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FU-YAU HESSIAN EQUATIONS

Duong H. Phong, Sebastien Picard & Xiangwen Zhang

Abstract

We solve the Fu-Yau equation for arbitrary dimension and ar-
bitrary slope α′. Actually we obtain at the same time a solution
of the open case α′ > 0, an improved solution of the known case
α′ < 0, and solutions for a family of Hessian equations which in-
cludes the Fu-Yau equation as a special case. The method is based
on the introduction of a more stringent ellipticity condition than
the usual Γk admissible cone condition, and which can be shown
to be preserved by precise estimates with scale.

1. Introduction

The main goal of this paper is to solve the following non-linear partial
differential equation proposed in 2008 by J.X. Fu and S.T. Yau [11],

(1.1) i∂∂̄(euω̂ − α′e−uρ) ∧ ω̂n−2 + α′i∂∂̄u ∧ i∂∂̄u ∧ ω̂n−2 + µ ω̂n = 0.

Here the unknown is a scalar function u on a compact n-dimensional
Kähler manifold (X, ω̂), and the given data is a real (1, 1) form ρ, a
function µ, and a number α′ ∈ R called the slope. A key innovation
in the solution is the introduction of an ellipticity condition which is
more restrictive than the usual cone conditions for fully non-linear sec-
ond order partial differential equations, but which can be shown to be
preserved by the continuity method using some precise estimates with
scale. This innovation may be useful for other equations as well, and
we shall illustrate this by using it to solve a whole family of Hessian
equations in which the equation (1.1) fits as only the simplest example.

The equation (1.1) is a generalization of an equation in complex di-
mension 2, which was shown in [11] to arise from the Hull-Strominger
system [17, 18, 27]. The Hull-Strominger system is an extension of a
proposal of Candelas, Horowitz, Strominger, and Witten [5] for super-
symmetric compactifications of the heterotic string. It poses new geo-
metric difficulties as it involves quadratic expressions in the curvature
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tensor, but it can potentially lead to a new notion of canonical metric
in non-Kähler geometry. From our point of view, the equation (1.1) is
of particular interest as a model equation for an eventual extension of
the classical theory of Monge-Ampère equations of Yau [34] and Hes-
sian equations of Caffarelli, Nirenberg, and Spruck [4], to more general
equations mixing the unknown, its gradient, and several Hessians.

When the dimension of X is n = 2, the equation (1.1) was solved
by Fu and Yau in two separate papers, [11] for the case when α′ > 0,
and [12] for the case when α′ < 0 (when α′ = 0, the equation poses no
difficulty as it reduces essentially to the Laplacian). As we shall discuss
below, in the approach of [11, 12], the required estimates in the two
cases α′ > 0 and α′ < 0 are quite different. In an earlier paper [22],
we had solved the equation (1.1) for general dimension n when α′ < 0.
However, the case α′ > 0 for general dimension n remained open, as a
key lower bound for the Hessian could not be established [19]. In this
paper, we shall simultaneously solve the open case α′ > 0 for general
dimension n, improve on the solution found in [22] for the case α′ < 0,
and do it actually for more general equations where the factor (i∂∂̄u)2

in (1.1) is replaced by higher powers of i∂∂̄u.
More precisely, let (X, ω̂), ρ, µ, α′ be as above. For each fixed integer

k, 1 ≤ k ≤ n− 1 and each real number γ > 0, we consider the equation

i∂∂̄
{
ekuω̂ − α′e(k−γ)uρ

}
∧ ω̂n−2 + α′(i∂∂̄u)k+1 ∧ ω̂n−k−1 + µ ω̂n = 0.

(1.2)

Clearly, when k = 1 and γ = 2, this equation reduces to the Fu-Yau
equation (1.1). We shall refer to (1.2) as Fu-Yau Hessian equations.
Our main result is then the following:

Theorem 1.1. Let α′ ∈ R, ρ ∈ Ω1,1(X,R), and µ : X → R be a
smooth function such that

∫
X µ ω̂

n = 0. Define the set Υk by

(1.3) Υk =
{
u ∈ C2(X,R) : e−γu < δ, |α′||e−ui∂∂̄u|kω̂ < τ

}
,

where 0 < δ, τ � 1 are explicit fixed constants depending only on
(X, ω̂), α′, ρ, µ, n, k, γ, whose expressions are given in (2.5, 2.6) below.
Then there exists M0 � 1 depending on (X, ω̂), α′, n, k, γ, µ and
ρ, such that for each M ≥ M0, there exists a unique smooth function
u ∈ Υk with normalization

∫
X e

u ω̂n = M solving the Fu-Yau Hessian
equation (1.2).

We outline now the key differences between the earlier approaches
and the approach of the present paper.

The earlier approaches [11, 12, 19, 22] were based on rewriting the
equation (1.1) as

σ̂2(ω′) =
n(n− 1)

2
(e2u − 4α′eu|∇u|2) + ν,(1.4)
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where ν is a combination of known functions, u and ∇u, ω′ is defined
by ω′ = euω̂ + α′e−uρ + 2nα′i∂∂̄u, and σ̂k(ω

′) is the k-th symmetric
function of the eigenvalues of ω′ with respect to ω̂. We look then for
solutions u satisfying the condition ω′ ∈ Γ2, where Γ2 is defined by
the conditions σ̂1(ω′) > 0 and σ̂2(ω′) > 0. The left hand side is then
positive. When α′ > 0, this implies immediately an upper bound on
|∇u|. However, the difficulty is then to derive a positive lower bound
for σ̂2(ω′), and the arguments of [11] worked only when n = 2. On the
other hand, when α′ < 0, such a lower bound turns out to hold because
there is no cancellation in the expression e2u−4α′eu|∇u|2. The estimate
for |∇u| and |σ̂2(ω′)| can then be obtained respectively by applying the
techniques of Dinew-Kolodziej [9], and Chou-Wang [6], Hou-Ma-Wu
[16], Guan [15], and the authors [21].

The approach in the present paper relies instead on a different strat-
egy.

First, the equation (1.1) corresponds to the case k = 1, γ = 2 of
the Fu-Yau Hessian equations. As stated in Theorem 1.1, we look for
solutions u ∈ Υ1, which is a more stringent condition than ω′ ∈ Γ2.
The set Υ1 and its condition e−u|α′i∂∂̄u|ω̂ < τ are inspired by the
condition |α′Rm(ω)| � 1 in [20, 23] which guarantees the parabolicity
of the geometric flows introduced in these papers.1 In the method
of continuity, the given equation (1.1) is realized as the end point of a
family of equations for each t ∈ [0, 1]. The condition u ∈ Υ1 implies that
the diffusion operator F pq̄∇p∇q̄ governing the evolution of |∇u|2 and
|α′i∂∂̄u|2 is a controllable perturbation of the Laplacian ∆ = gpq̄∇p∇q̄.
The main problem is then to show that, if u ∈ Υ1 at time t = 0, it will
stay in Υ1 at all times.

This is accomplished by establishing a priori estimates, which we shall
refer to as “estimates with scale”, which are more precise and delicate
than the usual ones. Indeed, a priori estimates for |u|, |∇u|, and |α′i∂∂̄u|
are usually required only to be independent of z ∈ X and t ∈ [0, 1]. In
the present situation, the normalization as given in Theorem 1.1∫

X
euω̂n = M(1.5)

sets effectively a scale M , and the estimates with scale that we need are
estimates for |u|, |∇u|, and |α′i∂∂̄u| in terms of some specific powers
of M . An example of such an estimate is the C0 estimate stated in
Theorem 3.1 below, C−1M ≤ eu ≤ CM , which is a version in the
present context of similar C0 estimates established earlier in [11, 12,
19, 22]. The hardest part of the paper resides in the proof of similar
estimates with scale for |∇u| and |i∂∂̄u|, as stated in Theorems 5.1 and

1In these flows, a Hermitian metric ω evolves with time, and Rm(ω) is the cur-
vature of the Chern unitary connection of ω. The condition |α′Rm(ω)| � 1 was
subsequently also used in [10].
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6.1. Neither the set Υ1 nor the estimates with scale depend on the
sign of α′, which is why both cases α′ > 0 and α′ < 0 can be treated
simultaneously. Furthermore, we obtain a solution u ∈ Υ1, which is
better than a solution in Γ2. A vital clue that a strategy based on Υ1

and estimates with scale could work was provided by the authors’ earlier
alternative proof [23] by flow methods of the Fu-Yau theorem [11, 12]
in dimension n = 2.

The power of the new method is even more evident when it comes
to the general Fu-Yau Hessian equation (1.2). For k ≥ 2, it is no
longer possible to express the equation (1.2) in terms of a single Hessian
σ̂k+1(ω′) for some (1, 1)-form ω′ as in (1.4). Rather, the equation leads
to a combination of several Hessians, which makes it non-concave, and
prevents a derivation of C2 and C2,α estimates by standard techniques
of concave PDE’s. On the other hand, the method of an ellipticity
condition Υk preserved by estimates with scale works seamlessly in all
cases of 1 ≤ k ≤ n− 1. In fact the C3 estimates that we obtain appear
to be the first C3 estimates established in the literature for any general
class of Hessian equations besides the Laplacian and the Monge-Ampère
equations.

Acknowledgments. The authors would like to thank Teng Fei and
Yuan Yuan for very helpful discussions.

2. Proof of Theorem 1: a priori estimates

In our study of (1.2), we will assume that Vol(X, ω̂) = 1, which can be
achieved by scaling ω̂ 7→ λω̂, α′ 7→ λkα′, ρ 7→ λ−k+1ρ, µ 7→ λ−1µ. Since
the equation (1.2) reduces to the Laplace equation when α′ = 0, we
assume from now on that α′ 6= 0. We will use the notation C`n = n!

`!(n−`)!
and σ̂`(i∂∂̄u) ω̂n = C`n (i∂∂̄u)`∧ω̂n−`. Given ρ, we define the differential
operator Lρ acting on functions by

Lρf ω̂
n = ni∂∂̄(fρ) ∧ ω̂n−2.(2.1)

For each fixed k ∈ {1, 2, 3, . . . , n − 1} and a real number γ > 0, the
Fu-Yau Hessian equation (1.2) can be rewritten as

(2.2)
1

k
∆ĝe

ku + α′
{
Lρe

(k−γ)u + σ̂k+1(i∂∂̄u)

}
= µ.

We note that we adjusted our conventions compared to the introduction
by redefining µ, ρ, and α′ up to a constant. From this point on, we only
work with the present conventions (2.2). The standard Fu-Yau equation
can be recovered by letting k = 1, γ = 2. We remark that this equation
is already of interest in the case when ρ ≡ 0, in which case the term
Lρe

(k−γ)u vanishes.
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We can also write Lρ as

(2.3) Lρ = ajk̄∂j∂k̄ + bi∂i + bī∂ī + c,

where ajk̄ is a Hermitian section of (T 1,0X)∗⊗(T 0,1X)∗, bi is a section of
(T 1,0X)∗, and c is a real function. All these coefficients are characterized
by the following equations

ni∂∂̄f ∧ ρ ∧ ω̂n−2 = ajk̄∂j∂k̄f ω̂
n, ni∂f ∧ ∂̄ρ ∧ ω̂n−2 = bi∂if ω̂

n,

ni∂∂̄ρ ∧ ω̂n−2 = cω̂n,

for an arbitrary function f , and can be expressed explicitly in terms of
ρ and ω̂ if desired. We will use the constant Λ depending on ρ defined
by

(2.4) − Λĝjk̄ ≤ ajk̄ ≤ Λĝjk̄, ω̂ = ĝk̄jidz
j ∧ dz̄k, ĝjk̄ = (ĝk̄j)

−1.

We will look for solutions in the region

Υk =
{
u ∈ C2(X,R) : e−γu < δ, |α′||e−ui∂∂̄u|kω̂ < τ

}
, τ =

2−7

Ckn−1

,

(2.5)

where 0 < δ � 1 is a fixed small constant depending only on (X, ω̂), α′,
ρ, µ, k, n, γ. More precisely, it suffices for δ to satisfy the inequality

(2.6) δ ≤ min

{
1,

2−13

|α′|(k + γ)3Λ
,

(
θ

2CX (‖µ‖L∞ + ‖α′c‖L∞)

)γ/γ′}
,

where

θ =
1

2C1 − 1
, γ′ = min{k, γ}, C1 = {2(CX + 1)(γ + k)}n

(
n

n− 1

)n2

.

(2.7)

Here CX is the maximum of the constants appearing in the Poincaré
inequality and Sobolev inequality on (X, ω̂). The proof of Theorem 1.1
is based on the following a priori estimates:

Theorem 2.1. Let u ∈ Υk be a C5,β(X) function with normalization∫
X e

u ω̂n = M solving the k-th Fu-Yau Hessian equation (2.2). Then

C−1M ≤ eu ≤ CM, e−u|∇∇̄u|ω̂ ≤ CM−1/2, e−3u|∇∇̄∇u|2ω̂ ≤ C,
(2.8)

where C > 1 only depends on (X, ω̂), α′, k, γ, n, ρ, and µ.

Assuming Theorem 2.1, we can prove Theorem 1.1. Both the ex-
istence and uniqueness statements will be proved by the continuity
method.
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We begin with the existence. Fix α′ ∈ R\{0}, γ > 0, 1 ≤ k ≤ (n−1),
ρ ∈ Ω1,1(X,R) and µ : X → R such that

∫
X µ ω̂

n = 0, and define the set
Υk as above. For a real parameter t, we consider the family of equations

(2.9)
1

k
∆ĝe

kut + α′
{
tLρe

(k−γ)ut + σ̂k+1(i∂∂̄ut)
}

= tµ.

As equations of differential forms, this family can be expressed as

i∂∂̄

{
eku

k
ω̂ + α′te(k−γ)uρ

}
∧ ω̂n−2 + α′

Ckn−1

k + 1
(i∂∂̄u)k+1 ∧ ω̂n−k−1

(2.10)

− tµ
n
ω̂n = 0.

We introduce the following spaces

BM = {u ∈ C5,β(X,R) :

∫
X
eu ω̂n = M},(2.11)

B1 = {(t, u) ∈ [0, 1]×BM : u ∈ Υk},(2.12)

B2 = {ψ ∈ C3,β(X,R) :

∫
X
ψ ω̂n = 0}(2.13)

and define the map Ψ : B1 → B2 by

(2.14) Ψ(t, u) =
1

k
∆ĝe

ku + α′tLρe
(k−γ)u + α′σ̂k+1(i∂∂̄u)− tµ.

We consider

I={t ∈ [0, 1]: there existsu ∈ BM such that (t, u) ∈ B1 and Ψ(t, u) = 0}.

(2.15)

First, 0 ∈ I: indeed the constant function u0 = logM − log
∫
X ω̂

n is
in Υk when M � 1, and u0 solves the equation at t = 0. In particular
I is non-empty.

Next, we show that I is open. Let (t0, u0) ∈ B1, and let L =
(DuΨ)(t0,u0) be the linearized operator at (t0, u0),

L :

{
h ∈ C5,β(X,R) :

∫
X
heu0 ω̂n = 0

}
(2.16)

→
{
ψ ∈ C3,β(X,R) :

∫
X
ψ ω̂n = 0

}
,

defined by

L(h)ω̂n = i∂∂̄{eku0h ω̂ + α′(k − γ)t0e
(k−γ)u0h ρ} ∧ ω̂n−2

+α′Ckn−1i∂∂̄h ∧ (i∂∂̄u0)k ∧ ω̂n−k−1.(2.17)

The leading order terms are

(2.18) L(h)ω̂n = eku0χ(t0,u0) ∧ ω̂n−k−1 ∧ i∂∂̄h+ · · · ,



FU-YAU HESSIAN EQUATIONS 153

where

(2.19) χ(t,u) = ω̂k + α′(k − γ)te−γu ρ ∧ ω̂k−1 + α′Ckn−1(e−ui∂∂̄u)k.

Since u0 ∈ Υk, we see from the conditions (2.5) that χ(t0,u0) > 0 as a

(k, k) form and hence L is elliptic. The L2 adjoint L∗ is readily computed
by integrating by parts:∫

X
ψL(h) ω̂n =

∫
X
h eku0χ(t0,u0) ∧ ω̂n−k−1 ∧ i∂∂̄ψ

=

∫
X
hL∗(ψ) ω̂n.(2.20)

Since L∗ is an elliptic operator with no zeroth order terms, by the strong
maximum principle the kernel of L∗ consists of constant functions. An
index theory argument (see e.g. [21] or [11] for full details) shows that
the kernel of L is spanned by a function of constant sign. It follows that
L is an isomorphism. By the implicit function theorem, there exists a
unique solution (t, ut) for t sufficiently close to t0, with ut ∈ Υk since
Υk is open. We conclude that I is open.

Finally, we apply Theorem 2.1 to show that I is closed. Consider
a sequence ti ∈ I such that ti → t∞, and denote uti ∈ Υk ∩ BM the
associated C5,β functions such that Ψ(ti, uti) = 0. By differentiating

the equation e−kutiΨ(ti, uti) = 0 with the Chern connection ∇̂ of the
Kähler metric ω̂, we obtain

0 =
χ(ti,uti )

∧ ω̂n−k−1 ∧ i∂∂̄(∂`uti)

ω̂n/n

+∇̂`{α′tie−γuti ((k − γ)2apq̄∂puti ∂q̄uti + (k − γ)bk∂kuti

+(k − γ)bk̄∂k̄uti + c)}+ ∇̂`(α′tie−γuti (k − γ)apq̄)∂p∂q̄uti

+k∂`|∇uti |2ĝ − α′ke−kuti σ̂k+1(i∂∂̄uti)∂`uti − ti∂`{e−kutiµ}.(2.21)

Since the equations (2.9) are of the form (2.2) with uniformly bounded
coefficients ρ and µ, Theorem 2.1 applies to give uniform control of
|uti | and |∂∂̄∂uti |ω̂ along this sequence. Therefore ∆̂uti is uniformly
controlled in Cβ(X) for any 0 < β < 1. By Schauder estimates, we
have ‖uti‖C2,β ≤ C.

Thus the differentiated equation (2.21) is a linear elliptic equation
for ∂`uti with Cβ coefficients. This equation is uniformly elliptic along
the sequence, since χ(ti,uti )

≥ 1
2 ω̂

k by (2.8) when M � 1. By Schauder

estimates, we have uniform control of ‖∇uti‖C2,β . A bootstrap argument
shows that we have uniform control of ‖uti‖C6,β , hence we may extract
a subsequence converging to u∞ ∈ C5,β. Furthermore, for M ≥M0 � 1
large enough, we see from (2.8) that
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(2.22) e−u∞ � 1, |e−ui∂∂̄u∞|ω̂ � 1,

hence u∞ ∈ Υk. Thus I is closed.
Hence I = [0, 1] and consequently there exists a C5,β function u ∈ Υk

with normalization
∫
X e

u ω̂n = M solving the Fu-Yau equation (2.2).
By applying Schauder estimates and a bootstrap argument to the dif-
ferentiated equation (2.21), we see that u is smooth.

We complete now the proof of Theorem 1.1 with the proof of unique-
ness.

First, we show that the only solutions of the equation

(2.23)
1

k
i∂∂̄eku ∧ ω̂n−1 + α′

Ckn−1

k + 1
(i∂∂̄u)k+1 ∧ ω̂n−k−1 = 0

with |α′|Ckn−1|e−ui∂∂̄u|kω̂ < 2−7 are constant functions. Multiplying by
u and integrating, we see that

(2.24) 0 =

∫
X
i∂u ∧ ∂̄u ∧

{
ekuω̂k + α′

Ckn−1

k + 1
(i∂∂̄u)k

}
∧ ω̂n−k−1,

and hence u must be constant since ekuω̂k + α′
Ckn−1

k+1 (i∂∂̄u)k > 0 as a

(k, k) form.
Now suppose there are two distinct solutions u ∈ Υk and v ∈ Υk

satisfying (2.2) under the normalization
∫
X e

u ω̂n =
∫
X e

v ω̂n = M with
M ≥M0. For t ∈ [0, 1], define

Φ(t, u) = i∂∂̄

{
eku

k
ω̂ + α′(1− t)e(k−γ)uρ

}
∧ ω̂n−2

+α′
Ckn−1

k + 1
(i∂∂̄u)k+1 ∧ ω̂n−k−1 − (1− t)µ

n
ω̂n,(2.25)

and consider the path t 7→ ut satisfying Φ(t, ut) = 0, ut ∈ Υk,
∫
X e

utω̂n=
M with initial condition u0 = u.

The same argument which shows that I is open also shows that the
path ut exists for a short-time: there exists ε > 0 such that ut is defined
on [0, ε). By our estimates (2.8), we may extend the path to be defined
for t ∈ [0, 1]. By uniqueness of the equation with t = 1, we know
that u1 = logM − log

∫
X ω̂

n. The same argument gives a path t 7→ vt
satisfying Φ(t, vt) = 0, vt ∈ Υk,

∫
X e

vtω̂n = M with v0 = v and v1 =
logM − log

∫
X ω̂

n. But then at the first time 0 < t0 ≤ 1 when ut0 = vt0 ,
we contradict the local uniqueness of Φ(t, ut) = 0 given by the implicit
function theorem.

It follows from our discussion that in order to prove Theorem 1.1, it
remains to establish the a priori estimates (2.8).
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3. The uniform estimate

Theorem 3.1. Suppose u ∈ Υk solves (2.2) subject to the normal-
ization

∫
X e

u ω̂n = M . Then

(3.1) C−1M ≤ eu ≤ CM,

where C only depends on (X, ω̂), k, and γ.

We first note the following general identity which holds for any func-
tion u.

0 = α′(p− k)

∫
X
e(p−k)ui∂u ∧ ∂̄u ∧ (i∂∂̄u)k ∧ ω̂n−k−1

+α′
∫
X
e(p−k)u (i∂∂̄u)k+1 ∧ ω̂n−k−1.(3.2)

Substituting the Fu-Yau Hessian equation (2.10) with t = 1, we obtain

0 = α′
Ckn−1

k + 1
(p− k)

∫
X
e(p−k)ui∂u ∧ ∂̄u ∧ (i∂∂̄u)k ∧ ω̂n−k−1

+

∫
X
e(p−k)uµ

ω̂n

n
−
∫
X
e(p−k)ui∂∂̄

{
eku

k
ω̂ + α′e(k−γ)uρ

}
∧ ω̂n−2.(3.3)

We integrate by parts to derive

0 = α′
Ckn−1

k + 1
(p− k)

∫
X
e(p−k)ui∂u ∧ ∂̄u ∧ (i∂∂̄u)k ∧ ω̂n−k−1

+

∫
X
e(p−k)uµ

ω̂n

n
+ (p− k)

∫
X
epu i∂u ∧ i∂̄u ∧ ω̂n−1

+(p− k)α′
∫
X
e(p−k)u i∂u ∧ i∂̄(e(k−γ)uρ) ∧ ω̂n−2.(3.4)

Integrating by parts again gives

(p− k)

∫
X
epui∂u ∧ ∂̄u ∧ ω̂n−k−1 ∧ χ′

= −
∫
X
e(p−k)uµ

ω̂n

n
+
p− k
p− γ

α′
∫
X
e(p−γ)u ∧ i∂∂̄ρ ∧ ω̂n−2,(3.5)

where we now assume p > γ and we define

(3.6) χ′ = ω̂k + α′(k − γ)e−γuρ ∧ ω̂k−1 + α′
Ckn−1

k + 1
(e−ui∂∂̄u)k.
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Next, we estimate

i∂u ∧ ∂̄u ∧ ω̂n−k−1 ∧ χ′ =
|∇u|2ω̂
n

ω̂n + α′(k − γ)e−γu
aij̄uiuj̄
n

ω̂n

+α′
Ckn−1

k + 1
i∂u ∧ ∂̄u ∧ (e−ui∂∂̄u)k ∧ ω̂n−k−1

≥
|∇u|2ω̂
n

ω̂n − |α′Λ(k − γ)|δ
|∇u|2ω̂
n

ω̂n

−|α′|
Ckn−1

k + 1
|e−ui∂∂̄u|kω̂

|∇u|2ω̂
n

ω̂n.(3.7)

Since u ∈ Υk, by (2.5) and (2.6) the positive term dominates the ex-
pression and we can conclude

(3.8) i∂u ∧ ∂̄u ∧ ω̂n−k−1 ∧ χ′ ≥ 1

2

|∇u|2ω̂
n

ω̂n.

The proof of Theorem 3.1 will be divided into three propositions. We
note that in the following arguments we will omit the background vol-
ume form ω̂n when integrating scalar functions.

Proposition 3.2. Suppose u ∈ Υk solves (2.2) subject to normaliza-
tion

∫
X e

u = M . There exists C1 > 0 such that

(3.9) eu ≤ C1M,

where C1 only depends on (X, ω̂), n, k and γ. In fact, C1 is given by
(2.7).

Proof. Combining (3.5) and (3.8) gives

1

2
(p− k)

∫
X
epu|∇u|2ω̂

≤ −
∫
X
e(p−k)uµ+

p− k
p− γ

nα′
∫
X
e(p−γ)u ∧ i∂∂̄ρ ∧ ω̂n−2.(3.10)

We estimate

∫
X
|∇e

p
2
u|2ω̂ ≤

p2

2(p− k)

{
‖µ‖L∞

∫
X
e(p−k)u +

p− k
p− γ

‖α′c‖L∞
∫
X
e(p−γ)u

}
.

(3.11)

For any p ≥ 2 max{γ, k}, there holds p2

2(p−k) ≤ p and p−k
p−γ ≤ 2. Using

e−γu ≤ δ ≤ 1 and (2.6), we conclude that∫
X
|∇e

p
2
u|2ω̂ ≤ 2(‖µ‖L∞ + ‖α′c‖L∞)δ

min{k,γ}
γ p

∫
X
epu

≤ θ

CX
p

∫
X
epu ≤ p

CX

∫
X
epu,(3.12)
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for any p ≥ 2(γ + k). Let β = n
n−1 . The Sobolev inequality gives us

(3.13)

(∫
X
eβpu

)1/β

≤ CX
(∫

X
|∇e

p
2
u|2ω̂ +

∫
X
epu
)
.

Therefore for all p ≥ 2(γ + k),

(3.14) ‖eu‖Lpβ ≤ (CX + 1)1/pp1/p‖eu‖Lp .

Iterating this inequality gives

(3.15) ‖eu‖
Lpβ

(k+1) ≤ {(CX + 1)p}
1
p

∑k
i=0

1

βi · β
1
p

∑k
i=1

i

βi ‖eu‖Lp .

Letting k →∞, we obtain

(3.16) sup
X
eu ≤ C ′1‖eu‖L2(γ+k) ,

where C ′1 = {2(CX + 1)(γ + k)}
1

2(γ+k)

∑∞
i=0

1

βi · β
1

2(γ+k)

∑∞
i=1

i

βi .
It follows that

(3.17) sup
X
eu ≤ C ′1(sup

X
eu)1−(2(γ+k))−1

(∫
X
eu
)1/2(γ+k)

,

and we conclude that

(3.18) sup
X
eu ≤ C1

∫
X
eu, C1 = (C ′1)2(γ+k).

This proves the estimate. As it will be needed in the future, we note
that the precise form of C1 agrees with the definition given in (2.7).
q.e.d.

Proposition 3.3. Suppose u ∈ Υk solves (2.2) subject to normaliza-
tion

∫
X e

u = M . There exists a constant C only depending on (X, ω̂),
n, k and γ such that

(3.19)

∫
X
e−u ≤ CM−1.

Proof. Setting p = −1 in (3.5) gives

(k + 1)

∫
X
e−ui∂u ∧ ∂̄u ∧ ω̂n−k−1 ∧ χ′(3.20)

=

∫
X
e−(1+k)uµ

ω̂n

n
− α′ 1 + k

1 + γ

∫
X
e−(1−γ)ui∂∂̄ρ ∧ ω̂n−2

≤ 1

n
‖µ‖L∞

∫
X
e−(1+k)u +

1 + k

(1 + γ)n
‖α′c‖L∞

∫
X
e−(1+γ)u.

Since u ∈ Υk, we may use (3.8) and e−γu ≤ δ ≤ 1 to obtain

(3.21)

∫
X
e−u|∇u|2ω̂ ≤ 2δ

min{k,γ}
γ

(
‖µ‖L∞ + ‖α′c‖L∞

) ∫
X
e−u.
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By the Poincaré inequality

(3.22)

∫
X
e−u −

(∫
X
e−u/2

)2

≤ CX
∫
X
|∇e−u/2|2ω̂.

After using the definition of δ (2.6), it follows that

(3.23)

∫
X
e−u ≤ 1

1− θ
4

(∫
X
e−u/2

)2

.

Let U = {x ∈ X : eu ≥ M
2 }. From Proposition 3.2, and using

Vol(X, ω̂) = 1,

(3.24) M =

∫
X
eu ≤ C1M |U |+ (1− |U |)M

2
.

Hence |U | ≥ θ > 0, where we recall that θ was defined in (2.6). Using
|U | ≥ θ and (3.23), it was shown in [21] that the estimate

(3.25)

∫
X
e−u ≤ 1

1− θ
4

(
1 +

2

θ

)(
2

θ2

)
M−1

follows. q.e.d.

Proposition 3.4. Suppose u ∈ Υk solves (2.2) subject to the nor-
malization

∫
X e

u = M . There exists C such that

(3.26) sup
X
e−u ≤ CM−1,

where C only depends on (X, ω̂), n, k and γ.

Proof. Exchanging p for −p in (3.5) and using (3.8) gives

(p+ k)

∫
X
e−pui∂u ∧ ∂̄u ∧ ω̂n−1(3.27)

≤ 2

∫
X
e−(p+k)uµ

ω̂n

n
− 2α′

p+ k

p+ γ

∫
X
e−(p+γ)ui∂∂̄ρ ∧ ω̂n−2.

By using eγu ≤ δ ≤ 1, we obtain

∫
X
|∇e−

p
2
u|2ω̂ ≤

p2

2(p+ k)
δ

min{k,γ}
γ (‖µ‖L∞ +

p+ k

p+ γ
‖α′c‖L∞)

∫
X
e−pu.

(3.28)

We may use (2.6) to obtain a constant C depending on (X, ω̂), n, k,
and γ such that

(3.29)

∫
X
|∇e−

p
2
u|2ω̂ ≤ Cp

∫
X
e−pu,

for any p ≥ 1. Using the Sobolev inequality and iterating in a similar
way to Proposition 3.2, we obtain

(3.30) sup
X
e−u ≤ C‖e−u‖L1 .

Applying Proposition 3.3 gives the desired estimate. q.e.d.
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4. Setup and notation

4.1. The formalism of evolving metrics. We come now to the key
steps of establishing the gradient and the C2 estimates. It turns out
that, for these steps, it is more natural to view the equation (2.2) as an
equation for the unknown, non-Kähler, Hermitian form

(4.1) ω = euω̂

and to carry out calculations with respect to the Chern unitary con-
nection ∇ of ω. As usual, we identify the metrics ĝ and g via ω̂ =

ĝk̄j idz
j ∧ dz̄k and ω = gk̄j idz

j ∧ dz̄k, and denote ĝjk̄, gjk̄ to be the

inverse matrix of ĝk̄j , gk̄j . Then gk̄j = euĝk̄j , g
jk̄ = e−uĝjk̄. Recall that

the Chern unitary connection ∇ is defined by

(4.2) ∇k̄V j = ∂k̄V
j , ∇kV j = gjm̄∂k(gm̄pV

p)

and its torsion and curvature by

(4.3) [∇α,∇β]V γ = Rβα
γ
δV

δ + T δβα∇δV γ .

Explicitly,

(4.4) Rk̄q
j
p = −∂k̄(gjm̄∂qgm̄p), T jpq = gjm̄(∂pgm̄q − ∂qgm̄p).

The curvatures and torsions of the metrics gk̄j and ĝk̄j are then related
by

Rk̄j
p
i = R̂k̄j

p
i − uk̄jδpi, T λkj = ukδ

λ
j − ujδλk.(4.5)

This leads to the commutation relations

[∇j ,∇k̄]Vi = −Rk̄jpiVp = −R̂k̄jpiVp + uk̄jVi,(4.6)

[∇j ,∇k̄]Vī = Rk̄j ī
p̄Vp̄ = R̂k̄j ī

p̄Vp̄ − uk̄jVī,(4.7)

[∇j ,∇k]Vi = T λkj∇λVi = uk∇jVi − uj∇kVi.(4.8)

The following commutation formulas with either 3 or 4 covariant deriva-
tives will be particularly useful,

∇j∇p∇q̄u = ∇p∇q̄∇ju+ Tmpj∇m∇q̄u(4.9)

and

∇k̄∇j∇p∇q̄u = ∇p∇q̄∇j∇k̄u−Rq̄pk̄m̄∇m̄∇ju+Rk̄j
m
p∇m∇q̄u

+T m̄q̄k̄∇p∇m̄∇ju+ Tmpj∇k̄∇m∇q̄u.(4.10)

They reduce in our case to

(4.11) ∇j∇p∇q̄u = ∇p∇q̄∇ju+ upuq̄j − ujuq̄p,
and to

∇k̄∇j∇p∇q̄u = ∇p∇q̄∇j∇k̄u+ up∇k̄∇j∇q̄u− uj∇k̄∇p∇q̄u
+uq̄∇p∇k̄∇ju− uk̄∇p∇q̄∇ju
+R̂k̄j

λ
puq̄λ − R̂q̄pk̄λ̄uλ̄j .(4.12)
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It will also be convenient to use the symmetric functions of the
eigenvalues of i∂∂̄u with respect to ω rather than with respect to ω̂.
Thus we define σ`(i∂∂̄u) to be the `-th elementary symmetric poly-

nomial of the eigenvalues of the endomorphism hij = gik̄uk̄j . Explic-

itly, if λi are the eigenvalues of the endomorphism hij = gik̄uk̄j , then

σ`(i∂∂̄u) =
∑

i1<···<i` λi1 · · ·λi` . Using this formalism, equation (2.2)
becomes

∆gu+ k|∇u|2g + α′e−(k+1)uLρe
(k−γ)u + α′σk+1(i∂∂̄u)− e−(k+1)uµ = 0.

(4.13)

4.2. Differentiating Hessian operators. We define

(4.14) σpq̄` =
∂σ`
∂hrp

grq̄, σpq̄,rs̄` =
∂2σ`

∂hap∂hbr
gaq̄gbs̄.

Then the variational formula δσ` = ∂σ`
∂hrp

δhrp becomes

(4.15) ∇iσ` = σpq̄` ∇iuq̄p.
Similarly,

(4.16) ∇j̄σ
pq̄
` = σpq̄,rs̄` ∇j̄us̄r.

We will use a general formula for differentiating a function of eigenvalues
of a matrix. Let F (h) = f(λ1, · · · , λn) be a symmetric function of the
eigenvalues of a Hermitian matrix h. Then at a diagonal matrix h, we
have (see [1, 13]),

∂F

∂hij
= δijfi,(4.17)

∑ ∂2F

∂hij∂hrs
T ijT

r
s =

∑
fijT

i
iT

j
j +

∑
p6=q

fp − fq
λp − λq

|T pq|2,(4.18)

for any Hermitian matrix T . Since σ`(h) =
∑

i1<···<i` λi1λi2 · · ·λi` , this
formula implies that at a point p ∈ X where g is the identity and uq̄p is
diagonal, then

σpq̄` = δpqσ`−1(λ|p),(4.19)

σpq̄,rs̄` ∇iuq̄p∇īus̄r =
∑
p,q

σ`−2(λ|pq)∇iup̄p∇īuq̄q −
∑
p6=q

σ`−2(λ|pq)|∇iuq̄p|2.
(4.20)

We introduced the notation σm(λ|p) and σm(λ|pq) for the m-th elemen-
tary symmetric polynomial of

(λ|i) = (λ1, · · · , λ̂i, · · · , λn) ∈ Rn−1

and

(λ|ij) = (λ1, · · · , λ̂i, · · · , λ̂j , · · · , λn) ∈ Rn−2.
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Lastly, we introduce the tensor F pq̄, which will appear in subsequent
sections when we differentiate the Fu-Yau equation.

(4.21) F pq̄ = gpq̄ + α′(k − γ)e−(1+γ)uapq̄ + α′σpq̄k+1.

We will prove that for u ∈ Υk, F
pq̄ is close to the metric gpq̄. For this,

we first note the following elementary estimate.

Lemma 4.1. Let m be a positive integer and ` ∈ {1, . . . ,m}. For
any vector λ ∈ Rm,

(4.22) |σ`(λ)| ≤ C`m
m`/2

|λ|`

with |λ| =
(∑n

i=1 λ
2
i

)1/2
. Here, σ`(λ) is the `-th elementary symmetric

polynomial of λ and C`m = m!
`!(m−`)! .

Proof. Using the Newton-Maclaurin inequality,

(4.23) |σ`(λ)| ≤ σ`(|λ1|, . . . , |λm|) ≤ C`m
(∑m

i |λi|
m

)`
.

The Cauchy-Schwarz inequality now gives the desired estimate. q.e.d.

We can now prove the following simple but important lemma regard-
ing the ellipticity of F pq̄.

Lemma 4.2. If u ∈ Υk, then

(4.24) (1− 2−6)gpq̄ ≤ F pq̄ ≤ (1 + 2−6)gpq̄.

Proof. First, at a point z where gpq̄ = δpq and uq̄p is diagonal, the
above lemma implies

(4.25) |α′σpp̄k+1| = |α
′σk(λ|p)| ≤ |α′|

Ckn−1

(n− 1)k/2
|∇∇̄u|kg .

The condition u ∈ Υk gives |α′σpp̄k+1(z)| ≤ 2−7. This argument shows

that α′σpq̄k+1 is on the order of 2−7gpq̄ in arbitrary coordinates.

Next, u ∈ Υk also implies that |α′(k−γ)e−γuΛ| ≤ 2−7. Since−Λĝpq̄ ≤
apq̄ ≤ Λĝpq̄, we can put everything together and obtain the estimate
(4.24). q.e.d.

5. Gradient estimate

The main goal of this section is to establish Theorem 5.1 below, which
gives C1 estimates with scale. A key tool is the test function in (5.3)
below, which was introduced in the paper [23] on the Anomaly flow.
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Theorem 5.1. Let u ∈ Υk be a C3(X,R) function solving the Fu-
Yau Hessian equation (2.2). Then

(5.1) |∇u|2ĝ ≤ C,

where C only depends on (X, ω̂), α′, k, γ, ‖ρ‖C3(X,ω̂) and ‖µ‖C1(X).

In view of Theorem 3.1, this estimate is equivalent to

(5.2) |∇u|2g ≤ CM−1,

where C only depends on (X, ω̂), α′, k, γ, ‖ρ‖C3(X,ω̂) and ‖µ‖C1(X).
We will prove this estimate by applying the maximum principle to the
following test function

(5.3) G = log |∇u|2g + (1 + σ)u,

for a parameter 0 < σ < 1. Though there is a range of values of σ which
makes the argument work, to be concrete we will take σ = 2−7.

5.1. Estimating the leading terms. Suppose G attains a maximum
at p ∈ X. Then

(5.4) 0 =
∇|∇u|2g
|∇u|2g

+ (1 + σ)∇u.

We will compute the operator F pq̄∇p∇q̄ acting on G at p.

F pq̄∇p∇q̄G =
1

|∇u|2g
F pq̄∇p∇q̄|∇u|2g(5.5)

− 1

|∇u|4g
F pq̄∇p|∇u|2g∇q̄|∇u|2g + (1 + σ)F pq̄uq̄p.

By direct computation

F pq̄∇p∇q̄|∇u|2g = F pq̄gjī∇p∇q̄∇ju∇īu+ F pq̄gjī∇ju∇p∇q̄∇īu
+|∇∇̄u|2Fg + |∇∇u|2Fg,(5.6)

where |∇∇u|2Fg = F pq̄gjī∇p∇ju∇q̄∇īu and |∇∇̄u|2Fg = F pq̄gjīuq̄juīp.
Commuting derivatives according to the relation

(5.7) [∇j ,∇¯̀]uī = R¯̀j ī
p̄up̄ = R̂¯̀j ī

p̄up̄ − u¯̀juī,

we obtain

F pq̄gjī∇ju∇p∇q̄∇īu = F pq̄gjī∇p∇q̄∇ju∇īu(5.8)

+ F pq̄gjīujR̂q̄pī
λ̄uλ̄ − F pq̄gjīujuq̄puī.

Thus

F pq̄∇p∇q̄|∇u|2g = 2 Re{F pq̄gjī∇p∇q̄∇ju∇īu}+ F pq̄gjīujR̂q̄pī
λ̄uλ̄

−F pq̄gjīujuq̄puī + |∇∇̄u|2Fg + |∇∇u|2Fg.(5.9)
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Next, we use the equation. Expanding Lρ = apq̄∂p∂q̄ + bi∂i + b̄i∂ī + c,
equation (4.13) becomes

0 = ∆gu+ α′
{

(k − γ)e−(1+γ)uapq̄uq̄p + σk+1(i∂∂̄u)
}

+ k|∇u|2g

+α′(k − γ)2e−(1+γ)uapq̄upuq̄ + 2α′(k − γ)e−(1+γ)u Re{biui}
+α′e−(1+γ)uc− e−(k+1)uµ.(5.10)

We covariantly differentiate equation (5.10), using (4.15) to differentiate
σk+1 and using the notation F pq̄ introduced in (4.21). This leads to

(5.11) 0 = F pq̄∇j∇p∇q̄u+ k∇j |∇u|2g + Ej ,

where

Ej = α′(k − γ)e−(1+γ)u

{
− γapq̄uq̄puj + ∇̂japq̄uq̄p

}(5.12)

+ α′(k − γ)2e−(1+γ)u

{
− γapq̄upuq̄uj + ∇̂japq̄upuq̄ + apq̄∇j∇puuq̄

+ apq̄upuq̄j

}
+ α′(k − γ)e−(1+γ)u

{
− 2(1 + γ) Re{biui}uj + ∇̂jbiui

+ ujb
iui + ∂j b̄iuī + bi∇j∇iu+ b̄iuīj

}
− (1 + γ)α′e−(1+γ)ucuj + α′e−(1+γ)u∂jc

+ (k + 1)e−(k+1)uµuj − e−(k+1)u∂jµ.

We used ∇iW j = ∇̂iW j + uiW
j to replace ∇ by ∇̂ in the above calcu-

lation. We will eventually see that the terms Ej play a minor role when
u ∈ Υk, and will only perturb the coefficients of the leading terms.
Commuting covariant derivatives using (4.11), we obtain

(5.13) F pq̄∇p∇q̄∇ju = −F pq̄upuq̄j + F pq̄ujuq̄p − k∇j |∇u|2g − Ej .

Substituting (5.13) into (5.9), an important partial cancellation occurs,
and we obtain

F pq̄∇p∇q̄|∇u|2g = −2 Re{F pq̄gjīuīupuq̄j}+ |∇u|2gF pq̄uq̄p
−2kRe{gjī∇īu∇j |∇u|2g} − 2 Re{gjīEjuī}

+F pq̄gjīujR̂q̄pī
λ̄uλ̄ + |∇∇̄u|2Fg + |∇∇u|2Fg.(5.14)

We note the identity

(5.15) F pq̄uq̄p = ∆gu+α′(k−γ)e−(1+γ)uapq̄uq̄p+ (k+ 1)α′σk+1(i∂∂̄u).

Substituting the equation (5.10) into the identity (5.15), we obtain

(5.16) F pq̄uq̄p = −k|∇u|2g + Ẽ ,
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where

Ẽ = kα′σk+1(i∂∂̄u)− α′(k − γ)2e−(1+γ)uapq̄upuq̄

−2α′(k − γ)e−(1+γ)u Re{biui} − α′e−(1+γ)uc+ e−(k+1)uµ,(5.17)

will turn out to be another perturbative term. Substituting (5.14) and
(5.16) into (5.5)

F pq̄∇p∇q̄G =
1

|∇u|2g
|∇∇̄u|2Fg +

1

|∇u|2g
|∇∇u|2Fg

− 2

|∇u|2g
Re{F pq̄gjīuīupuq̄j}

− 1

|∇u|4g
F pq̄∇p|∇u|2g∇q̄|∇u|2g

−2k
1

|∇u|2g
Re{gjīuī∇j |∇u|2g}

−(2 + σ)k|∇u|2g +
1

|∇u|2g
F pq̄gjīujR̂q̄pī

λ̄uλ̄

− 2

|∇u|2g
Re{gjīEjuī}+ (2 + σ)Ẽ .(5.18)

Using the critical equation (5.4),

− 1

|∇u|4g
F pq̄∇p|∇u|2g∇q̄|∇u|2g − 2k

1

|∇u|2g
Re{gjīuī∇j |∇u|2g}(5.19)

= −(1 + σ)2|∇u|2F + 2(1 + σ)k|∇u|2g.

Here we introduced the notation |∇f |2F = F pq̄fpfq̄ for a real-valued
function f . The critical equation (5.4) can also be written as

(5.20)
gjī∇pujuī
|∇u|2g

= −
gjīujuīp
|∇u|2g

− (1 + σ)up.

We now combine this identity with the Cauchy-Schwarz inequality,
which will lead to a partial cancellation of terms. This idea is also
used to derive a C1 estimate for the complex Monge-Ampère equation,
[2, 15, 24, 25, 36].

1

|∇u|2g
|∇∇u|2Fg ≥

∣∣∣∣gjī∇ujuī|∇u|2g

∣∣∣∣2
F

(5.21)

=
1

|∇u|4g
|gjīuj∇uī|2F + (1 + σ)2|∇u|2F

+
2(1 + σ)

|∇u|2g
Re{F pq̄gjīujuīpuq̄}.
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Let ε > 0. Combining (5.19) and (5.21) and dropping a nonnegative
term,

− 1

|∇u|4g
F pq̄∇p|∇u|2g∇q̄|∇u|2g −

2k

|∇u|2g
Re{gjīuī∇j |∇u|2g}(5.22)

+(1− ε) 1

|∇u|2g
|∇∇u|2Fg

≥ −(1 + σ)2ε|∇u|2F + 2(1 + σ)k|∇u|2g

+
2(1 + σ)(1− ε)

|∇u|2g
Re{F pq̄gjīujuīpuq̄}.

Substituting this inequality into (5.18), partial cancellation occurs and
we are left with

F pq̄∇p∇q̄G ≥ 1

|∇u|2g
|∇∇̄u|2Fg +

ε

|∇u|2g
|∇∇u|2Fg

+{2σ − 2ε(1 + σ)} 1

|∇u|2g
Re{F pq̄gjīuīupuq̄j}

+σk|∇u|2g − (1 + σ)2ε|∇u|2F +
1

|∇u|2g
F pq̄gjīujR̂q̄pī

λ̄uλ̄

− 2

|∇u|2g
Re{gjīEjuī}+ (2 + σ)Ẽ .(5.23)

Since u ∈ Υk, we now use (4.24) in Lemma 4.2 to pass the norms with
respect to F pq̄ to gpq̄ up to an error of order 2−6. We choose

(5.24) ε = (1 + σ)−2(1 + 2−6)−1σ

2
.

Then

(5.25) (1 + σ)2ε|∇u|2F ≤
σ

2
|∇u|2g,

and

(5.26)
ε

|∇u|2g
|∇∇u|2Fg ≥

σ

2(1 + σ)2

1− 2−6

1 + 2−6

1

|∇u|2g
|∇∇u|2g.

Since σ = 2−7, we have the inequality of numbers 1
2

1−2−6

(1+σ)2(1+2−6)
≥ 1

4 .

Thus

(5.27)
ε

|∇u|2g
|∇∇u|2Fg ≥

σ

4

1

|∇u|2g
|∇∇u|2g.

We also note the inequalities
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(5.28)
1

|∇u|2g
|∇∇̄u|2Fg ≥ (1− 2−6)

1

|∇u|2g
|∇∇̄u|2g,

and

{2σ − 2ε(1 + σ)} 1

|∇u|2g
Re{F pq̄gjīuīupuq̄j}

≥ −{2− (1 + σ)−1(1 + 2−6)−1}σ(1 + 2−6)|∇∇̄u|g
≥ −2σ(1 + 2−6)|∇∇̄u|g.(5.29)

The main inequality (5.23) becomes

F pq̄∇p∇q̄G ≥ (1− 2−6)
1

|∇u|2g
|∇∇̄u|2g +

σ

4

|∇∇u|2g
|∇u|2g

−2σ(1 + 2−6)|∇∇̄u|g +
σ

2
|∇u|2g

+
1

|∇u|2g
F pq̄gjīujR̂q̄pī

λ̄uλ̄

− 2

|∇u|2g
Re{gjīEjuī}+ (2 + σ)Ẽ .(5.30)

5.2. Estimating the perturbative terms.

5.2.1. The Ej terms. Recall the constant Λ is such that −Λĝjī ≤ ajī ≤
Λĝjī. We will go through each term in the definition of Ej (5.12) and

estimate the terms appearing in 2
|∇u|2g

Re{gjīEjuī} by groups. In the

following, we will use C to denote constants possibly depending on α′,
k, γ, apq̄, bi, c, µ, and their derivatives.

First, using 2ab ≤ a2 + b2 and e−γu ≤ δ, we estimate the terms
involving ∇∇̄u

2|α′(k − γ)|
|∇u|2g

e−(1+γ)u|gjīuī(−γapq̄uq̄puj + ∇̂japq̄uq̄p

+(k − γ)apq̄upuq̄j + b̄quq̄j)|

≤ 2|α′Λ(k − γ)(k + 2γ)|e−γu|∇∇̄u|g + Ce−γue−u/2
|∇∇̄u|g
|∇u|g

≤ 2

{
|α′Λ|1/2(k − γ)|δ1/2|∇u|g

}{
δ1/2(k + 2γ)|Λα′|1/2 |∇∇̄u|g

|∇u|g

}
+Ce−u/2

|∇∇̄u|g
|∇u|g

≤ |α′|Λ(k − γ)2δ|∇u|2g + 4|Λα′|(k + γ)2δ
|∇∇̄u|2g
|∇u|2g

+ σ
|∇∇̄u|2g
|∇u|2g

+C(σ)e−u.



FU-YAU HESSIAN EQUATIONS 167

Second, we estimate the terms involving ∇∇u

2|α′(k − γ)|
|∇u|2g

e−(1+γ)u|gjīuī{(k − γ)apq̄∇j∇puuq̄ + bp∇j∇pu}|

≤ 2|α′|(k − γ)2Λe−γu|∇∇u|g

+2

{
C

|α′Λ|1/2
e−(1+γ)u/2

}{
|α′Λ|1/2|k − γ|e−γu/2 |∇∇u|g

|∇u|g

}
≤ |α′|(k − γ)2Λδ

{ |∇∇u|2g
|∇u|2g

+ |∇u|2g
}

+ |α′Λ|(k − γ)2e−γu
|∇∇u|2g
|∇u|2g

+
C2

|α′Λ|
e−(1+γ)u

≤ 2|α′|Λ(k − γ)2δ
|∇∇u|2g
|∇u|2g

+ δ|α′|(k − γ)2Λ|∇u|2g + Ce−u.

Third, we estimate the terms involving ∇u quadratically

2|α′(k − γ)|
|∇u|2g

e−(1+γ)u|gjīuī{(k − γ)∇̂japq̄upuq̄

−2(1 + γ)Re{bpup}uj + ujb
pup}|

≤ Ce−γue−u/2|∇u|g ≤
σ

16
|∇u|2g + C(σ)e−(1+2γ)u

≤ σ

16
|∇u|2g + Ce−u.

Finally, for all the other terms in Ej , we can estimate

2|α′(k − γ)|
|∇u|2g

e−(1+γ)u|gjīuī{−γ(k − γ)apq̄upuq̄uj + ∇̂jbpup + ∂j b̄
quq̄}|

+
2

|∇u|2g
|gjīuī{−(1 + γ)α′ce−(1+γ)uuj + α′e−(1+γ)u∂jc

+ (k + 1)e−(k+1)uµuj − e−(k+1)u∂jµ}|

≤ 2|α′|Λ(k − γ)2γe−γu|∇u|2g + Ce−(1+γ)u + Ce−(1+γ)u e
−u/2

|∇u|g

+ Ce−(k+1)u + Ce−(k+1)u e
−u/2

|∇u|g

≤ 2|α′|Λ(k − γ)2γδ|∇u|2g + Ce−u + Ce−u
e−u/2

|∇u|g
.
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Putting everything together, we obtain the following estimate for the
terms coming from Ej .

2

|∇u|2g
|gjīEjuī| ≤

{
2|α′|Λ(k − γ)2(1 + γ)δ +

σ

16

}
|∇u|2g + Ce−u

+Ce−u
e−u/2

|∇u|g
+ {4|α′|Λ(k + γ)2δ + σ}

|∇∇̄u|2g
|∇u|2g

+2|α′|Λ(k − γ)2δ
|∇∇u|2g
|∇u|2g

.(5.31)

5.2.2. The Ẽ terms. Next, estimating Ẽ defined in (5.17) gives

(2 + σ)|Ẽ | ≤ k(2 + σ)|α′||σk+1(i∂∂̄u)|+ (2 + σ)|α′Λ|(k − γ)2e−γu|∇u|2g
+ 2‖α′(k − γ)bi‖L∞e−γue−u/2|∇u|g
+ Ce−(1+γ)u + Ce−(k+1)u.

Using e−γu ≤ δ ≤ 1 and

(5.32) 2‖α′(k − γ)b‖L∞e−γue−u/2|∇u|g ≤
σ

16
|∇u|2g + C(σ)e−ue−2γu,

we obtain

(2 + σ)|Ẽ | ≤ k(2 + σ)|α′||σk+1(i∂∂̄u)|

+(2 + σ)|α′Λ|(k − γ)2δ|∇u|2g +
σ

16
|∇u|2g + Ce−u.

By Lemma 4.1, we have

k|α′||σk+1(i∂∂̄u)| ≤ k|α′| Ck+1
n

n1/2nk/2
|∇∇̄u|kg |∇∇̄u|g

≤ {|α′|Ckn−1|∇∇̄u|kg}|∇∇̄u|g.

Since u ∈ Υk, we have |α′|Ckn−1|∇∇̄u|kg ≤ 2−7. Thus

(2 + σ)|Ẽ | ≤
{

(2 + σ)|α′Λ|(k − γ)2δ +
σ

16

}
|∇u|2g(5.33)

+2−7(2 + σ)|∇∇̄u|g + Ce−u.

5.3. Completing the estimate. Combining (5.31) and (5.33),

2

|∇u|2g
|gjīEjuī|+ (2 + σ)|Ẽ |(5.34)

≤
{

5|α′|Λ(k − γ)2(1 + γ)δ +
σ

8

}
|∇u|2g

+2|α′Λ|(k − γ)2δ
|∇∇u|2g
|∇u|2g

+ {4|α′|Λ(k + γ)2δ + σ}
|∇∇̄u|2g
|∇u|2g

+2−7(2 + σ)|∇∇̄u|g + Ce−u + Ce−u
e−u/2

|∇u|g
.
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Since σ = 2−7 and (k − γ)2(1 + γ) ≤ (k + γ)3, the definition (2.6) of δ
implies

5|α′|Λ(k − γ)2(1 + γ)δ ≤ σ

8
; 4|α′Λ|(k + γ)2δ ≤ 2−7.

Then, we have

2

|∇u|2g
|gjīEjuī|+ (2 + σ)|Ẽ |(5.35)

≤ σ

4
|∇u|2g +

σ

4

|∇∇u|2g
|∇u|2g

+ 2−6
|∇∇̄u|2g
|∇u|2g

+ 2−7(2 + σ)|∇∇̄u|g

+Ce−u + Ce−u
e−u/2

|∇u|g
.

Using (5.35), the main inequality (5.30) becomes

F pq̄∇p∇q̄G(5.36)

≥ (1− 2−5)
1

|∇u|2g
|∇∇̄u|2g −

{
2σ(1 + 2−6) + 2−7(2 + σ)

}
|∇∇̄u|g

+
σ

4
|∇u|2g +

1

|∇u|2g
F pq̄gjīujR̂q̄pī

λ̄uλ̄ − Ce−u − Ce−u
e−u/2

|∇u|g
.

By our choice σ = 2−7, we have the inequality of numbers

(5.37)
{

2σ(1 + 2−6) + 2−7(2 + σ)
}2 1

1− 2−5
≤ σ

2
.

Thus {
2σ(1 + 2−6) + 2−7(2 + σ)

}
|∇∇̄u|g

≤ (1− 2−5)
1

|∇u|2g
|∇∇̄u|2g

+
1

4

{
2σ(1 + 2−6) + 2−7(2 + σ)

}2 1

1− 2−5
|∇u|2g

≤ (1− 2−5)
1

|∇u|2g
|∇∇̄u|2g +

σ

8
|∇u|2g.

We may also estimate

(5.38)
1

|∇u|2g
F pq̄gjīujR̂q̄pī

λ̄uλ̄ ≥ −Ce−u.

Putting everything together, at p there holds

(5.39) 0 ≥ F pq̄∇p∇q̄G ≥
σ

8
|∇u|2g −

Ce−ue−u/2

|∇u|g
− Ce−u.

From this inequality, we can conclude

(5.40) |∇u|2g(p) ≤ Ce−u(p).
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By definition G(x) ≤ G(p), and we have

(5.41) |∇u|2g ≤ Ce−u(p)e(1+σ)(u(p)−u) ≤ CM−1,

since eu(p)e−u ≤ C and e−u ≤ CM−1 by Theorem 3.1. This completes
the proof of Theorem 5.1.

6. Second order estimate

The main goal of this section is to establish Theorem 6.1 below, which
gives C2 estimates with scale. A key tool is the test function in (6.19)
below, which was indeed introduced in the paper [23] on the Anomaly
flow.

Theorem 6.1. Let u ∈ Υk be a C4(X) function with normalization∫
X e

u ω̂n = M solving the Fu-Yau equation (2.2). Then

(6.1) |∇∇̄u|2g ≤ CM−1,

where C only depends on (X, ω̂), α′, k, γ, ‖ρ‖C4(X,ω̂) and ‖µ‖C2(X).

We begin by noting the following elementary estimate.

Lemma 6.2. Let ` ∈ {2, 3, . . . , n}. The following estimate holds:

(6.2) |gjīσpq̄,rs̄` ∇juq̄p∇īus̄r| ≤ C`−2
n−2|∇∇̄u|

`−2
g |∇∇̄∇u|2g.

Proof. Since the inequality is invariant, we may work at a point p ∈ X
where g is the identity and uq̄p is diagonal. At p, we can use (4.20) and
conclude

(6.3) |gjīσpq̄,rs̄` ∇juq̄p∇īus̄r| ≤
∑
i

∑
p,q

|σ`−2(λ|pq)||∇iuq̄p|2.

By Lemma 4.1,

(6.4) |σ`−2(λ|pq)| ≤
C`−2
n−2

(n− 2)(`−2)/2
|∇∇̄u|`−2

g .

This inequality proves the Lemma. q.e.d.

6.1. Differentiating the norm of second derivatives.

Lemma 6.3. Let u ∈ Υk be a C4(X) function solving (2.2) with
normalization

∫
X e

u = M . There exists a constant C > 0 depending
only on (X, ω̂), α′, k, γ, ‖ρ‖C4(X,ω̂) and ‖µ‖C2(X) such that

F pq̄∇p∇q̄|∇∇̄u|2g ≥ 2(1− 2−5)|∇∇̄∇u|2g − (1 + 2k)|α′|−1/kτ1/k|∇∇u|2g
− (1 + 2k)|α′|−1/kτ1/k|∇∇̄u|2g
− CM−1/2|∇∇̄∇u|g − CM−1|∇∇u|g − CM−1.(6.5)
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Proof. We start by differentiating F pq̄ (4.21) by using (4.16).

∇īF pq̄ = −α′(k − γ)(1 + γ)e−(1+γ)uuīa
pq̄(6.6)

+α′(k − γ)e−(1+γ)u∇īapq̄ + α′σpq̄,rs̄k+1 ∇īus̄r.

Differentiating the Fu-Yau Hessian equation twice corresponds to dif-
ferentiating (5.11), which gives

0 = α′σpq̄,rs̄k+1 ∇īus̄r∇juq̄p + F pq̄∇ī∇j∇p∇q̄u

+k∇ī∇j |∇u|2g − α′(k − γ)(1 + γ)e−(1+γ)uapq̄uī∇j∇p∇q̄u

+α′(k − γ)e−(1+γ)u∇īapq̄∇j∇p∇q̄u+∇īEj .(6.7)

Next, we use (4.12) to commute covariant derivatives and conclude

F pq̄∇p∇q̄uīj(6.8)

= −α′σpq̄,rs̄k+1 ∇juq̄p∇īus̄r
−F pq̄[up∇ī∇j∇q̄u− uj∇ī∇p∇q̄u+ uq̄∇p∇ī∇ju− uī∇p∇q̄∇ju]

−F pq̄R̂ījλpuq̄λ + F pq̄R̂q̄p̄i
λ̄uλ̄j − k∇ī∇j |∇u|2g

+α′(k − γ)(1 + γ)e−(1+γ)uapq̄uī∇j∇p∇q̄u
−α′(k − γ)e−(1+γ)u∇īapq̄∇j∇p∇q̄u−∇īEj .

Direct computation gives

(6.9) F pq̄∇p∇q̄|∇∇̄u|2g = 2gs̄igjr̄F pq̄∇p∇q̄uījur̄s + 2|∇∇̄∇u|2Fgg.

Recall (4.24) that we can pass from F pq̄ to the metric gpq̄ up to an error
of order 2−6. Substituting (6.8) into (6.9) and estimating terms gives

F pq̄∇p∇q̄|∇∇̄u|2g(6.10)

≥ 2

{
(1− 2−6)|∇∇̄∇u|2g − |α′gmīgjn̄σ

pq̄,rs̄
k+1 ∇juq̄p∇īus̄run̄m|

}
−C|∇∇̄u|g|∇∇̄∇u|g

{
|∇u|g + e−γu|∇u|g + e−γue−

1
2
u

}
−C|∇∇̄u|g

{
e−u|∇∇̄u|g

}
−2k

∣∣∣∣gs̄igjr̄∇ī∇j |∇u|2gur̄s∣∣∣∣− 2

∣∣∣∣gs̄igjr̄∇īEjur̄s∣∣∣∣.
The condition u ∈ Υk (2.5) together with k ≤ (n− 1) gives

(6.11) Ck−1
n−2|α

′||∇∇̄u|kg ≤ |α′|Ckn−1|∇∇̄u|kg ≤ 2−7.

Therefore by (6.2)

(6.12) |α′gmīgjn̄σpq̄,rs̄k+1 ∇juq̄p∇īus̄run̄m| ≤ 2−7|∇∇̄∇u|2g.
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In the coming estimates, we will often use the C0 and C1 estimates, and
the condition u ∈ Υk (2.5), which we record here for future reference.

(6.13) e−u ≤ CM−1, |∇u|2g ≤ CM−1, |∇∇̄u|g ≤ |α′|−1/kτ1/k,

where τ = (Ckn−1)−12−7. Since u ∈ Υk, we have M =
∫
X e

uω̂n ≥ 1,
and so we will often only keep the leading power of M since M ≥ 1.
Applying all this to (6.10), we have

F pq̄∇p∇q̄|∇∇̄u|2g(6.14)

≥ 2(1− 2−5)|∇∇̄∇u|2g − CM−1/2|∇∇̄u|g|∇∇̄∇u|g
−CM−1|∇∇̄u|g|∇∇̄u|g

−2k

∣∣∣∣gs̄igjr̄∇ī∇j |∇u|2gur̄s∣∣∣∣− 2

∣∣∣∣gs̄igjr̄∇īEjur̄s∣∣∣∣.
We will now estimate the two last terms. We compute the first of these
directly, using (4.5) to commute derivatives.

2kgs̄igjr̄∇ī∇j |∇u|2gur̄s = 2kgs̄igjr̄
{
gpq̄uq̄∇j∇ī∇pu+ gpq̄up∇ī∇j∇q̄u

+gpq̄∇j∇pu∇ī∇q̄u+ gpq̄uīpuq̄j

+gpq̄uq̄R̂īj
`
pu` − gpq̄uq̄uījup

}
ur̄s.(6.15)

We estimate∣∣∣∣2kgs̄igjr̄∇ī∇j |∇u|2gur̄s∣∣∣∣
≤ k

{
4|∇∇̄∇u|g|∇u|g + 2|∇∇̄u|2g + 2|∇∇u|2g

+ Ce−u|∇u|2g + 2|∇u|2g|∇∇̄u|g
}
|∇∇̄u|g.(6.16)

We will use (6.13). Then∣∣∣∣2kgs̄igjr̄∇ī∇j |∇u|2gur̄s∣∣∣∣
≤ 2k|α′|−1/kτ1/k|∇∇̄u|2g + 2k|α′|−1/kτ1/k|∇∇u|2g

+ CM−1/2|∇∇̄∇u|g + CM−2 + CM−1.(6.17)



FU-YAU HESSIAN EQUATIONS 173

Next, using the definition (5.12) of Ej , we keep track of the order of each
term and obtain the estimate

|gs̄igjr̄∇īEjur̄s|

≤ C(a, b, c, α′)|∇∇̄u|g|∇∇̄∇u|g
{
e−γue−u/2 + e−γu|∇u|g

}
+C(a, b, c)|∇∇̄u|2g

{
e−γu|∇u|2g + e−γue−u/2|∇u|g + e−(1+γ)u

}
+C(a, b, c, α′)|∇∇̄u|g|∇∇u|g

×
{
e−γu|∇u|2g + e−γue−u/2|∇u|g + e−(1+γ)u

}
+C(a, b, c, α′)|∇∇̄u|g

{
e−(2+γ)u + e−(1+γ)ue−u/2|∇u|g

+e−(1+γ)u|∇u|2g + e−γue−u/2|∇u|3g + e−γu|∇u|4g
}

+C(µ)|∇∇̄u|g
{
e−(k+1)u|∇∇̄u|g + e−(k+1)u|∇u|2g

+e−(k+1)ue−u/2|∇u|g + e−(k+2)u

}
+(k − γ)2gsk̄gjr̄|(α′e−(1+γ)uapq̄∇k̄∇j∇puuq̄)ur̄s|
+|k − γ|gsk̄gjr̄|(α′e−(1+γ)ubi∇k̄∇j∇iu)ur̄s|
+|k − γ|gsk̄gjr̄|(α′e−(1+γ)uγapq̄uq̄p)uk̄jur̄s|

+(k − γ)2gsk̄gjr̄|(α′e−(1+γ)uapq̄uk̄puq̄j)ur̄s|

+(k − γ)2gsk̄gjr̄|(α′e−(1+γ)uapq̄∇j∇pu∇k̄∇q̄u)ur̄s|.

We will use our estimates (6.13). We also recall the notation −Λĝpq̄ ≤
apq̄ ≤ Λĝpq̄. We use these estimates and commute covariant derivatives
to obtain

|gsk̄gjr̄∇k̄Ejur̄s|
≤ CM−1/2|∇∇̄∇u|g + CM−1|∇∇u|g + CM−1 + CM−2

+CM−(k+1) + CM−(k+2)

+(k − γ)2e−(1+γ)ugsk̄gjr̄|(α′apq̄∇j∇k̄∇puuq̄ + α′apq̄Rk̄j
λ
puλuq̄)ur̄s|

+|k − γ|e−(1+γ)ugsk̄gjr̄|(α′bi∇j∇k̄∇iu+ α′biRk̄j
λ
iuλ)ur̄s|

+2e−γu|α′|Λ(k + γ)2|∇∇̄u|g|∇∇̄u|2g
+e−γu|α′|Λ(k + γ)2|∇∇̄u|g|∇∇u|2g.
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Since u ∈ Υk, we have 2|α′|Λ(k + γ)2e−γu ≤ 1. It follows that

|gsk̄gjr̄∇k̄Ejur̄s|(6.18)

≤ |α′|−1/kτ1/k|∇∇u|2g + |α′|−1/kτ1/k|∇∇̄u|2g + CM−1/2|∇∇̄∇u|g
+CM−1|∇∇u|g + CM−1.

Substituting (6.17) and (6.18) into (6.14) and keeping the leading orders
of M , we arrive at (6.5). q.e.d.

6.2. Using a test function. Let

(6.19) G = |∇∇̄u|2g + Θ|∇u|2g,

where Θ � 1 is a large constant depending on n, k, α′. To be precise,
we let

(6.20) Θ = (1− 2−6)−1{(1 + 2k)|α′|−1/kτ1/k + 1}.
By (5.9),

F pq̄∇p∇q̄|∇u|2g ≥ |∇∇̄u|2Fg + |∇∇u|2Fg − 2|∇u|g|∇∇̄∇u|g
−|∇u|2g|∇∇̄u|g − Ce−u|∇u|2g.(6.21)

Applying (6.13) and converting F pq̄ to gpq̄ yields

F pq̄∇p∇q̄|∇u|2g(6.22)

≥ (1− 2−6)|∇∇̄u|2g + (1− 2−6)|∇∇u|2g − CM−1/2|∇∇̄∇u|g
−CM−1|∇∇̄u|g − CM−2.

Combining (6.5) and (6.22), we have

F pq̄∇p∇q̄G ≥ 2(1− 2−5)|∇∇̄∇u|2g + |∇∇̄u|2g + |∇∇u|2g
−CM−1/2|∇∇̄∇u|g − CM−1|∇∇u|g − CM−1.(6.23)

We will split the linear terms into quadratic terms by applying

CM−1/2|∇∇̄∇u|g ≤
1

2
|∇∇̄∇u|2g +

C2

2
M−1,(6.24)

CM−1|∇∇u|g ≤
C2

4
M−2 + |∇∇u|2g.(6.25)

Applying these estimates, we may discard the remaining quadratic pos-
itive terms and (6.23) becomes

(6.26) F pq̄∇p∇q̄G ≥
1

2
|∇∇̄u|2g − CM−1.

Let p ∈ X be a point where G attains its maximum. From the maximum
principle, |∇∇̄u|2g(p) ≤ CM−1. We conclude from G ≤ G(p) that

(6.27) |∇∇̄u|2g ≤ CM−1,

establishing Theorem 6.1.
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We note that many equations involving the derivative of the unknown
and/or several Hessians have been studied recently in the literature (see
e.g. [3, 4, 7, 8, 14, 26, 28, 30, 31, 35, 36] and references therein).
It would be very interesting to determine when estimates with scale
hold.

7. Third order estimate

The goal of this section is to establish C3 estimates for general Fu-Yau
Hessian equations. A key tool is the test function (7.2) below. Note that
it is different from the test function used for C3 estimates for Monge-
Ampère equations. Rather, it is inspired by the test function used by
Fu and Yau [11, 12], although we apply it here to Hessian equations
rather than to Monge-Ampère equations.

Theorem 7.1. Let u ∈ Υk be a C5(X) function solving equation
(2.2). Then

(7.1) |∇∇̄∇u|2g ≤ C,

where C only depends on (X, ω̂), α′, k, γ, ‖ρ‖C5(X,ω̂) and ‖µ‖C3(X).

To prove this estimate, we will apply the maximum principle to the
test function

(7.2) G = (|∇∇̄u|2g + η)|∇∇̄∇u|2g +B(|∇u|2g +A)|∇∇u|2g,

where A,B � 1 are large constants to be specified later and η =
mτ2/k|α′|−2/k. We will specify m � 1 later and τ = (Ckn−1)−12−7.
The condition (2.5) u ∈ Υk implies

(7.3) |α′|1/k|∇∇̄u|g ≤ τ1/k.

Our choice of constants ensures that η and |∇∇̄u|2g are of the same α′

scale.
As noted earlier, if u ∈ Υk then M must be greater than 1. By

our work thus far, as long as M ≥ 1 we may estimate by C any term
involving e−u, |∇u|g, |∇∇̄u|g, |Rm|g or |T |g, where |Rm|g and |T |g are
the norms of the curvature and torsion of g = euĝ. Also, since

(7.4) ∇`uīj = ∂`uīj − Γ̂λ`juīλ − u`uīj , Γ̂λ`j = ĝλp̄∂`ĝp̄j ,

we note that Theorem 7.1 proves the third order estimate (2.8) in The-
orem 2.1.

7.1. Quadratic second order term.

Lemma 7.2. Let u ∈ Υk be a C4(X) function solving equation (2.2).
Then for all A� 1 larger than a fixed constant only depending on |∇u|g
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and for all B > 0,

F pq̄∇p∇q̄
{

(|∇u|2g +A)|∇∇u|2g
}
≥ A

2
|∇∇∇u|2g + (1− 2−5)|∇∇u|4g

− 1

25B
|∇∇̄∇u|4g − C(A,B),(7.5)

where C(A,B) only depends on A, B, (X, ω̂), α′, k, γ, ‖ρ‖C4(X,ω̂) and
‖µ‖C2(X).

Proof. Differentiating (5.11) gives

F pq̄∇`∇j∇p∇q̄u = −α′(k − γ)∇`(e−(1+γ)uapq̄)∇juq̄p
−α′(∇`σpq̄k+1)∇juq̄p − k∇`∇j |∇u|2g −∇`Ej .(7.6)

Commuting derivatives

F pq̄∇p∇q̄∇`∇ju(7.7)

= F pq̄∇`∇j∇p∇q̄u+ F pq̄∇p(R̂q̄`λj∇λu− uq̄`uj)
−F pq̄T λp`∇λ∇j∇q̄u− F pq̄∇`(up∇j∇q̄u− uj∇p∇q̄u).

We compute directly and commute derivatives to derive

F pq̄∇p∇q̄|∇∇u|2g(7.8)

= 2 Re{g`b̄gjd̄F pq̄∇p∇q̄∇`∇ju∇b̄∇d̄u}
+g`b̄gjd̄∇`∇juF pq̄Rq̄pb̄λ̄∇λ̄∇d̄u+ g`b̄gjd̄∇`∇juF pq̄Rq̄pd̄λ̄∇b̄∇λ̄u

+F pq̄g`b̄gjd̄∇p∇`∇ju∇q̄∇b̄∇d̄u+ F pq̄g`b̄gjd̄∇q̄∇`∇ju∇p∇b̄∇d̄u.

Combining (7.6), (7.7), (7.8) and converting F pq̄ to gpq̄ using Lemma
4.2, we estimate

F pq̄∇p∇q̄|∇∇u|2g
≥ (1− 2−6)|∇∇∇u|2g + (1− 2−6)|∇̄∇∇u|2g
−2α′Re{g`b̄gjd̄σpq̄,rs̄k+1 ∇`us̄r∇juq̄p∇b̄∇d̄u}

−2 Re{g`b̄gjd̄∇`Ej∇b̄∇d̄u}
−C|∇∇u|g(|∇∇∇u|g + |∇∇̄∇u|g + |∇∇u|g + 1).

Next, using (6.2) we estimate

−2 Re{α′g`b̄gjd̄σpq̄,rs̄k+1 ∇`us̄r∇juq̄p∇b̄∇d̄u}

≥ −2Ck−1
n−2|α

′||∇∇̄u|k−1
g |∇∇u|g|∇∇̄∇u|2g

≥ −2Ck−1
n−2τ

1−(1/k)|α′|1/k|∇∇u|g|∇∇̄∇u|2g
and using (5.12) we estimate

|g`b̄gjd̄∇`Ej∇b̄∇d̄u| ≤ C|∇∇u|g{1 + |∇∇u|g + |∇∇̄∇u|g + |∇∇∇u|g}.
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Thus

F pq̄∇p∇q̄|∇∇u|2g(7.9)

≥ (1− 2−6)|∇∇∇u|2g + (1− 2−6)|∇̄∇∇u|2g
−C|∇∇u|g{|∇∇̄∇u|2g + |∇∇∇u|g + |∇∇̄∇u|g + |∇∇u|g + 1}.

By (5.14),

F pq̄∇p∇q̄|∇u|2g(7.10)

≥ (1− 2−6)|∇∇̄u|2g + (1− 2−6)|∇∇u|2g − C|∇∇u|g − C.

Direct computation gives

F pq̄∇p∇q̄
{

(|∇u|2g +A)|∇∇u|2g
}

(7.11)

= (|∇u|2g +A)F pq̄∇p∇q̄|∇∇u|2g + |∇∇u|2gF pq̄∇p∇q̄|∇u|2g
+2 Re{F pq̄∇p|∇u|2g∇q̄|∇∇u|2g}.

We estimate

2
∣∣F pq̄∇p|∇u|2g∇q̄|∇∇u|2g∣∣

(7.12)

≤ 2(1 + 2−6)|∇∇u|2g|∇u|g|∇̄∇∇u|g + 2(1 + 2−6)|∇∇u|2g|∇u|g|∇∇∇u|g
+ C|∇∇u|g{|∇∇̄∇u|g + |∇∇∇u|g + 1}.

Substituting (7.9), (7.10), (7.12) into (7.11),

F pq̄∇p∇q̄{(|∇u|2g +A)|∇∇u|2g}(7.13)

≥ A(1− 2−6)
{
|∇∇∇u|2g + |∇̄∇∇u|2g

}
+ (1− 2−6)|∇∇u|4g

−3|∇∇u|2g|∇u|g
{
|∇̄∇∇u|g + |∇∇∇u|g

}
−C(A)|∇∇u|g

{
|∇∇̄∇u|2g + |∇∇∇u|g + |∇∇̄∇u|g

+|∇∇u|2g + |∇∇u|g + 1

}
.

Using 2ab ≤ a2 + b2,

3|∇∇u|2g|∇u|g|∇̄∇∇u| ≤ 2−7|∇∇u|4g + 2532|∇u|2g|∇̄∇∇u|2g,(7.14)

3|∇∇u|2g|∇u|g|∇∇∇u| ≤ 2−7|∇∇u|4g + 2532|∇u|2g|∇∇∇u|2g,(7.15)

C(A)|∇∇∇u|g|∇∇u|g ≤ |∇∇∇u|2g +
C(A)2

4
|∇∇u|2g,(7.16)

C(A)|∇∇̄∇u|2g|∇∇u|g ≤
1

25B
|∇∇̄∇u|4g + 23C(A)2B|∇∇u|2g(7.17)
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for a constant B � 1 to be determined later. Then

F pq̄∇p∇q̄
{

(|∇u|2g +A)|∇∇u|2g
}

(7.18)

≥
{
A(1− 2−6)− 2632|∇u|2g − 1

}
|∇∇∇u|2g

+
{
A(1− 2−6)− 2632|∇u|2g − 1

}
|∇̄∇∇u|2g

+(1− 2−5)|∇∇u|4g −
1

25B
|∇∇̄∇u|4g

−C(A,B)

{
|∇∇u|g + |∇∇u|2g + |∇∇u|3g

}
.

The terms |∇∇u|g + |∇∇u|2g + |∇∇u|3g can be absorbed into |∇∇u|4g by
Young’s inequality. For A� 1, obtain (7.5). q.e.d.

7.2. Third order term.

Lemma 7.3. Let u ∈ Υk be a C5(X) function solving equation (2.2).
Then

F pq̄∇p∇q̄
{

(|∇∇̄u|2g + η)|∇∇̄∇u|2g
}

(7.19)

≥ 1

16
|∇∇̄∇u|4g

−C|∇∇∇u|g
{
|∇∇̄∇u|g|∇∇u|g + |∇∇̄∇u|g + |∇∇u|g

}
−C
{
|∇∇̄∇u|2g|∇∇u|2g + |∇∇̄∇u|2g|∇∇u|g

+|∇∇̄∇u|g|∇∇u|2g + |∇∇̄∇u|g|∇∇u|g + 1

}
,

where C only depends on (X, ω̂), α′, k, γ, ‖ρ‖C5(X,ω̂) and ‖µ‖C3(X).

Proof. To start this computation, we differentiate (6.8).

F pq̄∇i∇p∇q̄u¯̀j(7.20)

= −α′∇i(σpq̄,rs̄k+1 )∇juq̄p∇¯̀us̄r − α′σpq̄,rs̄k+1 ∇i∇juq̄p∇¯̀us̄r

−α′σpq̄,rs̄k+1 ∇juq̄p∇i∇¯̀us̄r +∇i
[
−F pq̄up∇¯̀uq̄j + F pq̄uj∇¯̀uq̄p

]
+∇i

[
−F pq̄uq̄∇pu¯̀j + F pq̄u¯̀∇puq̄j

]
+∇i[F pq̄R̂q̄p¯̀

λ̄uλ̄j − F pq̄R̂¯̀j
λ
puq̄λ]

−k∇i
[
gpq̄uq̄∇ju¯̀p + gpq̄up∇¯̀uq̄j + gpq̄∇j∇pu∇¯̀∇q̄u+ gpq̄u¯̀puq̄j

+gpq̄uq̄R̂¯̀j
λ
puλ − gpq̄uq̄u¯̀jup

]
+∇i[α′(k − γ)(1 + γ)e−(1+γ)uapq̄u¯̀∇juq̄p]
−∇i[α′(k − γ)e−(1+γ)u∇¯̀apq̄∇juq̄p]−∇i∇¯̀Ej .
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Our conventions (4.3) imply the following commutator identities for any
tensor Wk̄j .

∇p∇q̄Wk̄j = ∇q̄∇pWk̄j +Rq̄pk̄
λ̄Wλ̄j −Rq̄pλjWk̄λ,

(7.21)

∇p∇q̄∇iWk̄j = ∇i∇p∇q̄Wk̄j+T
λ
ip∇λWk̄j−∇p[Rq̄ik̄λ̄Wλ̄j −Rq̄iλjWk̄λ].

(7.22)

Thus commuting derivatives gives

F pq̄∇p∇q̄∇iuk̄j = F pq̄∇i∇p∇q̄uk̄j + F pq̄ui∇p∇q̄uk̄j − F pq̄up∇i∇q̄uk̄j
+F pq̄∇p[Rq̄iλjuk̄λ −Rq̄ik̄λ̄uλ̄j ].(7.23)

We compute the expression for F pq̄∇p∇q̄ acting on |∇∇̄∇u|2g, and ex-
change covariant derivatives to obtain

F pq̄∇p∇q̄|∇∇̄∇u|2g

(7.24)

= 2 Re{gid̄gak̄gjb̄F pq̄∇p∇q̄∇iuk̄j∇d̄ub̄a}

+ F pq̄gad̄geb̄gcf̄∇p∇aub̄c∇q̄∇d̄uf̄e + F pq̄gad̄geb̄gcf̄∇a∇q̄ub̄c∇d̄∇puf̄e
+ F pq̄gad̄geb̄gcf̄∇a∇q̄ub̄cRd̄pf̄ λ̄uλ̄e − F pq̄gad̄geb̄gcf̄∇a∇q̄ub̄cRd̄pλeuf̄λ
− F pq̄gad̄geb̄gcf̄Rq̄ab̄λ̄uλ̄c∇p∇d̄uf̄e + F pq̄gad̄geb̄gcf̄Rq̄a

λ
cub̄λ∇p∇d̄uf̄e

+ gad̄geb̄gcf̄∇aub̄cF pq̄Rq̄pd̄λ̄∇λ̄uf̄e + gad̄geb̄gcf̄∇aub̄cF pq̄Rq̄pf̄ λ̄∇d̄uλ̄e
− gad̄geb̄gcf̄∇aub̄cF pq̄Rq̄pλe∇d̄uf̄λ.

Substituting (7.20) and (7.23) into (7.24), and using Lemma 4.2 to con-
vert F pq̄ into gpq̄, we have

F pq̄∇p∇q̄|∇∇̄∇u|2g(7.25)

≥ (1− 2−6)|∇∇∇̄∇u|2g + (1− 2−6)|∇∇̄∇∇̄u|2g
−2α′Re{gid̄gak̄gjb̄∇i(σpq̄,rs̄k+1 )∇juq̄p∇k̄us̄r∇d̄ub̄a}

−2α′Re{gid̄gak̄gjb̄σpq̄,rs̄k+1 ∇i∇juq̄p∇k̄us̄r∇d̄ub̄a}

−2α′Re{gid̄gak̄gjb̄σpq̄,rs̄k+1 ∇juq̄p∇i∇k̄us̄r∇d̄ub̄a}

−C
{

(|∇∇̄∇∇̄u|g + |∇∇∇̄∇u|g)|∇∇̄∇u|g + |∇∇̄∇∇̄u|g

+(|∇∇∇u|g + |∇̄∇∇u|g + 1)|∇∇u|g|∇∇̄∇u|g

+|∇∇̄∇u|3g + |∇∇̄∇u|2g + |∇∇̄∇u|g
}

−2 Re{gid̄gak̄gjb̄∇i∇k̄Ej∇d̄ub̄a}.
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We used (6.6) to expand and estimate terms involving ∇iF pq̄. For the

following steps, we will use that |α′|1/k|∇∇̄u|g ≤ τ1/k for any u ∈ Υk,

where τ = (Ckn−1)−12−7. We also recall that we use the notation C`m =
m!

`!(m−`)! . If k > 1, we can estimate

2|α′gid̄ga¯̀
gjb̄∇i(σpq̄,rs̄k+1 )∇juq̄p∇¯̀us̄r∇d̄ub̄a|(7.26)

≤ 2|α′|Ck−2
n−3|∇∇̄u|

k−2|∇∇̄∇u|4g
≤ (2Ckn−1τ)|α′|2/kτ−2/k|∇∇̄∇u|4g
= 2−6|α′|2/kτ−2/k|∇∇̄∇u|4g.

We used Ck−2
n−3 ≤ Ckn−1. If k = 1, the term on the left-hand side vanishes

and the inequality still holds. Using the same ideas, we can also estimate

− 2α′Re gid̄ga
¯̀
gjb̄σpq̄,rs̄k+1 {∇i∇juq̄p∇¯̀us̄r∇d̄ub̄a+∇juq̄p∇i∇¯̀us̄r∇d̄ub̄a}

≥ −2|α′|Ck−1
n−2|∇∇̄u|

k−1
g |∇∇̄∇u|2g

{
|∇∇∇̄∇u|g + |∇∇̄∇∇̄u|g

}
≥ −(2Ckn−1τ)|α′|1/kτ−1/k|∇∇̄∇u|2g

{
|∇∇∇̄∇u|g + |∇∇̄∇∇̄u|g

}
= −2−6|α′|1/kτ−1/k|∇∇̄∇u|2g

{
|∇∇∇̄∇u|g + |∇∇̄∇∇̄u|g

}
.

The perturbative terms can be estimated roughly by using the definition
(5.12) of Ej and keeping track of the orders of terms that we do not yet
control.

−2 Re{gid̄gak̄gjb̄∇i∇k̄Ej∇d̄ub̄a}(7.27)

≥ −C|∇∇̄∇u|g
{
|∇∇̄∇∇̄u|g + |∇∇̄∇∇u|g

+(|∇∇̄∇u|g + |∇∇∇u|g)|∇∇u|g + |∇∇̄∇u|g + |∇∇∇u|g

+|∇∇u|2g + |∇∇u|g + 1

}
.

Applying these estimates leads to

F pq̄∇p∇q̄|∇∇̄∇u|2g(7.28)

≥ (1− 2−6)
[
|∇∇∇̄∇u|2g + |∇∇̄∇∇̄u|2g

]
− 2−6|α′|2/kτ−2/k|∇∇̄∇u|4g

−2−6|α′|1/kτ−1/k|∇∇̄∇u|2g
[
|∇∇∇̄∇u|g + |∇∇̄∇∇̄u|g

]
−CP,



FU-YAU HESSIAN EQUATIONS 181

where

(7.29)

P = |∇∇̄∇∇̄u|g|∇∇̄∇u|g + |∇∇∇̄∇u|g|∇∇̄∇u|g + |∇∇̄∇∇̄u|g
+|∇∇∇u|g|∇∇̄∇u|g|∇∇u|g + |∇∇∇u|g|∇∇̄∇u|g
+|∇∇̄∇u|2g|∇∇u|g + |∇∇̄∇u|g|∇∇u|2g + |∇∇̄∇u|g|∇∇u|g
+|∇∇∇u|g|∇∇u|g + |∇∇̄∇u|3g + |∇∇̄∇u|2g + |∇∇̄∇u|g.

We used the fact that the difference between |∇∇̄∇∇u|g and |∇∇∇̄∇u|g
is a lower order term according to the commutation formula (7.21).

Next, we apply (6.5) to obtain

F pq̄∇p∇q̄|∇∇̄u|2g(7.30)

≥ |∇∇̄∇u|2g − C|∇∇̄∇u|g − C|∇∇u|2g − C|∇∇u|g − C.

We directly compute

F pq̄∇p∇q̄
{

(|∇∇̄u|2g + η)|∇∇̄∇u|2g
}

(7.31)

= |∇∇̄∇u|2gF pq̄∇p∇q̄|∇∇̄u|2g + (|∇∇̄u|2g + η)F pq̄∇p∇q̄|∇∇̄∇u|2g
+2 Re{F pq̄∇p|∇∇̄u|2g∇q̄|∇∇̄∇u|2g}.

We can estimate

2 Re{F pq̄∇p|∇∇̄u|2g∇q̄|∇∇̄∇u|2g}(7.32)

≥ −4(1 + 2−6)|∇∇̄u|g|∇∇̄∇u|2g|∇∇̄∇∇̄u|g
−4(1 + 2−6)|∇∇̄u|g|∇∇̄∇u|2g|∇∇∇̄∇u|g

≥ −4(1 + 2−6)|α′|−1/kτ1/k|∇∇̄∇u|2g|∇∇̄∇∇̄u|g
−4(1 + 2−6)|α′|−1/kτ1/k|∇∇̄∇u|2g|∇∇∇̄∇u|g.

Combining (7.28), (7.30), (7.32) with (7.31), setting η = m|α′|−2/kτ2/k

and using |∇∇̄u|2g ≤ |α′|−2/kτ2/k leads to

F pq̄∇p∇q̄
{

(|∇∇̄u|2g + η)|∇∇̄∇u|2g
}

(7.33)

≥ m(1− 2−6)|α′|−2/kτ2/k

{
|∇∇∇̄∇u|2g + |∇∇̄∇∇̄u|2g

}
−4(1 + 2−6)|α′|−1/kτ1/k|∇∇̄∇u|2g

{
|∇∇∇̄∇u|g + |∇∇̄∇∇̄u|g

}
−2−6(m+ 1)|α′|−1/kτ1/k|∇∇̄∇u|2g

{
|∇∇∇̄∇u|g + |∇∇̄∇∇̄u|g

}
+

{
1− 2−6(m+ 1)

}
|∇∇̄∇u|4g − C|∇∇̄∇u|2g|∇∇u|2g − CP.
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Using 2ab ≤ a2 + b2, we estimate

4(1 + 2−6)|α′|−1/kτ1/k|∇∇̄∇u|2g{|∇∇̄∇∇̄u|g + |∇∇∇̄∇u|g}

≤ 16(1 + 2−6)2|α′|−2/kτ2/k{|∇∇̄∇∇̄u|2g + |∇∇∇̄∇u|2g}+
1

2
|∇∇̄∇u|4g,

and

2−6(m+ 1)|α′|−1/kτ1/k|∇∇̄∇u|2g{|∇∇∇̄∇u|g + |∇∇̄∇∇̄u|g}

≤ 1

2
|α′|−2/kτ2/k{|∇∇∇̄∇u|2g + |∇∇̄∇∇̄u|2g}+ 2−12(m+ 1)2|∇∇̄∇u|4g.

The main inequality becomes

F pq̄∇p∇q̄
{

(|∇∇̄u|2g + η)|∇∇̄∇u|2g
}

(7.34)

≥ {m(1− 2−6)− 16(1 + 2−6)2 − 1

2
}|α′|−2/kτ2/k

{
|∇∇∇̄∇u|2g

+|∇∇̄∇∇̄u|2g
}

+

{
1

2
− 2−6(m+ 1)− 2−12(m+ 1)2

}
|∇∇̄∇u|4g

−C|∇∇̄∇u|2g|∇∇u|2g − CP.

Next, we estimate terms on the first line in the definition (7.29) of P
C{|∇∇̄∇∇̄u|g + |∇∇∇̄∇u|g}|∇∇̄∇u|g

≤ 1

16
|α′|−2/kτ2/k{|∇∇̄∇∇̄u|2g + |∇∇∇̄∇u|2g}

+8C2|α′|2/kτ−2/k|∇∇̄∇u|2g
and

(7.35) C|∇∇̄∇∇̄u|g ≤
1

16
|α′|−2/kτ2/k|∇∇̄∇∇̄u|2g + 4C2|α′|2/kτ−2/k

and absorb |∇∇̄∇u|3g + |∇∇̄∇u|2g + |∇∇̄∇u|g into 2−12|∇∇̄∇u|4g plus a
large constant. We can now let m = 18 and drop the positive fourth
order terms. We are left with

F pq̄∇p∇q̄
{

(|∇∇̄u|2g + η)|∇∇̄∇u|2g
}

(7.36)

≥
{

1

2
− 2−6(m+ 1)− 2−12(m+ 1)2 − 2−12

}
|∇∇̄∇u|4g

−C|∇∇∇u|g
{
|∇∇̄∇u|g|∇∇u|g + |∇∇̄∇u|g + |∇∇u|g

}
−C
{
|∇∇̄∇u|2g|∇∇u|2g + |∇∇̄∇u|2g|∇∇u|g + |∇∇̄∇u|g|∇∇u|2g

+|∇∇̄∇u|g|∇∇u|g + 1

}
.
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Since m = 18,

(7.37)
1

2
− 2−6(m+ 1)− 2−12(m+ 1)2 − 2−12 ≥ 2−4,

and we obtain (7.19). q.e.d.

7.3. Using the test function. We have computed F pq̄∇p∇q̄ acting
on the two terms of the test function G defined in (7.2). Combining
(7.5) and (7.19)

F pq̄∇p∇q̄G(7.38)

≥ 1

32
|∇∇̄∇u|4g +

AB

2
|∇∇∇u|2g + (1− 2−5)B|∇∇u|4g

−C
{
|∇∇∇u|g|∇∇̄∇u|g|∇∇u|g + |∇∇∇u|g|∇∇̄∇u|g

+|∇∇∇u|g|∇∇u|g + |∇∇̄∇u|2g|∇∇u|2g + |∇∇̄∇u|2g|∇∇u|g

+|∇∇̄∇u|g|∇∇u|2g + |∇∇̄∇u|g|∇∇u|g
}
− C(A,B).

The negative terms are readily split and absorbed into the positive terms
on the first line. For example,

C|∇∇∇u|g|∇∇̄∇u|g|∇∇u|g ≤ |∇∇∇u|2g +
C2

4
|∇∇̄∇u|2g|∇∇u|2g,

(7.39)

C|∇∇̄∇u|2g|∇∇u|2g ≤ 2−7|∇∇̄∇u|4g + 25C2|∇∇u|4g,(7.40)

C|∇∇̄∇u|2g|∇∇u|g ≤ 2−7|∇∇̄∇u|4g + 25C2|∇∇u|2g.(7.41)

This leads to

F pq̄∇p∇q̄G(7.42)

≥ 2−7|∇∇̄∇u|4g + {AB
2
− 1}|∇∇∇u|2g + {B

2
− C}|∇∇u|4g

−C(A,B).

By choosing A,B � 1 to be large, we conclude by the maximum prin-
ciple that at a point p where G attains a maximum, we have

(7.43) |∇∇̄∇u|4g(p) ≤ C, |∇∇u|4g(p) ≤ C.

Therefore |∇∇̄∇u|g and |∇∇u|g are both uniformly bounded.

7.4. Remark on the case k = 1. In the case of the standard Fu-Yau
equation (k = 1), to prove Theorem 1.1 we can instead appeal to a
general theorem of concave elliptic PDE and obtain Hölder estimates
for the second order derivatives of the solution. To exploit the concave
structure, we must rewrite the Fu-Yau equation into the standard form
of complex Hessian equation.
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Recall that σ̂1(χ) ω̂n = nχ ∧ ω̂n−1, σ̂2(χ) ω̂n = n(n−1)
2 χ2 ∧ ω̂n−2.

A direct computation with equation (1.1) gives

σ̂2(euω̂ + α′e−uρ+ 2α′i∂∂̄u)(7.44)

=
n(n− 1)

2
e2u − 2(n− 1)α′eu|∇u|2ω̂ − 2(n− 1)α′µ

+2(n− 1)(α′)2e−u(ajk̄ujuk̄ − biui − bīuī)
+2(n− 1)(α′)2e−uc+ (n− 1)e−uσ̂1(α′ρ) + e−2uσ̂2(α′ρ).

We note that the right hand side of the equation involves the given data
α′, ρ, µ, u and ∇u. Since u ∈ Υ1, the (1, 1)-form ω′ = euω̂ + α′e−uρ+
2α′i∂∂̄u is positive definite, and thus both sides of the above equation
have a positive lower bound. Moreover, our previous estimates imply
that we have uniform a priori estimates on ‖u‖C1,β(X) for any 0 < β < 1.

The right hand side is therefore bounded in Cβ(X). Since σ̂
1/2
2 (χ) is a

concave uniformly elliptic operator on the space of admissible solutions,
we may apply a Evans-Krylov type result of Tosatti-Weinkove-Wang-
Yang [32] (see also [33]) to conclude ‖u‖C2,β ≤ C.

However, for general k ≥ 2 it is impossible to re-write equation (2.2)
into a standard complex Hessian equation and thus there is no obvious
concavity that we can use.

Note: Just as we were about to post this paper, a preprint, The Fu-Yau
equation in higher dimensions by J. Chu, L. Huang, and X.H. Zhu ap-
peared in the net, arXiv:1801.09351, in which is stated the existence of
a solution of the Fu-Yau Hessian equation for k = 1, γ = 2. In fact they
established the same key gradient estimate for the case k = 1, γ = 2
of Theorem 5.1, using the same test function (5.3). As we had noted
in sections §5 and when introducing it, this test functions is the same
as the one introduced earlier in our paper [23] on the Anomaly flow.
The major differences between the special case k = 1, γ = 2 treated in
the Chu-Huang-Zhu paper and the general case 1 ≤ k ≤ n − 1, γ > 0
treated in Theorem 1.1 of the present paper are, on one hand the con-
siderable technical complications in establishing Theorems 5.1 and 6.1
in this generality, and on the other hand, the C3 estimates in §7. As we
had explained in §7, C2,α estimates can be obtained in the case k = 1 by
an Evans-Krylov type result [32] without any additional work. But for
k ≥ 2, Evans-Krylov type results are not available because there is no
concavity, and C3 estimates have to be established separately (Theorem
7.1). In fact, such C3 estimates for general Hessian equations (differ-
ent from Monge-Ampère equations) don’t seem to have been treated
before in the literature, and Theorem 7.1 may be of independent inter-
est.
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