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Abstract. Using the weak solution of Inverse mean curvature flow, we prove the sharp Minkowski-
type inequality for outward minimizing hypersurfaces in Schwarzschild space.

1. Introduction

The Schwarzschild space is an n-dimensinal (n ≥ 3) manifold (Mn, g) with boundary ∂M ,
which is conformal to Rn \Dr0 , with the metric

gij(x) =
(

1 +
m

2
|x|2−n

) 4
n−2

δij , x ∈ Rn \Dr0 , (1.1)

where m > 0 is a constant, r0 = (m2 )
1

n−2 . The coordinate sphere Sr0 = ∂Dr0 is the horizon of

the Schwarzschild space and is outward minimizing. Equivalently, M = [s0,∞)× Sn−1 and

g =
1

1− 2ms2−nds
2 + s2gSn−1 , (1.2)

where s0 is the unique positive solution of 1 − 2ms2−n
0 = 0 and gSn−1 is the canonical round

metric on the unit sphere Sn−1. In this paper, we will denote

f(x) =
√

1− 2ms2−n, for any x = (s, θ) ∈Mn, (1.3)

which is called the potential function of (Mn, g). As is well known, the Schwarzschild space is
asymptotically flat, and is static in the sense that the potential function f satisfies

∇2f = fRic, ∆f = 0, (1.4)

where Ric is the Ricci tensor of (Mn, g), ∇,∇2 and ∆ are gradient, Hessian and Laplacian
operator with respect to the metric g on Mn. It can be easily checked that the spacetime metric
ĝ = −f2dt2 + g on Mn × R solves the vacuum Einstein equation. In particular, (1.4) implies
that (Mn, g) has constant zero scalar curvature R.

Let Ω be a bounded domain with smooth boundary in (Mn, g). Then there are two cases:

(i) Ω has only one boundary component Σ = ∂Ω and we say that Σ is null-homologous;
(ii) Ω has two boundary components ∂Ω = Σ∪ ∂M and we say that Σ is homologous to the

horizon ∂M of the Schwarzchild space.

The boundary hypersurface Σ is said to be outward minimizing if whenever E is a domain
containing Ω then |∂E| ≥ |∂Ω|. From the first variational formula for area functional, an
outward minimizing hypersurface must be a mean-convex hypersurface.
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The main result of this paper is the following Minkowski-type inequality for outward mini-
mizing hypersurface in Schwarzschild space.

Theorem 1.1. Let Ω be a bounded domain with smooth and outward minimizing boundary in
the Schwarzschild space (Mn, g). Assume either

(1) n < 8, or
(2) n ≥ 8 and Σ = ∂Ω \ ∂M is homologous to the horizon.

Then

1

(n− 1)ωn−1

∫
Σ
fHdµ ≥

(
|Σ|
ωn−1

)n−2
n−1

− 2m, (1.5)

where ωn−1 is the area of the unit sphere Sn−1 ⊂ Rn, and |Σ| is the area of Σ with respect to
the induced metric from (Mn, g). Moreover, the equality holds in (1.5) if and only if Σ is a slice
{s} × Sn−1.

For mean convex and star-shaped hypersurface in Schwarzschild space, the inequality (1.5)
was obtained by Brendle-Hung-Wang [3] as the limit case of their inequality in Anti-de Sitter-
Schwarzschild space. Note that a star-shaped hypersurface must be homologous to the horizon
of the Schwarzchild space. Our result does not require the hypersurface to be star-shaped.
The inequality (1.5) is a natural generalization of the classical Minkowski inequality for convex
hypersurface Σ in Rn, which states that∫

Σ
Hdµ ≥ (n− 1)ω

1
n−1

n−1 |Σ|
n−2
n−1 . (1.6)

The inequality (1.6) was originally proved for convex hypersurfaces using the theory of convex
geometry and was proved recently by Guan-Li [7] for mean convex and star-shaped hypersurfaces
using the smooth solution of inverse mean curvature flow (IMCF). Huisken recently applied the
weak solution of IMCF in [10] to show that the inequality (1.6) also holds for outward minimizing
hypersurfaces in Rn (see [9]). The proof of this result was also given by Freire-Schwartz [6]. By
letting m→ 0, the Schwarzschild metric reduces to the Euclidean metric g = ds2 + s2gSn−1 and
the potential function f approaches to 1. Thus Theorem 1.1 generalizes the result of Huisken
and Freire-Schwartz to that for outward-minimizing hypersurfaces in Schwarzchild space.

To prove Theorem 1.1, we use the standard procedure in proving geometric inequalities using
the hypersurface curvature flows (see e.g.,[3, 6, 7, 10]). We will employ the weak solution of
IMCF, which was developed by Huisken-Ilmanen in [10] and was applied to prove the Riemannian
Penrose inequality for asymptotically flat 3-manifold with nonnegative scalar curvature. The
weak solution of IMCF has also been applied in many other problems, see for example [1, 2, 6, 12].
In our case, if Σ is homologous to the horizon, then starting from Σ there exists the weak solution
of IMCF which is given by the level sets Σt = ∂Ωt = ∂{u < t} of a proper locally Lipschitz
function u : Ωc → R+, where Ωc denotes the compliments of Ω in M . Each Σt is C1,α away from
a closed singular set Z of Hausdorff dimension at most n− 8 and Σt will become C1,α close to
a large coordinate sphere as t→∞. On each Σt we define the following quantity

Q(t) = |Σt|−
n−2
n−1

(∫
Σt

fHdµt + 2(n− 1)mωn−1

)
, (1.7)

where |Σt| is the area of Σt. Q(t) is well-defined because each Σt is C1,α with small singular set,
the weak mean curvature of Σt can be defined as a locally L1 function using the first variation
formula for area. We will prove that Q(t) is monotone non-increasing along the weak solution of
IMCF. If Σ = ∂Ω is null-homologous, we first fill-in the region W bounded by the horizon ∂M
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to obtain a new manifold M̃ and then run the weak IMCF in M̃ with initial condition Σ. When
the flow Σt = ∂Ωt nearly touches the horizon ∂M , we jump to the strictly minimizing hull F of
the union Ωt ∪W . Assume that n < 8, we show that

|∂F | ≥ |Σt|,
∫

Σt

fHdµt ≥
∫
∂F
fHdµ,

which implies that Q(t) does not increase during the jump. Then we restart the flow from ∂F .
The restriction n < 8 on the dimension in this case is due to that we need to jump to the
strictly minimizing hull F before we restart the flow, and ∂F is only known to be smooth, more
precisely C1,1 for n < 8. In summary, under the assumption of Theorem 1.1 we can prove that
the quantity Q(t) is monotone decreasing in time along the weak solution of IMCF.

Once we have the monotonicity of Q(t), the next step is to estimate the limit when t → ∞.
For this, we will use the property that the weak solution becomes C1,α close to a large coordinate
sphere as t→∞ as shown in [10, §7]. The estimate that we will prove is the following:

lim
t→∞

Q(t) = (n− 1)ω
1

n−1

n−1 . (1.8)

Then the main inequality (1.5) follows immediately from the monotonicity of Q(t) and the
estimate (1.8) on its limit. To complete the proof of Theorem 1.1, we need to show the rigidity
of the inequality. If the equality holds in (1.5), from the proof of the monotonicity in §4 we know
that Σ must be homologous to the horizon and Σt is umbilic a.e. for almost all time. This can
be used to show that Σ is an Euclidean sphere if it is considered as a hypersurface in Rn \Dr0

with respect to the Euclidean metric. The last step is to show that Σ is a sphere centered at
the origin. We will use the property that a hypersurface to be umbilic is invariant under the
conformal change of the ambient metric and the totally umbilic of Σt for almost all time.

The rest of this paper is organized as follows. In §2, we review some properties of the weak
solution of IMCF. For more detail, we refer the readers to Huisken-Ilmanen’s original paper [10].
In §3, we show how to derive the monotonicity of Q(t) in the case that the flow is smooth. In §4,
we use the approximation argument to show the monotonicity of Q(t) under the weak IMCF.
In the last section, we estimate the limit of Q(t) as t→∞ and complete the proof of Theorem
1.1.

Acknowledgments. The author would like to thank Ben Andrews, Gerhard Huisken, Pei-Ken
Hung and Hojoo Lee for their suggestions and discussions, and Haizhong Li, Mu-Tao Wang
for their interests and comments. The author would also like to thank the referee for helpful
comments. The author was supported by Ben Andrews throughout his Australian Laureate
Fellowship FL150100126 of the Australian Research Council.

2. Weak solution of IMCF

Let (Mn, g) be the Schwarzschild space. The classical solution of IMCF is a smooth family
x : Σ× [0, T )→M of hypersurfaces Σt = x(Σ, t) satisfying

∂x

∂t
=

1

H
ν, x ∈ Σt, (2.1)

where H, ν are the mean curvature and outward unit normal of Σt, respectively. If the initial
hypersurface is star-shaped and strictly mean convex, the smooth solution of (2.1) exists for all
time t ∈ [0,∞), and the flow hypersurfaces Σt converge to large coordinate sphere in exponen-
tially fast, see [13, 17]. In general, without some special assumption on the initial hypersurface,
the smoothness may not be preserved, the mean curvature may tend to zero at some points and
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the singularities develop. See for example the thin torus in Euclidean space ([10, §1]), i.e. the
boundary of an ε-neighborhood of a large round circle. The mean curvature is positive on this
thin torus, so the smooth solution of (2.1) exists for at least a short time. By deriving the upper
bound of the mean curvature along the flow, we can see that the torus will steadily fatten up
and the mean curvature will become negative in the donut hole in finite time.

In [10], Huisken-Ilmanen used the level-set approach and developed the weak solution of
IMCF to overcome this problem. The evolving hypersurfaces are given by the level-sets of a
scalar function u : Mn → R via

Σt = ∂{x ∈M : u(x) < t}.
Whenever u is smooth with non vanishing gradient ∇u 6= 0, the flow (2.1) is equivalent to the
following degenerate elliptic equation

divM

(
∇u
|∇u|

)
= |∇u|. (2.2)

Using the minimization principle and elliptic regularization, Huisken-Ilmanen proved the ex-
istence, uniquess, compactness and regularity properties of the weak solution of (2.2). The
existence result only require mild growth assumption on the underlying manifold, and applies
in particular to the Schwarzchild space here. We summaries their results in the following.

Theorem 2.1 ([10]). Let Ω be a bounded domain with smooth boundary in the Schwarzschild
space (Mn, g) with n < 8 and Σ = ∂Ω \ ∂M . In case that Σ is null-homologous, we fill-in the
region W bounded by the horizon. Then there exists a proper, locally Lipschitz function u ≥ 0
on Ωc = M \ Ω, called the weak solution of IMCF with initial condition Σ, satisfying

(a) u|Σ = 0, limx→∞ u =∞. For t > 0, Σt = ∂{u < t} and Σ′t = ∂{u > t} define increasing
families of C1,α hypersurfaces.

(b) The hypersurfaces Σt (resp. Σ′t) minimize (resp. strictly minimize) area among hyper-
surfaces homologous to Σt in the region {u ≥ t}. The hypersurface Σ′ = ∂{u > 0}
strictly minimizes area among hypersurfaces homologous to Σ in Ωc.

(c) For t > 0, we have

Σs → Σt as s↗ t, Σs → Σ′t as s↘ t (2.3)

locally in C1,β in Ωc, β < α. The second convergence also holds as s↘ 0.
(d) For almost all t > 0, the weak mean curvature of Σt is defined and equals to |∇u|, which

is positive and bounded for almost all x ∈ Σt.
(e) For each t > 0, |Σt| = et|Σ′|, and |Σt| = et|Σ| if Σ is outward minimizing.

For n ≥ 8, the regularity and convergence are also true away from a closed singular set Z of
dimension at most n− 8 and disjoint from Ω̄.

Note that in [8], Heidusch proved the optimal C1,1 regularity for the level sets Σt and Σ′t away
from the singular set Z. The property (b) says that Ωt = {u < t} and Ω′t = int{u ≤ t} are
minimizing hull and strictly minimizing hull in {u > t}. Here we call a set E a minimizing hull
in G if E minimizes area on the outside in G, that is, if

|∂∗E ∩K| ≤ |∂∗F ∩K|
for any F of locally finite perimeter containing E such that F \E ⊂⊂ G, and any compact set K
containing F \E. Here ∂∗F denotes the reduced boundary of a set F of locally finite perimeter.
E is called a strictly minimizing hull if equality implies that F ∩G = E∩G. Define E′ to be the
intersection of all strictly minimizing hulls in G that contain E. Up to a set of measure zero, E′
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may be realised by a countable intersection, so E′ itself is a strictly minimizing hull and open.
We call E′ the strictly minimizing hull of E in G.

The existence result of weak IMCF in Theorem 2.1 was proved using a minimization principle
(see [10, §1]), together with the elliptic regularization. Consider the following perturbed equation

divM

(
∇uε√

|∇uε|2 + ε2

)
=
√
|∇uε|2 + ε2 (2.4)

on a large domain ΩL = {v < L} defined using a subsolution v of (2.2), with Dirichilet boundary
condition uε = 0 on Σ and uε = L − 2 on the boundary ∂ΩL \ Σ. This equation (2.4) has the
geometric interpretation that the downward translating graph

Σ̂ε
t := graph

(
uε(x)

ε
− t

ε

)
solves the smooth IMCF (2.1) in the manifold M × R of one dimension higher. Using the
compactness theorem to pass the solutions of (2.4) to limits as εi → 0, we obtain a family of
cylinders in M × R, which sliced by M × {0} gives a family of hypersurfaces weakly solving
(2.2). Similar techniques to show existence of weak solutions of geometric flows have been used
by various authors, cf. [5, 11, 14, 15, 16].

From the argument in [10, §3], we find that there exits a sequence of smooth function ui = uεi

such that ui → u locally uniformly in Ωc to a function u ∈ C0,1(Ωc). ui and u are uniformly

bounded in C0,1(Ωc). For a.e. t ≥ 0, the hypersurfaces Σ̂i
t := Σ̂εi

t converges to the cylinder

Σ̂t := Σt × R locally in C1,α away from the singular set Z × R. Moreover, as in [10, §5], the

mean curvature HΣ̂i
t

of Σ̂i
t converges to the weak mean curvature HΣ̂t

of the cylinder Σ̂t locally

in L2 sense for a.e. t ≥ 0. Precisely,∫
Σ̂i

t

φH2
Σ̂i

t
→

∫
Σ̂t

φH2
Σ̂t
, a.e., t ≥ 0 (2.5)

for any cut-off function φ ∈ C0
c (Ωc × R). The weak second fundamental form AΣ̂t

exists on Σ̂t

in L2 and the lower semicontinuity implies∫
Σ̂t

|AΣ̂t
|2 ≤ lim inf

i→∞

∫
Σ̂i

t

|AΣ̂i
t
|2 < ∞ (2.6)

for a.e. t ≥ 0. Slicing this families Σ̂i
t by M × {0}, we obtain Σi

t = Σ̂i
t ∩ (M × {0}) and

Σt = Σ̂t ∩ (M × {0}). Since Σ̂i
t solves the smooth IMCF, its mean curvature in M × R is

HΣ̂i
t

= divM

 ∇uεi√
|∇uεi |2 + ε2i

 =
√
|∇uεi |2 + ε2i . (2.7)

The mean curvature of Σi
t considered as a hypersurface in M is

HΣi
t

=divM

(
∇uεi
|∇uεi |

)

=HΣ̂i
t

√
|∇uεi |2 + ε2i

|∇uεi |
+

∇uεi√
|∇uεi |2 + ε2i

· ∇


√
|∇uεi |2 + ε2i

|∇uεi |


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=HΣ̂i
t

√
|∇uεi |2 + ε2i

|∇uεi |
− ε2i
∇uεi · ∇HΣ̂i

t

|∇uεi |3HΣ̂i
t

. (2.8)

Since the limit function u of uεi has |∇u| > 0 a.e. on Σt, using the weak convergence of
∇HΣ̂i

t
/HΣ̂i

t
(as in the proof of Lemma 5.2 in [10]), we have that the second term on the right

hand side of (2.8) converges to zero locally in L2 sense as εi → 0. Thus, the mean curvature
HΣi

t
of the sliced hypersurface Σi

t converges to the weak mean curvature HΣt of Σt locally in L2

sense for a.e. t ≥ 0.

3. The smooth case

As we mentioned in §1, the key step to prove Theorem 1.1 is to show the monotonicity of
Q(t) defined in (1.7) along the weak IMCF. In this section, we firstly show how to derive the
monotonicity of Q(t) in the smooth case. Let Σt be a smooth solution of the IMCF (2.1). It’s
well known that the following evolution equations for the area form dµ and mean curvature H
of Σt in (Mn, g) hold.

Lemma 3.1.

∂tdµt =dµt, (3.1)

∂tH =−∆Σ
1

H
− 1

H

(
|A|2 +Ric(ν, ν)

)
(3.2)

Employing the above two evolution equations, we can derive the monotonicity of Q(t) in the
smooth case.

Theorem 3.2. Let Σt be a smooth solution of the IMCF (2.1). For any 0 < t1 < t2 < T , if Σt

is homologous to the horizon for all t ∈ [t1, t2], then

Q(t2) ≤ Q(t1)

with equality holds if and only if each Σt is totally umbilic for t ∈ [t1, t2]. If Σt is null-homologous
for all t ∈ [t1, t2], then

Q̃(t2) ≤ Q̃(t1)

with equality holds if and only if each Σt is totally umbilic for t ∈ [t1, t2], and Q(t) is strictly
decreasing in time t ∈ [t1, t2], where

Q̃(t) := |Σt|−
n−2
n−1

∫
Σt

fHdµt.

Proof. The case that Σt is homologous to horizon has been treated in [3, 13]. For convenience
of readers, we include the proof here. Using the evolution equations (3.1)–(3.2),

d

dt

∫
Σt

fHdµt =

∫
Σt

(∂tfH + f∂tH + fH) dµt

=

∫
Σt

(
〈∇f, ν〉 − f∆Σ

1

H
− f

H

(
|A|2 +Ric(ν, ν)

)
+ fH

)
dµt

≤
∫

Σt

(
〈∇f, ν〉 − 1

H
(∆Σf + fRic(ν, ν)) +

n− 2

n− 1
fH

)
dµt, (3.3)

where we used |A|2 ≥ H2/(n− 1) in the last inequality. Combining the identity

∆Σf = ∆f −∇2f(ν, ν)−Hν · ∇f
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and the static equation (1.4), we have

∆Σf + fRic(ν, ν) = −Hν · ∇f. (3.4)

Substituting (3.4) into (3.3) yields that

d

dt

∫
Σt

fHdµt ≤
∫

Σt

(
n− 2

n− 1
fH + 2〈∇f, ν〉

)
dµt. (3.5)

If equality holds in (3.5), then |A|2 = H2/(n− 1) and Σt is totally umbilical.

If Σt is homologous to the horizon for all t ∈ [t1, t2], then denote Ωt denote the region bounded
by Σt and the horizon ∂M . Applying the divergence theorem and noting that ∆f = 0 on M ,
we get ∫

Σt

〈∇f, ν〉dµt =

∫
Ωt

∆f +

∫
∂M
∇f · ν∂M = m(n− 2)ωn−1

which is a constant. Thus we obtain

d

dt

(∫
Σt

fHdµt + 2(n− 1)mωn−1

)
≤ n− 2

n− 1

(∫
Σt

fHdµt + 2(n− 1)mωn−1

)
. (3.6)

If Σt = ∂Ωt is null-homologous for all t ∈ [t1, t2], we have∫
Σt

〈∇f, ν〉dµt =

∫
Ωt

∆f = 0.

Then

d

dt

∫
Σt

fHdµt ≤
n− 2

n− 1

∫
Σt

fHdµt. (3.7)

Thus the theorem follows directly from (3.6)–(3.7) and the evolution equation of the area |Σt|
d

dt
|Σt| = |Σt|.

�

4. The monotonicity

Firstly, we prove the following lemma which was inspired by Lemma A.1 of [6].

Lemma 4.1. Suppose that Ω is a smooth bounded domain in (Mn, g) and Σ = ∂Ω \ ∂M . Let
u : Ωc → R+ be a smooth proper function with u|Σ = 0. Let t > 0, Ωt = {u ≤ t} and
Φ : (0, t) → R+ be Lipschitz and compactly supported in (0, t). Then ϕ = Φ ◦ u : Ωt → R+

satisfies

−
∫

Ωt

f∇ϕ · νHdvg =

∫
Ωt

ϕ
(
2∇f · νH + fH2 − f |A|2

)
dvg, (4.1)

where ν,H,A denote the unit outward normal, mean curvature and second fundamental form of
the level sets of u, ∇ be the gradient operator on (Mn, g) and ∇ϕ · ν = g(∇ϕ, ν).

Proof. The Sard’s theorem implies that the level set Σs = {x ∈ Ωc : u(x) = s} is regular (∇u 6= 0
on Σs) for a.e. s > 0. Let U ⊂ Ωc be the open subset where ∇u 6= 0. For any regular level set
Σs with outward unit normal ν, in Σs ∩ U the variation vector field along Σs is ∇u/|∇u|2 and
ν = ∇u/|∇u|. By the second variation formula for area, we have

− 1

|∇u|
ν · ∇H = ∆Σs |∇u|−1 +

1

|∇u|
(
|A|2 + Ric(ν, ν)

)
(4.2)
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in Σs ∩U , where ∆Σs denotes the Laplacian operator with respect to the induced metric on Σs.
We multiply (4.2) by f and integrate over Σs.

−
∫

Σs

f

|∇u|
ν · ∇Hdµs =

∫
Σs

f∆Σs |∇u|−1 +

∫
Σs

f

|∇u|
(
|A|2 + Ric(ν, ν)

)
dµs

=

∫
Σs

1

|∇u|
(
∆Σsf + f |A|2 + fRic(ν, ν)

)
dµs,

where we used the divergence theorem in the second equality. Applying the identity (3.4), we
obtain

−
∫

Σs

f

|∇u|
ν · ∇Hdµs =

∫
Σs

1

|∇u|
(
−Hν · ∇f + f |A|2

)
dµs. (4.3)

As Σs is regular for a.e. s > 0, the coarea formula and (4.3) imply that∫
Ωt

fϕν · ∇Hdvg =

∫ t

0
Φ(s)

∫
Σs

f

|∇u|
ν · ∇Hdµsds

=

∫ t

0
Φ(s)

∫
Σs

1

|∇u|
(
Hν · ∇f − f |A|2

)
dµsds

=

∫
Ωt

ϕ
(
Hν · ∇f − f |A|2

)
dvg. (4.4)

We firstly assume that Φ ∈ C1. Then in the open subset U = {x ∈ Ωc : |∇u| 6= 0}, we have

div(fϕHν) = ϕ∇f · νH + f∇ϕ · νH + fϕν · ∇H + fϕHdiv ν

= ϕ∇f · νH + fΦ′ ◦ u|∇u|H + fϕν · ∇H + fϕHdiv ν, (4.5)

where div is the divergence operator on (Mn, g). Since ϕ is compactly supported in Ωt, inte-
grating (4.5) yields that

−
∫

Ωt

f∇ϕ · νHdvg = −
∫

Ωt

div(fϕHν)dvg

+

∫
Ωt

(ϕ∇f · νH + fϕν · ∇H + fϕHdiv ν) dvg

=

∫
Ωt

ϕ
(
2H∇f · ν − f |A|2

)
dvg +

∫
Ωt

fϕHdiv νdvg, (4.6)

where we used the divergence theorem and (4.4).

We now deal with the last term in (4.6). Since Σs is regular for a.e. s > 0, the co-area formula
and the first variation formula for area imply that∫

Ωt

fϕHdiv(ν)dvg =

∫ t

0

∫
Σs

fϕH

|∇u|
div(ν)dµsds

=

∫ t

0

∫
Σs

fϕH

|∇u|
divΣsνdµsds

=

∫ t

0

∫
Σs

divΣs

(
fϕH

|∇u|
ν

)
dµsds

=

∫ t

0

∫
Σs

fϕH2

|∇u|
dµsds
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=

∫
Ωt

fϕH2dvg, (4.7)

where in the second equality we used the fact that div(ν) = divΣsν on Σs ∩ U . Substituting
(4.7) into (4.6) yields that

−
∫

Ωt

f∇ϕ · νHdvg =

∫
Ωt

ϕ
(
2∇f · νH + fH2 − f |A|2

)
dvg (4.8)

for Φ ∈ C1. Since Lipschitz function can be approximated by C1 function up to a set of
measure zero (see [18, p.32]), we conclude that (4.8) also holds for Lipschitz function Φ by
approximation. �

4.1. The case that Σ is homologous to horizon.

Lemma 4.2. Let Ω be a smooth bounded domain in the Schwarzschild space (Mn, g). Suppose
that the boundary ∂Ω = Σ∪ ∂M and Σ is outward minimizing. Let {Σt} be the weak solution of
IMCF in Ωc = M \ Ω with initial data Σ. Then for all 0 < t̄ < t,∫

Σt

fHdµt ≤
∫

Σt̄

fHdµ+
n− 2

n− 1

∫ t

t̄

(∫
Σs

fHdµs + 2(n− 1)mωn−1

)
ds (4.9)

Proof. As in the discussion in §2, the weak solution of IMCF u ∈ C0,1
loc (Ωc) can be approximated

by smooth proper functions ui locally uniformly in Ωc, with C1,α convergence of the level sets
Σi
s away from the singular set Z and L2 convergence of the weak mean curvature Hi := HΣi

s
of

level sets for a.e. s > 0. Moreover, we can show that Hi converges to the mean curvature H
of the weak solution Σs of IMCF in locally L2 sense in any domain Ωt. In fact, by the coarea
formula and (2.7)–(2.8),∫

Ωi
t

φHi =

∫ t

0

∫
Σi

s

φHi

|∇ui|
dµisds

=

∫ t

0

∫
Σi

s

φ

(
|∇ui|2 + ε2i
|∇ui|2

− ε2i
∇ui · ∇HΣ̂i

s

|∇ui|4HΣ̂i
s

)
dµisds,

where φ ∈ C0
c (Ωt), Ωi

t = {x ∈ Ωc : ui(x) < t} and Ωt = {x ∈ Ωc : u(x) < t}. By the fact that
|∇u| > 0 a.e. on Σs and the weak convergence of ∇HΣ̂i

s
/HΣ̂i

s
, we have that

∫
Ωi

t
φHi →

∫
Ωt
φH

as i→∞. Similarly we have the convergence of
∫

Ωi
t
φH2

i →
∫

Ωt
φH2.

For any nonnegative Lipschitz function Φ ∈ Lip(0, t) with compact support in (0, t) and
ϕi = Φ ◦ ui, by (4.1) we have

−
∫

Ωt

f∇ϕi · νiHidvg =

∫
Ωt

ϕi
(
2∇f · νiHi + fH2

i − f |Ai|2
)
dvg

≤
∫

Ωt

ϕi

(
2∇f · νiHi +

n− 2

n− 1
fH2

i

)
dvg,

where we used |Ai|2 ≥ H2
i /(n− 1) in the last inequality. Taking the limit of i→∞, and using

the convergence of ui and Hi, we obtain that

−
∫

Ωt

f∇ϕ · νHdvg ≤
∫

Ωt

ϕ

(
2∇f · νH +

n− 2

n− 1
fH2

)
dvg (4.10)
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As u is the weak solution of IMCF, we have H = |∇u| a.e. in Ωt. Also note that by Rademacher’s
theorem, the Lipschitz function Φ is differentiable a.e. in (0, t). From the coarea formula and
(4.10), we have

−
∫ t

0
Φ′(s)

∫
Σs

fHdµsds =−
∫

Ωt

Φ′(s)∇u · νfHdvg = −
∫

Ωt

f∇ϕ · νHdvg

≤
∫

Ωt

ϕ

(
2∇f · νH +

n− 2

n− 1
fH2

)
dvg

=

∫
Ωt

ϕ

(
2∇f · ν +

n− 2

n− 1
fH

)
|∇u|dvg

=

∫ t

0
Φ(s)

∫
Σs

(
2∇f · ν +

n− 2

n− 1
fH

)
dµsds. (4.11)

For any 0 < t̄ < t and 0 < δ < (t− t̄)/2, define Φ by

Φ(s) =


0, on [0, t̄]
(s− t̄)/δ, on [t̄, t̄+ δ]
1, on [t̄+ δ, t− δ]
(t− s)/δ, on [t− δ, t]

The left hand side of (4.11) is equal to

1

δ

∫ t

t−δ

∫
Σs

fHdµsds−
1

δ

∫ t̄+δ

t̄

∫
Σs

fHdµsds

Since for a.e. s > 0, the level set Σi
s of ui converges to Σs in C1,α away from the singular set Z

of Hausdorff dimension at most n− 8 with L2 convergence of the weak mean curvature, taking
the limits δ → 0 in (4.11), we find that for a.e. 0 < t̄ < t∫

Σt

fHdµt −
∫

Σt̄

fHdµt̄ ≤
∫ t

t̄

∫
Σs

(
2∇f · ν +

n− 2

n− 1
fH

)
dµsds. (4.12)

To show (4.12) holds for all pair of 0 < t̄ < t, we use the C1,β convergence (2.3) and the weak
convergence of mean curvature. For any t > 0, we can find a sequence of time ti ↗ t such that
0 < t̄ < ti satisfies (4.12), then Σti → Σt in C1,β away from the singular set Z as i → ∞ by
(2.3). As the weak mean curvature of Σti equals to |∇u| a.e. and is uniformly bounded for a.e.
x ∈ Σti , it follows from the Riesz Representation theorem that (see (1.13) in [10])∫

Σti

HΣti
νΣti
·X →

∫
Σt

HΣtνΣt ·X, X ∈ C0
c (TM). (4.13)

Then ∫
Σt

fHdµt = lim
i→∞

∫
Σti

fHtidµti (4.14)

and (4.12) holds for all t > 0 and a.e. t̄ > 0 with t̄ < t. Similarly for any t̄ with 0 < t̄ < t, we
can find a sequence of time t̄i ↘ t̄ such that 0 < t̄i < t satisfies (4.12). By the convergence (2.3)
and (4.13), we have ∫

Σ′
t̄

fHdµ′t̄ = lim
i→∞

∫
Σt̄i

fHdµt̄i . (4.15)



MINKOWSKI-TYPE INEQUALITY IN SCHWARZSCHILD SPACE 11

Recall that Heidusch [8] proved the optimal local C1,1
loc regularity for the level sets Σt̄ and Σ′t̄

away from the singular set Z. By [10, (1.15)] the weak mean curvature H of Σt̄ and Σ′t̄ satisfy

H = 0 on Σ′t̄ \ (Σt̄ ∪ Z), HΣ′
t̄

= HΣt̄
≥ 0, a.e. on Σ′t̄ ∩ Σt̄.

As the weak mean curvature H is nonnegative on Σt̄, we deduce that

∫
Σ′

t̄

fHdµt̄′ ≤
∫

Σt̄

fHdµt̄. (4.16)

Thus by (4.14)–(4.16), we conclude that (4.12) holds for all pair of 0 < t̄ < t. Since Σ is assumed
to be outward minimizing, (4.12) is also true for t̄ = 0.

Finally, for the first integral on the right hand side of (4.12), using the divergence theorem
and noting that ∆f = 0 on M , we get

∫
Σs

∇f · ν =

∫
Ωs∪Ω

∆f +

∫
∂M
∇f · ν∂M = m(n− 2)ωn−1, (4.17)

by first computing on Σi
s and then passing to limits. Inserting (4.17) into (4.12), we obtain the

inequality (4.9) for all pair of 0 < t̄ < t. �

Proposition 4.3. Under the assumption of Lemma 4.2, the quantity Q(t) is monotone non-
increasing for all t. Moreover, if Q(t) = Q(t̄) for some pair 0 < t̄ < t, we have that Σs is umbilic
a.e. for a.e. s ∈ [t̄, t].

Proof. By Gronwall’s lemma, (4.9) implies that

∫
Σt

fHdµt + 2(n− 1)mωn−1 ≤
(∫

Σt̄

fHdµ+ 2(n− 1)mωn−1

)
e

n−2
n−1

(t−t̄)

for all 0 < t̄ < t. Since Σ is outward minimizing, Theorem 2.1 implies that |Σt| = et|Σ| for all
t ≥ 0. Then the quantity Q(t) is monotone non-increasing for all t ≥ 0. If Q(t) = Q(t̄) for some
pair 0 < t̄ < t, from the proof of Lemma 4.2, we have that H2 = (n− 1)|A|2 a.e. on Σs for a.e.
s ∈ [t̄, t]. �

4.2. The case that Σ is null homologous. Now we consider the case that the bounded
domain Ω has boundary ∂Ω = Σ, which is null-homologous and outward minimizing. By the
argument in [10, §6], we fill-in the region W bounded by the horizon ∂M to obtain a new space

M̃ , and then run the weak IMCF in M̃ with initial condition Σ, except that when the flow Σt is
nearly entering the filled-in region W , we jump to a strictly minimizing hull F enclosing Ωt∪W .
Then we restart the flow from ∂F .
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Ωt1

F

W

Ω

Σt1

Σ∂F

Figure 1: F is strictly minimizing hull of Ωt1 and W

(Mn, g)

Suppose that t1 is the jump time. Then before t1, each Σt is null homologous. Using the
divergence theorem as in (4.17), we have that

∫
Σt
∇f · ν = 0 if t ≤ t1. The similar argument as

in Lemma 4.2 and Proposition (4.5) implies that

|Σt|−
n−2
n−1

∫
Σt

fHdµt

is monotone non-increasing in time t if t ≤ t1. As |Σt| is increasing and the mass m > 0, we
have that Q(t) is strictly decreasing for t ≤ t1.

Lemma 4.4. ∂F is C1,α away from a singular set of Hausdorff dimension at most n− 8.

Proof. If n < 8, then Σt1 = ∂Ωt1 is C1,α and ∂M is smooth, which combined with the Regularity
Theorem 1.3 (ii) of [10] implies that ∂F is C1,α. If n ≥ 8, then Σt1 has singular set of Hausdorff
dimension at most n−8. By the variational formulation of the weak solution of IMCF described
in [10, §1], Ωt1 = {u < t1} minimizes Ju in Ωc among sets of locally finite perimeter F with
F∆E ⊂⊂ Ωc, where

Ju(F ) = JKu (F ) = |∂∗F ∩K| −
∫
F∩K

|∇u|.

and K is any compact set containing F∆E. Since |∇u| is bounded above locally uniformly by
Theorem 3.1 of [10], the obstacle Ωt1 ∪W satisfies the assumption of the main theorem in [4]
(see also Proposition 2 of [19] ). Therefore, as the strictly minimizing hull of Ωt1 ∪W , F has
boundary ∂F which is C1,α away from a singular set of Hausdorff dimension at most n− 8. �

Since Σt1 is outward minimizing and F ⊃ Ωt1 , we have

|∂F | ≥ |Σt1 |. (4.18)

Now we assume that n < 8. As Σt1 is C1,α with nonnegative bounded weak mean curvature, the
standard Calderon-Zygmund estimate implies that Σt1 is of class W 2,p for all 1 ≤ p < ∞. We
can choose a sequences of sets Ei containing Ωt1 by mollification such that ∂Ei is smooth and
converges to Σt1 = ∂Ωt1 in C1,α ∩W 2,p. The Regularity Theorem 1.3 and (1.15) of [10] imply
that ∂(Ei ∪W )′ is C1,1 and H = 0 on ∂(Ei ∪W )′ \ ∂(Ei ∪W ). Thus∫

∂(Ei∪W )′
fH =

∫
∂(Ei∪W )′∩∂Ei

fH =

∫
∂Ei

fH −
∫
∂Ei\∂(Ei∪W )′

fH
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It can be seen that (Ei ∪W )′ → F and ∂(Ei ∪W )′ → ∂F in C1,α. Passing to limits and using
the nonnegativity of the weak mean curvature on Σt1 , we obtain∫

∂F
fH ≤

∫
Σt1

fH. (4.19)

The estimates (4.18)–(4.19) imply that the quantity Q(t) defined in (1.7) does not increase
during the jump. Similar as in [10, §6], we can show that F is a suitable initial condition to
restart the flow. We approximate Σt1 in C1 by a sequence of smooth hypersurfaces ∂Ui with
uniformly bounded mean curvature and Ui ⊃ Ωt1 , using Lemma 6.2 of [10]. Then by Regularity
Theorem 1.3 and (1.15) of [10], ∂(Ui ∪W )′ is C1,1 and has uniformly bounded mean curvature
as well. It can be checked that ∂(Ui ∪W )′ converges to ∂F in C1. Then slightly mollifying
∂(Ui ∪W )′ shows that ∂F is approximated in C1 by smooth hypersurfaces ∂F i with uniformly
bounded mean curvature. The Existence Theorem 3.1 of [10] gives a solution ui of weak IMCF
F it , t > 0 with initial condition F i, and uniform bounds on the gradient |∇ui|. Passing to the
limits and applying the Compactness Theorem 2.1 of [10], we obtain the solution u of the weak
IMCF with initial condition F . The proof of Proposition 4.5 and the argument in [10, p.407]
imply that Q(t) is monotone non-increasing in t for t ≥ 0 along the weak IMCF Ft with the
initial condition F . Thus we conclude that Q(t) is monotone non-increasing for all time t.

Proposition 4.5. Let n < 8 and Ω be a bounded domain with smooth boundary ∂Ω = Σ in the
Schwarzschild space (Mn, g). Assume that Σ is outward minimizing. Then Q(t) is monotone
non-increasing for all time along the weak IMCF.

5. Proof of the main theorem

In §4, we proved that the quantity Q(t) is monotone non-increasing along the weak IMCF. In
this section, we first estimate the limit of Q(t) as t→∞.

Proposition 5.1. We have

lim
t→∞

Q(t) = (n− 1)ω
1

n−1

n−1 . (5.1)

Proof. Denote by U = Rn \Dr0 the asymptotic flat end of M . The Schwarzschild metric on U
is

g =
(

1 +
m

2
r2−n

) 4
n−2 (

dr2 + r2gSn−1

)
,

For any λ > 0, define the blow down object by

Σλ
t := λΣt = {λx : x ∈ Σt}, gλ(x) := λ2g(x/λ).

Let r(t) be such that |Σt| = ωn−1r(t)
n−1. Then |Σ1/r(t)

t |g1/r(t) = ωn−1 and the blow down Lemma

7.1 of [10] implies that

Σ
1/r(t)
t → ∂D1 (5.2)

in C1,α as t → ∞. As in the proof of Lemma 7.1 of [10], there exist constants C,R0 > 0
depending only on the dimension n such that

|∇u(x)| ≤ C

|x|
, for all |x| ≥ R0.

By the property (d) of the weak solution of IMCF, we have

|H| = |∇u| ≤ C

|x|
≤ C

r(t)
, a.e., on Σt (5.3)
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for a.e. sufficiently large t, where we have used (5.2) to relate |x| to r(t). The mean curvature

of Σ
1/r(t)
t with respect to the metric g1/r(t) satisfies

H1/r(t)(x) = r(t)H(r(t)x) ≤ C, a.e. x ∈ Σ
1/r(t)
t . (5.4)

for a.e. sufficiently large t. Write Σ
1/r(t)
t as graphs of C1,α functions over ∂D1. By (5.2) and

(5.4), for any sequence of time ti → ∞ such that (5.4) holds for time ti, we have the weak
convergence of the mean curvature∫

Σ
1/r(ti)
ti

H
Σ

1/r(ti)
ti

ν
Σ

1/r(ti)
ti

·X →
∫
∂D1

H∂D1ν∂D1 ·X, X ∈ C0
c (TM), (5.5)

Recall that

f(x) =
√

1− 2ms(x)2−n = 1−m|x|2−n +O(|x|4−2n), (5.6)

where

s(x) = |x|
(

1 +
m

2
|x|2−n

) 2
n−2

, ∀ x ∈ U.

Then by (5.2), and (5.4) – (5.6), we have that

lim
ti→∞

|Σti |
−n−2

n−1

∫
Σti

fHdµti =ω
−n−2

n−1

n−1 lim
ti→∞

r(ti)
−(n−2)

∫
Σti

fHdµti

=ω
−n−2

n−1

n−1 lim
ti→∞

∫
Σ

1/r(ti)
ti

f(r(ti)x)H1/r(ti)(x)dµ
Σ

1/r(ti)
ti

=(n− 1)ω
1

n−1

n−1 .

Observe that 2(n− 1)mωn−1 is a fixed constant and |Σti | goes to infinity as ti →∞. Therefore

lim
ti→∞

Q(ti) = (n− 1)ω
1

n−1

n−1 ,

which combined with the monotonicity of Q(t) yields the estimate (5.1). �

We now complete the proof of our main theorem.

Proof of Theorem 1.1. Proposition 5.1 together with the monotonicity of Q(t) yields the in-
equality (1.5) in Theorem 1.1 immediately. To complete the proof of Theorem 1.1, it remains
to prove the rigidity of the inequality (1.5).

If equality holds in (1.5) for Σ, then Q(0) = Q(t) for all t > 0. Then the initial hypersurfae
Σ must be homologous to the horizon, because if not, Q(t) should be strictly decreasing during
the jump as described in §4.2. From the proof of Lemma 4.2, the fact that Q(0) = Q(t) for all
t > 0 also implies H2 = (n − 1)|A|2 a.e. on Σt for almost all time t ≥ 0. Since Σ is smooth
and outward minimizing, Theorem 2.1 implies that Σt → Σ locally in C1,β as t→ 0+. We can
choose a sequence of time ti → 0+ with

∫
Σti
|Å|2 = 0 and Σti converges to Σ locally in C1,β as

ti → 0+. The lower semicontinuity implies∫
Σ
|Å|2 ≤ lim inf

ti→0+

∫
Σti

|Å|2 = 0.

and then Σ is totally umbilic in the Schwarzchild space (Mn, g) = (Rn \Dr0 , gij). Denote the

Schwarzschild metric g = e2ψδij on Rn \Dr0 , where

ψ =
2

n− 2
ln
(

1 +
m

2
r2−n

)
.
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Let ν̄, H̄ and h̄ji be the unit outward normal, mean curvature and shape operator of Σ with
respect to (Rn \ Dr0 , δij). Then they satisfies the following transformation formula under the
conformal change of the ambient metric:

eψH = H̄ + dψ · ν̄, ν = e−ψν̄, (5.7)

h̊ji = hji −
H

n− 1
δji = e−ψ

(
h̄ji −

H̄

n− 1
δji

)
= e−ψ˚̄hji , (5.8)

where h̊ji and ˚̄hji are the trace-less second fundamental forms of Σ in Rn \Dr0 with respect to the
metrics δij and gij respectively. Equation (5.8) says that the totally umbilicity of a hypersurface
is invariant under the conformal change of the ambient metric. Then Σ is totally umbilic in
Rn \Dr0 with respect to the Euclidean metric δij and therefore is a sphere in (Rn \Dr0 , δij).

We next show that Σ is a sphere centered at the origin in (Rn \ Dr0 , δij), and is a slice
{s} × Sn−1 if considered as a hypersurface in the Schwarzschild space. Suppose that the radius
of the sphere Σ is r. Then the mean curvature of Σ in (Rn \Dr0 , δij) is H̄ = (n− 1)/r and

dψ · ν̄ = − mr1−n

1 + m
2 r

2−n∂r · ν̄ ≥ −
mr1−n

1 + m
2 r

2−n . (5.9)

This implies that the mean curvature of Σ in the (Rn\Dr0 , gij) satisfies H = e−ψ(H̄+dψ ·ν̄) > 0.
Since Σ is strictly mean convex, starting from Σ there exists a unique smooth solution to the
IMCF (2.1) in Schwarzschild space, which coincides with the weak solution for a short time
t ∈ [0, δ) by the Smooth Start Lemma 2.4 of [10]. Arguing similarly as before, each Σt, t ∈ [0, δ),
is a sphere in (Rn \ Dr0 , δij). By the conformal transformation formulas (5.7), Σt solves the
following corresponding flow in Euclidean space (Rn \Dr0 , δij)

∂

∂t
X(x, t) =

1

H̄ + dψ · ν̄
ν̄(x, t), t ∈ [0, δ). (5.10)

Under the flow (5.10), the shape operator h̄ji of Σt in (Rn \Dr0 , δij) evolves by

∂

∂t
h̄ji = −∇j∇i

(
1

H̄ + dψ · ν̄

)
−

h̄ki h̄
j
k

H̄ + dψ · ν̄

=
∇j∇i(dψ · ν̄)(
H̄ + dψ · ν̄

)2 − 2∇j(dψ · ν̄)∇i(dψ · ν̄)(
H̄ + dψ · ν̄

)3 −
H̄2δji

(n− 1)2
(
H̄ + dψ · ν̄

)
As in (5.9),

dψ · ν̄ = − mr1−n

1 + m
2 r

2−n∂r · ν̄ = v(|X|2)X · ν̄,

where |X|2 = r2, X · ν̄ = r∂r · ν̄ and v(·) : R+ → R is a function given by

v(x) := − mx−n/2

1 + m
2 x

1−n
2

.

Then

∇i(dψ · ν̄) =

(
2v′〈X, ν̄〉+

H̄

n− 1
v

)
〈X, ei〉
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and

∇j∇i(dψ · ν̄) = 4

(
v′′〈X, ν̄〉+

H̄

n− 1
v′
)
〈X, ei〉〈X, ej〉

+

(
2v′〈X, ν̄〉+

H̄

n− 1
v

)(
1− H̄

n− 1
〈X, ν̄〉

)
δji .

Since Σt is totally umbilic for t ∈ [0, δ), the trace-less second fundamental form ˚̄hji is zero for all
time t ∈ [0, δ). Then

0 =
∂

∂t
˚̄hji =

∂

∂t

(
h̄ji −

H̄

n− 1
δji

)

=

4
(
v′′〈X, ν̄〉+ H̄

n−1v
′
)

(
H̄ + dψ · ν̄

)2 −
2
(

2v′〈X, ν̄〉+ H̄
n−1v

)2

(
H̄ + dψ · ν̄

)3


×
(
〈X, ei〉〈X, ej〉 −

|X>|2

n− 1
δji

)
,

whereX> denotes the tangential part of the position vector. It follows that 〈X, ei〉2 = |X>|2/(n− 1)
on Σt and is independent of the direction ei. This can occur only if position vector X is parallel
to the normal vector at X and each Σt, t ∈ [0, δ), is a sphere centered at the origin. Therefore,
each Σt, t ∈ [0, δ), is a slice {s} × Sn−1 in the Schwarzschild space. This completes the proof of
Theorem 1.1. �
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