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ABSTRACT. We develop foundational theory for the Laplacian flow for
closed G2 structures which will be essential for future study. (1). We
prove Shi-type derivative estimates for the Riemann curvature tensor
Rm and torsion tensor 71" along the flow, i.e. that a bound on

1
Az, t) = (IVT (2, 1) 50 + [Rm(z,t)|50) 2

will imply bounds on all covariant derivatives of Rm and T. (2). We
show that A(z,t) will blow up at a finite-time singularity, so the flow
will exist as long as A(z,t) remains bounded. (3). We give a new proof
of forward uniqueness and prove backward uniqueness of the flow, and
give some applications. (4). We prove a compactness theorem for the
flow and use it to strengthen our long time existence result from (2) to
show that the flow will exist as long as the velocity of the flow remains
bounded. (5). Finally, we study soliton solutions of the Laplacian flow.
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1. INTRODUCTION

In this article we analyse the Laplacian flow for closed Go structures,
which provides a potential tool for studying the challenging problem of ex-
istence of torsion-free Go structures, and thus Ricci-flat metrics with excep-
tional holonomy Gg, on a 7-dimensional manifold. We develop foundational
results for the flow, both in terms of analytic and geometric aspects.

1.1. Basic theory. Let M be a 7-manifold. A Gg structure on M is defined
by a 3-form ¢ on M satisfying a certain nondegeneracy condition. To any
such ¢, one associates a unique metric g and orientation on M, and thus a
Hodge star operator *,. If V is the Levi-Civita connection of g, we interpret
V as the torsion of the G structure ¢. Thus, if Vo = 0, which is equivalent
to dp = dx, = 0, we say ¢ is torsion-free and (M, ¢) is a Gz manifold.

The key property of torsion-free Go structures is that the holonomy group
of the associated metric satisfies Hol(g) C G, and hence (M, g) is Ricci-flat.
If (M, ¢) is a compact Go manifold, then Hol(g) = G if and only if 71 (M) is
finite, and thus finding torsion-free G structures is essential for constructing
compact manifolds with holonomy Go. Notice that the torsion-free condition
is a nonlinear PDE on ¢, since *, depends on ¢, and thus finding torsion-free
Gy structures is a challenging problem.

Bryant [4] used the theory of exterior differential systems to first prove
the local existence of holonomy Gs metrics. This was soon followed by the
first explicit complete holonomy Go manifolds in work of Bryant—Salamon
[7]. In ground-breaking work, Joyce [22] developed a fundamental existence
theory for torsion-free Go structures by perturbing closed Go structures
with “small” torsion which, together with a gluing method, led to the first
examples of compact 7-manifolds with holonomy Go. This theory has formed
the cornerstone of the programme for constructing compact holonomy Go
manifolds, of which there are now many examples (see [13,29]).

Although the existence theory of Joyce is powerful, it is a perturbative
result and one has to work hard to find suitable initial data for the theory.
In all known examples such data is always close to “degenerate”, arising
from a gluing procedure, and thus gives little sense of the general problem
of existence of torsion-free Go structures. In fact, aside from some basic
topological constraints, we have a primitive understanding of when a given
compact 7-manifold could admit a torsion-free Gg structure, and this seems
far out of reach of current understanding. However, inspired by Joyce’s
work, it is natural to study the problem of deforming a closed Gg structure,
not necessarily with any smallness assumption on its torsion, to a torsion-
free one, and to see if any obstructions arise to this procedure. A proposal
to tackle this problem, due to Bryant (c.f. [5]), is to use a geometric flow.

Geometric flows are important and useful tools in geometry and topology.
For example, Ricci flow was instrumental in proving the Poincaré conjecture
and the %—pinched differentiable sphere theorem, and Kéhler—Ricci flow has
proved to be a useful tool in Kéhler geometry, particularly in low dimen-
sions. In 1992, in order to study 7-manifolds admitting closed Gg structures,
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Bryant (see [5]) introduced the Laplacian flow for closed Gg structures:

%SD = Ago‘Pa
dp = 0, (1.1)
©(0) = o,

where Ay = dd*p + d*dy is the Hodge Laplacian of ¢ with respect to
the metric g determined by ¢ and ¢ is an initial closed Go structure. The
stationary points of the flow are harmonic ¢, which on a compact manifold
are the torsion-free Go structures. The goal is to understand the long time
behaviour of the flow; specifically, to find conditions under which the flow
converges to a torsion-free Gg structure. A reasonable conjecture (see [5]),
based on the work of Joyce described above, is that if the initial Go structure
o on a compact manifold is closed and has sufficiently small torsion, then
the flow will exist for all time and converge to a torsion-free Gy structure.

Another motivation for studying the Laplacian flow comes from work of
Hitchin [21] (see also [8]), which demonstrates its relationship to a natural
volume functional. Let ¢ be a closed Gg structure on a compact 7-manifold
M and let [@]+ be the open subset of the cohomology class [¢] consisting of
Gy structures. The volume functional H : [¢]+ — RT is defined by

1
H(p) = = /Mgo/\ ko = /M 1.

Then ¢ € [@]+ is a critical point of H if and only if d x,¢ = 0, ie. ¢ is
torsion-free, and the Laplacian flow can be viewed as the gradient flow for
H, with respect to a non-standard L2-type metric on [p]+ (see e.g. [8]).

We note that there are other proposals for geometric flows of Gg structures
in various settings, which may also potentially find torsion-free G structures
(e.g. [16,24,37]). The study of these flows is still in development.

An essential ingredient in studying the Laplacian flow (1.1) is a short time
existence result: this was claimed in [5] and the proof given in [8].

Theorem 1.1. For a compact 7-manifold M, the initial value problem (1.1)
has a unique solution for a short time t € [0, €) with € depending on ¢y.

To prove Theorem 1.1, Bryant—Xu showed that the flow (1.1) is (weakly)
parabolic in the direction of closed forms. This is not a typical form of
parabolicity, and so standard theory does not obviously apply. It is also
surprising since the flow is defined by the Hodge Laplacian (which is non-
negative) and thus appears at first sight to have the wrong sign for parabol-
icity. Nonetheless, the theorem follows by applying DeTurck’s trick and the
Nash—Moser inverse function theorem.

This short time existence result naturally motivates the study of the long
time behavior of the flow. Here little is known, apart from a compact ex-
ample computed by Bryant [5] where the flow exists for all time but does
not converge, and recently, Ferndndez—Fino-Manero [15] constructed some
noncompact examples where the flow converges to a flat Go structure.

1.2. Shi-type estimates. After some preliminary material on closed Go
structures in §2 and deriving the essential evolution equations along the flow
in §3, we prove our first main result in §4: Shi-type derivative estimates for
the Riemann curvature and torsion tensors along the Laplacian flow.
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For a solution ¢(t) of the Laplacian flow (1.1), we define the quantity

1

Alz,t) = (|VT(x,t)|§(t) + yRm(x,t)@(t)) ? (1.2)

where T is the torsion tensor of p(t) (see §2 for a definition) and Rm denotes
the Riemann curvature tensor of the metric g(¢) determined by ¢(t). Notice
that T is determined by the derivative of ¢ and Rm is second order in the
metric which is determined algebraically by ¢, so both Rm and VT are
second order in ¢. We show that a bound on A(xz,t) will induce a priori
bounds on all derivatives of Rm and VT for positive time. More precisely,
we have the following.

Theorem 1.2. Suppose that K > 0 and p(t) is a solution of the Laplacian
flow (1.1) for closed G structures on a compact manifold M" fort € [0, %]
For all k € N, there exists a constant Cy such that if A(z,t) < K on
M7 x [0, %], then
1
We call the estimates (1.3) Shi-type (perhaps, more accurately, Bernstein—
Bando—Shi) estimates for the Laplacian flow, because they are analogues of
the well-known Shi derivative estimates in the Ricci flow. In Ricci flow, a
Riemann curvature bound will imply bounds on all the derivatives of the
Riemann curvature: this was proved by Bando [3] and comprehensively by
Shi [35] independently. The techniques used in [3,35] were introduced by
Bernstein (in the early twentieth century) for proving gradient estimates via
the maximum principle, and will also be used here in proving Theorem 1.2.
A key motivation for defining A(z,t) as in (1.2) is that the evolution
equations of |VT(z,t)|?> and |Rm(z,t)|> both have some bad terms, but
the chosen combination kills these terms and yields an effective evolution
equation for A(x,t). We can then use the maximum principle to show that

At) = S]l\l}) A(x,t) (1.4)

V* R, )]0y + [V T )] < ot 5K, e (0, (1.3)

satisfies a doubling-time estimate (see Proposition 4.1), i.e. A(t) < 2A(0) for
all time ¢t < ﬁ@ for which the flow exists, where C' is a uniform constant.
This shows that A has similar properties to Riemann curvature under Ricci
flow. Moreover, it implies that the assumption A(z,t) < K in Theorem 1.2
is reasonable as A(x,t) cannot blow up quickly. We conclude §4 by giving a
local version of Theorem 1.2.

In §5 we use our Shi-type estimates to study finite-time singularities of
the Laplacian flow. Given an initial closed Go structure (g on a compact
7-manifold, Theorem 1.1 tells us there exists a solution ¢(t) of the Laplacian
flow on a maximal time interval [0, Tp). If T} is finite, we call Tj the singular
time. Using our global derivative estimates (1.3) for Rm and VT, we can
obtain the following long time existence result on the Laplacian flow.

Theorem 1.3. If o(t) is a solution of the Laplacian flow (1.1) on a compact
manifold M" in a maximal time interval [0, Ty) with Ty < 0o, then

lim A(t) = oo,
t 1o
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where A(t) is given in (1.4). Moreover, we have a lower bound on the blow-
up rate:

C
>
A(t) —Tp—t

for some constant C > 0.

Theorem 1.3 shows that the solution ¢(¢) of the Laplacian flow for closed Ga
structures will exist as long as the quantity A(z,t) in (1.2) remains bounded.
We significantly strengthen this first long-time existence result in Theorem
1.6 below as a consequence of our compactness theory for the flow.

1.3. Uniqueness. In §6 we study uniqueness of the Laplacian flow, includ-
ing both forward and backward uniqueness.

In Ricci flow, there are two standard arguments to prove forward unique-
ness. One relies on the Nash-Moser inverse function theorem [18] and anoth-
er relies on DeTurck’s trick and the harmonic map flow (see [19]). Recently,
Kotschwar [27] provided a new approach to prove forward uniqueness. The
idea in [27] is to define an energy quantity £(¢) in terms of the differences of
the metrics, connections and Riemann curvatures of two Ricci flows, which
vanishes if and only if the flows coincide. By deriving a differential inequal-
ity for £(t), it can be shown that £(t) = 0 if £(0) = 0, which gives the
forward uniqueness.

In [26], Kotschwar proved backward uniqueness for complete solutions
to the Ricci flow by deriving a general backward uniqueness theorem for
time-dependent sections of vector bundles satisfying certain differential in-
equalities. The method in [26] is using Carleman-type estimates inspired
by [1,39]. Recently, Kotschwar [28] gave a simpler proof of the general
backward uniqueness theorem in [26].

Here we will use the ideas in [26,27] to give a new proof of forward
uniqueness (given in [8]) and prove backward uniqueness of the Laplacian
flow for closed Go structures, as stated below.

Theorem 1.4. Suppose ¢(t), ¢(t) are two solutions to the Laplacian flow
(1.1) on a compact manifold M" for t € [0,€], € > 0. If p(s) = @(s) for
some s € [0, €], then ¢(t) = @(t) for all t € [0, €.

As an application of Theorem 1.4, we show that on a compact manifold
M7, the subgroup I, of diffeomorphisms of M isotopic to the identity
and fixing ¢(t) is unchanged along the Laplacian flow. Since I, is strongly
constrained for a torsion-free G structure ¢ on M, this gives a test for when
the Laplacian flow with a given initial condition could converge.

1.4. Compactness. In the study of Ricci flow, Hamilton’s compactness
theorem [20] is an essential tool to study the behavior of the flow near
a singularity. In §7, we prove an analogous compactness theorem for the
Laplacian flow for closed G structures.
Suppose we have a sequence (M;, ;(t)) of compact solutions to the Lapla-

cian flow and let p; € M;. For each (M;, ¢;(t)), let

1

2

ASﬂi(xat) = (‘vgz(t)ﬂ<m7t)‘zl(t) + ’ngz(t)<m7t)‘3,b(t)> )
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where g;(t) is the associated metric to o;(t), and let inj(M;, gi(0), p;) denote
the injectivity radius of (M;, g;(0)) at the point p;. Our compactness theorem
then states that under uniform bounds on Ay, and inj(M;, g;(0), p;) we can
extract a subsequence of (M;, p;(t)) converging to a limit flow (M, p(t)).

Theorem 1.5. Let M; be a sequence of compact T-manifolds and let p; € M;
for each i. Suppose that, for each i, @;(t) is a solution to the Laplacian flow
(1.1) on M; fort € (a,b), where —oo < a <0 < b < oo. Suppose that
sup  sup Ay, (z,t) < oo (1.5)
i xeM; te(a,d)
and
irilf injg(M;, gi(0),p;) > 0. (1.6)

There exists a T-manifold M, a point p € M and a solution o(t) of the
Laplacian flow on M fort € (a,b) such that, after passing to a subsequence,

(M;, pi(t),pi) = (M, p(t),p) asi— oc.

We refer to §7 for a definition of the notion of convergence in Theorem 1.5.

To prove Theorem 1.5, we first prove a Cheeger—Gromov-type compact-
ness theorem for the space of Go structures (see Theorem 7.1). Given this,
Theorem 1.5 follows from a similar argument for the analogous compactness
theorem in Ricci flow as in [20].

As we indicated, Theorem 1.5 could be used to study the singularities of
the Laplacian flow, especially if we can show some non-collapsing estimate as
in Ricci flow (c.f. [33]) to obtain the injectivity radius estimate (1.6). Even
without such an estimate, we can use Theorem 1.5 to greatly strengthen
Theorem 1.3 to the following desirable result, which states that the Laplacian
flow will exist as long as the velocity of the flow remains bounded.

Theorem 1.6. Let M be a compact 7-manifold and ¢(t), t € [0,Ty), where
To < 00, be a solution to the Laplacian flow (1.1) for closed G structures
with associated metric g(t) for each t. If the velocity of the flow satisfies

sSup ‘Agoso(xat)’g(t) < o0, (17)
Mx[0,T0)

then the solution ¢(t) can be extended past time Ty.

In Ricci flow, the analogue of Theorem 1.6 was proved in [34], namely that
the flow exists as long as the Ricci tensor remains bounded. It is an open
question whether just the scalar curvature (the trace of the Ricci tensor)
can control the Ricci flow, although it is known for Type-I Ricci flow [14]
and Ké&hler-Ricci flow [40]. In §2.2, we see that for a closed Ga structure
¢, we have A, = i,(h), where i, : S*T*M — A3T*M is an injective map
defined in (2.2) and h is a symmetric 2-tensor with trace equal to Z|T'|%.
Moreover, the scalar curvature of the metric induced by ¢ is —|T'|2. Thus,
comparing with Ricci flow, one may ask whether the Laplacian flow for closed
Go structures will exist as long as the torsion tensor remains bounded. This
is also the natural question to ask from the point of view of Go geometry.
However, even though —|T'|? is the scalar curvature, it is only first order in
¢, rather than second order like A ¢, so it would be a major step forward
to control the Laplacian flow using just a bound on the torsion tensor.
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1.5. Solitons. In §9, we study soliton solutions of the Laplacian flow for
closed Go structures, which are expected to play a role in understanding the
behavior of the flow near singularities, particularly given our compactness
theory for the flow.

Given a 7-manifold M, a Laplacian soliton of the Laplacian flow (1.1) for
closed G structures on M is a triple (¢, X, \) satisfying

App =g+ Lxop, (1.8)

where dp = 0, A € R, X is a vector field on M and Lx is the Lie derivative
of ¢ in the direction of X. Laplacian solitons give self-similar solutions to
the Laplacian flow. Specifically, suppose (¢g, X, A) satisfies (1.8). Define

p(t) = (L 2A0F, X(5) = plt) X,

and let ¢; be the family of diffeomorphisms generated by the vector fields
X (t) such that ¢g is the identity. Then ¢(t) defined by

p(t) = p(t)dr o
is a solution of the Laplacian flow (1.1), which only differs by a scaling
factor p(t) and pull-back by a diffeomorphism ¢; for different times ¢t. We
say a Laplacian soliton (¢, X, \) is expanding if A > 0; steady if A = 0; and
shrinking if A < 0.

Recently, there are several papers considering soliton solutions to flows
of Gy structures, e.g. [25,30,38]. In particular, Lin [30] studied Laplacian
solitons as in (1.8) and proved there are no compact shrinking solitons, and
that the only compact steady solitons are given by torsion-free G structures.

A closed Gg structure on a compact manifold which is stationary under
the Laplacian flow must be torsion-free since here, unlike in the general non-
compact setting, harmonic forms are always closed and coclosed. We show
that stationary points for the flow are torsion-free on any 7-manifold and
also give non-existence results for Laplacian solitons as follows.

Proposition 1.7. (a) Any Laplacian soliton of the form (p,0,\) must be
an expander or torsion-free. Hence, stationary points of the Laplacian flow
are given by torsion-free Go structures.

(b) There are no compact Laplacian solitons of the form (p,0,\) unless ¢
18 torsion-free.

Combining Lin’s [30] result and the above proposition, any Laplacian
soliton on a compact manifold M which is not torsion-free (if it exists) must
satisfy (1.8) for A > 0 and X # 0. This phenomenon is somewhat surprising,
since it is very different from Ricci solitons Ric + Lxg = Ag: when X = 0,
the Ricci soliton equation is just the Einstein equation Ric = Ag and there
are many examples of compact Einstein metrics.

Since a Gg structure ¢ determines a unique metric g, it is natural to ask
what condition the Laplacian soliton equation on ¢ will impose on g. We
show that for a closed Ga structure ¢ and any vector field X on M, we have

Lxp= %i¢(ﬁxg) + %(d*(X_JQO))ﬁ_ﬂ/J. (1.9)

Thus the symmetries of ¢, namely the vector fields X such Lx¢ = 0, are
precisely given by the Killing vector fields X of g with d*(X.p) = 0 on
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M. Moreover, using (1.9) we can derive an equation for the metric g from
the Laplacian soliton equation (1.8), which we expect to be of further use
(see Proposition 9.4). In particular, we deduce that any Laplacian soliton
(o, X, \) must satisfy 7A+3div(X) = 2|T|?> > 0, which leads to a new short
proof of the main result in [30].

To conclude the paper in §10, we provide a list of open problems that are
inspired by our work and which we intend to study in the future.

2. CLOSED Gg STRUCTURES

We collect some facts on closed Go structures, mainly based on [5,24].

2.1. Definitions. Let {ej,ea, - ,er} denote the standard basis of R” and
let {e',e?,--- e’} be its dual basis. Write e¥* = ¢? A e/ A ¥ for simplicity
and define the 3-form

b= 123 4 o145 | 167 4 246 (25T _ 347 _ 356

The subgroup of GL(7,R) fixing ¢ is the exceptional Lie group Gg, which is
a compact, connected, simple Lie subgroup of SO(7) of dimension 14. Note
that Go acts irreducibly on R” and preserves the metric and orientation for
which {e1, ez, - ,er} is an oriented orthonormal basis. If %4 denotes the
Hodge star determined by the metric and orientation, then G also preserves
the 4-form

*¢¢ — 64567 + 62367 + e2345 + 61357 o 61346 o e1256 o 61247.

Let M be a 7-manifold. For x € M we let
A% (M), = {p, € A’T; M |3 invertible u € Homg (T, M, R7), u*¢ = ¢, },

which is isomorphic to GL(7,R)/Gz since ¢ has stabilizer Go. The bundle
A3 (M) = ||, A3 (M), is thus an open subbundle of A3T*M. We call a
section ¢ of Ai(M ) a positive 3-form on M and denote the space of positive
3-forms by Q3 (M). There is a 1-1 correspondence between Go structures (in
the sense of subbundles of the frame bundle) and positive 3-forms, because
given ¢ € Q3 (M), the subbundle of the frame bundle whose fibre at z
consists of invertible v € Hom(T,M,R") such that u*¢ = ¢, defines a
principal subbundle with fibre Go. Thus we usually call a positive 3-form ¢
on M a Gg structure on M. The existence of Gg structures is equivalent to
the property that M is oriented and spin.

We now see that a positive 3-form induces a unique metric and orientation.
For a 3-form ¢, we define a Q7(M)-valued bilinear form B, by

B(u,0) = 5 (usp) A (v39) A,

where u, v are tangent vectors on M. Then ¢ is positive if and only if B, is
positive definite, i.e. if B, is the tensor product of a positive definite bilinear
form and a nowhere vanishing 7-form which defines a unique metric g with
volume form vol, as follows:

g(u,v)voly = By(u,v). (2.1)
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The metric and orientation determines the Hodge star operator *,, and we
define ¢ = *,p, which is sometimes called a positive 4-form. Notice that
the relationship between g and ¢, and hence between ¥ and ¢, is nonlinear.

The group Gs acts irreducibly on R” (and hence on A*(R7)* and AS(R7)*),
but it acts reducibly on A¥(R")* for 2 < k < 5. Hence a Go structure ¢
induces splittings of the bundles A*T*M (2 < k < 5) into direct summands,
which we denote by AF(T*M, ) so that [ indicates the rank of the bundle.
We let the space of sections of AF(T*M, ) be QF(M). We have that

O} (M) =02 (M) & Q4 (M),
(M) =3 (M) & Q3(M) © Q3,(M),
where!
Q2(M) ={B € P(M)|BNp=2x,8} ={X1p|X € C°(TM)},
O (M) ={8 € R(M)[BA @ =—x, B} = {B € P(M)|B A =0},
and
QY (M) = {felf € C™(M)},
O3(M) = {X )| X € C>(TM)},
Q3 (M) ={y € M)y Ap=0=y At}

Hodge duality gives corresponding decompositions of Q4(M) and Q°(M).
To study the Laplacian flow, it is convenient to write key quantities in
local coordinates using summation convention. We write a k-form « as

1 . .
a= Eailiz...ikd:c“ A - ANdx'®

in local coordinates {x',--- 27} on M, where a;,..i, is totally skew-
symmetric in its indices. In particular, we write ¢, 1 locally as

1 . . 1 4 4
= gcpijkdxl Adzd AdaF, o = ﬂwzjkldmz Adazd A da® A dal

Note that the metric g on M induces an inner product of two k-forms «, 5,
given locally by

1 - -
(a, B) = Hailh'“ikﬁjy-jkg“]l e glkIk,

As in [5] (up to a constant factor), we define an operator i, : S?T*M —
A3T* M locally by

1 : .
ip(h) = 5h§¢ljkdxl Ada? A da®
1 , ,
= é(hzwjk — hé‘@lik - hig&zﬂ)dfnl Adz? A da® (2.2)

where h = hyjdz'dx?. Then A3,(T*M,¢) = i, (S3T*M), where S3T*M
denotes the bundle of trace-free symmetric 2-tensors on M. Clearly, i,(g) =
3. We also have the inverse map j, of i,

Jo(V)(u,v) = *4((uap) A (vap) A7),  u,v€TM,

IHere we use the orientation in [5] rather than [24].
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which is an isomorphism between A$(T*M, @) ® A3-(T*M, ) and S?T*M.
Then we have ji,(i,(h)) = 4h+2trg(h)g for any h € S*T*M and j,(¢) = 6g.

We have the following contraction identities of ¢ and % in index notation
(see [5,24]):

Gijkpabig g’ = 6gki, (2.3)

Pijglarkig" 97" = 4P, (2.4)

PivaPaikg" = Ipidak — Ipk9aj + Ypajk; (2.5)
Pipgajkid"* = GpjPakl — GjqPpkl + IpkPigl — TkaPjpl

+ Gl Pjkg — GlgPikps (2.6)

Vijti¥abead’ 9" g = 24754 (2.7)

Given any Gy structure ¢ € Q3 (M), there exist unique differential forms
0 € QUM), 7 € QY(M), 75 € Q2,(M) and 73 € Q3-(M) such that dp and
di can be expressed as follows (see [5]):

dtp:T0¢+3T1/\g0+*§0T3, (28)

dp =411 N+ 12 A . (2.9)
We call {79, 71, 72,73} the intrinsic torsion forms of the Gy structure ¢. The
full torsion tensor is a 2-tensor T" satisfying (see [24])

Vivjr = T;" Ymjkl, (2.10)
T — iviwmwﬂmn, (2.11)

and
Vinijer = — <Tmz’90jkz — Tnjeint — Timkpjin — Tmlﬁ/?jki), (2.12)

where Tj; = T'(0;,0;) and Tij = T;g’*. The full torsion tensor T}; is related
to the intrinsic torsion forms by the following:
1

70 ~
Tij = VR (7'1#%0)1']' —(T3)ij — 5(7'2)@', (2.13)

where (7'f§£ 2p)ij = (7'féﬁ )lgolij and 73 is the trace-free symmetric 2-tensor such
that 73 = i¢(f3).

If ¢ is closed, i.e. dp = 0, then (2.8) implies that 79, 7 and 73 are all zero,
so the only non-zero torsion form is 75 = %(73);jdz’ Adz?. Then from (2.13)
we have that the full torsion tensor satisfies T;; = —T}; = —%(Tg)ij, so T is
a skew-symmetric 2-tensor. For the rest of the article, we write 7 = 75 for
simplicity and reiterate that for closed G structures

1
T=—-r (2.14)

2

Since dip = 7 A ¢ = —*,7, we have that
A1 = xpd %y, T = — %, d21h = 0, (2.15)

which is given in local coordinates by gmivmn-j = 0.
We can write the condition that 8 = 38;;dz’ Adad € Q3,(M) as (see [24])

Biivakg g’ =0  and  Bijtapkig "’ = —2Bu (2.16)
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in local coordinates.

2.2. Hodge Laplacian of ¢. Since dy = 0, from (2.8) and (2.9) we have
that the Hodge Laplacian of ¢ is equal to

App =dd*p + d*dp = —d x, dip = dr, (2.17)
where in the third equality we used T A ¢ = — x, 7 since 7 € Q3,(M). In
local coordinates, we write (2.17) as

1 ) )
Apip =c(Dpp)igrda’ Ada? A dz",
with

(App)ije = ViTji, — ViTip — ViTji. (2.18)

We can decompose A,y into three parts:
Apip =17 (D) + 13 (D) + 157 (App) = ap + X stp +ip(h),  (2.19)

where 7 @ QF(M) — QF(M) denotes the projection onto QF(M), a is a
function, X is a vector field and h is a trace-free symmetric 2-tensor. We
now calculate the values of a, X, h.

For a, we take the inner product of ¢ and A,¢p, and using the identity
(2.16) (since 7 € Q2,(M)),

a :?(Awg ) = o) (Vitjk — VTi, — ViTji) Ptmng" " g
1 .
= ViTjtemng" 9" g™
1 o 1 .
= Vi(Tikimng" 9" 9" = 7k Vipimng" g g
1 oo 1 , 1
:%Tjkﬂ's¢slmngdg]mgkn = ﬁTjkTmngjmglm = ?|T|27

where in the last equality we used |7|> = %Tiﬂklgikgjl . For X, we use the

contraction identities (2.4), (2.6), (2.7) and the definition of iy:
(Appath)i =(App) P hijn
=ap ;i + XM 10 + (ip(R) T i
= — 24X, + (W', * — W0, % — BE 0, ) i
=—24X; — 12"y = —24X],

where the index of tensors are raised using the metric g. The last equality fol-
lows from the fact that h;,, is symmetric in i, m, but ¢,,;; is skew-symmetric
in i, m. Using (2.18), we have

1 y 1 . .
X =- Q(A%O)”kﬂ)ijkl = —gngVmT]kﬂ%jkl
1 . . 1 . )
=— ggmzvm(T]k@bijkl) + gT]kngVmU)ijkl

1 1
:nglvmm + TGT]kaZ(Tmi@jkl — Tmj ikl — TmkPjil — Tmi¥Pjki) = 0,

where in the above calculation we used (2.12), (2.15), (2.16) and the totally
skew-symmetry in ¢, and 5. So X = 0 and thus the Q3(M) part of
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Ay is zero. To find h, using the decomposition (2.19), X = 0 and the
contraction identities (2.4) and (2.5), we have (as in [17])

(Ap)i " @jmn + (D) ;™" imn
= a0, """ @jmn + X'y, O + (ip(R));"" P jmn
+ 0™ Pimn + X i + (i (7)) P
= 172’7‘|2g¢j + 8]_1@‘.
The left-hand side of the above equation can be calculated using (2.18):
(ViTni = VaTmi = ViTum)@;™" + (VinTog — VaTmg — ViTam) ;™"
= Q(Vmegojm” + Vi Tnjo; ™) — Vﬂnmcpjm” — ViTume; ™"
= AV Tnip; ™" + Tam Vi, ™™ + Tnm Ve "
= AV i, — 27’ilnj,

where we used (2.16) and that for closed Go structures, va'mcpjm" is sym-
metric in ¢, j (see Remark 2.3). Then

= 3 1 1
hij = — ﬁ|7”29i]’ + ivamtpjm" — ZTille.
We conclude that
1 N
Do =dr = LrPo+iglh) = iph) € Q10N 0 Q%) (220)
for
1 1 1
hij = §Vm7m4pjm" — 6|T’2gi]‘ — ZTilTl]’. (2.21)

2.3. Ricci curvature and torsion. Since ¢ determines a unique metric
g on M, we then have the Riemann curvature tensor Rm of g on M. Our
convention is the following:

R(X,Y)Z :=VxVyZ—-VyVxZ— VixyZ,

and R(X,Y,Z, W) = g(R(X,Y)W, Z) for vector fields X, Y, Z, W on M. In
local coordinates denote R;ji = R(0;,0;,0k,0;). Recall that Rm satisfies
the first Bianchi identity:

Rijri + Ripj + Ry = 0. (2.22)
We also have the following Ricci identities when we commute covariant
derivatives of a (0, k)-tensor a:

k
(ViVj = ViVi)iyipiy, = Y Rijil™ iy iy ymig i (2.23)
=1
Karigiannis [24] derived the following second Bianchi-type identity for the
full torsion tensor.

Lemma 2.1.

1
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Proof. The proof of (2.24) in [24] is indirect, but as remarked there, (2.24)
can also be established directly using (2.10)—(2.12) and the Ricci identity.
We provide the detail here for completeness.

1

ViTjk = ViTie = 5

(Vi(Vi9abeth™) = Vi (Vigabeth, ™))

1
= ﬂ(VZV] - Vjvi)gpabcwkabc
1
+ 57 (Viabe Vit ™ = VigareV1™)
1

= ﬂ(RijamSOmbc + Rijbm(pamc + Rijcm¢abm)¢kabc
1 m abc a, . bc b, ac c, . ab
= 5 L™ mave(Ting™ = %0 + Ti"0™ = Ti%™)

1
+ —T. mwmabc(TijOabc _ Tja@kbc + ijgpkac o chsokab)

24"
- 2 zyma(pk 2 jm za‘pk 2 m ]agpk
1
= iRijma(Pkma - Tiaijgokamﬂ
where in the third equality we used (2.10), (2.12) and (2.23), and in the
fourth equality we used the contraction identity (2.4). O

We now consider the Ricci tensor, given locally as R;;, = Rz‘jklgj ! which
has been calculated for closed Gy structures (and more generally) in [5,12,
24]. We give the general result from [24] here.

Proposition 2.2. The Ricci tensor of the associated metric g of the Gg
structure @ is given locally as

Rix = (ViTj — ViTy)od' + Tr(T)Tiy, — T Ty + Tom T 2™ (2.25)
In particular, for a closed Go structure p, we have
Rip = VT = T,/ Ty, (2.26)
Proof. We multiply (2.24) by —cpkjp:
~(ViTjp = V,Tip)py”
= —(TjmTin + %Rz’jmn)%mnwkjp
= (TjmTin + %Rijmn)(gmj Sk — O™ — 0, 7™™)

. : 1 .
= T Tj. + Tr(T) T, — TimTinth’™ — Rik — - Rijmn ™"

2
=T, Tji + Tr(T)Tik — TjmTinth,’ ™" — Rk
1 .
- E(Rijmn + Rimnj + Rinjm) """

= —TijTjk +Tr(T)Ty, — ijTm@bkjmn — Ry,
where the last equality is due to (2.22). The formula (2.25) follows.
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For a closed Gg structure, we have T;; = —%Tz‘j, so T is skew-symmetric.
Moreover, using (2.16), we have

; 1 ; 1
_ijﬂndjkjmn = _ZijTinqu)kJmn = _§Tin7—nk = _QTZ’HTnka
and
viij@k]p = Vi(ijSOka) - ijvi@kjp
1

= =5 VilTipe") = TipTi ",

1 ; 1
_ ir _ _
= ——TjpT; ", = =T Tk = 20, T,

4 2
Then we obtain
R = (ViTyp = ViTp)ey” + Tr(T) T — T, T — Tim Tinthy™"
= 21" Ty, = Vi Tipipy!” = T, Ty, — 21" T
= =ViTuwei” =T T
which is (2.26). O

Remark 2.3. By (2.26), for a closed Gg structure, VjTZ-pgokjp is symmetric

in 4, k, since R;; and TZ]Tjk are symmetric in %, k.

We noted earlier that Rm and VT are second order in ¢, and 7T is essen-
tially Vo, so we would expect Rm and VT to be related. We show explicitly
using Proposition 2.2 that, for closed Go structures, this is the case.

Proposition 2.4. For a closed Go structure o, we have

1 1 1
Vil =5 Rijmner"™" + 5 Rigmni ™" = 5 Rikmn @™

Proof. By interchanging i <+ k and j <> k in (2.24) respectively, we have
1
Vil — V Ty :(iRkjmn — TiemTjn ) ;™™ (2.28)
1
ViTi; — ViTij =(§Rz‘kmn — TimThn ) ;™" (2.29)
Then (2.27) follows by combining the equations (2.24) and (2.28)—(2.29). O

We can also deduce a useful, already known, formula for the scalar cur-
vature of the metric given by a closed Gg structure.

Corollary 2.5. The scalar curvature of a metric associated to a closed Go
structure satisfies

R=—|T]* = ~TyThg? g*. (2.30)
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Proof. By taking trace in (2.26), using Tj; = —37;; and (2.16), we obtain
the scalar curvature

R =Ry.g*" = —(V,;Tspp,”” + T Tj1,)g**
=-V; (TSPCijp)QSk + TSPVJ'SijpgSk + |T‘2

1 . .
:§vj (Tspspk]p)gSk =+ TSPT’jmwkapgSk + |T|2
1 ; 1
=177 Ui "9+ TP = =577 + |7

= 2T, T +|T|* = —|T|?
as claimed. O

This result is rather striking since it shows that the scalar curvature,
which is a priori second order in the metric and hence in ¢, is given by a
first order quantity in ¢ when dy = 0.

3. EVOLUTION EQUATIONS

In this section we derive evolution equations for several geometric quan-
tities under the Laplacian flow, including the torsion tensor 7', Riemann
curvature tensor Rm, Ricci tensor Ric and scalar curvature R. These are
fundamental equations for understanding the flow.

Recall that the Laplacian flow for a closed G structure is

0

—p=ALp. 3.1

o’ P (3.1)
From (2.20) and (2.21), the flow (3.1) is equivalent to

0 .

9 o= iglh) (32

where h is the symmetric 2-tensor given in (2.21). We may write h in terms
the full torsion tensor T;; as follows:

hij = =V Tnip/™ — %IT\Q% —T,'Ty;. (33)
For closed ¢, the Ricci curvature is equal to
Rij = VinTnip,™" — T, Ty,
so we can also write h as
hij = —Rij — %|T|29ij — 2T, (3.4)

Notice that Tzk = Tyg™ and Ty = —Tj;.

Throughout this section and the remainder of the article we will use the
symbol A to denote the “analyst’s Laplacian” which is a non-positive oper-
ator given in local coordinates as V?V;. This is in contrast to A, which is
the Hodge Laplacian and is instead a non-negative operator.
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3.1. Evolution of the metric. Under a general flow for Go structures

gt(p(t) — i (B(D) + X () (D), (3.5)

where h(t), X (t) are a time-dependent symmetric 2-tensor and vector field
on M respectively, it is well known that (see [5,23] and explicitly [24]) the
associated metric tensor g(t) evolves by

ngg(t) = 2h(t).

Substituting (3.4) into this equation, we have that under the Laplacian flow
(3.1) (also given by (3.2)), the associated metric g(t) of the Ga structure
©(t) evolves by

0 2
% = — 2 — g\TIQQz’j — 4T, " Ty, (3.6)

Thus the leading term of the metric flow (3.6) corresponds to the Ricci flow,
as already observed in [5].
From (3.6) we have that the inverse of the metric evolves by
9 i ik j1 9

— gV = _ _
8tg 99 8tgkl

o 2
=gk g (2R + g\T|2gkl + 4T, 1), (3.7)
and the volume form volgy ) evolves by

0 1 0
ﬁvolg(t) zitrg(ag(t))volg(t) = trg(h(t))volyq

7 2
=(-R - gyT\2 + 2|T|*)volyyy = §|T]2v0lg(t), (3.8)

where we used the fact that the scalar curvature R = —|T|?. Hence, along
the Laplacian flow, the volume of M with respect to the associated metric
g(t) will non-decrease; in fact, the volume form is pointwise non-decreasing
(again as already noted in [5]).

3.2. Evolution of torsion. By [24, Lemma 3.7], the evolution of the full
torsion tensor 7' under the flow (3.2) is given by 2

8 mn
&Tij = T;*hij — Vinhin™. (3.9)
Substituting (3.3) into (3.9), we obtain

0

oL = ~Vmhing™ + T, hy;

2Note that compared with [24, Lemma 3.7], the sign of the second term on the right-
hand side of (3.9) is different due to a different choice of orientation of ¢, which also leads
to a different sign for the torsion tensor T
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Pq 1 2 k mn
=—Vn _vaqi(:On - §|T| Jin _T% Tyn, Pj
k Pq 1 2 m
+T; _vaquDj - §‘T| gkj — Ti T
1
- vmvaqi(Pr;LDq(ijn + vaqivmsofq@jmn - gvm’T‘Q(p]zm
1

+ V(T Ten oo™ = Ty Ty [ — S |TP T = T T (3.10)

Using the contraction identity (2.5) and Ricci identity (2.23), the first term
on the right hand side of (3.10) is equal to

vmvaqi(Pnpq(pjmn
= vaqui(éﬁgqm — 5?gpm + wqum)
= V"V T — V"V Tji + ViV Tgith /7"
= ATyj + YV Trni — R Ti + Ry jir T

1
+ §(vmvaqi - vamTqi)wqum

1

= ATy — R} Ty + R T™ + §(Rmpikqu + Ry Thi) o,/
— AT — R¥Th + ~(Rojit — Rigim) T™ + SR, F T P07

ij j Lki 9 mjik kjim o 'mpi gk

1 k k k pam

+ 6(Rmpq + qum + qup )Tkz"vbj
k 1 mk 1 k pgm

= ATy = B Thi + SRk T + 5 Bpi” Tart) (3.11)

where we used V"T},; = 0 in the fourth equality and the Bianchi identity
(2.22) in the last equality. Using the contraction identity (2.6) and (2.10),
we can calculate the second term on the right hand side of (3.10) as follows:

VquiVmSOnpq‘ijn = vaqika¢k pq"ojmn

n
= VquiTnf((len@qu — gk + gmpgoqu
— 07" = g™ = 05
= —VpT4i(Tnj o™ — TP o 1+ T, F),  (3.12)

where in the last equality we used T,%6 = 0 and T,F¢, ™ = —17. k™ = 0
since 7 € 03,(M). Then substituting (3.11)—(3.12) into (3.10), we obtain

0
—T;; =AT;; — RF
ot J

1 1
ij = Ty + §Rijkamk +5R

k pgm
2 mpi quwj

1
— vaqz‘(ij(Pmpq - Tpk(ijq —+ qu@kjp) - gvm‘Tyz‘Pjim

1
+ Vi (T, kan)Sijn - Tikvaqk@qu - §|T’2nj - Tikamej-
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We can further simplify the above equations by noting that
=V Tyi(Tinjp ™ =T 0, I4+T% 0, P) + Von (T, Tin )™ = T,V Tyrp
= —V, Ty (Tyjp™? — TPk <,0qu + o7k ‘ijp) — 2T} kVquk (pqu
=V, Ty (TP ¢, - 2T%p, F) = R¥Thj + 2R T — 3T, T/ Ty,
where we used the expression of Ricci tensor in (2.26). Therefore, we have

0 1 1
asz = ATy + R} T — RF Ty + iszkamk + QRmpikquwqum
1
+ Vqui(Tpk90qu - Qqu‘/’kjp) - §vm‘T|2‘Pﬁm
1
- e, - arirp,,

The above evolution equation of the torsion tensor can be expressed schemat-
ically as

gtT:AT—l—Rm*T—l—Rm*T*@b-ﬁ-VT*T*g@—i—T*T*T, (3.13)

where * indicates a contraction using the metric g(t) determined by ¢(t).

3.3. Evolution of curvature. To calculate the evolution of the Riemann
curvature tensor we will use well-known general evolution equations. Recall
that for any smooth one-parameter family of metrics ¢g(t) on a manifold
evolving by

%g(t) =n(t), (3.14)

for some time-dependent symmetric 2-tensor 7(¢), the Riemann curvature
tensor, Ricci tensor and scalar curvature evolve by (see e.g. [10, Lemma 6.5])

%Rijkl :%glp (ViVinip + ViVpnie — ViVpnix — ViVinip
— R, "gp — Ry, 1) (3.15)
;Rik = & (Auma+ Viilirgn) + Valn)e + Viln)),  (3.16)
gtR = — Atry(n) + div(divn) — (n, Ric), (3.17)

where Ay, denotes the Lichnerowicz Laplacian
Apmik = A, — RPnp, — REmip + 2Rpign™
and (6n)r = —(divn), = —Vn;x. Substituting (3.6) into (3.15), we have

o
aRU,j = —V;ViR, — V;V'Ry, + V;V'Rjj, + V; V. R!
+ (R T Ting)

"Ryp + R, Rig)g™ + 29" (R 1Ty Tonp + R

1
- §glp(vivk\T!29jp + ViVl TPgix — ViV TP gk — Vi Vil T gip)

- 29lp(vivk (Tngmp) + Vjvp(ﬂmek)
= ViV (T Trnk) — ViVi(T" Tinp))-
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The first six terms in the evolution equation come from the —2Ric term in
(3.6). Then, as in Ricci flow, by applying Bianchi identities and commuting
covariant derivatives, we can obtain

0

aRij,j = AR + g" (R Regk — 2Ry Ry + 2R, Ryl
- gpq(Rz‘qujkl + RjPRiqkl> - gpq(quRijpl - Rﬁoszkq)
+ QQZP(Rijquqump + Riqulenqu)

1
B §9lp(VinIT|29jp + ViVl TPgix — ViVpl|TPgjr — V; V| T g3)
- 2glp (Vivk(ijTmp) + vjvp(ﬂmek)
— ViVp(T]" k) — Vi V(T Tnp) ) -

We write the above equation schematically as in (3.13):

;Rm:ARm+Rm*Rm+Rm*T*T+V2T*T+VT*VT. (3.18)

Then from (3.7) and (3.18), noting that |T|> = —R < C|Rm| for some
universal constant C', we have

0 0 ia c
E\Rmf = a(RijklRabcdg g]bgk gld)

= Rm* Rm* (Ric+TT)+ 2(Rm, ;Rm>

< A|[Rm[* = 2|VRm|? + C|Rm|? + C|Rm|2 |V*T)
+ C|Rm||VT|? (3.19)

Similarly, substituting (3.6) into (3.16) and (3.17), we obtain the evolution
equation of the Ricci tensor

0 1 2
aRik =Ap(Rix + g!T\Qgik + 273 Ty ) — §Vivk\T|2
= 2(ViVI (T} Ty) + ViV (T} i), (3.20)
and the evolution equation of the scalar curvature

;R =AR — AVFVI(T'Tyy,) + 2| Ric|* — gRQ + 4R*T.'Ty. (3.21)
Remark 3.1. We shall only require the schematic evolution equations (3.13)
and (3.18) for T and Rm to derive our Shi-type estimates. To obtain these
equations we used the fact that ¢ remains closed under the evolution, which
is a particular property of the Laplacian flow. If one is able to obtain the
same schematic evolution equations for 7" and Rm for another flow of Go
structures, then the methods of this article will apply more generally to give
Shi-type estimates for that flow.

4. DERIVATIVE ESTIMATES OF CURVATURE AND TORSION

In this section, we use the evolution equations derived in §3 to obtain
global derivative estimates for the curvature tensor Rm and torsion tensor
T. Throughout, we use * to denote some contraction between tensors and
often use the same symbol C for a finite number of constants for convenience.
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First, we show a doubling-time estimate for A(¢) defined in (1.4), which
roughly says that A(t) behaves well and cannot blow up quickly.

Proposition 4.1 (Doubling-time estimate). Let ¢(t) be a solution to the
Laplacian flow (1.1) on a compact 7-manifold for t € [0,€]. There exists a

constant C' such that A(t) < 2A(0) for allt satisfying 0 < t < min{e, C%@}

Proof. We will calculate a differential inequality for A(x,t) given in (1.2),

D=

Aast) = (19T, 0 + Bl 0 )

and thus for A(t) = sup,cpr A(x,t). Since we already have an evolution

equation for |[Rm/|? in (3.19), it suffices to compute the evolution of |VT|2.
Recall that for any smooth family of metrics g(¢) evolving by (3.14), the

Christoffel symbols of the Levi-Civita connection of g(t) evolve by

0 1
al“fj = igkl(vﬂ?jl + Vﬂ]z’l - sz‘j)~

Thus, for any time-dependent tensor A(t), we have the commutation formula
(see [36, §2.3])

0 0 0

The fact that the metric g is parallel gives that for any two tensors A, B,
V(A*B)=VAxB+ AxVB.
Then using (3.6), (3.13) and (4.1), we see that
0 0

0

=VAT +VRmx (T +T %)+ VT % (Rm + Rm * )
+Rm TV + V2T «T %o+ VT «VT %
+VIT'+«T*«Vo+ VT +«TxT

=AVT +VBRm (T +T *v)+ VT x (Rm + Rm x 1)
+RmsT*Txo+V*T*Tx@o+ VT VT %
+ VT *«T*T*yp+VT*T =T, (4.2)

(4.1)

where in the last equality we used (2.10) and (2.12) in the form
Vo=Txv, Vy=Txq,
and we commuted covariant derivatives using the Ricci identity, i.e.
VAT = AVT + Rm+« VT + VRm *x T.

Then we can calculate the evolution of the squared norm of VT

;\VTV =2(VT, gtvw + VT« VT x gtg
< AIVTJ? = 2|V?T|? + C|Rm||VT|? + C|VRm||T||VT]
+ C|Rm||T?|VT| + C|V2T||VT||T)|

+ C|VT)? + C|VT*|IT|?
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< AIVT| = 2|V2T|% + C|Rm||VT|? + C|VRm||Rm|2 |V T
+ C|Rm[2|VT| + C|Rm|2|V2T||VT| + C|VTP, (4.3)

where we used |T|? = —R < C|Rm)| for a constant C in the last inequality.
Now, using (3.19) and (4.3), we obtain

%A(m,t)Q < A(|[Rm|? + |VT*) — 2|VRm|* — 2|V2T|*> + C|Rm/|?
+ C|Rm|2|V2T| + C|Rm||VT|? + C|V Rm||Rm|2 |V T
+ C|Rm[2|VT| + C|Rm|2 |V2T||VT| + C|VT[. (4.4)

By Young’s inequality, namely ab < iaQ + §b2 for any € > 0 and a,b > 0,
for all € > 0 we have

1
[Rm|?|V*T| < | Rm|* + | VTP, (4.5)
1
IV Rml||Rm|3|VT| < oo 1Bl [V + gmeF, (4.6)
1 1 €
|Rm|2||V2T||VT| < %|Rm||VT|2 + 5|V2T|2. (4.7)

The terms |Rm/|?, |Rm||VT|? and |VT|? can all be bounded above by A% =

(|Rm|? + ]VT|2)% up to a multiplicative constant. Using this bound and
substituting (4.5)—(4.7) into (4.4) we obtain

;)tA(x,t)Q < AAN(z, )% 4 (Ce — 2)(|[VRm|* + |V*T %) + gA(gc,zt)3
for any € > 0. Choosing € so Ce < 1 then yields
;A(x,tﬁ < AM(z,8)® — ((VRmP + [V2TP) + CA(z, 8. (4.8)

The idea behind the calculations leading to (4.8) is that the negative gradient
terms appearing in the evolution equations of |VT|? and |Rm|? allow us
to kill the remaining bad terms to leave us with an effective differential
inequality. This is precisely the motivation for the definition A(z,t) in (1.2)
as a combination of |VT| and |Rm]|.

Recall that A(t) = sup,; A(x,t), which is a Lipschitz function of time t.
Applying the maximum principle to (4.8), we deduce that

d C

aA(t) < 51\(75)2,

in the sense of limsup of forward difference quotients. We conclude that

Ay < —20 (4.9)
1—5CA0)t
as long as t < min{e, C%m)}, so A(t) < 2A(0) if t < min{e, CA#(O)} O

We now derive Shi-type derivative estimates for the curvature tensor Rm
and torsion tensor T' along the Laplacian flow, using A(z,t) given in (1.2).
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Theorem 4.2. Suppose that K > 0 and ¢(t) is a solution to the Laplacian
flow (1.1) for closed Go structures on a compact manifold M with t € [0, %]
For all k € N, there exists a constant Cy such that if A(z,t) < K on
M7 x [0, %], then for all t € [0, =] we have

IV*Rm| + [VFHIT| < Oyt 3 K. (4.10)

Proof. The proof is by induction on k. The idea is to define a suitable
function fi(z,t) for each k, in a similar way to the Ricci flow, which satisfies
a parabolic differential inequality amenable to the maximum principle.

For the case k = 1, we define

f=t(|VRm* + |V*T)?) + a(|VT)? + |[Rm|?) (4.11)

for a0 to be determined later. To calculate the evolution of f, we first need
to calculate the evolution of VRm and V2T Using (3.6), (3.18) and (4.1),

0 0 0
EVRm—VaRm—I—Rm*Vag(t)
=VARMm+Rm*xVRm+VRm*«TxT+Rmx*xTxxVT

+ V3T« T+ V2T * VT + Rm + V(Ric+ T % T)
=AVRm+Rm*xVRm +VRmxxTxT +Rmx*T «VT

+ V3T « T + V?T % VT, (4.12)
where in the last equality we used the commuting formula
VARm = AVRm + Rm x VRm.
Then using (3.7), (4.12) and |T| < C|Rm\%,

%|VRm|2 < A|VRm|? — 2|V?Rm/|? + C|VRm/|*|Rm|
+ C|VRm| (\Rm|%yVT| +|Rm|3|V3T| + |v2T|yVT|> . (4.13)

Similarly, we can use (4.1) and (4.2) to obtain

9927 — AVPT + V2Rm « (T4 T %)

ot
+ VRm* (VT + VT ¢+ T? % )
+ Rm s (V2T + VT 5 ) + VT « T % o 4+ T2 % ¢)
+ V3T« T o+ V2T« VT x o+ VT« T3 %
+ VAT % (T? + T? %) + VT« VT % (T + T x 1)), (4.14)

where we use the symbols 72 and T here to mean contractions of two or
1
three copies of T respectively, and again use |T'| < C|Rm|2 to find

;\VQT\Q < AIV2TP? = 2|V3T 2 + C|V2Rm||V?T||Rm|?
+ C|VRm||V2T|(|VT| + |Rm|) + C|V3T||V2T||Rm|2 (4.15)

+ C|V*T*(|[Rm| + |VT|) + O|V2T||1Lzm|%(|Rm|2 + |[Rm||VT| + |VT]?).
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Using Young’s inequality, we know that for all € > 0 we have
2|V Rml|[Rm|2|VT| < [VRm|[Rm|?(|Rm|* + [VT?),
2|V Rm||Rm|3 V3T < %\VRmmRm\ + e VATP,
2[VRm||V2T|([VT| + |Bml|) < (IVRm[* + [V*T*)(|VT| + |Rm]),

1
2|V2Rm||V2T||Rm|z < VTP | Rm| + [ V* Rm]?,

1
2|V3T||V2T||Rm|2 < VTP | Rm| + €| VPT P,
2|V2T||Rm|2|Rm||VT| < [V2T||Rm|2 (|Rm|? + |VT|?).

Substituting these bounds into (4.13) and (4.15), for suitably chosen small
€ > 0 as before, then yields

%(IVRmI2 + |V2TP) < A(IVRm|? + |V?T?) — ([V2Rm|? + |V°T)?)

+ C(|[VRm|* + |V*T|*)(|VT| + |Rm)|) (4.16)
+ C(|VRm| + |V2T|)|Rm|2 (|Rm|? + |VT]?).
Then, from (4.8) and (4.16), we obtain

C
C

o
éf < Af + Ct|VRm|* + |[V*T|*)(|VT| + |Rm|)

+ Ct(|VRm| + |V2T|)|Rm|2 (|Rm[* + |VT|?)

+ (1 - a)([VRm|? + |V2T ) + Ca(|VT|* + |Rm[?)3.

By hypothesis A(t) = sup,cps Az, t) < K and tK < 1, so using the above
inequality and Young’s inequality to combine the middle three terms implies

0
5/ < Af +(C = a)([VRm|? + |V?*T)?) + CaK?3. (4.17)
We can choose « sufficiently large that C' — « < 0 and thus
0
Zf<A K3,
8tf <Af+Ca

Note that f(z,0) = o(|VT|? + |Rm|?) < aK?, so applying the maximum
principle to the above inequality implies that

sup f(z,t) < aK? + CtaK® < CK*.
zeM

From the definition (4.11) of f, we obtain (4.10) for k = 1:
IVRm| + |V2T| < CKt™z.

Given this, we next prove £ > 2 by induction. It is clear that we need
to obtain differential inequalities for |[V¥Rm/|? and |V**1T|2, so this is how
we proceed. Suppose (4.10) holds for all 1 < j < k. From (4.1), for any
time-dependent tensor A(t) we have

Ogha_yl

5 5 (4.18)

k
A= Z VFTIA « Vi%g.
=1
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By (3.6), (3.18) and (4.18), we have

0 0 b 0
gk — vk k—i i Y
(%V Rm =V (%Rm—i- i:E 1 V' Rm % V 8759'

= VFARm + V¥(Rm * Rm) + V*(Rm x T?) + V¥ (VT T)

k
+ 3 V¥ Rm « Vi(Ric+ T % T)
=1
= AV*Rm + > V¥ Rm« VI (Rm + T« T)+ Y VT V27T,
=0 i=0
(4.19)

where in the last equality we used the Ricci identity

k
VFARm — AVFRm =Y " V"' Rm « V' Rm. (4.20)
=0

Using (4.19), the evolution of the squared norm of V¥Rm is:

gt\kamF = A|VFRm|? — 2|V* 1 Rm)?

k
+ Z VERm « VE'Rm « V{(Rm + T « T)
1=0
k+1 ‘ A
+ Z VERm « VT + VF27IT, (4.21)
=0

Applying (4.10) for 1 < j < k to (4.21), we get
;ykamF < AIVFRm[? — 2|VF Rm|2 + CK2|VFRm||VF 2T
+ CK(|VFRm|? + VT 12) + CK*t 2| V* R
< AIV*Rm|? — 2|V*H Rm|? + CK2|V* Rm||V*+2T)
+ CK3% % + CK(|V*Rm|* + |VFHT)?), (4.22)

where the constant C' depends on the constants C;,1 < j < k in (4.10) and
we used Young’s inequality to estimate

2Kt 5 |V Rm| = 2K 3¢5 K2 |VFRm| < K3 + K|V* Rm|2.

Similarly, we have

9 9 k+1 o

Zogktlp gkt Cop k+1—ip (haipsy

iV Vit ; v Vo

= VFIAT + Y (Rm « T) + VEH (Rm o T 4p) + VI (VT T 5 )
k+1

+ VI T T T)+ > VT« V(Ric+ T« T)
=1
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k+1 k+1
= AVFIT £ Y VAT« VIRm + ) VAT« V(T « T)
=0 =0
k+1 ' ' k+1 ' 4
+ Z V= (Rm « T) % Vi) + Z VEH={(VT % T) x Vig
=0 =0
and
d
a|vk+1T’2 — A‘vk+1T|2 _ 2|Vk+2T]2
k+1 ) ‘
+ ) VT« VT« VY (Rm 4+ T+ T)
=0
k+1 . ‘
+ Y VEIT VR (R T) « Vi
=0
+ D VHHT VRHT(VT « T) « Vi, (4.23)
=0

The second line of (4.23) can be estimated using the second line of (4.21).
To estimate the third line of (4.23), for 2 < i < k 4+ 1 we have

k+1—i o
VA RmT) < S [V R« VIT] < O (K307 4 K2),
7=0
(4.24)
Fori=1,
k
VF(Rm*T)=V*Rm * T + Z VFI Rm « V'T, (4.25)
=1
where
i k—1
1> VFIRm« V'IT| < CK?t 7 (4.26)

=1
Similarly for ¢ = 0, we have

k
VY Rm«T) =V Rm « T + VFRm « VT + > V¥ Rm « V'T,
=2
(4.27)

where

k k

1> VR Rm « VIT| <CK*t 2. (4.28)

1=2

Using (2.10) and (2.12), we can estimate Vi). We see from (2.12) that
V| < C|T| < CK*.
Then from (2.10) and (2.12) we schematically have
V2 =VT*p+TxT %1
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and hence

V2| < C(IVT|+|T*) < CK.
Using the same equations we see that

V3 =V T s o+ VT« Txtp+TxTxT %
schematically, and thus by hypothesis
V39| < C(IV2T| + [VT||T| + |TP) < C(Kt™2 + K2).

A straightforward induction then shows that for i > 2 we have

-2
Vgl < CK S KHTE (4.29)
j=0

Combining (4.24)—(4.29), using (4.10) for 0 < j < k and the assumption
tK <1, the third line of (4.23) can be estimated by

k+1
| Z VEHT 5« VFIH(Rm s T) « Vig|
=0
< VAT 5 (VM Rm « T 4+ VFRm + VT) % o))

|VRFIT 5« VERm « T V| + OK 245 |VA1T),

where the last term arises from the estimated terms in (4.26), (4.28) and
(4.29). We can estimate the last line of (4.23) similarly. We conclude that

%Wk“ﬂ? < AIVFFIT2 - 2 Vk 272 4 0 K23 VR
+ CK2 [VFHLT|(|VH L Rm| + |VFT2T))
+ CK(|VFT)2 + VT VE Rim|)
< A|VFHLT2 — o) vk 272 4 O K3+
+ CK2|VFT|(|VF Rm| + |[VFF2T))
+ CK (VT2 + |[VERm|?), (4.30)
where we again used Young’s inequality to estimate
2R 245 |VRHIT| < K3tF 4+ K|VEHIT)?,
2|VEHT| VR Rm| < |[VMHIT? 4 [VERm?.
Combining (4.22) and (4.30), we have
%(N’“Rmﬁ + |VFHIT) < A(IVERmP? 4 [VFHTP) + CK3
o 2(‘vk+1Rm|2 + |vk+2T|2)
+ CK2|VFRm||V*F2T)|
+ OKz |VHIT|(|VHH Rm| + [VFH2T))
+ CK(|[VERm|? + |VFHIT)%). (4.31)
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Using Young’s inequality once again, we know that for any € > 0 we have
2K 2 |V¥ Rm||VFH2T| < %Kyv’meP + €| VEFAT 2,
2K 2 |[VFHT|(|VHH Rim| + |VFT2T))
< %K!V’““T!Q + e(|VFH Rm|? 4 |[VF2T)2).

We deduce from these estimates and (4.31) that, by choosing € > 0 suffi-
ciently small (depending on C'), we have

gt(\v’“lez + |[VHHLT?) < A(IVFRm|? + |[VFHT?) + CK3tF
_ |vk‘+1Rm|2 _ |V.I€+2T|2
+ CK(|[VFRm|* + |VFIT%). (4.32)

Given these calculations, we now define

fk :tk(’kam‘Q + ‘vk+1T‘2)

k
+ B Y aft* (VR R + VR, (4.33)
=1

for some constants 3y to be determined later and of = ((]Z,j))!!. Assuming

(4.10) holds for all 1 < < k, then by a similar calculation to those leading
0 (4.32), we have

9
ot

(‘kaiRmIQ + ‘Vk+1fiT’2) < A(|vk71Rm|2 + |vk+17iT|2) + CK3ti7k
o ]V’“H_iRm]Z o ]Vk+2_iT|2, (4_34)

where here we do not require the corresponding last term in (4.32), since by
assumption (4.10) holds, so we have

CE(IV*'Rm|* + |VFH1T2) < CK3 (0,

From (4.32) and (4.34), we may calculate
fk <0 (\VkRm|2 + [VFLT2) + kt" L (|VFRm | + [VFLT)?)

—i—ﬂkZa th=i 2 yvk ‘Rm|? + |VFHLT|2)

k
+ B Y (k= i)aftF T (IVF Rm|? 4 VT
=1
< t*A(VYRm|? + [VFHT?) + CK?
_ tk(|V"’+1Rm\2 + |vk+2T|2)
+ (CKt* + k"1 (IVFRm|? + |VFTIT)?)
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k
+ Bk Y aft* U A(VFTRm|? 4 [VRT?) + CKPaf
=1

k
— B Zaftkfi(’karlfiRmP + ’vk+27iT|2)
i=1

k
+ Be Y (k= i)aftF T (IVF Rm|? 4 VAT,
i=1

Collecting terms we see that

gtfk < Afy + (kt*1 4 OKtF — Bpth 1) (|VFRm|? 4 |VFHIT)?)

k-1
+ Bk _(af (k=) = af ) (VT Rm? 4 VTP
i=1

k
+(C+CB Y af)K?
=1

< Afy +CK?, (4.35)

where we used the facts af(k — i) — af ; = 0, Kt <1 and chose f, suffi-
ciently large. Since f5,(0) = Braf(|Rm|* + |VT|?) < Braf K2, applying the
maximum principle to (4.35) gives

sup fi(z,t) < Bpaf K% 4+ CtK3 < CK?

zeM
Then from the definition of fi, we obtain that

IV*Rm| + VT < Kt 2.
This completes the inductive step and finishes the proof of Theorem 4.2. [

From Proposition 4.1, we know the assumption A(x,t) < K in Theorem
4.2 is reasonable, since A(x,t) can not blow up quickly along the flow . Note
that the estimate (4.10) blows up as t approaches zero, but the short-time
existence result (Theorem 1.1) already bounds all derivatives of Rm and T
for a short time. In fact, when A(z,t) < K, from (4.16) we have

d
yn nﬁx(\VRm[z + |V2T*) < CK H}‘?X(|VRm|2 +|V?T|?) + CK*,

which gives us
nﬁx(\VRm]z + |V2T%) < eCKt(nﬁix(]VRmF +|V?T]?) + K?) — K*
t 0

for t € [0,¢ if € sufficiently small.Using (4.22)—(4.23) and the maximum
principle, we may deduce that such estimates also hold for higher order
derivatives, so maxyy, (|V*¥Rm|? + |VFH1T|?) is also bounded in terms of its
initial value and K for a short time.

Remark 4.3. One can ask whether the growth of the constants C} in The-
orem 4.2 can be controlled in terms of k. The authors show this is indeed
the case in [32] and as a consequence deduce that the Laplacian flow is real
analytic in space for each fixed positive time.



LAPLACIAN FLOW FOR CLOSED Go STRUCTURES 29

We can also prove a local version of Theorem 4.2, stated below. Since we
already established evolution inequalities for the relevant geometric quanti-
ties in the proof of Theorem 4.2, the proof just follows by applying a similar
argument to Shi [35] (see also [19]) in the Ricci flow case, so we omit it.

Theorem 4.4 (Local derivative estimates). Let K > 0 andr > 0. Let M be
a T-manifold, p € M, and p(t),t € [0, %] be a solution to the Laplacian flow
(1.1) for closed Gy structures on an open neighborhood U of p containing
Byoy(p, ) as a compact subset.

For any k € N, there exists a constant C = C(K,r k) such that if
Az, t) < K for all z € U and t € [0, %], then for all y € Bgy)(p,7/2)
and t € [0, %], we have

IV*Rm| + |VEHT| < O(K, 7, k)t~ 2. (4.36)

Remark 4.5. By Proposition 2.4 and Corollary 2.5, we can bound |VT|
using bounds on |Rm/|, and hence we can, if we wish, replace the bound on
A in (1.2) in Theorems 4.2 and 4.4 by a bound on |Rm)|.

5. LONG TIME EXISTENCE I

Given an initial closed Gy structure g, there exists a solution () of
Laplacian flow on a maximal time interval [0,7p), where maximal means
that either Ty = oo, or that Ty < oo but there do not exist € > 0 and a
smooth Laplacian flow ¢(t) for ¢t € [0,Ty + €) such that @(t) = @(t) for
t € [0,Tp). We call Ty the singular time.

In this section, we use the global derivative estimates (1.3) for Rm and
VT to prove Theorem 1.3, i.e. A(z,t) given in (1.2) will blow up at a finite
time singularity along the flow. We restate Theorem 1.3 below.

Theorem 5.1. If ¢(t) is a solution to the Laplacian flow (1.1) for closed
Gy structures on a compact manifold M” in a mazimal time interval [0, Tp)
and the maximal time Ty < oo, then A(t) given in (1.4) satisfies

lim A(t) = oo. 1
Jm (t) = o0 (5.1)
Moreover, we have a lower bound on the blow-up rate,
C
A(t) > 5.2
0> 77— (52)

for some constant C > 0.

Proof. Suppose the solution ¢(t) exists on a maximal finite time interval
[0,Ty). We first prove, by contradiction, that

limsup A(t) = oo. (5.3)
t To

Suppose (5.3) does not hold, so there exists a constant K > 0 such that

N

sup Az,8) = sup (|VT(az,t)|§(t)+|Rm(m,t)|§(t)> <K, (54)
M x [O,To) Mx [O,To)
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where ¢(t) is the metric determined by ¢(¢). Then, in particular, we have
the uniform curvature bound

sup [Rm(z,t)|gq) < K,

M x[0,Tp)
which implies that
0 2
sup 8*9@' sup —2R7;j - *‘T|2gij - 471 kaj S CK.
Mx[0, 1) Ot gty Mx[0,10) 3 g(t)

(Keep in mind that |T|?> = —R). Then all the metrics g(t) (0 <t < Tp) are

uniformly equivalent (see e.g. [18, Theorem 14.1]), as Tp < co. We also have

from (2.14), (2.17) and (5.4):
9
o’

:|A¢<p}g(t) < COK, (5.5)
g(t)
for some uniform positive constant C.
We fix a background metric § = ¢(0), the metric determined by ¢(0).
From (5.5) and the uniform equivalence of the metrics g and g(t), we have

ggp <C g(p < CK. (5.6)
Ot~ 10t g
For any 0 < t; < ta < Tp,
to 6
olta) = plt)], < [ | o] dt < OK(t2 - ) (5.7)
t1 t g

which implies that ¢(t) converges to a 3-form ¢(Tp) continuously as t — Tp.
We may similarly argue using (3.6) and (5.4) that the uniformly equivalen-
t Riemannian metrics g(t) converge continuously to a Riemannian metric
9(Tp) as t — Ty, since all the g(t) are uniformly equivalent to g.

By (2.1), for each t € [0,Tp) we have

gt (u, v)volyy) = é(uw(t)) A (vap(t)) A (1) (5-8)

Let t — Tp in (5.8). Recall that we have argued above that g(t) — ¢(Tp)
which is a Riemannian metric and thus voly;) — volg() which is a volume
hence. Therefore the left hand side of (5.8) tends to a positive definite 7-
form valued bilinear form. Thus, the right-hand side of (5.8) has a positive
definite limit, and thus the limit 3-form ¢(7Tp) is positive, i.e. p(Tp) is a Ga
structure on M. Moreover, note that dp(t) = 0 for all ¢ means that the
limit Gg structure ¢(7p) is also closed. In summary, the solution () of the
Laplacian flow for closed Go structures can be extended continuously to the
time interval [0, 7).

We now show that the extension is actually smooth, thus obtaining our
required contradiction. We beginning by showing that we can uniformly
bound the derivatives of the metric and 3-form with respect to the back-
ground Levi-Civita connection along the flow.

Claim 5.2. There exist constants Cy, for m € N such that

sup |V g(t)| < Cn,

M X [O,To)

g
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where V is the Levi-Civita connection with respect to §g.

Proof of Claim 5.2. Since ¢(t) evolves by (3.6), the proof of the claim is
similar to the Ricci flow case, see e.g. [10, §6.7], so we omit the detail here.
O

Claim 5.3. There exist constants Cy, for m € N such that

< Cp.

g

sup
M x[0,Tp)

V™e(t)

Proof of Claim 5.3. We begin with m = 1. At any (z,t) € M x [0,Ty),

o— _0 _
—_ = —_ = A
atVso Vatw VAgp

=VAysp+ Ax Ay, (5.9)

where we denote A = V — V as the difference of two connections, which is
a tensor. Then in a fixed chart around x we have

O v _ O
T T
_ g9 (9. 9,
== 59" (Vilg050) + Vi(590) = Vi(5,9:)),
SO
0 -1 .
aA:—g V(Ric+ T xT).

Integrating in time ¢, we get
to
A0l < 1405 + [ 1574]

t
9
< |A(0)|g+0/0 |54y
< |A(0)) + C(IVRic| + |VT|T|)t < C, (5.10)

since t < Tj is finite and |V Ric| + |VT||T| is bounded by (4.10) and (5.4).
Furthermore, we can derive from Claim 5.2 that

VA, <C for0<k<m—L (5.11)

From (4.10), (5.9) and (5.10), we get

0 —
BtV@’— < C7
g
and then
_ _ to_ _
Ve(ols < Vo)l + [ | 5:9¢()| ds < [Ty +CTo (512)
g

which gives the m = 1 case of Claim 5.3.
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For m > 2, we can prove by induction that

&vmgolg = ‘v’mA%’(p‘g

m m—1
<O AV Ay + C D VAV Apl. (5.13)

1=0 =1
It then follows from (4.10), (5.11) and (5.13) that
a —m 7mA
5V ¢ ; =|V"Apy|, < C. (5.14)
Then Claim 5.3 follows from (5.14) by integration. O

Now we continue the proof of Theorem 5.1. We have that a continuous
limit of closed Go structures ¢(Tp) exists, and in a fixed local coordinate
chart U it satisfies

To
Puk(To) = i) + [ (Ae(s)suds: (5.15)
Let o = (a1,--- ,a,) be any multi-index with || = m € N. By Claim 5.3
and (5.14), we have that
om om
Hpa Pk and oo (Bpp)iji (5.16)

are uniformly bounded on U x [0,7p). Then from (5.15) we have that
g%goijk (Tp) is bounded on U and hence ¢(Tp) is a smooth closed Ga struc-
ture. Moreover,

am am
‘W%g’k(i’b) - @%’jk;(t) < C(Ty — t), (5.17)

and thus ¢(t) — ¢(Tp) uniformly in any C™ norm as t — Tp, m > 2.

Now, Theorem 1.1 gives a solution @(t) of the Laplacian flow (1.1) with
?(0) = p(Tp) for a short time 0 < ¢t < e. Since p(t) — ¢(Tp) smoothly as
t — Tp, this gives that

N(t) _ gD(t), 0 <t< TO?
PUZN gt—Ty), To<t<Th+e.

is a solution of (1.1) with initial value ¢(0) = ¢(0) for ¢ € [0,Tp + €), which
is a contradiction to the maximality of Ty. So we have

limsup A(t) = 0. (5.18)
t Ty

We now prove (5.1) by replacing the limsup in (5.18) by lim. Suppose,
for a contradiction, that (5.1) does not hold. Then there exists a sequence
t; /Ty such that A(t;) < Ky for some constant Ky. By the doubling time
estimate in Proposition 4.1,

A(t) < 2A(t;) < 2K, (5.19)
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for all t € [t;, min{Ty,t; + CLKO}) Since t; — Tp, for sufficiently large i we
have t; + CLI(O > Ty. Therefore, for all ¢ sufficiently large,
sup Az, t) < 2K, (5.20)
M x [ti,T())

but we already showed above that this leads to a contradiction to the max-
imality of Ty. This completes the proof of (5.1).

We conclude by proving the lower bound of the blow-up rate (5.2). Ap-
plying the maximum principle to (4.8) we have

d
—A(t)? < CA(t)?
DA < oA,
which implies that
d C
—A@)L> =, 5.21
Ia) > S (5.21)
We already proved that lim A(t) = oo, so we have
t—TpH
lim A(t)~! = 0. 22
Jim A(t)™ =0 (5.22)

Integrating (5.21) from ¢ to ¢’ € (¢,Tp) and passing to the limit ¢’ — Tp, we

obtain
2

C(Ty—t)
This completes the proof of Theorem 5.1. (]

A(t) >

Combining Theorem 5.1 and Proposition 4.1 gives us the following corol-
lary on the estimate of the minimal existence time.

Corollary 5.4. Let g be a closed Go structure on a compact manifold M7
with )

Apo(z) = (IVT(2)]* + |[Rm(2)*)? < K
on M, for some constant K. Then the unique solution p(t) of the Laplacian
flow (1.1) starting from pq exists at least for time t € [0, CLK], where C' is a
uniform constant as in Proposition 4.1.

6. UNIQUENESS

In this section, we will use the ideas in [26,27] to prove Theorem 1.4: the
forwards and backwards uniqueness property of the Laplacian flow.

If o(t), p(t) are two smooth solutions to the flow (1.1) on a compact
manifold M7 for t € [0, €], e > 0, there exists a constant K such that

sup (A(:c,t) +/~\(x,t)) < Ko, (6.1)
M x10,¢]

adopting the obvious notation for quantities determined by ¢(t) and @(t).
By the Shi-type estimate (1.3), there is a constant K; depending on Ky such
that

2 3
> (19 Bmlyy + IV Rl ) + 32 (19" Tlgq) + V¥ T30 ) < K1 (6:2)
k=0 k=0

on M x [0, €]. The uniform curvature bounds from (6.2) imply that g(¢) and
g(t) are uniformly equivalent on M x [0, €], so the norms | - |4« and | - |5
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only differ by a uniform constant on M x [0,¢]. We deduce the following
from (6.2).

Lemma 6.1. The inverse G~ ' of the metric §, V*Rm for 0 <k <2 and
VT for 0 < k < 3 are uniformly bounded with respect to g(t) on [0, €].
We will use this fact frequently in the following calculation. We continue

to let A B denote some contraction of two tensors A, B using ¢(t). We also
recall that if p(s) = @(s) for some s € [0, €], then the induced metrics also

satisfy g(s) = g(s).
6.1. Forward uniqueness. We begin by showing forward uniqueness of
the flow as claimed in Theorem 1.4; namely, that if ¢(s) = @(s) for some

s € [0,€] then ¢(t) = ¢(t) for all ¢ € [s,e]. The strategy to show this,
inspired by [27], is to define an energy quantity £(t) by

)= [ (16000 + OB + 1AOR, + U0,

and show that £(t) satisfies a differential inequality which implies that £(t)
vanishes identically if £(0) = 0 initially. Here in the definition (6.3) of £(t),

¢:SO_S57 h:g_ga AZV_%?
U=T-T, V=VT-VT, S=Rm-—Rm.
In local coordinates, we have Afj = Ffj —T* Uj = Tij — ﬁ-j, Vijk =

s K
VZT]k — ViTjk and Sz'jkl = Rijkl — Rijkl'
We begin by deriving inequalities for the derivatives of the quantities in

the integrand defining £(¢).

Lemma 6.2. We have the following inequalities:

S| < VOl + 1AW (6.4)
g(t)
(0] < CUSOLo + 100l + 10Ol (65)
DA < DI + Wy
9(t)
FIUg + V@l + V5@ lg):  (66)
;U(f) o < C(l6()lger) + 1AW g@r) + U B gy + 1S lger)
g(t
HIVV(®)|gr) + V)l ) (6.7)
0 :
V(D) = AV() - div V()

g(t)
< C(IV®)lgery + 1AW ) + U)oy + 1S lg00)

+1h®)lg) + 18 gy + IVSOlg(r) + IVV(B)lg@r)),  (6.8)
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Gk = (g""Vp — GV ViTyy, satisfies

V®)lgry < CURD g + [AD) g )3

where V given by V

and

0

2S(t) = AS(1) — divS()

g(t)
< C(IV(O)lgw + [A) gy + 1T O]y + SO gy +IVV(B)lg(r)), (6.9)
where 8%, = (g*°V, — gab%)f%ijkl satisfies

ijk
SOty < CURE) gy + [AD) g2
In the above inequalities, V, A and div are the Levi-Civita connection,

Laplacian and divergence on M with respect to g(t) and C' denotes uniform
constants depending on K given in (6.2).

Proof. We have the following basic facts:
97 =39 = —g%§' i, Vihg, = A+ Alpgn. Vig? = Aug? + A,5"
The above equations can be expressed schematically as
g l—g'=gt%h, Vh=Axj Vi'l=gl«A (6.10)

We now calculate the evolution equations of ¢, h, A, U, S on M x [0, €.
From the Laplacian flow equation (1.1) and (2.17), we have

0 N -
—at(;ﬁ =App— Agp =dr —dT.
This satisfies the estimate

o — -
—¢ S CIVU®) gy = CIVT = VT + (V= V)T
q(t)

ot
< CIV(O)lge) + CIAW®) g I Tlyry < CUV )] gr) + [AW®) | g0))s

where we used the fact that \T]g(t) is bounded due to Lemma 6.1. We thus
obtain the inequality (6.4).
From the evolution equation (3.6) for the metric, we have in coordinates

0 ~ 2 ~ ‘ .
ok = —2(Rik — Rix) — g(’T‘z(t)gik — T2 gi) — (T, Ty — T, i)
i 270 22 =12
=28, - 3 Tl5whis = 3Tl = 1T150)9i5
— A(g" Ty Ty, — P T Tye). (6.11)
Since
IT[2) — |Tv|§(t) = TijThg™g" — Ty Tug™ 5"
= (T;j + T;j)Ung™ ¢ + Ty Tia (g™ + %) (¢" — §7")
= (T+T)«U+T+«Tx(g " +§ )xh
and
¢ TuTj, — §jlﬁ1fjk = UyTjrg" + fizUjkgﬂ + (¢ - §jl)fiﬂ~}k
=(T+T)«U+TxTxj ' *h,
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we obtain from (6.11) that

.2~ ~ ~ ~ ~
gh = —2S—§|T]§h+(T—|—T)*U*h+(T+T)*U*g—i—T*T*(g*l—i—g*l)*h,

ot
| (6.12)
where S, = Sijk]‘ Then (6.5) follows from (6.12) and Lemma 6.1.
Recall that under the evolution (3.6) of g(t), the connection evolves by

0 1
arf} = igkl(vmjl + Vni — Vinij),

where schematically
.2
n = —2Ric — §|T|gg —2T xT.

Thus, the tensor Afj :Ffj —ffj satisfies
%A:g—l*%@TH%|ﬂ§g+f*f)—g—l*V(R¢c+%\T|gg+T*T)
= (G =g )« VRm+ (V—V)xRm+g '« V(Rm — Rm)

F (G g )T VT %G '+ (VT —=VT) «T

VT (T=T)x§g '+ VT TG ' —gh)
zgfl*h*e%—i-/l*%—kg*l*VS—i—g*l*h*f*%f*g*l

VTG + VT UG '+ VT «T*§ ' *h, (6.13)

which gives (6.6).
From the evolution equation (3.13) of T, we have

0 0 0 ~
al ol ~al

= AxVT +VV + 8% (T+T %)+ U (Rm+ Rm )
+Rm«Tx () —)+ VT @+ VT U@
+ VT «Tx¢p+Ux(T+«T+Tx«T+TxT).

Noting that )
[ — | < Clg — | = Clg],
we see that (6.7) follows from the evolution equation for U.
We next compute the evolution of V' using (4.2). We start by seeing that

A(VT) = A(VT) = Vag™Vi(VT) = Vo Vi (VT)
= Vag"*Vo(VT = VT) + Va(g™Vy = §V3)(VT)
+ (Va = Va) (3 Vy(VT))
= AV + Vo (¢®V, VT — GV, VT) + A« V2T.
The second terms from (4.2) give schematically that
VRm (T +T %) — VRm * (T4 T %)
=VRm*(U+Ux*)+Tx () —))+ (VRm — VRm) (T +
=VERm*(U+U*+Tx*(p—0))+ (Ax Rm+VS)« (T +
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Similarly, the third and fourth terms from (4.2) yield
VT s (Rm + Rm x 1)) —%f*(ﬁn-ﬁ-%*d})
:VT*(S—l—S*qz—i—Rm*(¢—@))+V*(%+ﬁn*¢~)).
and
Rm*T*T*gp—]f?’:fn*f*Tv*¢
:Rm*T*T*gb—i—Rm*U*(T+T)*@+S*f*f*¢.
We now observe that
9OV VT — GV ViTie = ¢V Vigk + 9V VT, — GV ViTyx
and, by virtue of (6.10), the last term is given schematically as
Vo = gabvlﬁifjk — §ab%b6ﬂ~}k = (g ' xh=x V2T + A x 6T)
Hence, the fifth terms in (4.2) give
VQT*T*QO—€2f*f*QZ
=V2T«Txp+ V2T xUx @+ (VT - V?T)«T @
=V T« T ¢+ V>T+Ux@+ (VV +hx V2T + AxVT) T % §
The sixth terms in (4.2) yield
VT «VT %o —NT*VT x@=V % (VT +VT) %@+ VT« VT % ¢.
For the remaining terms in (4.2) we observe that
VT +«T+«T VT «T+«T=V*«T*T+VTx(T+T)x*U.

Altogether, we find the evolution equation for V:

0 0 0 =~

= AV + Vo (¢®V,VT — GV, VT) + A x V2T

+(Ax Rm+V8) « (T +T*v¥)+VRmx (U~+Ux+Tx (¢ —1))
+V x (Rm+ Rm ) + VT % (S + S %t + Rm % () — 1))
+S*T?x @+ Rm*Ux(T+T)*@+RmT?%¢

+(AxVT +hs« V2T +VV)«Tx @+ V2T U @+ VT % T * ¢
—l—V*(%TV—I—VT)*¢+VT*VT*¢+V*(TV2+T2*1;)
VT« T? 5 () — ) + VT % (T +T) % (U + U x1h).

We thus obtain (6.8) as claimed.
Finally, we compute the evolution of S using the evolution (3.18) for Rm:

(6.14)

a
ijk’

= AS + Vo (g®VyRm — §°°VyRm) + A * VRm + S * (Rm + Rm)
+S*T2+%*U*(T+f)+(A*%TV+VV)*TV
+ V2T« U +V (VT + VT),
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where we used

a a oo b o ~— < Do Hoya
8% = 9""VoRmyy, —§*NoRmyy, = (57" %hxVRm+AxRm)“, " (6.15)
We thus obtain (6.9) as required. (]

We now use Lemma 6.2 to obtain a differential inequality for £(¢).

Lemma 6.3. The quantity £(t) defined by (6.3) satisfies

(1) < o),

where C' is a uniform constant depending only on Ky given in (6.1).

Proof. Under the curvature and torsion bounds (6.2), the evolution equa-
tions of the metric (3.6) and volume form (3.8) imply

0

() <. (6.16)

g(t)

0
< C, ‘ fUOlg(t)
a(t) ot

For any tensor P(t) we therefore have

% /M [P ()5 volyr) = /M gtg(t) (P(t), P(t)) +2(P(1), gtP(t»volg(t)

0
2 —
+ /M ’P(t)’g(t) 8tvolg(t)

0
M M

Hence,
e = Ce+2 [ ({00, 5000+ (hio) () + (AW, 5 AW)
(U0, ) + (V. V) + (50, 550) ool

We also observe that, by integration by parts, we have

/ (P(£), AP(£))voly(p) = — / IV P(1)[2 ol
M M

and, if P(t) is another tensor,

/ (P(t),divP(t))volyq) = —/ (VP(t), P(t))voly)-
M

M

Using Lemma 6.2, including the estimates for ¥V and S, we may calculate:
d
GE0 =cey 4o [ (160By + 0 + 140k,
F TR + V(OB + 150 vl

) /M(|v5(t)|2 +VV(1)P)volyq
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+ C'/M IVV@)[(R@)] + [AD] + [U@)] + [V (E)] + [S(E))volye)

+CAAVﬂwmme4A@-vaowuw

The second term is clearly bounded by CE(t). Now we use the negative
third integral in the inequality to crucially cancel the terms involving VV
and VS arising from the fourth and fifth integrals via Young’s inequality.
Concretely, for any € > 0, we have

Q\VV( IR+ [AD]+ U] + V(O] +[S®)])
(\h(t)lz +HIADP +H U@+ VO +[S@OP) + e VVE©)?
Q\VS( IR+ [A@] + [V (©)])
(\h(t )2+ AQ)P +V(@)?) + e VS@)P,
so by choosmg e sufficiently we obtain
d
e < CE) = [ (VSO + 1YV (0P )uoly) < CE)
as claimed. O
The forward uniqueness property in Theorem 1.4 now follows immediately
from Lemma 6.3. If p(s) = @¢(s) for some s € [0, ¢, then £(s) = 0. Thus for
t € [s, €], we can integrate the differential inequality in Lemma 6.3 to obtain
E(t) < eCl=9€(s) =0,
which implies that ¢(t) = @(t) for all ¢ € [s, €] as required.
6.2. Backward uniqueness. To complete the proof of Theorem 1.4, we
need to show backward uniqueness of the flow; i.e. if ¢(s) = @(s) for some
s € [0, €], then ¢(t) = ¢(t) for all t € [0, s]. To this end, we apply a general
backward uniqueness theorem [26, Theorem 3.1] for time-dependent sections

of vector bundles satisfying certain differential inequalities. Since we only
consider compact manifolds, we state [26, Theorem 3.1] here for this setting.

Theorem 6.4. Let M be a compact manifold and g(t),t € [0, €] be a family
of smooth Riemannian metrics on M with Levi-Civita connection V.=V g).
Assume that there exists a positive constant C' such that

2 2 2
2ot) Lty

2

+ <, <C,
9(t) 9(t) 9(t) g(t)
and that the Ricci curvature of the metric g(t) is bounded below by a uniform
constant, i.e. Ric(g(t)) > —Kg(t) for some K > 0. Let X and ) be finite
direct sums of the bundles TF(M), and X(t) € C®(X), Y(t) € C=(Y), for

t € [0, €], be smooth families of sections satisfying

(5= 200) 30

0
g Y(t)

Vag(t)

+|v

J
7 (t)

()scoxw@0+wxw@0+xwmm)<aw>
g(t
2

U_CQXwﬁmHVﬂm%ﬁ-ﬂm%J (6.18)
g(t
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for some constant C > 0, where Ay X(t) = g (t)ViV;X(t) is the Lapla-
cian with respect to g(t) acting on tensors. Then X(e) =0, Y(e) = 0 implies
X(t)=0, Y(t) =0 on M for allt € [0,¢].

Suppose ¢(s) = ¢(s) for some s € [0, €]. For our purpose, we let
X(t)=U)aVE)e W) & S(t)®Q(), (6.19)
Y(t) = ¢(t) ® h(t) ® A(t) ® B(t), (6.20)
where ¢, h, A,U,V, S are defined as in §6.1 and
B=VA, W=V?T-V2T, Q=VRm—VERmn.
Then
X(t) € To(M) @ T3(M) ® Ty(M) ® Ty (M) ® T) (M)
Y(t) € T3(M) ® To(M) & Ty (M) & T3 (M).

To be able to apply Theorem 6.4, we need to show that X(¢), Y(¢) defined
n (6.19)—(6.20) satisfy the system of differential inequalities (6.17)—(6.18).
We begin with the following.

Lemma 6.5. The quantities ¢, h, A,U,V, S, B,W,Q defined above are uni-
formly bounded with respect to g(t) on M x [0,€].

Proof. At the beginning of this section, we argued that the metrics g(t)
and §(t) are uniformly equivalent on M x [0,¢]. We immediately deduce
that |h(t)|ge) = lg(t) — G(t)|g(r) is bounded. From (6.2) and the uniform
equivalence of ¢(t) and g(t), we further have

Vg = [VT = VT sy |S]gey = |Rm — Rmlyg
(Wle) = |V°T = V2T gy, |1Qlywry = IVRmM — VRm|

are bounded on M x [0, ¢]. Recall |T|2 = —R, where R is the scalar curvature

of g. Thus we also have that [Ulyq) = [T — T|g(t) is bounded on M x [0, €].
Since ¢(s) = @(s) for some s € [0, €], we have

[0@)|g(t) = l(t) = &(B)lg(r)
< [o(t) = @(s)lgr) + |9(s) )|g(t

u)du / u)du
/ ou” o(t) ou” o(t)

/ [Ap(u w) T 1A @(u) |5 du
Since g(t) and g(t) are uniformly equivalent on M x [0, €], we know that
[ A @(1)lgw) < ClAgw (1)]g(w)
Hence, by virtue of (2.14) and (2.18), we have
[ By (Wlgw) + 1850 $(W)lg0)
< O(T () gy + VT (W)lgquy + T (W) gy + VT ()] g)-

<(C
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Therefore, by (6.2) and the fact that s,t € [0, €], there is a uniform constant
C depending on K; such that

[9(t)]g1) < Ce.
Finally, we show A, B are bounded on M x [0, ¢]. Since A(s) = 0, we have

[A) gy = |A(E) — A(s)lg(e)

/t 9 4w
/:

du
g(u)

- — 1 ~ ~ o~
G 'V (Ric+ g|T\§g +T«T)

<
¢ ou

<C

du
g(u)

1
— g 'V(Ric+ gyT\gg + T T)

In (6.13) we showed that
1 .o Limes AL A _ o1
gJ 1>i<V(ch+§]T|£2~]g+T>x<T)—g 1*V(ch+§|T]Zg+T*T)
=G =g WY« VRm+ (V—=V)*Rm+g '« V(BRm — Rm)
+ (G =g )« T« VT xg '+ (VT —VT)« T g
+ VT« (T—T)xg ' +VT*«Tx(G =g h).

Thus, by the uniform equivalence of g(t) and g(¢) and (6.2), we have a
uniform constant C' depending on K7 such that

|A(t)]g) < Ce.
Similarly, we can bound B = VA on M x [0, €]. O

We derived the evolution equations of ¢, h, A,U,V, S in §6.1, so now we
compute the evolutions of B, W, Q.

Lemma 6.6. We have the following estimates on the evolution of B,W, Q:
2

0
50| | <C (MOl + 1400 + 1BOfw + Y2l
g(t
HUMZ) + VU + IVV Oy + V(2 i (6.21)
9 ? 2 2 2 2
5./ (1) — AW (1) o < C(\A(tﬂg(t) + 1B 50 + Q)54 + IVQ®) 5
g(t
F1oO 2 UG + VO
FISOR + WO + YW ©L): (6.22)
9 ? 2 2 2 2
500 = 20| < (1400 +1BOf + 1000 + 156
g(t

HIUWD) 2 + VO + WO + ’VW(t)\f;(t)>-
(6.23)
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Proof. Since A, as a difference of connections, is a tensor, (4.1) gives

0 8 0 0

Since ¢ is uniformly bounded and VRm, T and VT are uniformly bounded
in light of (6.2), we immediately deduce from the evolution equation (3.6)
for g that

A(1)* V2 0(0) g < CIAW]00

For the first term we observe from (6.10) that VA and V§~! are bounded
by C|A| as well since § and §~! are uniformly bounded by the uniform
equivalence of g and g and Lemma 6.1. Using these observations together
with the uniform boundedness of derivatives of Rm, Rm, T, T by (6.2),
Lemma 6.1 and the boundedness of A by Lemma 6.5, we may apply V to
the evolution equation (6.13) for A to deduce that

0
’vaA(t”g(t) < C([h(t)lg0) + [AD) gy + 1 BE)lgee) + VS ()l g0)

+ IV ®Olgy + IVVOlgy + 1U@gr) + IVU@)lg(r))-
(Note that there is no VS term since Vg = 0.) We then observe that
IV25(8) 50 = [V (Rm(t) = Rm(®)) [
= [V(VRm(t) = VRm(t)) + (V(V = V) Rm(t)[5,
< C (IVQW)E + 1AW By +1BOy)
Hence,

0
aB(t)

2

0 <C (1RO + 1A + B + V250
g(t

HU®) 2 + VU + VO + IV
< C (1) + A + BOR, + VM2,
HU @2y + VU + VO + IV O ) -

This gives the inequality (6.21).
The inequalities (6.22) and (6.23) follow from similar calculations using
(4.12) and (4.14). O

Recall the elementary inequality

9 C Py - ave —avv
ot ot v

2
V(t)— AV (1) +2[div V() [, -

q(t)

g(t)

By taking the divergence of (6.14) and using the uniform boundedness of
G~ ', derivatives of T and A by Lemmas 6.1 and 6.5, we have

[ divV(0)lg) < CURO) gy + [AW®) gy + 1BE)lgr))-
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We deduce from these observations and the evolution equation (6.8) for V
that

0 2
57 () - AV(t)’g(t) < C(‘A(t”;(t) + B2y + 1SO20 + VS50
H RO 20 + 12O + UG 20 + V)20 + |VV(t)’§(t)); (6.24)

We now observe that by taking the divergence of (6.15) we have an estimate

for div S:
| divS(t)[g) < C(R() g + [A@) gy + |BE)|gr))-

Hence, using the evolution equation (6.9) for S together with the above
estimate, we have:

b 2
S5t = AS(t)

o < CUAW G + 1B + SO + 1)

UM + VO + IV, ). (625)

Recall the definition of X(¢) and Y (t) in (6.19). We see from Lemma 6.6,
(6.24) and (6.25) we have estimates of the form

2

P@t) — AP(t)

o < C(IX )20 + VX 20y + Y1) 20)

g(t)

for P=V,W,S, Q. Moreover, we have from Lemma 6.2 that

‘ 0

a 2

aU(t)

o CX@) 2 + VXD 20 + YO 20),
g(t

and we also observe that
AU )2 = |AT () = T(1))];
<|VHT(t) = T) 20
= |V(VT(t) = VT(t)) + (V(V = V)T(1) 2
S C(VVE 4y +A® g + IBOr)-

Hence, X(t) satisfies (6.17) in Theorem 6.4. Similarly, from Lemma 6.2 and
Lemma 6.6, we have estimates of the form

9(t)

S COX O + VX + Y 0)l)
for P = ¢,h, A, B. Thus, Y(t) satisfies (6.18) in Theorem 6.4.

Overall, since M is compact and we have the estimates (6.2), we have
demonstrated that all of the conditions in Theorem 6.4 are satisfied.

Hence, if ¢(s) = ¢(s) at some time s € [0, €], then X(s) = Y(s) =0 and
thus, by Theorem 6.4, X(t) = Y(t) = 0 for all ¢ € [0, s]. This in turn implies
o(t) = ¢(t) for all t € [0,s], which is the claimed backward uniqueness
property in Theorem 1.4.
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6.3. Applications. We finish this section with two applications of Theorem
1.4; specifically, to the isotropy subgroup of the Go structure under the flow,
and to solitons.

Let M be a 7-manifold and let D be the group of diffeomorphisms of
M isotopic to the identity. For a Gg structure ¢ on M, we let I, denote
the subgroup of D fixing ¢. We now study the behaviour of I, under the
Laplacian flow.

Corollary 6.7. Let ¢(t) be a solution to the Laplacian flow (1.1) on a
compact manifold M fort € [0,€]. Then I,y = I,y for allt € [0,¢].

Proof. Let W € I,y and ¢(t) = W*p(t). Then ¢(t) is closed for all ¢ and

50 =0 (0(0)) = " (B0p(0) = By V6l0) = B30

so @(t) is also a solution to the flow (1.1). Since p(0) = ¥*p(0) = p(0) as
W € I, the forward uniqueness in Theorem 1.4 implies that G(t) = ¢ (t)
for all £ € [0,¢]. Thus, ¥ € I for all € [0, €.

Similarly, using the backward uniqueness in Theorem 1.4, we can show if
s €[0,¢] and ¥ € I, then ¥ € I, for all ¢ € [0,s]. Therefore, for all
t€[0,¢€, Io0) C 1oy C Lp0)s which means I ) = Lp(0)- (]

Irreducible compact Go manifolds (M, ) cannot have continuous symme-
tries and so I, is trivial. Since the symmetry group I, is not expected to
become smaller at an infinite time limit, Corollary 6.7 suggests an immedi-
ate test on a closed Go structure ¢y to determine when the Laplacian flow
starting at ¢ can converge to an irreducible torsion-free Go structure.

We can also use Theorem 1.4 in a straightforward way to deduce the
following result, which says that any Laplacian flow satisfying the Laplacian
soliton equation at some time must in fact be a Laplacian soliton.

Corollary 6.8. Suppose ¢(t) is a solution to the Laplacian flow (1.1) on a
compact manifold M for t € [0,€]. If for some time s € [0,¢€], ¢(s) satisfies
the Laplacian soliton equation (1.8) for some A € R and vector field X on
M, then there exists a family of diffeomorphisms ¢, and a scaling factor p(t)
with ¢s = id and p(s) =1 such that o(t) = p(t)d;p(s) on M x [0, €.

7. COMPACTNESS

In this section, we prove a Cheeger—Gromov-type compactness theorem
for solutions to the Laplacian flow for closed Gy structures.

7.1. Compactness for G, structures. We begin by proving a compact-
ness theorem for the space of Go structures.

Let M; be a sequence of 7-manifolds and let p; € M; for each i. Suppose
that ; is a Go structure on M; for each ¢ such that the associated metrics
gi on M; are complete. Let M be a 7-manifold with p € M and let ¢ be a
Go structure on M. We say that

(M;, pi,pi) = (M,@,p) asi— o0
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if there exists a sequence of compact subsets ; C M exhausting M with
p € int(Q;) for each i, a sequence of diffeomorphisms Fj : Q; — F;(;) C M;
with Fj(p) = p; such that

Frpi — ¢ asi— oo,

in the sense that F*¢; — ¢ and its covariant derivatives of all orders (with
respect to any fixed metric) converge uniformly to zero on every compact
subset of M.

We may thus give our compactness theorem for Gy structures.

Theorem 7.1. Let M; be a sequence of smooth T-manifolds and for each i
we let p; € M; and @; be a Go structure on M; such that the metric g; on
M; induced by @; is complete on M;. Suppose that

1
sup sup <\Vk+1T( )2 + \V;ngi(m)@) <00 (7.1)

i xEM; |gi

for all k >0 and
inf inj(M;, gi, pi) > 0,

1

where T;, Rmg, are the torsion and curvature tensor of ¢; and g; respectively,
and inj(M;, gi, pi) denotes the injectivity radius of (M;, g;) at p;.

Then there exists a T-manifold M, a Go structure ¢ on M and a point
p € M such that, after passing to a subsequence, we have

(M;, pi,pi) = (M,p,p) asi— 0.

Proof. In the proof we always use the convention that, after taking a subse-
quence, we will continue to use the index i.

By the Cheeger-Gromov compactness theorem [20, Theorem 2.3] for com-
plete pointed Riemannian manifolds, there exists a complete Riemannian
7-manifold (M, g) and p € M such that, after passing to a subsequence,

(Mzaghpl) - (M7gvp) as i — 00. (72)

The convergence in (7.2) means that, as above, there exist nested compact
sets ; C M exhausting M with p € int(€;) for all ¢ and diffeomorphisms
F; : Q; — Fy(Q) C M; with Fij(p) = p; such that Fg; — g smoothly as
1 — 0o on any compact subset of M.

Fix 4 sufficiently large. For j > 0 we have €; C {;4; and a diffeomor-
phism Fii; : Qip; — Fiyj(Qigj) C Mip;. We can then define a restricted
diffeomorphism

Fi,j = Fi-i-j‘ﬂi : Q= Fz—f—](Qz) C Mi+j for all 7 > 0.

The convergence (7.2) implies that the sequence {g; ; = Fi9iv; }‘;‘;0 of Rie-
mannian metrics on §2; converges to g; = g on {}; as j — 00.

Let V, Vg, . be the Levi-Civita connections of g, g; ; on €); respectively.
As before, 1et h =g—gijand A=V -V, . be the difference of the metrics
and their connections, respectively. It is stralghtforward to see locally that

1
ab = Q(gi,j)“i (Vahoa + Vohaa = Viha) -
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Since g;; — g smoothly on ; as j — 00, g;; and g are equivalent for
sufficiently large j, and ]th]g tends to zero as j — oo for all £ > 0. Hence,
A is uniformly bounded with respect to g for all large j. Moreover,

vk AC, = Zv 10 (g, ) (VO ahoa + VOVphaa = VOV ahay)
l 1

k
1
= =5 > VED(g — (g,5)) (VO ahia + VO Vohas = VOV ahas )
=1

Thus there exist constants ¢y for k > 0 such that [V¥A|, < ¢, for all j > 0.
Using each diffeomorphism Fj;, we can define a Ga structure ¢;; =
F-*japiﬂ- on €); by pulling back the Gg structure ¢;4; on M;; ;. We next

3
estimate |V¥y; ;|,. First, since g and 9,5 are all equivalent for large j,
lpijlg < colwijlg,;, < Teo = éo for some constants co, ép. We next observe
trivially that

Vij =V i+ (V =V ,)eij
S0, since A is uniformly bounded, there is a constant ¢, such that
IVeiilg < colVg, ;©ijle.; + ClAlgleisly < ér
Similarly, we have
VQSOZ’] = vgm 802,] + (v - vgl,j)vgz,J ()017.7
+ (V(V - vgi,j))()@@j + (V - Vgi,j)v‘pi,j)
and so, since A, VA are uniformly bounded, there is a constant ¢s such that
IV20iilg < CIV3, ¢ile; + ClAIGI Vg, ;0ilg
+ C|VA‘g|QDi,j’g + C’A|g|v<)0i,j|g < Co.

For k£ > 2, we have the estimate

k k—1
VE@ijlg < CY T TALIVE D ilg + C DIV AL [VET g, .
[=0 =1

By an inductive argument, using the estimate |V¥A|, < ¢, and the as-
sumption (7.1), we can show the existence of constants ¢, for £k > 0 such
|Vk§0i,j|g < 61«: on Qz for all j,k > 0.

The Arzela—Ascoli theorem (see, e.g. [2, Corollary 9.14]) now implies that
there exists a 3-form ¢; o and a subsequence of ¢;; in j, which we still
denote by ¢; ;, that converges to ¢; o, smoothly on €2;, i.e.

VH(ij = picollg >0 asj— oo (7.3)

uniformly on €; for all k£ > 0.
Since each ¢; ; is a Go structure on €); with associated metric g; ;, the
7-form valued bilinear form

1
By (u,0) = 2(uspig) A (vapig) A i
is positive definite for each j and satisfies

i (u, U)’Uolgi’j = Bq,”(u v), (7.4)
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where u, v are any vector fields on Q; C M. Letting j — oo in (7.4) gives
gizoo(u? U)UOlgi,oo = BSD'L,OO ('LL, U)' (75)

Since the Cheeger—Gromov compactness theorem guarantees the limit metric

Gi,co = ¢ is a Riemannian metric on ;, (7.5) implies that ¢; o is a positive 3-

form and hence defines a Go structure on §2; with associated metric g; oo = g.
We now denote the inclusion map of €; into €, for £ > ¢ by

Iik: : Qz — Qk, for k > 1.

For each ), we can argue as before to define gy, j, ¢ ; which converge to
Jk,001 Pk,0o TeSpPectively as j — oo, after taking a subsequence. By definition,
Likgrg = 95 and Lok = @i

Since I, is independent of j, by taking j — oo here we find that
LkGk.co = Gioo  a0d LpPkco = Pico- (7.6)
From (7.6), we see that there exists a 3-form ¢ on M, which is a G structure
with associated metric g, such that
179 = gioo,  17¢ = Pico, (7.7)
where I; : Q; — M is the inclusion map.

Finally, we show that (M;, ;, p;) converges to (M, ¢, p). For any compact
subset 2 C M, there exists 79 such that € is contained in §; for all 7 > 4.
Fixing i such that Q C £;, on Q we have by (7.3) that

IVE(F o1 = 9)lg = IVH(Ffjping — ©)lgy where L =i+ j,
= |V*(pij = ¢icollg = 0 asl— oo
for all k£ > 0, as required. O
7.2. Compactness for the Laplacian flow. Now we can prove Theorem

1.5, the compactness theorem for the Laplacian flow for closed Gy structures,
which we restate here for convenience.

Theorem 7.2. Let M; be a sequence of compact 7-manifolds and let p; € M;
for each i. Suppose that @;(t) is a sequence of solutions to the Laplacian flow
(1.1) for closed Go structures on M; with the associated metric g;(t) on M;
fort € (a,b), where —oo < a <0< b < oo. Suppose further that

1
sup ~ sup Vg Li(z,t Z o+ Rmyg, ) (z,t 2 )% < 00, 78
i xEM; t(a,b) <| 9i(t) ( )‘gz(t) | g (t)( )|g1(t)) ( )

where T; and Rmy, ;) denote the torsion and curvature tensors determined
by @i(t) respectively, and the injectivity radius of (M;, gi(0)) at p; satisfies

inf inj(Mi, gi(0), p;) > 0. (7.9)
There exists a T-manifold M, p € M and a solution ¢(t) of the flow (1.1)
on M fort € (a,b) such that, after passing to a subsequence, we have
(Mi, pi(t),pi) — (M, p(t),p)  asi— oo.

The proof is an adaptation of Hamilton’s argument in the Ricci flow case [20].
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Proof. By a usual diagonalization argument, without loss of generality, we
can assume a, b are finite. From the Shi-type estimates in §4 and (7.8), we
have

|v§i(t)Rmi(mvt)‘gi(t) + |V§:(rtl)ﬂ(x,t)|gl(t) < C,. (7.10)

Assumption (7.9) allows us to apply Theorem 7.1 to extract a subsequence

of (M;, ¢i(0),p;) which converges to a complete limit (M, ¢ (0),p) in the

sense described above. Using the notation of Theorem 7.1, we have
Fii(0) = ¢o0(0)

smoothly on any compact subset £ C M as i — oo. Since each ;(0) is

closed, we see that dps(0) = 0.

Let ¢;(t) = Fp;(t). Fix a compact subset 2 x [¢,d] C M x (a,b), and
let 7 be sufficiently large that Q C €2;, in the notation of Theorem 7.1. Then
$i(t) is a sequence of solutions of the Laplacian flow on @ C M defined for
t € [c,d], with associated metrics §;(t) = F;*g;(t). By Claims 5.2 and 5.3,
we may deduce from (7.10) that there exist constants C}, independent of 4,
such that

sup (!V’fi(o)éi(t)lgim) + \Vgi(o)@(t)\gim)) < Ck. (7.11)

QxJe,d]
Recall that ¢;(0) and §;(0) converge to Poo(0) and §oo(0) uniformly, with
all their covariant derivatives, on €. By a similar argument to the proof of
Theorem 7.1, we can show from (7.11) that there are constants C}, such that

sup (|V§w(o)§i(t)\goo(0) + |V§m(o)¢z‘(t)!goo(0)) < Ch, (7.12)
Qx[c,d]

for sufficiently large ¢, which in turn gives us constants C’k,l such that

su a—lv’“ Gi(t) +ﬁvk 5:(t)
Qx [(Ed] atl Joo (0)92 Joo (0) ¥i

< Cky, (7.13)
oo (0) ‘8’51 goo(0>>

since the time derivatives can be written in terms of spatial derivatives via
the Laplacian flow evolution equations. It follows from the Arzeld—Ascoli
theorem that there exists a subsequence of @;(t) which converges smoothly
on Q x [¢,d]. A diagonalization argument then produces a subsequence that
converges smoothly on any compact subset of M x (a,b) to a solution @ (t)
of the Laplacian flow. O

As in Ricci flow, we would want to use our compactness theorem for the
Laplacian flow to analyse singularities of the flow as follows.

Let M be a compact 7-manifold and let ¢(¢) be a solution of the Laplacian
flow (1.1) on a maximal time interval [0,7p) with Ty < co. Theorem 1.3
implies that A(t) given in (1.4) satisfies im A(t) = oo as t * Ty. Choose a
sequence of points (z;,t;) such that ¢; / Tp and

1
Mooty = s (IVT(@,0) + [Rm(z,0))
xeM,te(0,t;]
where T and Rm are the torsion and curvature tensor as usual.
We consider a sequence of parabolic dilations of the Laplacian flow

wi(t) = Ai, t) 2 o(t; + Ay, t) 1) (7.14)
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and define

N

Neilo,t) = (Vo Ti(@, O ) + [ Rmile, )2 ). (7.15)
From the basic conformal property for 3-forms we have
F=Ap = Agp=A3iAup.
Thus, for each i, (M, pi(t)) is a solution of the Laplacian flow (1.1) on the
time interval
t e [*tiA(CL‘i, ti), (To — ti)A($i, tz))
satisfying Ay, (x;,0) = 1 and
sup [Ag, (z,t)] <1 fort <0.
M

Since supy, |Ay, (2,0)] = 1, by the doubling-time estimate (Proposition
4.1) and Corollary 5.4, there exists a uniform b > 0 such that

sup [Ag, (z,t)] <2 fort <b.
M

Therefore, we obtain a sequence of solutions (M, ¢;(t)) to the Laplacian flow
defined on (a, b) for some a < 0, with

supsup |Ay, (z,t)| < oo fort € (a,b).
i M

If we can establish the injectivity radius estimate
infinj(M, g;(0), z;) > 0,
K3
which is equivalent to

infing (M, g(t;), ;) > cA(w;, t;) 7L,

we can apply our compactness theorem (Theorem 1.5) and extract a sub-
sequence of (M, ¢;(t), z;) which converges to a limit flow (Mo, Yoo(t), Too)-
Such a blow-up of the flow at the singularity will provide an invaluable tool
for further study of the Laplacian flow.

8. LONG TIME EXISTENCE II

Theorem 1.3 states that the Riemann curvature or the derivative of the
torsion tensor must blow-up at a finite singular time of the Laplacian flow.
However, based on Joyce’s existence result for torsion-free Gg structures [22],
we would hope to be able to characterise the finite-time singularities of the
flow via the blow-up of the torsion tensor itself.

In this section we will show that, under an additional continuity assump-
tion on the metrics along the flow, that the Laplacian flow will exist as long
as the torsion tensor remains bounded. From this result, stated below, our
improvement Theorem 1.6 of Theorem 1.3 follows as a corollary.

Theorem 8.1. Let M” be a compact manifold and p(t) fort € [0,Tp), where
Ty < oo, be a solution to the Laplacian flow (1.1) for closed Go structures
with associated metric g(t) for each t. If g(t) is uniformly continuous and
the torsion tensor T'(z,t) of p(t) satisfies

sup |T'(z,t)|g() < 00, (8.1)
MX[O,T())
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then the solution o(t) can be extended past time Tp.

Here we say ¢(t) is uniformly continuous if for any € > 0 there exists § > 0
such that for any 0 <ty <t < Ty with t — tg < § we have

l9(t) — g(to)lgte) < €
which implies that, as symmetric 2-tensors, we have
(L =e)g(to) < g(t) < (L+€)g(to)- (8:2)
Before we prove Theorem 8.1, we deduce Theorem 1.6 from Theorem 8.1.

Proof of Theorem 1.6 (assuming Theorem 8.1). We recall that, for closed
Gg structures ¢,

ASDSO = l@(h)v
where h is a symmetric 2-tensor satisfying, in local coordinates,
1
hij = =V Tni@jmn — §|T|292‘j — TyTy;
by (3.3). Moreover, (3.8) shows that the trace of h is equal to
g 2
trg(h) = g hi; = nglf,-
By [24, Proposition 2.9],
[Apply = lig(h)[5 = (trg(R))® + 2hFhj,.
Thus, under the assumed bound (1.7) on A, ;)¢ (t) from Theorem 1.6,

sup |T(z,t)|g44) < oo and sup |h(z,1)]44) < 0o (8.3)
Mx[0,Ty) Mx[0,To)

Along the Laplacian flow (1.1), the metric g(¢) evolves by

S:9(,t) = 2h(a, ),
so it follows from (8.3) that g(¢) is uniformly continuous. Theorem 8.1 then
implies that the flow extends past time T as required. O

Now we give the proof of Theorem 8.1.

Proof of Theorem 8.1. We adapt the argument for an analogous result for
Ricci flow in [11, §6.4]. (Note that Sesum’s original proof [34] of the Ricci
flow result used Perelman’s noncollapsing theorem, but Lei Ni pointed out
that the result can be proved without the noncollapsing theorem.)

Assume, for a contradiction, that the conditions of Theorem 8.1 hold but
the solution ¢(t) of the flow cannot be extended pass the time 7. By the
long time existence theorem (Theorem 1.3), there exists a sequence of points
and times (z;,t;) with ¢; T such that

1
Az t;) =  sup <|VT(:U, B2 + |Rm(x,t)\3(t)> 2 .
z€M, te[0,t;]
Then arguing as in §7.2, we can define p;(t) by (7.14) and obtain a sequence
of flows (M, p;(t), z;) defined on [~t;A(w;,t;),0]. Moreover, A, ;) (z,t) given
by (7.15) satisfies
sup |[Ag;(z,t)] <1 and [Ay,(x;,0)] =1,
M x[—t; A(z4,t4:),0]
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and the associated metric g;(t) of ¢;(t) is
9i(t) = A(zi, t;)g(t; + A(ay, ti)ilt).

By assumption, g(¢) is uniformly continuous. Let € € (0, %] and let § > 0
be given by the definition of uniform continuity of ¢(t) so that if to = Ty — ¢
then (8.2) holds for all ¢) < t < Ty. Suppose i is sufficiently large that
t; > to. From (8.2), for any =,y € M and t € [to,Tp), we have

1 1
(1= €)2dg) (7, y) < dyy (7, y) < (14 €)2dg0) (7, y)-

Therefore, if By (x,r) denotes the geodesic ball of radius 7 centred at x
with respect to the metric g(t), we have

_1
Byy(z,7) D Byt (z, (1 +€)727).
Along the Laplacian flow, the volume form increases, so
_1
Volg(t) (Bg(t) (CL', 7")) > VOlg(to)(Bg(to) (l’, (1 + 6) 27‘)

for any x € M, r > 0 and ¢ € [tg,Tp). Then, for z € M and r < A(Z’i,ti)%
we have

Voly,0)(Bg,0)(@,7)) = A, 1;)
C(l + e)

[SIE

1
Volg(t,) (Bg(ti) (2, A, ti)"27))
1 1
Voly(te) (By(to) (@, (1 + €) "2 Alwi, ti) " 27))

_7
2

[SIEN]

v

7,

Vv

for some uniform positive constant c. Hence we have

Volg,0)(Byy(o) (7)) > er’ (8.4)

forallz € M and r € [O,A(:):i,ti)%].
Note that by definition of A, in (7.15) that

| Rmg, (2, 0)] < sup [Api (2, 1)) <1
Mx[—t;A(zi,t:),0]

on M. By the volume ratio bound (8.4) and [11, Theorem 5.42], we have a
uniform injectivity radius estimate inj(M, ¢;(0),z;) > ¢ for some constant
¢ > 0. We can thus apply our compactness theorem (Theorem 1.5) to obtain
a subsequence of (M, p;(t),z;) converging to a limit (Mo, Poo(t), Too), t €
(—00,0] with [Ay (s, 0)| = 1.

By the assumption (8.1) that 7" remains bounded and A(z;,t;) — oo as
i — oo, we have

|E(Jf, t)|3L(t) = A(sz, ti)_llT(ﬁ, tl —+ A(:U’L, ti)_lt)|§(ti+/\($i,ti)71t) — 0 (85)

as t — 0o. Therefore, (Muo, oo (t)) has zero torsion for all t € (—oo, 0]. Thus
Ricg. ;) = 0 for all t € (—00, 0], where goo(t) denotes the metric defined by
Yoo(t), since torsion-free Gy structures define Ricci-flat metrics.

We can then argue as in [34] (see also [11, §6.4]) that goo(0) has precisely
Euclidean volume growth; i.e. for all » > 0,

Voly__ (0)(Bgoo(0) (%, 7)) = Volg, (B, (0, 1)r’.
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Since a Ricci-flat complete manifold with this property must be isometric
to Euclidean space by the Bishop—Gromov relative volume comparison the-
orem, Rm(go0(0)) = 0 on M. This contradicts the fact that

’ngoo(woo’oﬂ = ‘AS@w(xOO?O)’ = 1

where in the first equality we used the fact that the torsion of (M, ¢oc(0))
vanishes. We have our required contradiction, so the result follows. O

9. LAPLACIAN SOLITONS

In this section we study what are called soliton solutions of the Laplacian
flow.

Given a 7-manifold M, a Laplacian soliton of the Laplacian flow (1.1) for
closed Gg structures on M is a triple (¢, X, \) satisfying

App = Ao+ Lx o, (9.1)

where dp = 0, A € R and X is a vector field on M. We are interested in Gg
structures ¢ satisfying (9.1) as they naturally give self-similar solutions to
the Laplacian flow (1.1).

Concretely, suppose the initial condition g satisfies (9.1) for some X and
A. Define, for all ¢ such that 1+ 2\t > 0,

p(t):(1+§m% and X (t) = p(t) 3 X. (9.2)

Let ¢; be the family of diffeomorphism generated by the vector fields X ()
such that ¢g is the identity. If we define

@(t) = p(t)oipo, (9.3)
which only changes by a scaling factor p(¢) and pullback by a diffeomorphism
¢; at each time ¢, then

0

578 = P/ ()07 0 + p()67 (Lx(1)0)

()56 (Ao + Lx o)
(£)5 65 (Agy00)

(£)5 (Ags 07 20) = Dy (t):

Hence, ¢(t) defined in (9.3) satisfies the Laplacian flow (1.1) with ¢(0) = ¢o.

Based on the formula (9.2) for the scaling factor p(t), we say a Laplacian
soliton (g, X, A) is expanding if A > 0; steady if A = 0; and shrinking if
A < 0. For a closed Gg structure ¢ on M, we already showed in (2.20) that

p
p
0

1
Agp = zlrle + 7, (9-4)
where v € Q3. (M). Therefore, (9.1) is equivalent to
1
Gl = N = =7 + Lxe. (9-5)

From this equation we observe that if X = 0 then since v € 3 57 and ¢ € 03
we must have ¥ = 0 and A = 1|7|>. We deduce the following, which is
Proposition 1.7(a).
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Proposition 9.1. A Laplacian soliton of the type Ay, = A must have
A >0, and A =0 if and only if @ is torsion-free.

We now give the proof of Proposition 1.7(b), which we restate here.

Proposition 9.2. The only compact Laplacian solitons of the type Ay =
Ap are when @ is torsion-free.

Proof. Let X =0 in (9.5), so

(Il = N = —. (96)

Since the left-hand side of (9.6) belongs to Q3(M) while the right hand side
of (9.6) belongs to Q3-(M), we have

1
Gl =g =—7=0,
Thus A = 1|7|?, which means that
1
dr = Ay = ?|T|2<p.
We can deduce that
1 1
gd(T/\T/\T) =TATNANdT = ?‘T|2’T/\T/\(p

L2 L4
:—?‘T| TA*SDT:—?‘T| *, 1,
where in the third equality we used 7 A p = — x, 7 as 7 € Q%,(M). Since

M is compact, integrating the above equality over M gives that

1 1
0:/ d(T/\T/\T):—/ 7|4 %, 1.
3Jm 7T Jm

Thus 7 = 0 and A = 0, which means that ¢ is torsion-free. (]

We may call a vector field X such that Lxp = 0 a symmetry of the Go
structure ¢. The following lemma shows that the symmetries of a closed Gg
structure correspond to certain Killing vector fields of the associated metric.

Lemma 9.3. Let ¢ be a closed G structure on a compact manifold M with
associated metric g and let X be a vector field on M. Then

Lxg = 5ia (Lxg) + 5 (d"(X9)) v, (07

where iy, : S*T*M — A3T*M is the injective map given in (2.2). In partic-
ular, any symmetry X of the closed Go structure ¢ must be a Killing vector
field of the associated metric g and satisfy d*(X 2p) =0 on M.

Proof. Since ¢ is closed, we have
Lxp=d(Xap)+ Xadp =d(Xp).
Denote 8 = X_.p. Then §;; = Xlgoh-j and
Lxp=dB= é(viﬁjk — ViBik — ViBji)dz' A da? A da,
i.e., in index notation, we have
(Lx®)ijk = ViBijx — VBt — ViBji. (9-8)
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We decompose Lx ¢ into three parts
Lxp = (Lxp) + T (Lxp) + T (Lxp) = ap + Wi +iy(n),

where 7F @ QF(M) — QF(M) denotes the projection onto QF(M), a is a
function, W is a vector field and 7 is a trace-free symmetric 2-tensor on M.
We now calculate a, W and 7, using a similar method to §2.2.

To calculate a:

1 1 y
= §(£X<P7 ES E(Vzﬂjk — V;Bir, — ViBji) "
1 - 1 - 1 .
= S ViBine "t = ZVi(Bire"") — B Vi
1 . 1
. Xl Atk 7Xl Tm ijk
14%( o1ke™") TR
3 g
7v X+ 8X LT,
3 l . .
7V X+ 4X LR’ = ?dIV(X),

where we used (2.3), ¢;57% = 0 and T{”i/}nfjk = 277% in (2.16) since 7 €
02,(M) for closed Gg structures ¢.
To calculate W, using the contraction identities (2.3)—(2.4),

(Lxo) ), = (Lx ) Viju
= a1 + W T i+ (o (1)) 7F4by 0
= —24W, + (1™ 0nd" = 0700 = 100 i
= —24W; + 120" oy = —24W1,
where the last equality follows since 7, is symmetric in i, m and @, is

skew—symmetric in 4, m. Using (9.8), we have

, 1 . ,
- gk . — . mi YL
114 54 (ﬁx ©)F; ik 9 Vo B2 i i1

1 . ) 1 . )
= - ggmzvm(ﬁjk%jm + gﬁjkgmzvm?/)ijkl

1 .
=- ggmzvm(X"%jk%jkz)

1 .
+ Eﬁjkgml(ﬁm’%@jkl — Timj ikl — TmkPjil — TmiPjki)

1 . 1 1

=— §9mzvm(Xn<Pml) - an 0 7F g T ikl — 16X 0 T 1P i
1

=-— §9mlvm(Xn<Pm‘z),

where in the above calculation we used (2.4), (2.5), (2.12), (2.16) and skew-
symmetry in the index of 1;;z;. So

1
W= 3 (d" (X))
If we define the G2 curl operator on vector fields by

curl(X) = (* (dX° A w))ﬁ so curl(X); = i VI XF, (9.9)
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then in local coordinates
W = —%gmivm(XnSOm'l) = —%VanSOm'z - %Xnvi%m
= %curl(X)l — %X"TZ P il = %Curl(X)l + X"T,,
i.e. the vector field W is

W = %(d*()up))ﬁ = %curl(X) + X T (9.10)
Finally, to calculate 7:
(LxP)mniw;™" + (LxP)mnjp;
= aSDmm'Sijn + Wlwlimn@jm” + iw(n)mm'%pjmn
+ aPmnj; " + Wl?/’ljmn%mn +ip(Mmnje; ™"
= 12ag;; + 8n;j, (9.11)
where in the last equation we used the contraction identity (2.4) to obtain
W™ jimn + W™ Gimn =AW (0515 + i) = 0
and (2.5) on the terms involving . We can calculate the left hand side of
(9.11) as follows

(Lx@)mnie;™" + (LxP)mnjp; ™"
= (VimBni — VuBmi — ViBnm) ;™"
=+ (vmﬁnj — VnBmj — v]ﬂnm)%’mn
= 2(VmBnig;™™ + Vi Bnjei ™) = ViBame;™" — Vi Brmep; ™"
= 2V (X 0imio;™™) = 2X o1ni T ™™ + 2V (X oo ™)
— 2X 01 T 0™ = Vi X nm ;™) + X i T3 4y, ™"
= V(X 0tme; ™) + X otnm T g ™
= 2div(X)gij — 2ViX; + 2V (X ;™) + 4X 01, T}
+2div(X)gij — 2V X; + 2V (X1py, ™) + 4X 0 T,
+ 6V, X; — 4X o, T,F + 6V, X; — 4X180um‘Tjk
=4div(X)gi; +4(ViX; + V; X;),

where in the above calculation we again used the equations (2.3)—(2.5) and
(2.16). We deduce that

3 1. 1
i = = 5agij + 5 div(X)gij + 5 (ViX; + V;.X5)

1 1
== 5 div(X)gi; + 5(Lx9)ij.
Then

. -
Lxp=ap+Wunh+iy(n) = Z@(gag +n)+ W
1. L,

This proves the formula (9.7).
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If X is a symmetry of the closed Go structure ¢, i.e. Lxp = 0, then
(5 Lx0) =mH(Lxp) + T (Lx0) = 0
and 1(d*(Xop))*s¢p = m3(Lxp) = 0. This implies that £Lxg = 0 and
d*(X up) = 0, since i, is an injective operator and Q3(M) = QY (M). O

We can now derive the condition satisfied by the metric g induced by ¢
when (¢, X, \) is a Laplacian soliton, which we expect to have further use.

Proposition 9.4. Let (¢, X, \) be a Laplacian soliton as defined by (9.1).
Then the associated metric g of @ satisfies, in local coordinates,
— Rij — é|T|29ij — 2T} Ty = %)\gij + %(ﬁxg)z‘j (9.12)
and the vector field X satisfies d*(X @) = 0.
Proof. We know from §2.2 that for closed Go structures ¢,
Apip = ip(h) € QF (M) & Q37(M),

where h is a symmetric 2-tensor satisfying

hij = —Ricij — éyTngj — 2T, 7Ty,
Since Ap € Q3(M), from the Laplacian soliton equation (9.1) we know that

Lxp = d(Xp) € Q}(M) ® Q3(M).
Thus, from (9.7), we have

1
Lxp= i@(iﬁxg) and d"(X.ip)=0. (9.13)

Substituting the first equation of (9.13) into the Laplacian soliton equation
(9.1), and noting that

. o1
App = Zw(h)a Ap = Zap(g)\g);

we get

. 1 1
ip(h — g)\g - iﬁxg) =0.

Since 1, is injective, the above equation implies that
1 1
h—-Xg—=-Lxg=0,
3 g 9 X9
which is equivalent to (9.12). O

Recall that Ricci solitons (g, X, A) are given by Ric = Ag + Lxg, so we
see that (9.12) can be viewed as a perturbation of the Ricci soliton equation
using the torsion tensor T. We also re-iterate that the non-existence of
compact Laplacian solitons of the form (¢, 0, \) is somewhat surprising given
that we have many compact Ricci solitons of the form (g,0, A) since these
correspond to Einstein metrics.

As an application of Proposition 9.4, we can give a short proof of the
main result in [30].
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Proposition 9.5. (a) There are no compact shrinking Laplacian solitons.
(b) The only compact steady Laplacian solitons are given by torsion-free G
structures.

Proof. Taking the trace of (9.12), we have
2 7
§|T|2 = 3A+ div(X). (9.14)

When the soliton is defined on a compact manifold M, integrating the above
equation gives

2
AVoly,(M) = = / IT|*vol, > 0.
Y,
So A >0, and A =0 if and only if T'= 0. O

Remark 9.6. Observe that (9.14) immediately leads to the non-existence
of nontrivial steady or shrinking Laplacian solitons with div(X) = 0, thus
strengthening Proposition 9.1.

In Ricci flow, every compact Ricci soliton is a gradient Ricci soliton, mean-
ing that the vector field X in that case satisfies X = V f for some function
f. This was proved by Perelman using the W-functional and a logarithmic
Sobolev inequality. In the Laplacian flow the situation is quite different and
there is currently no reason to suspect that an analogous result to the Ricci
flow will hold. In fact, we see from (9.9)—(9.10) and Proposition 9.4 that
if (p, Vf,A) is a Laplacian soliton then VfiT = 0. It is thus currently an
interesting open question whether any non-trivial compact Laplacian soliton
is a gradient Laplacian soliton.

10. CONCLUDING REMARKS

The research in this paper motivates several natural questions that form
objectives for future study. We list some of these problems here.

(1) Show that torsion-free Go structures are dynamically stable under
the Laplacian flow. This has been proved by the authors in [31]
using the theory developed in this article.

(2) Prove a noncollapsing result along the Laplacian flow for closed Go
structures as in Perelman’s work [33] on Ricci flow. This would
mean, in particular, that our compactness theory would give rise to
well-defined blow-ups at finite-time singularities, which would fur-
ther allow us to relate singularities of the flow to Laplacian solitons.

(3) Study the behavior of the torsion tensor near the finite singular time
Ty of the Laplacian flow. Since for closed Gg structures ¢, we have
Ay = dr, Theorem 1.6 says that dr will blow up when ¢ * Tj
along the Laplacian flow. The question is whether the torsion tensor
T, or equivalently 7, will blow up when ¢t * Tp. Since |T|> = —R,
this is entirely analogous to the question in Ricci flow as to whether
the scalar curvature will blow up at a finite-time singularity. This is
true for Type-I Ricci flow on compact manifolds by Enders—Miiller—
Topping [14] and Kéhler—Ricci flow by Zhang [40], but it is still open
in general and currently forms an active topic of research.
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(4) Find some conditions on the torsion tensor under which the Lapla-
cian flow for closed Go structures will exist for all time and converge
to a torsion-free Gg structure. Based on the work of Joyce [23], it is
expected that a reasonable condition to impose is that the initial Go
structure g is closed and has sufficiently small torsion, in a suitable
sense. The Laplacian flow would then provide a parabolic method for
proving the fundamental existence theory for torsion-free Ga struc-
tures (c.f. [23]). We can already show that such a result holds in [31]
assuming the work of Joyce, but it would also be desirable to find a
proof only using the flow.

(5) Study the space of gradient Laplacian solitons on a compact man-
ifold. As mentioned earlier, this would show the similarities or dif-
ferences with the analogous theory for Ricci solitons, which it would
be instructive to study (see [9] for a recent survey on Ricci solitons).

(6) Construct nontrivial examples of Laplacian solitons. Recent progress
on this problem has been made by Bryant [6], and also forms a topic
of current investigation by the authors.
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