕ ⊇ Ker d⊥p−1 (5.1)

and since Ker dp−1 is a closed subspace of L2
p−1(Ω,ϕ) we also have the following orthog-

onal decomposition

L2
p−1(Ω,ϕ) = Ker d⊥p−1 ⊕ Ker dp−1. (5.2)

Given a d-closed form f ∈ L2
p(Ω,Loc), if there is a p-form u ∈ L2

p(Ω,ϕ) such that
du = f , we can decompose u according to (5.2)

u = u0 + u1 ∈
(
Dom(dp−1) ∩ Ker d⊥p−1

)
⊕ Ker dp−1 (5.3)

which, together with (5.1) above, implies that

dp−1u0 = f, d∗p−1,ϕu0 = 0. (5.4)

We will call the solution u0 constructed in (5.3) the minimal solution of du = f in
L2
p−1(Ω,ϕ).

Remark 5.1. (i) For any p-convex open subset Ω ⊆ R
n and any closed p-form f ∈

L2
p(Ω,Loc), by Corollary 3.1, we can find some u ∈ L2

p−1(Ω,Loc) such that du = f . Let
ϕ ∈ L∞(Ω,Loc) and Ω′ � Ω, previous decomposition (5.3) applied to L2

p−1(Ω′, ϕ) gives
the minimal solution of du = f in L2

p−1(Ω′, ϕ).
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(ii) It is easy to see the uniqueness of minimal solution, to be more precise, by us-
ing (5.3) we have that ‖u0‖ϕ � ‖u‖ϕ holds for any u ∈ L2

p(Ω,ϕ) satisfying du = f , and
the equality holds if and only if u = u0.

(iii) As an easy consequence of (ii), we have the following monotonicity of L2-solutions.
Let Ω1 ⊆ Ω2 be open subsets of Rn and ϕ ∈ L∞(Ω2,Loc), for the minimal solution ui

of du = f in L2
p−1(Ωi) (i = 1, 2), we have

∫
Ω1

|u1|2e−ϕ �
∫
Ω2

|u2|2e−ϕ.

Similarly, for any open set Ω ⊂ R
n, ϕi ∈ L∞(Ω,Loc) and the minimal solution ui of

du = f in L2
p−1(Ω,ϕi) (i = 1, 2), if ϕ1 � ϕ2 holds on Ω then we have

∫
Ω

|u1|2e−ϕ1 �
∫
Ω

|u2|2e−ϕ2 .

The minimal L2-solution enjoys the following interior regularity property.

Proposition 5.1. Under the conditions of Theorem 3.1, for any q � p and any closed
q-form f ∈ L2

q(Ω,ϕ) with
∫
Ω
〈F−1

ϕ f, f〉e−ϕ < ∞, du = f has a unique minimal solution
u0 in L2

q−1(Ω,ϕ), moreover if f and the weight ϕ are both smooth then u0 ∈ C∞
q−1(Ω).

The same conclusion holds for Theorem 4.1.

Proof. The existence and uniqueness of minimal L2-solution follows from the decompo-
sition (5.3) and Theorem 3.1. By (5.4), we obtain

du0 = f, δϕu0 = 0

in the sense of distribution. This can be rewritten as (dδϕ + δϕd)u0 = δϕf ∈ C∞
q−1(Ω).

Now the smoothness of the minimal solution u0 follows from the interior elliptic regularity
of the Hodge Laplace operator dδϕ + δϕd. �

If Ω is a strictly p-convex open set with smooth boundary, it was proved (for compact
Riemannian manifolds with smooth p-convex boundary) in [29] and [32] that Ω has the
homotopy type of CW complex of dimension < p. As an application of L2-method we
obtain the following vanishing result of de Rham cohomology groups. Note that this result
was also obtained in [3]. We will generalize this result in Section 8 (see Proposition 8.1
and Remark 8.1(ii)).

Corollary 5.1. For any p-convex open subset Ω ⊆ R
n (1 � p � n), the de Rham coho-

mology groups Hq(Ω,R) = 0, p � q � n.
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Proof. Let f ∈ C∞
q (Ω) (p � q � n) be a closed form. Since p-convexity implies

q-convexity, there exists a q-plurisubharmonic proper exhaustion function ϕ such that∫
Ω
|f |e−ϕ < ∞. One can therefore find, by Theorem 3.1 (with the weight ϕ(x) + |x|2)

and Proposition 5.1, a (q − 1)-form u ∈ C∞
q−1(Ω) which solves the equation du = f and

this completes the proof of Hq(Ω,R) = 0. �
By the argument in [5] (or [7]), Prekopa’s minimal principle follows from the esti-

mate in Theorem 3.1 (with n = p = 1) applied to the L2-minimal solution given by
Proposition 5.1.

Corollary 5.2. Let ϕ(x, y) be a convex function in R
n
x × R

m
y . Define ϕ̃ by

ϕ̃(x) = − log
∫
Rm

e−ϕ(x,y) dy.

Then ϕ̃ is a convex function on R
n.

We end this section by proving an estimate for L2-minimal solutions. The difference
between this estimate and Theorem 4.1 is that the minimal solution here only depends
on one of the weights. The idea of the following proof goes back to [6] and [8] (see
also [11,12] and references therein).

Theorem 5.1. Let Ω be a p-convex domain in R
n (1 � p � n) and let ϕ be a

p-plurisubharmonic function on Ω, ψ ∈ C2(Ω). If we assume, in addition, that there
are a function 0 � ω < 1 and a constant α ∈ [0, 1) such that the quadratic form
ω2D2ψ − dψ ⊗ dψ is p-positive semi-definite on Ω and that ω � α holds on supp f ,
where f ∈ L2

p(Ω,Loc) is a closed p-form, then the minimal solution, denoted by uϕ, of
du = f in L2

p−1(Ω,ϕ) satisfies∫
Ω

(
1 − ω2)|uϕ|2e−ϕ+ψ � 1 + α

1 − α

∫
Ω

〈
F−1
ψ f, f

〉
e−ϕ+ψ

where D2ψ := ψij dx
i ⊗ dxj is the Hessian of ψ.

Proof. By the monotonicity discussed in Remark 5.1(iii) and the standard argument
of approximation followed by taking weak limit, we can assume in addition that Ω is
a bounded open set with smooth boundary and that ϕ,ψ are both smooth up to the
boundary of Ω. Set

u = eψuϕ,

by (5.3), u is the minimal solution of du = eψ(dψ ∧ uϕ + f) := eψg in L2
p−1(Ω,ϕ + ψ).

Since the quadratic form ω2D2ψ − dψ ⊗ dψ is p-positive semi-definite and ω � α on
supp f , by using Lemma 1.1 to
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θ = ω2D2ψ and τ = dψ,

it follows that F−1
ψ (dψ ∧ uϕ) is well-defined and

〈
F−1
ϕ+ψg, g

〉
�
〈
F−1
ψ dψ ∧ uϕ, dψ ∧ uϕ

〉
+ 2

〈
F−1
ψ f, dψ ∧ uϕ

〉
+
〈
F−1
ψ f, f

〉
� ω2|uϕ|2 + 2

〈
f, F−1

ψ f
〉 1

2 · α|uϕ| +
〈
F−1
ψ f, f

〉
� α + ω2

1 + α
|uϕ|2 + 1

1 − α

〈
F−1
ψ f, f

〉
. (5.5)

Since ϕ + ψ is p-plurisubharmonic and du = eψg, we can apply Theorem 3.1 to get∫
Ω

|uϕ|2e−ϕ+ψ = ‖u‖2
ϕ+ψ

�
∫
Ω

〈
F−1
ϕ+ψ

(
eψg

)
, eψg

〉
e−ϕ−ψ

=
∫
Ω

〈
F−1
ϕ+ψg, g

〉
e−ϕ+ψ

�
∫
Ω

α + ω2

1 + α
|uϕ|2e−ϕ+ψ + 1

1 − α

∫
Ω

〈
F−1
ψ f, f

〉
e−ϕ+ψ (5.6)

where we have used the inequality (5.5). Now the desired L2-estimate follows directly
from (5.6). �
Remark 5.2. Theorem 5.1 could be used to deduce a weaker version of Theorem 4.1. Let
ϕ be a p-plurisubharmonic function on Ω, ψ ∈ C2(Ω) be a function such that −e−ψ is
p-plurisubharmonic. Then for any constant α ∈ [0, 1), αψ satisfies the conditions assumed
in Theorem 5.1 with ω given by the constant

√
α, and consequently we obtain

‖u‖2
ϕ−αψ � 1

α(1 −√
α)2

∫
Ω

〈
F−1
ψ f, f

〉
e−ϕ+αψ.

6. Non-plurisubharmonic weights

Next we prove a theorem which has the feature of allowing non-plurisubharmonic
weights. This kind of result will provide more flexibility in choosing weights for
L2-estimates. Such an estimate for ∂̄-problem was proved by Błocki [11,12].

Theorem 6.1. Let Ω be a p-convex domain in R
n (1 � p � n) and let ϕ ∈ C2(Ω) be

a p-plurisubharmonic function on Ω and ψ ∈ C1(Ω). There are a function 0 � ω < 2
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and a constant α ∈ [0, 2) such that the quadratic form ω2D2ϕ − dψ ⊗ dψ is p-positive
semi-definite on Ω and that ω � α on supp f where f ∈ L2

p(Ω,Loc) is a closed p-form.
If ∫

Ω

〈
F−1
ϕ f, f

〉
e−ϕ+ψ < ∞,

then there exists a (p− 1)-form u ∈ L2
p−1(Ω,ϕ− ψ) such that

du = f,

∫
Ω

(
1 − ω2

4

)
|u|2e−ϕ+ψ � 2 + α

2 − α

∫
Ω

〈
F−1
ϕ f, f

〉
e−ϕ+ψ,

where F−1
ϕ is defined by (1.6) and it is required implicitly that F−1

ϕ f is defined almost
everywhere in Ω, D2ϕ := ϕij dx

i ⊗ dxj is the Hessian of ϕ.

Proof. By the standard argument used in the proof of Theorem 3.1, we may assume,
without loss of generality, that Ω is a bounded open set with smooth p-convex boundary
and that ϕ,ψ are both smooth up to the boundary. In this case, there exists a unique
minimal solution, denoted by u0, of du = f in L2

p−1(Ω,ϕ− 1
2ψ). For u0, we have∫

Ω

〈u0, v〉e−ϕ+ 1
2ψ = 0 (6.1)

for any closed (p− 1)-form v ∈ L2
p−1(Ω,ϕ− 1

2ψ). Set

u = e
1
2ψu0

then (6.1) implies that u is the minimal solution of du = g in L2
p−1(Ω,ϕ) where g is the

closed p-form given by

g = e
1
2ψ

(
1
2 dψ ∧ u0 + f

)
.

By Lemma 1.1, Fϕg is well-defined and we have the following pointwise inequality

〈
F−1
ϕ g, g

〉
=
(

1
4
〈
F−1
ϕ dψ ∧ u0, dψ ∧ u0

〉
+
〈
F−1
ϕ f, dψ ∧ u0

〉
+
〈
F−1
ϕ f, f

〉)
eψ

�
(
ω2

4 |u0|2 +
〈
f, F−1

ϕ f
〉 1

2 · α|u0| +
〈
F−1
ϕ f, f

〉)
eψ (6.2)

where we have used the assumptions that ω2D2ϕ − dψ ⊗ dψ is p-positive semi-definite
and that ω � α holds on supp f .
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Since ϕ is by assumption a p-plurisubharmonic function, from Theorem 3.1 it follows
that ∫

Ω

|u0|2e−ϕ+ψ = ‖u‖2
ϕ �

∫
Ω

〈
F−1
ϕ g, g

〉
e−ϕ,

which, together with (6.2), implies∫
Ω

(
1 − ω2

4

)
|u0|2e−ϕ+ψ

�
∫
Ω

(〈
f, F−1

ϕ f
〉 1

2 · α|u0| +
〈
F−1
ϕ f, f

〉)
e−ϕ+ψ

� ε

∫
Ω

(
1 − ω2

4

)
|u0|2e−ϕ+ψ +

∫
Ω

[
1 + α2

(4 − ω2)ε

]〈
F−1
ϕ f, f

〉
e−ϕ+ψ

� ε

∫
Ω

(
1 − ω2

4

)
|u0|2e−ϕ+ψ +

∫
Ω

[
1 + α2

(4 − α2)ε

]〈
F−1
ϕ f, f

〉
e−ϕ+ψ

where 0 < ε < 1 is any constant. Set

ε = α

2 + α
,

the above inequality gives∫
Ω

(
1 − ω2

4

)
|u0|2e−ϕ+ψ � 2 + α

2 − α

∫
Ω

〈
F−1
ϕ f, f

〉
e−ϕ+ψ,

hence u0 is the desired solution. �
As an immediate consequence of the above theorem, if the function ω is constant we

have the following corollary.

Corollary 6.1. Let Ω be a p-convex domain in R
n (1 � p � n) and let ϕ ∈ C2(Ω) be a

p-plurisubharmonic function on Ω and ψ ∈ C1(Ω). There is a constant α ∈ [0, 2) such
that the symmetric bilinear form α2D2ϕ− dψ⊗ dψ is p-positive semi-definite on Ω. For
any closed p-form f ∈ L2

p(Ω,Loc), if∫
Ω

〈
F−1
ϕ f, f

〉
e−ϕ+ψ < ∞,

then there exists a (p− 1)-form u ∈ L2
p−1(Ω,ϕ− ψ) such that

du = f, ‖u‖2
ϕ−ψ � 4

(2 − α)2

∫ 〈
F−1
ϕ f, f

〉
e−ϕ+ψ.
Ω
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Remark 6.1. (i) If we choose the constant α = 0 and the weight function ψ = 0, then
Corollary 6.1 recovers Theorem 3.1.

(ii) We can give an alternative proof of Theorem 4.1 by using Corollary 6.1 in the
following way. Let ϕ1 = ϕ+ ψ and ψ1 = (1 + α)ψ, then ϕ1 is p-plurisubharmonic. Since

(1 + α)2D2ϕ1 − dψ1 ⊗ dψ1 = (1 + α)2
[
D2ϕ + eψD2(−e−ψ

)]
,

the assumption that ϕ and −e−ψ are both p-plurisubharmonic functions implies that
(1 + α)2D2ϕ1 − dψ1 ⊗ dψ1 is p-positive semi-definite. Applying Corollary 6.1 to the
weights ϕ1 and ψ1, we obtain Theorem 4.1.

(iii) The proof of Theorem 4.1 given in (ii) does not indicate the estimate (∗) in
Section 4. Actually, Corollary 6.1 also follows from the following estimate whose proof
is an imitation of that of (∗). Let ϕ ∈ C∞(Ω) be a p-plurisubharmonic function and let
ψ ∈ C∞(Ω) be a function such that the symmetric form αD2ϕ− dψ ⊗ dψ is p-positive
semi-definite for some constant α ∈ [0, 2), we have the following a priori estimate

‖δϕ− 1
2ψ

g‖2
ϕ + ‖dg‖2

ϕ � (2 − α)2

4

∫
Ω

〈Fϕg, g〉e−ϕ, (∗∗)

for any p-form g ∈ Dom(d∗) ∩ C∞
p (Ω) on p-convex domains with smooth boundary.

7. L2-estimates on p-convex Riemannian manifolds

We will generalize the results established in Sections 2–6 to Riemannian manifolds.
To this end, we only need to take care of the curvature term which enters the a priori
estimate and we will focus on such modifications.

Let (M,ds2) be an oriented Riemannian manifold of dimension n. We denote by
RXY = DXDY − DY DX − D[X,Y ] the curvature of the Levi-Civita connection D.
Let {e1, . . . , en} be locally defined orthonormal frame field of the tangent bundle and
{ω1, . . . , ωn} be its dual coframe field. Since D is torsion free, the exterior differential
operator d and its formal adjoint δ satisfy

d = ωi ∧Dei , δ = −ei�Dei . (7.1)

For any ϕ ∈ C∞(M), we denote as before

Fϕ = ϕijω
j ∧ ei�

where ϕij ’s are given by the Hessian D2ϕ := ϕijω
i ⊗ ωj of ϕ.

For our later use, we collect here some easy geometric computations.

Lemma 7.1. For any ϕ ∈ C∞(M) and any p-form g ∈ C∞
p (M), we have the following

identity
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L∇ϕg = D∇ϕg + Fϕg (7.2)

where L∇ϕ = d∇ϕ� + ∇ϕ�d is the Lie derivative and ∇ϕ is the gradient of ϕ.

Proof. By repeated use of the first formula in (7.1), we have

∇ϕ�dg = ∇ϕ�ωi ∧Deig

= 〈∇ϕ, ei〉Deig − ωi ∧∇ϕ�Deig

= D∇ϕg − ωi ∧
[
Dei(∇ϕ�g) − (Dei∇ϕ)�g

]
= D∇ϕg − ωi ∧Dei(∇ϕ�g) + ϕijω

i ∧ ej�g

= D∇ϕg + Fϕg − d∇ϕ�g.

The proof is complete. �
Lemma 7.2. Let Ω � M be an open subset with smooth boundary. For any differential
forms f ∈ C∞

p+1(Ω), g ∈ C∞
p (Ω), we have the following identities

∫
Ω

〈f, dg〉 =
∫
Ω

〈δf, g〉 +
∫
∂Ω

〈∇ρ�f, g〉 1
|∇ρ| , (7.3)

∫
Ω

〈�g, g〉 = −
∫
Ω

|Dg|2 +
∫
∂Ω

〈D∇ρg, g〉
1

|∇ρ| (7.4)

where � := trD2 is the Laplacian, ρ is a defining function for Ω, i.e., ρ ∈ C∞(Ω)
satisfying ρ < 0 in Ω, ρ = 0 and ∇ρ �= 0 on ∂Ω.

Proof. Set

X = 〈g, ei�f〉ei, Y = 〈g,Deig〉ei,

it is obvious that X,Y are both well-defined smooth vector fields on Ω. By using (7.1),
we see that

divX = 〈dg, f〉 − 〈g, δf〉 (7.5)

and that

divY = 〈�g, g〉 + |Dg|2. (7.6)

Now the divergence theorem gives the required identities (7.3), (7.4) by integrating (7.5)
and (7.6) respectively. �
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We use the same notation d to denote the maximal (weak) differential operator d :
L2
p−1(Ω) → L2

p(Ω) where Ω � M is a smooth open subset. We also denote the adjoint
of the closed and densely defined operator by d∗. From (7.3), it is easy to see that

C∞
p (Ω) ∩ Dom

(
d∗
)

=
{
g ∈ C∞

p (Ω)
∣∣ ∇ρ�g = 0 on ∂Ω

}
(7.7)

where 1 � p � n.
To establish the basic estimate in Section 3 on Riemannian manifolds, we first compute

the integral
∫
Ω
|dg|2 + |δg|2 for any g ∈ C∞

p (Ω) ∩ Dom(d∗). From (7.7) and Lemma 7.2,
it follows that∫

Ω

|dg|2 + |δg|2 =
∫
Ω

〈
(dδ + δd)g, g

〉
+
∫
∂Ω

(
〈∇ρ�dg, g〉 − 〈∇ρ�g, δg〉

) 1
|∇ρ|

=
∫
Ω

〈
(dδ + δd)g, g

〉
+
∫
∂Ω

〈∇ρ�dg, g〉 1
|∇ρ| . (7.8)

Let us choose the orthonormal frame field {e1, . . . , en} to be adapted to ∂Ω with

en = ∇ρ

|∇ρ| ,

then we know by (7.7) that

〈d∇ρ�g, g〉 =
n−1∑
ν=1

〈
ων ∧Deν (∇ρ�g), g

〉
+
〈
Den(∇ρ�g), en�g

〉
= 0 (7.9)

holds on the boundary ∂Ω. Combining (7.2), (7.8) and (7.9) gives the next identity∫
Ω

|dg|2 + |δg|2 =
∫
Ω

〈
(dδ + δd)g, g

〉
+
∫
∂Ω

〈L∇ρg, g〉
1

|∇ρ|

=
∫
Ω

〈
(dδ + δd)g, g

〉
+
∫
∂Ω

〈D∇ρg + Fρg, g〉
1

|∇ρ| . (7.10)

To handle the first term on the right hand side of (7.10), we use the Bochner–Weitzenböck
formula

(dδ + δd)g = −�g + ωj ∧ ei�Reiejg. (7.11)

Recall that the curvature operator R :
∧2

T ∗M →
∧2

T ∗M is defined as a self-adjoint
linear map by

R
(
ωi ∧ ωj

)
:= Rij�kω

k ∧ ω�
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where Rijk� := 〈Reiejek, e�〉. It is known that (cf. [33])

〈
ωj ∧ ei�Reiejg, g

〉
=

∑
i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉
(7.12)

where ξgi1···ip is the 2-form given by

ξgi1···ip =
p∑

a=1

n∑
i=1

gi1···(i)a···ipω
i ∧ ωia . (7.13)

By (7.4), (7.11) and (7.12), it is easy to see the following equality∫
Ω

〈
(dδ + δd)g, g

〉
=
∫
Ω

|Dg|2 +
∑

i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉
−
∫
∂Ω

〈D∇ρg, g〉
1

|∇ρ| . (7.14)

Substituting (7.14) into (7.10) implies that∫
Ω

|dg|2 + |δg|2 =
∫
Ω

|Dg|2 +
∑

i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉
+
∫
∂Ω

〈Fρg, g〉
1

|∇ρ| (7.15)

holds for any g ∈ C∞
p (Ω) ∩ Dom(d∗).

Now we commence introducing a weight function into the identity (7.15).

Lemma 7.3. Let Ω � M be an open subset with a defining function ρ ∈ C∞(Ω), ϕ ∈
C∞(Ω). Then for any differential form g ∈ C∞

p (Ω) ∩ Dom(d∗), we have the following
identity

∫
Ω

(
|dg|2 + |δϕg|2

)
e−ϕ =

∫
Ω

(
|Dg|2 +

∑
i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉
+ 〈Fϕg, g〉

)
e−ϕ

+
∫
∂Ω

〈Fρg, g〉
e−ϕ

|∇ρ| (7.16)

where δϕ := eϕ ◦ δ ◦e−ϕ is the formal adjoint of d with respect to the weight ϕ and ξgi1···ip
is defined by (7.13).

Proof. For any g ∈ C∞
p (Ω) ∩ Dom(d∗), set

h = e−
ϕ
2 g

then we know by (7.7) h ∈ C∞
p (Ω) ∩ Dom(d∗). The equality (7.15) applied to h gives
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∫
Ω

(
|dg|2 + |δϕg|2

)
e−ϕ =

∫
Ω

∣∣∣∣dh + 1
2 dϕ ∧ h

∣∣∣∣2 +
∣∣∣∣δh + 1

2∇ϕ�h
∣∣∣∣2

=
∫
Ω

|dh|2 + |δh|2 + 〈L∇ϕh, h〉 + 1
4
(
|dϕ ∧ h|2 + |∇ϕ�h|2

)
=
∫
Ω

|Dh|2 +
∑

i1<···<ip

〈
Rξhi1···ip , ξ

h
i1···ip

〉
+ 〈Fϕh, h〉

+
∫
Ω

〈D∇ϕh, h〉 + 1
4 |dϕ|

2|h|2 +
∫
∂Ω

〈Fρh, h〉
1

|∇ρ| (7.17)

where we have also used (7.3) to get the second equality, (7.2) and the Lagrange identity
to get the last equality. By substituting h = e

−ϕ
2 g into (7.17), we obtain the desired

identity as follows

∫
Ω

(
|dg|2 + |δϕg|2

)
e−ϕ =

∫
Ω

(∣∣∣∣Dg − 1
2 dϕ⊗ g

∣∣∣∣2 +
∑

i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉)
e−ϕ

+
∫
Ω

(
〈Fϕg, g〉 +

〈
D∇ϕg −

1
2 |∇ϕ|2g, g

〉)
e−ϕ

+ 1
4

∫
Ω

|dϕ|2|g|2e−ϕ +
∫
∂Ω

〈Fρg, g〉
e−ϕ

|∇ρ|

=
∫
Ω

(
|Dg|2 +

∑
i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉
+ 〈Fϕg, g〉

)
e−ϕ

+
∫
Ω

(〈
D∇ϕg −

1
2 |∇ϕ|2g, g

〉
− 〈Dg, dϕ⊗ g〉

)
e−ϕ

+ 1
2

∫
Ω

|dϕ|2|g|2e−ϕ +
∫
∂Ω

〈Fρg, g〉
e−ϕ

|∇ρ|

=
∫
Ω

(
|Dg|2 +

∑
i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉
+ 〈Fϕg, g〉

)
e−ϕ

+
∫
∂Ω

〈Fρg, g〉
e−ϕ

|∇ρ| .

The proof is complete. �
Before we prove the L2-existence theorem on (M,ds2), we need to bound the curvature

term in (7.16). Set
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λR(x) := the smallest eigenvalue of R(x),

ΛR(x) := the largest eigenvalue of R(x) (7.18)

for any x ∈ M . Then we have, for any p-form g, the following pointwise inequalities for
the curvature term

∑
i1<···<ip

〈Rξgi1···ip , ξ
g
i1···ip〉 in (7.16).

Lemma 7.4.

p(n− p)λR|g|2 �
∑

i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉
� p(n− p)ΛR|g|2 (7.19)

where the ξgi1···ip ’s are defined by (7.13).

Proof. By the definition of ξgi1···ip , we get

∑
i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉

� λR

∑
i1<···<ip

[
p∑

a=1

n∑
i=1

g2
i1···(i)a···ip −

p∑
a,b=1

gi1···(ib)a···ipgi1···(ia)b···ip

]

= λR

∑
i1<···<ip

[
p∑

a=1

n∑
i=1

g2
i1···(i)a···ip − pg2

i1···ip

]

= λR

∑
i1<···<ip

p∑
a=1

∑
i	=i1,...,ip

g2
i1···(i)a···ip

= λR

∑
j1<···<jp

∑
i1<···<ip

p∑
a=1

∑
i	=i1,...,ip

sgn
(

i1 · · · (i)a · · · ip
j1 · · · · · · · · · · jp

)2

g2
j1···jp ,

where sgn denotes the signature of permutation and we have used the identity

gi1···(i)a···ip =
∑

j1<···<jp

sgn
(

i1 · · · (i)a · · · ip
j1 · · · · · · · · · · jp

)
gj1···jp .

For fixed j1 < · · · < jp we have

∑
i1<···<ip

p∑
a=1

∑
i	=i1,...,ip

sgn
(

i1 · · · (i)a · · · ip
j1 · · · · · · · · · · jp

)2

= p(n− p),

because only terms given by {i1, . . . , ip} = {j1, . . . , ĵa, . . . , jp, k} (k �= j1, . . . , jp and 1 �
a � p) contribute to the sum. We can therefore rewrite the above inequality as



266 Q. Ji et al. / Advances in Mathematics 253 (2014) 234–280
∑
i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉
� p(n− p)λR

∑
j1<···<jp

g2
j1···jp .

The second inequality can be proved in the same manner, and the proof is complete. �
In order to establish L2-existence theorem, we will use d : L2

p−1(Ω,ϕ) → L2
p(Ω,ϕ), the

maximal (weak) differential operator between the weighted L2-spaces. Let
d∗ϕ :L2

p(Ω,ϕ) → L2
p−1(Ω,ϕ) be the adjoint operator. As mentioned before, we know

by (7.3) that the formal adjoint of d with respect to the weight is given by δϕ, and
consequently we have

C∞
p (Ω) ∩ Dom

(
d∗ϕ
)

= C∞
p (Ω) ∩ Dom

(
d∗
)

=
{
g ∈ C∞

p (Ω)
∣∣ ∇ρ�g = 0 on ∂Ω

}
. (7.20)

Now we are in the position to prove the main result of this section.

Theorem 7.1. Let (M,ds2) be an n-dimensional oriented p-convex Riemannian manifold.
Let ϕ ∈ C2(M) be a p-plurisubharmonic function on M . If Fϕ+p(n−p)λR Id is p-positive
semi-definite on M , then for any closed p-form f ∈ L2

p(M,Loc) with∫
M

〈[
Fϕ + p(n− p)λR Id

]−1
f, f

〉
e−ϕ < ∞,

there exists some (p− 1)-form u ∈ L2
p−1(M,ϕ) such that

du = f and
∫
M

|u|2e−ϕ �
∫
M

〈[
Fϕ + p(n− p)λR Id

]−1
f, f

〉
e−ϕ

where 1 � p � n, [Fϕ + p(n− p)λR Id]−1 is defined by (1.6) and λR is given by (7.18).
Moreover, if f and ϕ are both assumed additionally to be smooth then we can choose u

to be a smooth form.

Proof. It has been proved in [20] that M admits a smooth p-plurisubharmonic proper
exhaustion function, so M itself can be exhausted by compact open subsets with smooth
p-convex boundary. Since the resulting L2-estimate enables us to apply the standard
argument of approximation to take weak limit, we only need to work on a smooth
domain Ω � M which has p-convex boundary. From (7.16), (7.19) and (7.20), it follows
that ∫

Ω

(
|dg|2 + |δϕg|2

)
e−ϕ �

∫
Ω

〈[
Fϕ + p(n− p)λR

]
g, g

〉
e−ϕ (7.21)

where g ∈ C∞
p (Ω) ∩ Dom(d∗ϕ). By Hörmander’s density lemma (see [22] or [23]), we

know that (7.20) holds for any g ∈ Dom(d∗ϕ). Now the desired result follows from the
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estimate (7.21) and Lemma 3.1. For the regularity, we can apply the procedure in Sec-
tion 5 to get the minimal solution in L2

p−1(M,ϕ) and the interior regularity then follows
from the ellipticity of dδϕ + δϕd. �
Remark 7.1. By results in [26] and [28], we know that the curvature term∑

i1<···<ip

〈
Rξgi1···ip , ξ

g
i1···ip

〉
� 0

for p = 2 when (M,ds2) is assumed to have nonnegative complex sectional curvature
(isotropic sectional curvature when n is even). In this case, we have instead of (7.21) the
following a priori estimate∫

Ω

(
|dg|2 + |δϕg|2

)
e−ϕ �

∫
Ω

〈Fϕg, g〉e−ϕ (7.22)

for any g ∈ C∞
2 (Ω) ∩ Dom(d∗ϕ). The same argument for Theorem 7.1 also implies the

following result:
Let (M,ds2) be an n-dimensional oriented 2-convex Riemannian manifold. Let ϕ ∈

C2(M) be a 2-plurisubharmonic function on M . If (M,ds2) has nonnegative complex
sectional curvature (isotropic sectional curvature when n is even), then for any closed
2-form f ∈ L2

2(M,Loc) with ∫
M

〈
F−1
ϕ f, f

〉
e−ϕ < ∞,

there exists some 1-form u ∈ L2
1(M,ϕ) such that

du = f and
∫
M

|u|2e−ϕ �
∫
M

〈
F−1
ϕ f, f

〉
e−ϕ.

Moreover, if f and ϕ are both assumed additionally to be smooth then we can choose u

to be a smooth form.

As an easy corollary, we have the following result which is a generalization of Theo-
rem 3.1 to Riemannian manifolds with nonnegative curvature operator.

Corollary 7.1. Assume that (M,ds2) is p-convex and has nonnegative curvature operator.
Let ϕ ∈ C2(M) be a p-plurisubharmonic function on M . Then for any closed p-form
f ∈ L2

p(M,Loc) with ∫ 〈
F−1
ϕ f, f

〉
e−ϕ < ∞,
M
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there exists some (p− 1)-form u ∈ L2
p−1(M,ϕ) such that

du = f and
∫
M

|u|2e−ϕ �
∫
M

〈
F−1
ϕ f, f

〉
e−ϕ.

Moreover, if f and ϕ are both assumed to be smooth then we can choose u to be a smooth
form. When p = 2, it is enough to assume (M,ds2) has nonnegative complex sectional
curvature (isotropic sectional curvature when n is even).

Remark 7.2. All the results in Sections 2–6 can be established on Riemannian manifolds
without any additional difficulty. For Theorem 2.1, the minor difference is that the
Levi-Civita connection D enters the derivatives and the gradient is taken with respect to
the underlying metric. To prove, on Riemannian manifolds, these L2-estimates obtained
in Sections 3–6, the only modification is to use the estimate (7.21) to replace (3.2) (or
use Theorem 7.1 to replace Theorem 3.1).

8. Geometric applications

In this section, we will prove vanishing and finiteness theorems for de Rham coho-
mology groups. The key is to control the curvature term (in the basic estimate (7.21))
by choosing appropriate weight functions. The main tool is a Carleman type estimate
(Lemma 8.4) which is uniform with respect to both of weights and domains. To estab-
lish such an estimate, we will first prove a Gårding type estimate (Lemma 8.1) which is
also uniform w.r.t. domains and weights. Since the notion of p-convexity depends on the
underlying metric, we do not have the flexibility in the way of modifying the metric as
the complex analytic case (cf. [2] and [14]).

Solving du = f in appropriate weighted L2-space, we have the following immediate
corollary of Theorem 7.1.

Proposition 8.1. Let (M,ds2) be a strictly p-convex n-dimensional Riemannian manifold,
1 � p � n. Then for any closed f ∈ L2

q(M,Loc) (p � q � n) there exists some (q−1)-form
u ∈ L2

q−1(M,Loc) such that du = f . In particular, the de Rham cohomology group
Hq(M,R) = 0 for every p � q � n.

Proof. Since strict p-convexity implies strict (p + 1)-convexity, it suffices to consider
the case q = p. By using Lemma 1.2(i) with ω = p(n − p)λR, one can find a
p-plurisubharmonic proper exhaustion function ϕ ∈ C∞(M) such that Fϕ+p(n−p)λR Id
is p-positive definite on M . Then 〈[Fϕ + p(n − p)λR Id]−1f, f〉 is a continuous function
on M . By Lemma 1.2(iii), one can find a function ψ ∈ C∞(M) such that ψ − ϕ is
p-plurisubharmonic and

∫
M
〈[Fϕ + p(n − p)λR Id]−1f, f〉e−ψ < ∞. Consequently, we

have∫ 〈[
Fψ + p(n− p)λR Id

]−1
f, f

〉
e−ψ �

∫ 〈[
Fϕ + p(n− p)λR Id

]−1
f, f

〉
e−ψ < ∞.
M M
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It follows from Theorem 7.1 that there exists some (p − 1)-form u ∈ L2
p−1(M,ψ) such

that du = f . To see the vanishing of Hp(M,R), it is enough to consider the minimal
solution of du = f in L2

p−1(M,ψ) which is smooth provided f ∈ C∞
p (M). The proof is

complete. �
Remark 8.1. (i) As observed by Harvey and Lawson, Proposition 8.1 also follows from
Morse theory (see Theorem 4.16 in [19]).

(ii) By making an additional assumption on the sectional curvature, we can prove
the following vanishing result for Riemannian manifolds which are strictly p-convex at
infinity. Since (M,ds2) is strictly p-convex at infinity, M can be exhausted by open
subsets with strictly p-convex boundary Ω1 � Ω2 � · · · . When (M,ds2) is assumed to
have nonnegative sectional curvature, by the main theorem in [29], we obtain

Hq(Ων ,R) = 0 for each ν � 1 and p � q � n.

Taking the inverse limit implies that

Hq(M,R) ∼= lim←− Hq(Ων ,R) = 0 for p � q � n.

This is a generalization of Corollary 5.1.

Combining the inequalities (8.2) and (8.3) below, we will get a Gårding type estimate
which is uniform with respect to both p-convex domains Ω � M and p-plurisubharmonic
weight functions ϕ ∈ C2(M) satisfying the condition (8.1) below. The existence of such
a weight is given by Lemma 1.2(ii). In the sequel, we will denote by (d|Ω)∗ϕ the adjoint
of the maximal differential operator d|Ω : L2

q(Ω,ϕ) → L2
q+1(Ω,ϕ).

Lemma 8.1. Let M be an oriented n-dimensional manifold. Let ϕ be a C2 function which
is p-plurisubharmonic on M and satisfies

Fϕ +
[

max
p���n

�(n− �)λR − 1
]
Id is p-positive outside a compact subset S ⊆ M. (8.1)

For any bounded open set Ω with p-convex boundary and any open neighborhoods U �
U1 ⊆ Ω of S in Ω, there is a constant A = A(S,U, U1) > 0 such that∫

Ω

(
|dg|2 +

∣∣(d|Ω)∗ϕg
∣∣2 + |g|2

)
e−ϕ � A

∫
U

|Dg|2e−ϕ (8.2)

and ∫
Ω

(
|dg|2 +

∣∣(d|Ω)∗ϕg
∣∣2)e−ϕ +

∫
U

|g|2e−ϕ � A

∫
Ω

|g|2e−ϕ (8.3)

hold for every g ∈ Dom(d|Ω)∗ϕ ∩ Dom(d|Ω) ⊆ L2
q(Ω,ϕ), p � q � n.
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Proof. Let g ∈ C∞
q (Ω), p � q � n. Choose a cut-off function χ1 ∈ C∞(Ω) such that

χ1|U ≡ 1 and Suppχ1 ⊆ U1.

It follows from (7.16) and (7.19) that∫
Ω

(∣∣d(χ1g)
∣∣2 +

∣∣δϕ(χ1g)
∣∣2)e−ϕ �

∫
Ω

(∣∣D(χ1g)
∣∣2 − q(n− q)A1

∣∣(χ1g)
∣∣2)e−ϕ

�
∫
U

|Dg|2e−ϕ − q(n− q)A1

∫
Ω

|χ1g|2e−ϕ

where A1 > 0 is a constant such that λR � −A1 on U1. Therefore, we obtain∫
Ω

{
|dg|2 + |δϕg|2 + A2

2
[
q(n− q)A1 + 2

]
|g|2

}
e−ϕ � 1

2

∫
U

|Dg|2e−ϕ (8.4)

where A2 := supΩ( |χ1|√
2 + |∇χ1|) and g ∈ C∞

q (Ω).
Let χ2 be a smooth function on Ω satisfying

χ2|S ≡ 0 and χ2|Ω\U ≡ 1.

Set A3 := supΩ |∇χ2|. For any g ∈ C∞
q (Ω) ∩ Dom((d|Ω)∗ϕ), by using (7.16) and (7.19)

again, we have∫
Ω

(∣∣d(χ2g)
∣∣2 +

∣∣δϕ(χ2g)
∣∣2)e−ϕ �

∫
Ω

〈(
Fϕ + q(n− q)λR Id

)
χ2g, χ2g

〉
e−ϕ

�
∫
Ω

|χ2g|2e−ϕ

�
∫

Ω\U

|g|2e−ϕ

which implies that∫
Ω

(
|dg|2 + |δϕg|2

)
e−ϕ + 2A2

3

∫
U

|g|2e−ϕ � 1
2

∫
Ω\U

|g|2e−ϕ

and consequently,∫ (
|dg|2 + |δϕg|2

)
e−ϕ +

(
2A2

3 + 1
2

)∫
|g|2e−ϕ � 1

2

∫
|g|2e−ϕ. (8.5)
Ω U Ω
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By Hörmander’s density lemma (cf. [22] or [23]), the estimates (8.4) and (8.5) are both
valid for g ∈ Dom(d|Ω)∗ϕ ∩ Dom(d|Ω) ⊆ L2

q(Ω,ϕ), p � q � n. �
By a compactness argument, the next result follows from Lemma 8.1.

Lemma 8.2. Let ϕ ∈ C2(M) be a p-plurisubharmonic function satisfying (8.1). For
any bounded open set Ω with p-convex boundary which contains the subset S in (8.1),
Ker(d|Ω)∗ϕ ∩ Ker(d|Ω) ⊆ L2

q(Ω,ϕ) is finite dimensional and we have the orthogonal de-
composition

Ker(d|Ω) =
(
Ker(d|Ω)∗ϕ ∩ Ker(d|Ω)

)
⊕ Im(d|Ω) ⊆ L2

q(Ω,ϕ), p � q � n. (8.6)

Proof. Fix open neighborhoods U � U1 ⊆ Ω of S in Ω such that U has smooth boundary.
Let {gν} ⊆ Ker(d|Ω)∗ϕ ∩ Ker(d|Ω) be a sequence of q-forms with ‖gν‖ϕ bounded and
‖dgν‖ϕ → 0, ‖(d|Ω)∗ϕgν‖ϕ → 0. In view of (8.2) and the Rellich–Kondrachov theorem,
we can pass to a subsequence and thereby assume that {gν |Ω1} converges in L2

q(U,ϕ).
On the other hand, (8.3) implies that {gν} is a Cauchy sequence in L2

q(Ω,ϕ). Therefore,
there exists a g ∈ L2

q(Ω,ϕ) such that gν → g in L2
q(Ω,ϕ). By applying Lemma 8.3 below

to the weighted L2-de Rham complex

· · · → L2
q−1(Ω,ϕ) T=d|Ω−−−−−→ L2

q(Ω,ϕ) S=d|Ω−−−−−→ L2
q(Ω,ϕ) → · · ·

we get the desired results. �
In the proof of Lemma 8.2, we have used the following result.

Lemma 8.3. (See Theorems 1.12 and 1.13 in [22].) Let H1
T−−→ H2

S−−→ H3 be a complex
of closed and densely defined operators between Hilbert spaces. Assume that from every
sequence gν ∈ Dom(T ∗) ∩ Dom(S) with ‖gν‖H2 bounded and T ∗gν → 0 in H1, Sgν → 0
in H3, one can select a strongly convergent subsequence. Then there exists a constant
C > 0 such that

‖g‖2
H2

� C2(∥∥T ∗g
∥∥2
H1

+ ‖Sg‖2
H3

)
(8.7)

holds for any g ∈ Dom(T ∗) ∩ Dom(S) ∩ (KerT ∗ ∩ KerS)⊥ and KerT ∗ ∩ KerS is finite
dimensional. Moreover, when the above estimate (8.7) holds, we also have the following
orthogonal decomposition

KerS =
(
KerT ∗ ∩ KerS

)
⊕ ImT. (8.8)

Remark 8.2. Since L2
∗(Ω,ϕ) = L2

∗(Ω), in the orthogonal decomposition (8.6), the left
hand side and the second summand on the right hand side are independent of the choice
of ϕ. Different choices of ϕ result in different complementary subspaces of Im(d|Ω) in
Ker(d|Ω).
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We can deduce from Lemma 8.1 a Carleman type inequality which is uniform with
respect to an increasing sequence of open subsets and weight functions. To formulate
such estimates, we introduce an increasing sequence of convex increasing functions χν ∈
C2(R), ν = 1, 2, . . . , such that

χν(t) ≡ 0 for t � 0 and ν = 1, 2, . . . , lim
ν→+∞

χν(t) = +∞ for t > 0. (8.9)

Lemma 8.4. Let ϕ ∈ C2(M) be a p-plurisubharmonic function satisfying (8.1). Assume
that the subset S in (8.1) is contained in U := {x ∈ M | ϕ(x) < 0} and that U has
smooth boundary. Then for any sequence Ω1 � Ω2 � · · · ⊆ M of smooth open subsets
with p-convex boundary such that

U �
⋃
ν�1

Ων , (8.10)

there exist constants C > 0 and ν0 > 0 such that∫
Ωμ

|f |2e−ϕ−χν◦ϕ � C2
∫
Ωμ

(∣∣(d|Ωμ
)∗ϕ+χν◦ϕf

∣∣2 + |df |2
)
e−ϕ−χν◦ϕ (8.11)

for every μ, ν � ν0 and every f ∈ Dom((d|Ωμ
)∗ϕ+χν◦ϕ)∩Dom(d|Ωμ

) ⊆ L2
q(Ωμ, ϕ + χν ◦ ϕ)

which satisfies∫
U

〈f, g〉e−ϕ = 0, ∀g ∈ Ker
(
(d|U )∗ϕ

)
∩ Ker(d|U ) ⊆ L2

q(U,ϕ), (8.12)

where p � q � n and {χν} is any increasing sequence which consists of convex increasing
functions satisfying (8.9).

Proof. We proceed by contradiction. Since U �
⋃

ν�1 Ων , we can assume, without loss
of generality, that U � Ω1.

It is easy to see that each ϕ + χν ◦ ϕ (ν � 1) satisfies the condition (8.1) with the
same subset S. By Lemma 8.1, we know that (8.2) and (8.3) hold for all subsets Ωμ and
weight functions ϕ + χν ◦ ϕ (μ, ν � 1). It is easy to see, by fixing an open set U1 such
that U � U1 ⊆ Ω1, that the constant A in Lemma 8.1 is independent of μ, ν � 1.

If the conclusion were false, by passing to subsequences of {Ωμ}μ�1 and {χν}ν�1
(as the conditions (8.9) and (8.10) are both fulfilled for any subsequence), we would
assume that there exists a sequence of fν ∈ Dom((d|Ων

)∗ϕ+χν◦ϕ) ∩ Dom(d|Ων
) ⊆

L2
q(Ων , ϕ + χν ◦ ϕ)(ν � 1) with the following properties∫

|fν |2e−ϕ−χν◦ϕ = 1, (8.13)

Ων
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∫
Ων

(∣∣(d|Ων
)∗ϕ+χν◦ϕfν

∣∣2 + |dfν |2
)
e−ϕ−χν◦ϕ � ν−1, (8.14)

∫
U

〈fν , g〉e−ϕ = 0, ∀g ∈ Ker
(
(d|U )∗ϕ

)
∩ Ker(d|U ) ⊆ L2

q(U,ϕ). (8.15)

By (8.2), (8.13) and (8.14), we get∫
U

|Dfν |2e−ϕ =
∫
U

|Dfν |2e−ϕ−χν◦ϕ

� A−1
∫
Ων

(
|fν |2 +

∣∣(d|Ων
)∗ϕ+χν◦ϕfν

∣∣2 + |dfν |2
)
e−ϕ−χν◦ϕ

� A−1(1 + ν−1)
and ∫

U

|fν |2e−ϕ =
∫
U

|fν |2e−ϕ−χν◦ϕ �
∫
Ων

|fν |2e−ϕ−χν◦ϕ = 1.

The Rellich–Kondrachov theorem implies that we may assume, by passing to a subse-
quence, that

lim
ν→+∞

fν = f in L2
q(U,ϕ). (8.16)

Taking into account (8.14), we also have

lim
ν→+∞

dfν = 0 in L2
q(U,ϕ)

which implies that

f ∈ Ker(d|U ) ⊆ L2
q(U,ϕ). (8.17)

Taking limit in (8.15), we obtain∫
U

〈f, g〉e−ϕ = 0, ∀g ∈ Ker
(
(d|U )∗ϕ

)
∩ Ker(d|U ) ⊆ L2

q(U,ϕ). (8.18)

Now set

gν = e−χν◦ϕfν (ν � 1).

By using (8.13) and (8.14) respectively, we have
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∫
Ω1

|gν |2e−ϕ+χμ◦ϕ �
∫
Ων

|gν |2e−ϕ+χν◦ϕ =
∫
Ων

|fν |2e−ϕ−χν◦ϕ = 1, (8.19)

and ∫
Ω1

∣∣(d|Ων
)∗ϕgν

∣∣2e−ϕ �
∫
Ων

∣∣(d|Ων
)∗ϕgν

∣∣2e−ϕ+χν◦ϕ

=
∫
Ων

∣∣(d|Ων
)∗ϕ+χν◦ϕfν

∣∣2e−ϕ−χν◦ϕ � ν−1 (8.20)

for any ν � μ � 1. By (8.19), we may assume

gν
w
⇀ g in L2

q(Ω1, ϕ− χμ ◦ ϕ) as ν → +∞ (8.21)

for any μ � 1. Combining (8.19) and (8.21) gives∫
Ω1

|g|2e−ϕ+χμ◦ϕ � 1

for any μ � 1, which implies that

Supp g ⊆ U. (8.22)

By (8.21), we know that

gν |Ω1 → g in the sense of distribution (8.23)

as ν → +∞. Consequently,

δϕgν |Ω1 → δϕg (8.24)

in the sense of distribution, as ν → +∞. Meanwhile, we know by (8.20) that

δϕgν |Ω1 → 0 in L2
q(Ω1, ϕ) as ν → +∞. (8.25)

Combining (8.24) and (8.25), we get

δϕg = 0 on Ω1 (8.26)

in the sense of distribution. From (8.22) and (8.26), it follows that

g|U ∈ Ker
(
(d|U )∗ϕ

)
. (8.27)
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By the definition of gν , we know

gν = fν on U

which, together with (8.16), (8.17) and (8.23), implies that

g|U = f ∈ Ker(d|U ) ⊆ L2
q(U,ϕ). (8.28)

From (8.18), (8.27) and (8.28), it follows that

lim
ν→+∞

fν |U = f = 0 in L2
q(U,ϕ). (8.29)

On the other hand, by (8.3), (8.13) and (8.14), we have

ν−1 +
∫
U

|fν |2e−ϕ �
∫
Ων

(∣∣(d|Ων
)∗ϕ+χν◦ϕfν

∣∣2 + |dfν |2
)
e−ϕ−χν◦ϕ +

∫
U

|fν |2e−ϕ

� A

∫
Ων

|fν |2e−ϕ−χν◦ϕ = A.

Letting ν → +∞ and using (8.29), we get the contradiction 0 � A which completes the
proof. �
Theorem 8.1. Let (M,ds2) be an n-dimensional Riemannian manifold which is strictly
p-convex at infinity (1 � p � n). Then the de Rham cohomology group Hq(M,R) is finite
dimensional for every p � q � n.

Proof. Let π : M̃ → M be the orientation covering of M , then we know by defini-
tion that M̃ , endowed with the pulled back metric π∗ds2, is again strictly p-convex
at infinity. Since π : M̃ → M is a double covering, the induced homomorphism
π∗ : Hq(M,R) → Hq(M̃,R) is injective for every q. By passing to M̃ , we may as-
sume without loss of generality that M is oriented. We will deduce Theorem 8.1 as a
consequence of Lemmas 8.2 and 8.4 in the following three steps.

Step 1. By Lemma 1.2(ii), there is a proper exhaustion function ϕ ∈ C∞(M) satisfying
the hypotheses of Lemma 8.4 where Ων := {x ∈ M | ϕ(x) < ν}, ν = 1, 2, . . . . From
Lemma 8.2 (choose Ω to be the subset U in Lemma 8.4), it is sufficient to prove that the
natural homomorphism from the de Rham cohomology Hq(M,R) to the L2-cohomology
L2Hq(U) := {f∈L2

q(U)|df=0}
{du∈L2

q(U)|u∈L2
q−1(U)} , given by the pullback of the inclusion map, is injective

for any p � q � n.
Step 2. By Corollary 3.1, we have the following fine resolution of the constant sheaf R

0 → R → A0
d−→ A1

d−→ A2
d−→ · · ·



276 Q. Ji et al. / Advances in Mathematics 253 (2014) 234–280
where Aq(V ) := {f ∈ L2
q(V,Loc) | df ∈ L2

q+1(V,Loc)} for any open subset V ⊆ M and
0 � q � n. Hence it suffices to show that for any closed q-form h ∈ L2

q(M,Loc) if

h|U = du where u ∈ L2
q−1(U) (8.30)

then there exists a (q − 1)-form ũ ∈ L2
q−1(M,Loc) such that dũ = h holds on M in the

sense of distribution.
Step 3. By Lemma 1.2(iii), one can find some function ψ ∈ C∞(M) such that ϕ ≡ ψ

when ϕ < 1, ψ − ϕ is p-plurisubharmonic and that∫
M

|h|2e−ψ < +∞. (8.31)

It is easy to see that ψ still satisfies the hypotheses of Lemma 8.4 with the same S and U .
By Lemma 8.4, there are constants C > 0 and ν0 > 0 such that∫

Ων

|f |2e−ψ−χν0◦ψ � C2
∫
Ων

(∣∣(d|Ων
)∗ψ+χν0◦ψf

∣∣2 + |df |2
)
e−ψ−χν0◦ψ

holds for every f ∈ Dom((d|Ων
)∗ψ+χν0◦ψ

) ∩ Dom(d|Ων
) ⊆ L2

q(Ων , ψ + χν0 ◦ ψ) satisfy-
ing (8.12) where ν = ν0, ν0 + 1, ν0 + 2, . . . .

From the above estimate and Lemma 3.1, we know that for any closed q-form hν ∈
L2
q(Ων , ψ + χν0 ◦ ψ) satisfying (8.12), there exists, for each ν � ν0, some (q − 1)-form

uν ∈ L2
q−1(Ων , ψ + χν0 ◦ ψ) such that

duν = hν ,

∫
Ων

|uν |2e−ψ−χν0◦ψ � C2
∫
Ων

|hν |2e−ψ−χν0◦ψ � C2
∫
Ων

|hν |2e−ψ. (8.32)

By (8.30), (8.31) and (8.32), we get some uν ∈ L2
q−1(Ων , ψ + χν0 ◦ ψ) such that

duν = h|Ων
,

∫
Ων

|uν |2e−ψ−χν0◦ψ � C2
∫
Ων

|h|2e−ψ < +∞ (8.33)

for each ν � ν0. Now the desired solution ũ ∈ L2
q−1(M,ψ + χν0 ◦ ψ) ⊆ L2

q−1(M,Loc)
follows from using (8.33) to take weak limits. �

As an intermediate consequence, we have

Corollary 8.1. Let (M,ds2) be an oriented n-dimensional Riemannian manifold, and
Ω � M be an open subset with strictly p-convex boundary, then the de Rham cohomology
group Hq(Ω,R) is finite dimensional for every p � q � n.
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Proof. By Lemma 3.17 in [20], we know that Ω is strictly p-convex at infinity w.r.t. the
induced metric from M . Thus the finiteness result follows from Theorem 8.1. �

In the above proof of Theorem 8.1, Lemma 8.4 is applied to a fixed weight function
and a sequence of domains. If we apply Lemma 8.4 to a fixed domain and a sequence of
weight functions, then we achieve the following approximation result.

Theorem 8.2. Let ϕ ∈ C2(M) be a p-plurisubharmonic function satisfying (8.1). Assume
that the subset S in (8.1) is contained in U := {x ∈ M | ϕ(x) < 0} and that U has smooth
boundary. Let Ω � M be an open subset with p-convex boundary such that U � Ω. Then
for any closed (q − 1)-form u ∈ L2

q−1(U) there exists a sequence of closed (q − 1)-forms
uν ∈ L2

q−1(Ω) such that uν |U → u in L2
q−1(U) where p � q � n.

Proof. It is easy to see that

Ker(d|Ω) ⊆ Ker(d|U ) ⊆ L2
q−1(U).

The desired conclusion is Ker(d|Ω) ⊇ Ker(d|U ) where ·̄ means taking the closure in
L2
q−1(U). Since Ker(d|U ) ⊆ L2

q−1(U) is closed, it suffices to show

Ker(d|Ω)⊥ ⊆ Ker(d|U )⊥

where ·⊥ means taking the orthogonal complement in the Hilbert space L2
q−1(U).

Let u ∈ Ker(d|Ω)⊥ ⊆ L2
q−1(U), then we extend u to be an element ũ ∈ L2

q−1(Ω) by
setting ũ = 0 outside U . The condition u ∈ Ker(d|Ω)⊥ ⊆ L2

q−1(U) implies that ũ lies in
the orthogonal complement of Ker(d|Ω) in L2

q−1(Ω). Let {χν} be an increasing sequence
which consists of convex increasing functions satisfying (8.9), then we know that

ũeϕ+χν◦ϕ ∈ Ker(d|Ω)⊥ ⊆ L2
q−1(Ω,ϕ + χν ◦ ϕ),

as before, ·⊥ means taking the orthogonal complement in the Hilbert space L2
q−1(Ω,ϕ+

χν ◦ ϕ). By Lemma 8.2, it follows that

Ker(d|Ω)⊥ = Im
(
(d|Ω)∗ϕ+χν◦ϕ

)
⊆ L2

q−1(Ω,ϕ + χν ◦ ϕ).

Hence we can find a unique fν ∈ Dom((d|Ω)∗ϕ+χν◦ϕ) ∩ Ker((d|Ω)∗ϕ+χν◦ϕ)⊥ ⊆ L2
q(Ω,ϕ +

χν ◦ ϕ) such that

(d|Ω)∗ϕ+χν◦ϕfν = eϕ+χν◦ϕũ on Ω (8.34)

for each ν � 1.
Since Ker((d|Ω)∗ϕ+χν◦ϕ)⊥ (in L2

q−1(Ω,ϕ + χν ◦ ϕ)) ⊆ Ker((d|U )∗ϕ)⊥ (in L2
q−1(U,ϕ)),

by Lemma 8.4 and (8.34), there are constants C > 0 and ν0 > 0 such that
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∫
Ω

|fν |2e−ϕ−χν◦ϕ � C2
∫
Ω

∣∣eϕ+χν◦ϕũ
∣∣2e−ϕ−χν◦ϕ

= C2
∫
U

|u|2eϕ (8.35)

for any ν � ν0. Set gν = e−ϕ−χν◦ϕfν (ν � 1), then by (8.34) and (8.35) we get

(d|Ω)∗gν = ũ (8.36)

and ∫
Ω

|gν |2eϕ+χν◦ϕ � C2
∫
U

|u|2eϕ < +∞ (8.37)

for any ν � ν0. Estimate (8.37) implies that∫
Ω

|gν |2eϕ+χμ◦ϕ � C2
∫
U

|u|2eϕ < +∞ (8.38)

for any ν � μ � ν0. Therefore there is a weak limit, denoted by g, of gν in L2
q−1(Ω,ϕ +

χμ ◦ ϕ) for any μ � ν0 (note that g is independent of μ). It follows from (8.36) that

δg = ũ on Ω (8.39)

in the sense of distribution. Letting ν → +∞, (8.38) gives∫
Ω

|g|2eϕ+χμ◦ϕ � C2
∫
U

|u|2eϕ < +∞

for any μ � ν0. Taking limit as μ → +∞ yields

Supp g ⊆ U. (8.40)

Combining (8.39) and (8.40) shows that g ∈ Dom((d|U )∗) and consequently u ∈
Im((d|U )∗) = Ker(d|U )⊥ ⊆ L2

q−1(U). The proof is complete. �
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