A SHARP SCHRODINGER MAXIMAL ESTIMATE IN R2
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ABSTRACT. We show that lim;— e® f(z) = f(x) almost everywhere for all
f € H*(R?) provided that s > 1/3. This result is sharp up to the endpoint.
The proof uses polynomial partitioning and decoupling.

1. INTRODUCTION

The solution to the free Schrodinger equation

{iut—Auzo, (z,t) e R" xR

(L1) u(z,0) = f(z), zeR"

is given by
¢'A f(z) = (2m) " / /(= 1IF) ) de.

We consider the following problem posed by Carleson in [5]: determine the opti-
mal s for which lim;_, €™ f(x) = f(z) almost everywhere whenever f € H*(R").
Our main result is the following;:

Theorem 1.1. For every f € H*(R?) with s > 1/3, lim;_,¢ e'*2 f(x) = f(z) almost
everywhere.

Recently, Bourgain [3] gave examples showing that such convergence can fail for
any s < 1/3, and so Theorem 1.1 is sharp up to the endpoint.

This problem originates from Carleson [5], who proved convergence for s > 1/4
when n = 1. Dahlberg and Kenig [6] showed that the convergence does not hold for
s < 1/4 in any dimension. Sj6lin [18] and Vega [20] proved independently the con-
vergence for s > 1/2 in all dimensions. The sufficient condition for pointwise con-
vergence was improved by Bourgain [1], Moyua-Vargas-Vega [16], and Tao-Vargas
[19]. The best known sufficient condition in dimension n = 2 was s > 3/8 , due
to Lee [13] using Tao-Wolff’s bilinear restriction method. In general dimension
n > 2, Bourgain [2] showed the convergence for s > 1/2 —1/(4n), using multilinear
methods. When n = 2, this approach gives a different proof of Lee’s result for
s> 3/8.

For many years, it had seemed plausible that convergence actually holds for
s > 1/4 in every dimension. Only in 2012, Bourgain [2] gave a counterexample
showing that this is false in sufficiently high dimensions. Improved counterexam-
ples were given by Lucéd-Rogers [14] [15] and Demeter-Guo [7]. Very recently, in [3],

Bourgain gave counterexamples showing that convergence can fail if s < D) In

particular, for n = 2, convergence can fail if s < 1/3.

We will follow the standard approach by bounding the associated maximal func-
tion. We use B"(c,r) to represent a ball centered at ¢ with radius r in R™, and
1
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use Xg to denote the characteristic function of any measurable set E. For brevity,
B(e,r) represents B2(c,r), a ball in R2.

Theorem 1.2. For any s > 1/3, the following bound holds: for any function
fe H*(R?),
(1.2)

sup [e"2f|
0<t<1

< Csl| fll s r2)-

L3(B(0,1))

If the support of f lies in A(R) = {¢ € R? : [¢] ~ R}, then Theorem 1.2 boils
down to the bound

(1.3) sup [e"2 f]

0<t<1

< C R fl 2
L3(B(0,1)

After parabolic rescaling, this bound reduces to the following estimate for functions
f with f supported in A(1).

Theorem 1.3. For any € > 0, there exists a constant C¢ such that

itA €
(1.4) I, 552 1l ooy < CR A1

holds for all R > 1 and all f with suppf C A1) ={€ e R?: ¢ ~1}.

Here is an outline of the proof of Theorem 1.3. The proof uses polynomial par-
titioning. This technique was introduced by Nets Katz and the second author in
[8], where it was applied to incidence geometry. In [9] and [10], the second au-
thor applied this technique to restriction estimates in Fourier analysis. Polynomial
partitioning is a divide and conquer technique. We begin by finding a polynomial
whose zero set divides some object of interest into equal pieces. For instance, in
[8], it was proven that for any finite volume set E C R3 and any degree D > 1,
there is a polynomial P of degree at most D so that R®\ Z(P) is a union of ~ D3
disjoint open sets O;, and the volumes |O; N E| are all equal. Hence for any 4,
|E| < D3|O; N E|. In our paper, we choose the polynomial P to behave well with
respect to the LPL{ norm of 2 f. For any p < ¢ < co and any degree D > 1, we
show that there is a polynomial P of degree at most D so that R\ Z(P) is a union
of ~ D3 disjoint open sets O;, and for any 1,

ws) A | S D¥Xo, A |

LELY(B(0,R)x[0,R] ing(B(o,R)x[mR])'

(To prove Theorem 1.3, we will use ¢ finite but very large and p close to 3. The
degree D will be a tiny power of R, so D is large compared to 1, but very small
compared to R.)

Breaking spacetime into cells O; is useful because of the way it interacts with
the wave packet decomposition of €2 f, which we now recall. We decompose f
into pieces that are localized in both physical space and frequency space. We tile
the physical space B(0,R) with RY2-cubes v, and we tile the frequency space
B(0,1) with R='/?-cubes #. Then we decompose f as f = > 6. fow, where fo,
is essentially supported on v in physical space and essentially supported on 6 in
frequency space. Each function e’*4 fo,. is called a wave packet. The restriction of
€A fg , to the domain B(0, R) x [0, R] is essentially supported on a tube Ty, of
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radius R'/? and length R. This tube intersects the time slice {t = 0} at v, and the
direction of the tube depends on 6.

A key fact in the applications of polynomial partitioning in combinatorics is
that a line can enter at most D + 1 of the cells O;. To see this, we note that the
polynomial P can vanish at most D times along a line, unless it vanishes on the
whole line, and so a line can cross Z(P) at most D times. A wave packet e®*2 fy ,
is supported on a tube Tp,, of radius R'/2. This tube can potentially enter many
or even all the cells O;, but it cannot penetrate deeply into very many cells. We
define W to be the R'/2-neighborhood of Z(P) in B(0, R) x [0, R], and we define
O} to be O;\W. Now the central line of Ty ,, can enter at most D+ 1 of the original
cells O;, and so the tube Ty, can enter at most D + 1 of the smaller cells O}. In
other words, each wave packet e®*® fo,» is essentially supported on the union of W
and D + 1 cells O;.

We can use induction to study e**2f on each smaller cell O}. To study e
on a cell O}, we only need to take account of those wave packets that intersect O.
Therefore, we define f; to be the sum of fy, over those pairs (6,v) for which Ty,
enters O). On the cell O}, e®*2 f is essentially equal to 2 f;. We can control the
L? norms of the f; by using the fact that fy, are (approximately) orthogonal and
the fact that each tube Ty, enters < D smaller cells O). In particular, we will
prove that

itAf

Y Ifill3 S DISIE.

We can now use induction to control e**2 f on each cell O}. In this way, we get good
control of the contribution to He”AfHLng(B(QR)X[OﬂRD coming from the union of
all smaller cells O}. It remains to control the contribution coming from W.

The most difficult scenario is the following: e®?f is a sum of wave packets
eits fo,, for which the tubes Ty, are all contained in W. The polynomial parti-
tioning method allows us to reduce the original problem to this special scenario.
This scenario indeed occurs in Bourgain’s example in [3]. Let us take a moment to
describe this example.

In the example from [3], the zero set Z(P) can be taken to be a plane ¢t = z1. The
set W is a planar slab of thickness R'/2. The solution e**2 f is essentially supported
in W. On the plane t = 1, e*® f is a solution of the Schrodinger equation in 1
+ 1 dimensions. In other words, we can choose coordinates (y,s) on this plane
and an initial data ¢ so that e**2¢ is essentially equal to e®” f on the plane. Also,
|e®A f(x1,22)| is approximately constant as we vary x; within the slab W. The
initial data is chosen so that [e”*2g(y)| is large on a set X of ~ R3/2 unit squares
in [0, R] x [0, R]. Tt follows that |e®® f(x)]| is large on a set of ~ R3/? 3-dimensional
rectangles of dimensions R'/? x 1 x 1 in B(0, R) x [0, R]. Moreover, the projections
of these rectangles are roughly disjoint, and so they cover a positive proportion of
B(0, R). Therefore sup.,. p [e*2 f(x)] is large on a positive proportion of B(0, R).

In this construction, the set X needs to be fairly sparse because the projections
of the RY/2 x 1 x 1 rectangles need to be disjoint in B(0, R). In particular, there
can be at most R'/? unit squares of X in any R'/2-ball in [0, R] x [0, R]. In the
example of [3], [e®*Ag| ~ R™3/12||g||p2((0,r)) on the set X. During our proof, we
will need to show that this quantity R~5/12||g|| > could not be any larger. In rough
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terms, we need to show that a solution e***¢g cannot focus too much on a set X
which is sparse and spread out.

We will prove such bounds using the [? decoupling theorem of Bourgain and
Demeter [4]. We think of these bounds as refinements of the Strichartz inequality.
Here is one such estimate:

Theorem 1.4. Suppose that g : R — C has frequency supported in B(0,1). Sup-
pose that Q1,Qa, ... are lattice R*/?-cubes in [0, R]?, so that

||eitAg||L5(Qj) is essentially constant in j.

Suppose that these cubes are arranged in horizontal strips of the form R x {to,to +
Rl/Q}, and that each strip contains ~ o cubes Q;. Let'Y denote Uj Q;. Then for
any € > 0,

"2 gl Loy < CeR o™ gll 2.

] - L

FIGURE 1. ~ o many cubes in a horizontal strip

The Strichartz inequality says that ||e?*4

gllze(o,r2) S ll9llz>- Theorem 1.4 says
that we get a stronger estimate when the solution e®*?g is spread out in space.
To get a sense of what the theorem says, consider the following example. Suppose
that e'*®g is a sum of o wave packets supported on disjoint R'/? x R rectangles.
We can take Y to be the union of these rectangles. By scaling, we can suppose
that |e?*2g| ~ 1 on these o rectangles and negligibly small elsewhere, and then a
direct calculation shows that [|e®g|lzs(v) ~ €2 gllrs(0.r12) ~ 2 ||gllL2((0,R))-
So Theorem 1.4 roughly says that if e®*®¢g is “as spread out as” o disjoint wave
packets, then its L norm cannot be much bigger than the L% norm of o disjoint
wave packets.

This theorem helps us to control the size of e"*~g on a sparse, spread out set X
as above. Suppose that the function e*“g is evenly spread out on [0, R]? in the
sense that [|e?g|rs(q) is roughly constant among all R/2-boxes @ C [0, R]*. In
this case, we can take ¢ = R'/? in Theorem 1.4, which gives

itA

e gl Lo (o, m7) S B0 ||g]l 2

In the example from [3], X contains ~ RY? unit squares in each R'/2-box of
[0, R]z, and each of these boxes indeed has a roughly equal value of [[e?®g| 1s(q)-
If |e®®g| ~ H on the set X, then Theorem 1.4 gives

H|XV < e gl pso,mzy S B gl 2



A SHARP SCHRODINGER MAXIMAL ESTIMATE IN R? 5

Since |X| ~ R3?, we get the bound H < R%/12%¢|g||,>. This upper bound
matches the behavior of the example from [3] up to a factor R°.

Theorem 1.4 lets us deal with the case that Z(P) is a plane. We need to deal
with the more general case that Z(P) is a possibly curved surface of degree at most
D. We prove a more general version of Theorem 1.4, Theorem 7.1, which covers
the case of wave packets concentrated into a curved surface.

Acknowledgements. The second author is supported by a Simons Investigator
grant.

2. MAIN INDUCTIVE THEOREM

Here we state a slightly more complicated theorem which will imply all the the-
orems in the introduction. Our proof uses induction, and we need the slightly more
complicated formulation to make all the inductions work. First of all, the poly-
nomial partitioning involves a topological argument, and the topological argument
does not work well with the sup appearing in our maximal function. Therefore, we
replace the norm LPL$° with the norm LP LY for q very large. Another technical
issue has to do with parabolic rescaling. Suppose that fis supported in a smaller
ball B(&, M~1) € B(0,1). In this situation, one can often apply parabolic rescal-
ing to reduce the problem at hand to a problem on a smaller ball in physical space.
However, the change of coordinates in such a parabolic rescaling does not interact
well with mixed norms of the form L2L{. Therefore, we instead do induction on
the size of the ball B(£y, M 1), proving slightly stronger bounds when the ball is
small. Taking account of these small issues, we formulate our result in the following
way:

Theorem 2.1. For p > 3, for any € > 0, there exists a constant C. such that for
any q > 1/,

(2.6) )< Cp.e M~ RY| £]l2

||eitAf||L§L‘j(B(O,R)><[0,R]

holds for all R > 1, any & € B%(0,1), any M > 1 and all f with supp]? -
B2(&, M~1).

Let us quickly explain how Theorem 2.1 implies the theorems in the introduction.
We note that by the dominated convergence theorem we have

HOi?ERka'”Lv(B(o,R)) = Jim_ 12 Fll 2 2230,y 0,1

for any L2?-function f with compact Fourier support or any Schwartz function f.
Therefore, Theorem 2.1 implies that for any R > 1 and any f with the support of
f € B(0,1), and for any p > 3, we have

(2.7) < Cp R fll2

HeitAfH LY L (B(0,R)x[0,R]) =

So far we assume p > 3. But it is straightforward to prove a bound of the form

€2 Fll L2 2o (B0, Ry x[0,7)) < RED| f]|2-
Combining these bounds using Holder’s inequality, we see that Equation (2.7) holds
for p = 3 as well. This establishes Theorem 1.3.
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We write A 3 B if A < C.RB for any ¢ > 0. Suppose now that g is supported
in A(R). To prove Theorem 1.2, we want to show that

(2:8) e < R\l re.

L3(B(0,1))

sup [e"2g|

0<t<1

After parabolic rescaling, we are led to a function f with fsupported in A(1),
and we need to show the bound

sup |eitAf|
0<t<R?

S I llze-

L3(B(0,R))

But applying Theorem 1.3 with R? in place of R gives:

sup [ f|
0<t<R?

< I lze-
L3(B(0,R2))

This implies Equation (2.8). Now, given s > 1/3 and f € H*(R?), we decompose
f in a Littlewood-Paley decomposition: f = Zkzo fr where fy is supported in

B(0,1) and fi is supported in A(2%) for k > 1. We have ||felze < 2755 f||s-.
Applying (2.8) to each f and using the triangle inequality, we get Theorem 1.2.

Theorem 1.2 implies Theorem 1.1 by a standard smooth approximation ar-
gument, which we briefly recall. If f is Schwartz, then it is well-known that
e f(z) — f(x) uniformly in 2. Schwartz functions are dense in H*, and so
we can write f = g+ h where g is Schwartz and ||h|| g < €'C. Since g is Schwartz,
we can find a time t. > 0 so that |[e?®g(x) — g(x)| < € for all z and all 0 < ¢ < t,.
On the other hand, by the maximal estimate in Theorem 1.2, [e®*Ah(z)| < € for all
0<t¢t<1andallzinB(0,1)\ X, where | X| < e. Taking a sequence of ¢ — 0 ex-
ponentially fast, and doing a little measure theory, it follows that e™2 f(z) — f()
for almost every x € B(0,1). The same applies to any other ball, and we see that
e f(x) — f(x) for almost every z € R2.

We also remark that the local bound (1.2) from Theorem 1.2 can be used to derive
immediately a global estimate in L?(R?) for the maximal function supy.,<; [e!*® f|,
following from Theorem 10 in [17]. We are indebted to K. Rogers for pointing this
out to us.

In the rest of the paper, we prove Theorem 2.1. In Section 3, we review poly-
nomial partitioning, and in Section 4, we review wave packet decomposition. Then
we begin the proof of Theorem 2.1 in Section 5.

3. POLYNOMIAL PARTITIONING

First we state a variation of the ham-sandwich theorem, which introduces a
polynomial P in the polynomial ring R[z, t] such that the variety Z(P) = {(x,t) €
R™ x R : P(x,t) = 0} bisects every member in a collection of some quantities. It
relies on Borsuk-Ulam Theorem, which asserts that if F : SV — RN is a continuous
function, where SV is the N-dimensional unit sphere, then there exists a point

v € SN with F(v) = F(—v).
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Lemma 3.1. If Wy, Wa,--- ,Wx € LLLT(R™ x R),1 <7 < 0o, then there exists a
non-zero polynomial P on R™ x R of degree < ¢, N*/ ("1 such that for each W,

HX{P>0}WJ HL;L;(R"XR) - ||X{P<0}WJ' HL;L;(R"xR)'

Proof. Let V be the vector space of polynomials on R™ x R of degree at most D,

then
D 1
DimV:( T )Nn DL
n+1

So we can choose D ~ NY("+1) guch that DimV > N + 1, and without loss of
generality we can assume DimV = N + 1 and identify V with R¥*!1. We define a
function G as follows:
sV cv\{0} & RN
P {GJ (P) é'vzl )
where
G;(P) = HX{P>0}WJHL;L{(RWR) - HX{P<0}WJ'HL;L;(RWR)7
it is obvious that G(—P) = —G(P). Assume that the function G is continuous, then
Borsuk-Ulam Theorem tells us that there exists P € SV C V\{0} with G(P) =
G(—P), hence G(P) =0, and P obeys the conclusion of Lemma 3.1. It remains to
check the continuity of the functions G; on V\{0}.
Suppose that P, — P in V\{0}. Note that

G (Px) — G3(P)| < 2HX{P1¢P§0}WJ'HL;L;(RWR) )
while P, — P implies that

() U {(.t) : Pi(z,t) - P(x,t) <0} € P7H(0).

ko k>ko

By the dominated convergence theorem,

kiigloo HXUkzko{PkPSO}WjHL}EL;'(R"X]R) = HX{P*(O)}WJHL}CL;'(RWR) =0.

This proves that limy_, |G;(Px) — G;(P)| = 0, showing that G, is continuous on
V\{0}. O

By applying Lemma 3.1 repeatedly, we get the following polynomial partitioning
result:

Theorem 3.2. If W € LLLT(R" xR)\{0},1 < r < oo, then for each D there exists
a non-zero polynomial P of degree at most D such that (R™ x R)\Z(P) is a union
of ~y, D™ disjoint open sets O; and for each i we have

||W||L;Lg(Ran) < ey D" ||XOiWHL;L;(Ran)'

Proof. By Lemma 3.1, we obtain a polynomial P; of degree < 1 such that
||X{P1>0}W||L;L{(R"x1g) = ||X{P1<0}W||L;LQ(RWR)'

Next, we let W, := X(p 50y W and W_ := X;p .03 W, and by Lemma 3.1 again we
obtain a polynomial P, of degree < 2%/("+1) such that

”X{P2>O}Wj"L}TLtT(R7L><R) = HX{P2<0}WjHL}CL{(]R"XR)’
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for j = 4, —. Continuing inductively, we construct polynomials Py, Py, --- , Ps. Let
P :=T];_; Pe. The sign conditions of the polynomials cut (R" x R)\Z(P) into 2¢
cells O;, and by construction and triangle inequality we have that, for each 1,

W5y gncmy < 2°1X0 Wl 1y vy

By construction, deg P, < 2v=1/(+1)  therefore deg P < ¢,2%/("*t). We can
choose s such that ¢,2% (1) ¢ [D/2, D], then deg P < D and the number of cells
98 ~n Dn+1. O

Definition 3.3. We say that a polynomial P is non-singular if VP(z) # 0 for each
point z in Z(P).

It is well-known that non-singular polynomials are dense in the space of all
polynomials, c¢f. Lemma 1.5 in [9]. Following from the density of non-singular
polynomials and the proof of Theorem 3.2, we can assume that the polynomial in
the partitioning theorem enjoys nice geometric properties.

Theorem 3.4. If W € LLLT(R" xR)\{0},1 < r < 0o, then for each D there exists
a non-zero polynomial P of degree at most D such that (R™ x R)\Z(P) is a union
of ~y, D™ disjoint open sets O; and for each i we have

< CnDnHHXO WHLlLT

r(RxR) = (R™ xR)"

Moreover, the polynamml P is a product of distinct non-singular polynomials.

4. WAVE PACKET DECOMPOSITION

We focus on the dimension n = 2 in the rest of the paper.

A (dyadic) rectangle in R? is a product of (dyadic) intervals with respect to given
coordinate axes of R?. A rectangle § = H?:l 0; in frequency space and a rectangle
v= H?=1 v;j in physical space are said to be dual if |0;||v;| = 1 for j = 1,2. We say
that (6,v) is a tile if it is a pair of dual (dyadic) rectangles. The dyadic condition
is not essential in our decomposition.

Let ¢ be a Schwartz function from R to R whose Fourier transform is non-
negative, supported in a small interval, of radius x (k is a fixed small constant),
about the origin in R, and identically 1 on another smaller interval around the
origin. For a (dyadic) rectangular box 6 = H2-:1 6;, set

(4.1) P0(61,&2) = H Lig, |1/2 ( |9é(0j)> )

il

Here ¢(6;) is the center of the 1nterval 6; and hence c¢(6) = (¢(61),c(62)) is the
center of the rectangle . We also note that ||pg|lz2 ~ 1. We let ¢(v) denote the
center of v. For a tile (f,v) and z € R?, we define

(42) Po(8) = TG (€).
We say that two tiles (¢,) and (6’,2') have the same dimensions if |0;] = |¢| for
all j, which then implies that |v;| = [v]| for all j. Let T be a collection of all tiles

with fixed dimensions and coordinate axes. Then for any Schwartz function f from
R? to R, we have the following representation

(4.3) Y=ce Y, fowi=ce Y, (feo)pon(@),

(0,v)eT (0,v)eT
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where ¢, is an absolute constant. This representation can be proved directly (see
[11]) or by employing inductively the one-dimensional result in [12].

We will only use tiles (6, v) where 6 is an R~ z-cubein frequency space and v is an
Rz-cube in physical space. Indeed, let @ be an R~z-cube (or ball) in B(0,1) C R2.
Let Ty be a collection of all tiles (6,v) such that v’s are Rz-cubes and ¢/ =
Then for any Schwartz function f with suppfc B(0,1), we have

(4.4) @) =ced . Y. (froou)pe ().

6 (6,v)ETy

Here 6’s range over all possible cubes in suppf. We use T to denote UgTy. It is
clear that

(4.5) S o) ~1I£13
(0,v)eT

We set

(4.6) Yo (x,t) = "%, (z) .

From (4.4), we end up with the following representation for e f :

(47) eitAf(:C) = Cx Z eitAfG,u(x) = Cx Z <fa <P0,u>¢9,y($,t) .

(6,v)eT (6,v)eT

We shall analyze the localization of 1y, in the physical and frequency space.
On the domain B(0, R) x [0, R], the function vy, is essentially supported on a
tube Ty, defined as follows. Let

(4.8) Ty, :={(z,t) € RZxR:0<t<R, |z — c(v) + 2te()] < R1/2+5}7

where § = €2 is a small positive parameter. We see that Ty, is a tube of length R,
of radius RY/?%9 in the direction Go(6) = (—2¢(6),1), and intersecting {t = 0} at
an R'/2+9_ball centered at c¢(v). In order to see this, let 1 be a Schwartz function
with Fourier transform supported in [~1,1] and 2t (t) > X[g11(¢). Here X[g 1 is the
characteristic function on [0,1]. On B(0, R) x [0, R], we have [¢g,,| < 2[5 [, where

(49) Ui 1) = o o, 10 5).

From the definitions of e®*® and g, it is easy to check that, by integration by
parts, v, ,, is essentially supported in the tube Ty ,. More precisely, we have

(410) W}G u(x t)| < (I7t)a

\/7 TS v
where X7, denotes a bump function satisfying that X7, =1 on {(z,t) e R*xR :
0<t< R, |z—c(v)+2te(0)] < VR}, and X7, = O(R™'%0) outside Tp,,. We can

essentially treat X , as XT@ ., the indicator functlon on the tube Tp .
On the other hand the Fourier transform of Vg, enjoys

o - (2 2
(11) T 61,6, = R (6,67 (S ER)).
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Hence @Zg\u is supported in the %—neighborhood of the parabolic cap over @, that is,

@12)  swpd, © {(666)  (61.8) €01 — (€ + I < £ ).

We denote this %—neighborhood of the parabolic cap over 6 by 6*. In the rest of
the paper, we can assume that the function 1y, is essentially localized in Ty, in

physical space, and 6* in frequency space.

5. CELL CONTRIBUTIONS

The rest of the paper is devoted to a proof of Theorem 2.1, using polynomial
partitioning. Recall that the functions f in Theorem 2.1 are Fourier supported in
B(&, M~1) C R? with arbitrary & € B(0,1) and M > 1. Also p > 3 and ¢ > ¢~ 2.
The function f can be assumed to be a Schwartz function since the collection of all
Schwartz functions is dense in L?. We need to prove the bound (2.6):

H itA f|

The proof of Theorem 2.1 is by induction on the radius R in physical space and
the radius 1/M in frequency space. First we cover the bases of the induction. If
M > R'Y then we bound [e®? f(z)| by M~!|f|l2 and Theorem 2.1 is trivial. If
RY/2-00) « M < R, then all associated wave packets are in the same direc-
tion, and by a direct computation we can bound the left-hand side of (2.6) by
RG=P)/2p)+00@)|| £||5, from which Theorem 2.1 follows immediately. Therefore we
can assume that M < v/R. We can assume that R is sufficiently large, otherwise
Theorem 2.1 is trivial. This covers the base of the induction. Now we turn to the
inductive step. By induction, we can assume that Theorem 2.1 holds for physical
radii less than R/2 or for physical radius R and frequency radius less than ﬁ

Let B}, denote the set B(0, R) x [0, R].

We pick a degree D = R€4, and apply polynomial partitioning with this degree to
the function Xg+, e f(z)[P. By Theorem 3.4 with r = ¢/p, there exists a non-zero
polynomial P of degree at most D such that (R? x R)\Z(P) is a union of ~ D3
disjoint open sets O; and for each ¢ we have

(5.1) 2 £ (@) [0 1oy < €D*[Xo, ™2 f ()]

LELY(B(0,R)x[0,R]) < Cp M~ R fl2-

P
LEL{(BR)

Moreover, the polynomial P is a product of distinct non-singular polynomials.
We define

(5.2) W := Npi/246 Z(P) N BE,

where § = €2 and Ngi 245 Z(P) stands for the R'/?>*9-neighborhood of the variety
Z(P) in R3. We have the wave packet decomposition for 2 f as in (4.7). For each
cell O;, we set

(5.3) O, :=[0;, NBR]\W and T, :={(0,v) €T : Ty, NO; # 0}.

Here Ty, is the tube associated to each tile (6,v), as defined in (4.8). For each
function f we define

(5.4) fir= > fow

(0,v)eT;
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From (4.10), it follows that on each cell O,
(5.5) A f(x) ~ A fi(x).

By the fundamental theorem of algebra, we have a simple yet important geometric
observation:

Lemma 5.1. For each tile (0,v) € T, the number of cells O} that intersect the tube
To, is <D+ 1.

Proof. It Ty, intersects O}, then the central line of Tp, must enter O;. On the
other hand, a line can cross the variety Z(P) at most D times, hence can enter at
most D + 1 cells O;. [l

By triangle inequality, we dominate He”A f(z)

(5.6) Z [Xore™ f(x)

LoLi(ss) Y

A

L2LY(BY)

We call the first term in (5.6) the cellular term, and the second the wall term. Using
induction we will see that the desired bound (2.6) holds unless the wall term makes
a significant contribution. In particular, we will show that (2.6) holds unless

(5.7) €’ pLaB) S < ROE|[Xyy el 1B
Define
(5.8) 1= { : H ZtAf( )HLPL'I(B*) = 100D3||X 'eZtAf HL"L"(B*)}

where c is the constant from (5.1). By triangle inequality and (5.1), for each i € Z¢,
we have

10
5P [ Xo,nwe™ f()]|"

H lmf HL"L“(B* $(BR)

< R3e X eztAf

HLPL‘I B%,)
So if Z¢ is non-empty, then (5.7) holds. For the moment, we are considering the
case where (5.7) does not hold, and so every index i is in Z, and hence |Z| ~ D3.
In addition, by Lemma 5.1,

(5.9) Z I1£ill5 <

Henceforth, by pigeonhole principle, there exists ¢ € 7 such that
(5.10) I£:ll3 < D2II£13 -

Now we use induction: we apply (2.6) to this special f; at radius %. We can cover

B(0, R) x [0, R] by O(1) cylinders with dimensions B(0, R/2) x [0, R/2]. Therefore,
we get the bound

3 S DIfI3-

H ztAf ||Lqu(B*) NDSHX ,eztAf HL"LQ(B*) NDSHezmﬁ )Hing(B})

SD* [CpeM = B fills] S D* [t =" B £11]



12 XIUMIN DU, LARRY GUTH, AND XIAOCHUN LI

Recall that D = R¢", and we can assume R is very large (compared to p). Since
p > 3 we have D37P < 1. Therefore, we see that induction closes (unless (5.7)
holds).

It remains to prove the desired bounds when (5.7) holds — when the wall term
is almost as big as the whole.

6. CONTRIBUTION FROM THE WALL: TRANSVERSE AND TANGENT TERMS

From Section 5, it remains to estimate the wall contribution, the second term
in (5.6). To deal with the contribution from the wall W, we break B}, into ~ R%°
balls B; of radius R'~°. (Recall from the last section that § is defined to be €2.)

For any tile (0,v) € T, we say that Ty, is tangent to the wall W in a given ball
B; if it satisfies that Tp, N B; N W # () and

(6.1) Angle(Go(0), T.[Z(P)]) < R~1/2+25

for any non-singular point z € 10Ty, N2B;NZ(P). Recall that Go(0) = (—2¢(0),1)
is the direction of the tube Ty ,. Here T,[Z(P)] stands for the tangent space to
the variety Z(P) at the point z, and by a non-singular point we mean a point z in
Z(P) with VP(z) # 0. Since P is a product of distinct non-singular polynomials,
the non-singular points are dense in Z(P). We note that if Ty , is tangent to W in
Bj, then Ty, N B; is contained in the R'/2%%-neighborhood of Z(P) N 2B;.

We say that Ty, is transverse to the wall W in the ball B; if it enjoys that
TgvyﬂBij#w and

(6.2) Angle(Go(0), T.[Z(P)]) > R™Y/2+2

for some non-singular point z € 107y, N 2B; N Z(P).

Let T, tang represent the collection of all tiles (6,v) € T such that Ty ,’s are
tangent to the wall W in B;, and T ¢;ans denote the collection of all tiles (6,v) € T
such that Tp ,’s are transverse to the wall W in B;.

We define f;tang := Z(e,u)eTj,tang fo.o and f; trans == 2(97V)6Tj,trans fo,o. Then
on B; N W, we have

(63) eitAf(m) ~ eitAfj,tang(I) + eitAfj,trans(-r) .

The following Lemma is about how a tube crosses a variety transversely, which
was proved by the second author in [9]. It says that Ty, crosses the wall W

transversely in at most RO many balls B;.

Lemma 6.1. (Lemma 3.5 in [9]) For each tile (6,v) € T, the number of R'~?-balls
B; for which (,v) € T rans is at most Poly(D) = RO(Y).

For points (z,t) € B;NW, we could break up €2 f(z) into a transverse term and
a tangent term. However, when we analyze the tangent contribution in subsequent
sections, we will need to use a bilinear structure. So we do a more refined decom-
position: we break ¢®2 f(x) into a linear transverse term and a bilinear tangent
term.

We decompose B(£y, M~1) C R2, the Fourier support of function f, into balls
7 of radius 1/(KM). Here K = K (€) is a large parameter. We write f = > _ f-,

where supp f, C 7.
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We let B, = {(z,t) € B(0,R) x [0,R] : 37 s.t. | f,(2)| > K< |e*2 f(x)|}.
We will show by induction on the radius (1/M) in frequency space that the contri-
bution from B is acceptable. In fact, by the definition of B,

X5, " f(z) HL”L“ (By) = < K pz HeszT ||L"L“ B%)
By applying (2.6) in Theorem 2.1 the right-hand side is bounded by

SK* pz[ R ]
<K [ceM*f R f1]"

We choose K = K(¢) large so that K= « 1, which yields by induction that
the term involving B. plays an unimportant role.

For points (z,t) not in B,, we have the following decomposition into a transverse
term and a bilinear tangent term.

Lemma 6.2. For each point (x,t) € B;AW satisfying max, |2 f.(z)| < K¢ ¢/ f(x)],
there exists a sub-collection I of the collection of all possible 1/(K M) balls T, such
that

(6.4) |2 f ()] S 1€ 1 g trans (€)] + KOBil(€™ £ tang (7)),
where

fI,j,trans(x) = Z fT,j,trans (l‘)

Tel
and the bilinear tangent term is given by

Bﬂ(eimfj,tang(x)) = max le imfn,jytang(x)|1/2‘eitAsz,j,tang(z)P/Q-
dist(T1,72)>1/(KM)

Proof. Let I be defined by I := {7 : |e®2f, ; tang(7)] < K102 f(x)[}. Then
clearly

= {7 ¢ "2 frjtang (2)] > K102 f ()]}

If there exist 71, 7o € I¢ with dist(7y, 72) > 1/(KM), then |e2 f(x)| < K1Bil(e™*2 f; tang (7))
Otherwise, the number of balls 7 in 1€ is O(1), and

S letA fe (@) < CK= A f(a)| < 0|6“Af($)|~
Tel®
Hence, by the fact that f =" _ f. and the definition of I,
9 itA itA
I @) < |30 A

Tel
S 1" f1 g tang (@)] + 1€ f1,j trans ()]

< CK 3" f(x)| + | 1 j trans ()],

which implies that |e?2 f(z)| < [ f1 j trans(2)]. O
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By Lemma 6.2 we can now estimate the wall contribution in (5.6) by

Pow €2 £ @)I[rg 15,
(6.5) <[ Xe. eimf(ff)Hing(Bg)
(6.6) + Z || masx Xp, e €7 f1 g eeans ()| 0 19 1
J
(6.7) FE'P Y (X, aw Bil(€™2 £ tang (7)) ing(Bg) :

J

As we explained above, the first term (6.5) obeys an acceptable bound by induc-
tion on M. We now estimate the linear transverse term (6.6). The term (6.6) is
dominated by

(68) Z Z HXBJ-OW eitAfI,j,trans<x)’
j ICT

where T is the collection of all possible 1/(K M)-balls in B(&p,1/M), and the sum
is taken over all subsets of 7. Since there are at most 2K° I ’s, we apply (2.6) in
Theorem 2.1 with radius R'~° to obtain

(6.9) (68) < 3025 [CM™ RO £ s
J

P
LiLi(BR)’

p
)

which is bounded by, using Lemma 6.1,
P

(6.10) 2K ROCH=00 [0 M= R [

Since § = €2, it is clear that 2K° RO(<)=0ep < 1/100 and so the induction on the
transverse term closes.

It remains to estimate the bilinear tangent term (6.7). We state the result on
the bilinear maximal estimate in this section, and prove it in Section 8.

Proposition 6.3. Forp > 3, the following maximal estimate of the bilinear tangent
term holds, uniformly in M :

1/p
(6.11) (/LU)R)t( tgﬁ;mBWfﬁKe“Afg¢ag(x>Mpdw> < CR|fll2.

Given Proposition 6.3, we estimate the bilinear tangent term (6.7) as follows, for
any ¢ > 1/¢€*,

||XBJ,mwBil(eitAfj,tang(x)) HigLf(B}})
SRP/(I / sup ‘Bﬂ(@itAfj7tang (.’L‘)) ’pdl‘
B(0,R) t:(z,t)eEWNB;

<ROOTer/2|f)B.

Hence Theorem 2.1 follows from Proposition 6.3 and the inductions.
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7. VARIATIONS ON THE STRICHARTZ INEQUALITY USING DECOUPLING

In this section we obtain both linear and bilinear local refinements of the Strichartz
inequality, via the Bourgain-Demeter /2-decoupling theorem [4]. In Section 8 we
will use the bilinear refinement to prove the bilinear maximal estimate in Proposi-
tion 6.3.

For the bilinear tangent term in Proposition 6.3, all wave packets are tangent to a
variety. Suppose that Z = Z(P) where P is a product of non-singular polynomials.
For any tile (0,v) € T, we say that Tp,, is ER™'/?-tangent to Z if

Tevy C NER1/2Z N Bﬁ7and

(7.1) Angle(Go (), T.[Z(P)]) < ER™'/?
for any non-singular point z € Nygpgi/2(Th,) N2BR N Z.
Let

T(E) == {(0,v)| Ty, is ER™'/?-tangent to Z},
and we say that f is concentrated in wave packets from Tz (FE) if

Y lfowls < RapDec(R)| f|l2.

(0,v)¢T 2 (E)

Since the radius of Ty, is RY/2%9 RY is the smallest interesting value of F.
In this section, we establish the following local refinements of the Strichartz
estimates.

Theorem 7.1. Suppose that f has Fourier support in B?(0,1), and is concentrated
in wave packets from T z(E), where Z = Z(P) and P is a product of distinct non-
singular polynomials. Suppose that Q1,Qa, ... are lattice R*?-cubes in B3(R), so
that
||eitAf||Ls(Qj) is essentially constant in j.

Suppose that these cubes are arranged in horizontal strips of the form R x R x
{to,to + R'/?}, and that each strip contains ~ o cubes Qj. Let Y denote Uj Qj.
Then

(7.2) e Fllzovy £ ECD RS0 2| £ 2.

To get some intuition, we consider a special case of Theorem 7.1, in which the
variety Z is naturally replaced by a 2-plane V', and F =~ 1. In the planar case,
all wave packets are contained in the ~ R'/?-neighborhood of V, and the absolute
value |e'*2 f(z)| is essentially constant along a certain direction which is roughly
normal to V. Note that e*? f(z)|y is a Schrodinger solution in dimension 2. Denote
e f(x)|y by e Ah(y) for some function h with Fourier support in B'(1), where
(y,r) are coordinates of V. Hence the conclusion in Theorem 7.1 can be rephrased
in terms of h. Indeed, observe that

e F @)1 5oy ~ B2 1™ h)13s (v vy
13 ~ R™He S FllEa o (ryy ~ B RY2 [l bl G2 g vy ~ B2 A
Therefore the estimate (7.2) is equivalent to

(7.3) e 2R ovavy S o3 k| L2
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It follows from the Strichartz inequality that [|e2h|re(yrvy S [|h]lr2. We get
an improvement when o is large. The condition that o is large forces the solution
e2 f to be spread out in space, and we will exploit this spreading out to get our
improvement.

Moreover, Theorem 7.1 has the following bilinear refinement.

Theorem 7.2. For functions fi and fo with separated Fourier supports in B2(0,1),
separated by ~ 1, suppose that fi and fo are concentrated in wave packets from
Tz (E), where Z = Z(P) and P is a product of distinct non-singular polynomials.
Suppose that Q1,Qs, -+ ,QnN are lattice RY/?-cubes in B3(R), so that for each i,

\\eitAfi|\L6(Q_7.) is essentially constant in j.

Let Y denote Ujvzl Qj. Then

< ;O(1) p—1/6 A7—1/6 1/2 1/2
LS(Y) ~F R N ||f1HL2 Hf2||L2 :

‘eitAf1€itAf2|1/2’

7.1. Proof of Theorem 7.1. The proof uses the Bourgain-Demeter [?-decoupling
theorem, together with induction on the radius and parabolic rescaling. First we
recall the decoupling result of Bourgain and Demeter in [4].

Theorem 7.3 (Bourgain-Demeter). Suppose that the R~ -neighborhood of the unit
parabola in R? is divided into R'/? disjoint rectangular bozes T, each with dimen-
sions R~Y2 x R='. Suppose F, is supported in T and F = >, F;. Then

1/2
1Fl Lo m2y S (Z ||F‘F||2LG(R2)> :

If E > R'* (or any fixed power of R), then the estimate (7.2) is trivial because
of the factor EC(. So we assume that £ < RY/4,

To set up the argument, we decompose f as follows. We break the unit ball
B2(1) in frequency space into small balls 7 of radius R~'/4, and divide the physical
space ball B*(R) into balls B of radius R**. For each pair (1, B), we let fo_,
be the function formed by cutting off f on the ball B (with a Schwartz tail) in
physical space and the ball 7 in Fourier space. We note that 4 fo, s, restricted
to B3(R), is essentially supported on an R3/* x R3/* x R-box, which we denote by
O, g (compare the discussion in Section 4). The box O, g is in the direction given
by (—2¢(7),1) and intersects ¢t = 0 at a disk centered at (¢(B),0), where ¢(7) and
¢(B) are the centers of 7 and B respectively. For a fixed 7, the different boxes O, p
tile B3(R). In particular, for each 7, a given cube Q; lies in exactly one box O, p.

Since f is concentrated in wave packets from Tz (E), we only need to consider
those R'/2-cubes @Q; that are contained in the ER'/2-neighborhood of Z. For
each such R'/2-cube Q;, we will see that the wave packets that pass through @;
are nearly coplanar. Because of this, we will be able to apply the 2-dimensional
decoupling theorem to study e®* f on Qj:

Lemma 7.4. Suppose that f has Fourier support in B%(0,1) and is concentrated
in wave packets from Tz(E), where E < RY* and Z = Z(P) is a finite union of
non-singular varieties. Suppose that an R'/?-cube Q is in Ngpi2(Z). Then we
have the decoupling bound
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1/2
(7.4) 1€ fll o) = <Z 2 fa II%suo@) + R f]l e
a

Remark: The R™109]| f|| 12 is a negligibly small term which covers minor contri-
butions coming from the tails of the Fourier transforms of smooth functions. We
will neglect this term in the sequel.

Proof. Observe that QQ C Ngpi/2Z implies that there exists a non-singular point
20 € Z N Ngpri/2Q. Thus for each wave packet Tp, that intersects ), we have
20 € Z N Nygpis2(Ty,). By the definition of T z(E) we get the angle bound

(7.5) Angle(Go(0),T.,[Z(P)]) < ER™Y/2.

We recall from Section 4 that Go(0) = (—2¢(6),1). Suppose that T,,Z is the
plane given by ajz; + asxs + bt = 0, with a? + a3 + b?> = 1. The angle condition
above restricts the location of 8 as follows:

(7.6) | —2a-c(d) +b] < ERY2

We note that each tube Ty, makes an angle 2 1 with the plane t = 0, because

6 C B(0,1). We can assume that there are some tubes Ty, tangent to 15,7, and so
la| > 1. Therefore, (7.6) confines 6 to a strip of width ~ ER~'/2 inside of B(0,1).
We denote this strip by S C B(0, 1).

Let Tz g(E) be the set of (6,v) in Tz (E) for which each Ty, intersects Q). For
each (8,v) in Tz o(E), 0 obeys (7.6), and so § C S. Let n be a smooth bump
function which approximates Xg. We note that ne'tA f is essentially equal to

Z neitAfG,l/-

(0,v)ETZ,q(E)

Therefore, the Fourier transform of the localized solution e f is essentially sup-
ported in

(1) 8= (660 6)  (€1.6) € S and |6 — & — €3] S RV/2),

(The contribution of the not essential parts is covered by the negligible term
R71009 #|| 12 in the statement of the Lemma.)

After a rotation in the (x1,x9)-plane we can suppose that the strip S is defined
by

ay <& <ay+ERTY?,
for some a; € [—1,1]. We note that at each point (£1,&2) € S,

(7.8) o1 (6 + &) =2a1 + O(ER™/?).

Let v be the vector

v=(1,0,2a1).
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Let II be a 2-plane perpendicular to v. Because E < RY*, we claim that the
projection of S* onto II lies in the ~ R~1/2-neighborhood of a parabola. We can
see this as follows. Let

Siore = {(&1,62,83) 1 & = a1, 6] < 1,6 =& + &}
The set S7%,,. is a parabola, and its projection onto II is also a parabola. We claim
that the projection of S* to II lies in the ~ R~!/2-neighborhood of this parabola.
If (&1,&2,&3) € S*, then (7.8) tells us that

(E+63)=a3+63+2a1(6 —ar) + O(BERYV? -1, — aq)).

Therefore,

(§1a§2553) = (&1,62, G/% + fg) + (51 - 0,1)11 + O(ER_l/Q‘gl - al| + R_l/z)'
The first term on the right-hand side lies is S} Since IT is perpendicular to v,

core*
the projection to IT kills the second term on the right-hand side. So the distance
from the projection of £ to the projection of S}, is at most

ER71/2|£1 o 111\ +R71/2 5 E2R71 +R71/2 ~ Rfl/Q'

Therefore, if we restrict ne**® f to II, the resulting 2-dimensional function has
Fourier support in the ~ R~'/2-neighborhood of a parabola.

We consider the decomposition f = Y g5 ,ngzp fo.s If € fa, , con-
tributes to [e"2 f||rs(q), there must be a wave packet Tp, that intersects the
RY2-cube Q with § C 7, and so 7N S must be non-empty. Also, for a given 7,
there is only one B so that O, p N @ is non-empty. Also, the Fourier support of
ne”AfDT,B lies in S*N (7 x R), by the same argument we used above for ne?*2 f. The
projection onto IT of $* N (7 x R) is an R~1/* x R~1/2 rectangular box. The union
of these boxes over all 7 intersecting S is the R~'/2-neighborhood of a parabola.
Therefore, we have the hypotheses to apply the 2-dimensional decoupling theorem,
Theorem 7.3, which gives:

1/2
”neitAfHLﬁ(H) < (Z ||77€itAfD||2L6(n)> .
O

Now we integrate in the direction perpendicular to II and apply Fubini and
Minkowski to get

1/2
Ine™™ fllLo@s) < (Z ||77€itAfD||%G(R3)> .
O

This implies the desired conclusion. O

Next, by induction on the radius R, we will show that each function fg obeys a
version of Theorem 7.1. Here is the statement. Suppose that Si, S, ... are R/2 x
R'Y/? x R3/*_tubes in O (running parallel to the long axis of O), and that

||e“AfD HLG(SJ) is essentially constant in j.
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Suppose that these tubes are arranged into R3/4-strips running parallel to the short
axes of O and that each such strip contains ~ on tubes S;. Let Yo denote U;S;.
Then

(79) ||€itAfD||L6(YD) g EO(I)R71/12R71/120_D—1/3”fDHLZ.

This inequality follows by doing a parabolic rescaling and then using Theorem
7.1 at scale R'/2, which we can assume holds by induction on R. We write down the
details of this parabolic rescaling, and in particular we will check that the tangent-
to-variety condition is preserved under parabolic rescaling. For each R~/*-ball 7
in B%(1), we write £ = & + R™Y/4¢ € 7, then

|€itAf7—(-T>‘ _ R_1/4|6i£Ag(f)|

for some function g with Fourier support in B2(1) and ||g|l2 = ||f-||2, where the

new coordinates (Z,t) are related to the old coordinates (x,t) by

=R V4 + 2tR~1/4
(7.10) e b0
t=R1?t.

Therefore

[N

€2 fa(@) | ovay = B2 [€™2g(@) | 1o (57,

where Y is the image of Yo under the new coordinates. Note that Y is a union of
RY*_cubes inside an R'/?-cube. These R'/*-cubes are arranged in R'/*-horizontal
strips, and each strip contains ~ og R'/*-cubes. Moreover, by the relation (7.10),
we see that each wave packet T, at scale R, of dimensions R'/?+% x R/2+% x R
in the old coordinates is mapped to a corresponding wave packet T, at scale RY/2,
of dimensions R4+t x R'/4+9 x RY/2 in the new coordinates. The variety Z(P)
corresponds to a new variety Z(Q), given by the relation Q(Z,) = Q(R™ Y4z +
2tR~1/%¢y, R=1/?t) = P(z,t). We claim that, under the above correspondence, if
the wave packet T at scale R is ER~'/%-tangent to Z(P), then the wave packet T
at scale RY/? is ER™'/*-tangent to Z(Q) in the new coordinates.

By the relation (7.10), the distance condition ' C Ngpi/2Z(P) implies that
T C N1 Z(Q). Given the direction (—2¢,1) of T', the angle condition

Angle((—2¢,1), T5,[Z(P)]) < ER™'/?
is equivalent to

(=26, 1) - (Pa (0, t0), Pi(%0, to))
|(Px(z0,t0), Pr(z0,t0))|
where zg = (xg,%p). Note that the direction of the corresponding wave packet T is
given by (—2¢,1), where ¢ and ¢ are related by & = & + R™Y/*(. Let %y = (&0, 1)

denote the point corresponding to zy. Using the relations
P, =R'V'Q;, P=2R""'% Qs + RTV2Q;,
after some computation, (7.11) yields that
(=2¢,1) - (Qz(Eo, to), Q7 (Fo, to))]
(Qz (%0, t0), Qi(0, t0))]

(7.11) | < ERTY?,

SERYA,

which implies that
Angle((—2¢,1),T5,[Z2(Q)]) < ER™V4,
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Therefore the tangent-to-variety condition is preserved under parabolic rescaling
and the induction on radius is justified.

We have now established inequality (7.9). To apply this inequality, we need to
identify a good choice of Yg. We do this by some dyadic pigeonholing. For each O,
we apply the following algorithm to regroup tubes in O.

(1) We sort those R'/? x RY/? x R3/4-tubes S’s contained in the box O according
to the order of magnitude of || fq||16(s), which we denote A. For each
dyadic number ), we use Sy to stand for the collection of tubes S C O with
€72 fallLs(s) ~ A

(2) For each A, we sort the tubes S € Sy, by looking at the number of such
tubes in an R3/4-strip. For any dyadic number 7, we let Sx,n be the set of
tubes S € Sy so that the number of tubes of Sy in the R3/4-strip containing
S is ~ 1.

FIGURE 2. Tubes in a given strip in the O

Let Yg,»,, be the union of the tubes in Sy ;. Then we represent

A = Z <Z CitA XYD,M> :
Amo\ O

Note that [|e2 fol|rs(s)y < ROMW||f||2, for each tube S as above and the number
of O’s does not exceed RN, We see that the contribution from those \’s with
A < RC|f|l2 is at most R~C/2||f||o. Here the constant C can be selected to be
sufficiently large so that R=C/2|| |2 is negligible. So without loss of generality, we
can assume that the terms with small A contribute insignificantly to [e®2 f|| L5(Q;)
for every @);. Therefore there are only O(log R) significant choices for each of A, 7.
By pigeonholing, we can choose A, 7 so that

(712) ||eitAf||L6(Qj) 5 (IOg R)2|| Z eitAfD . XYD,/\,n HLG(Qj)
[m]
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holds for a fraction =~ 1 of all cubes @; in Y. We need this uniform choice of (A, 7),
which is independent of );, because later we will sum over all ¢; and arrive at

12 fall Lo (va .-

We fix A and 7 for the rest of the proof. Let Yg stand for the abbreviation of
Yo, )n. We note that Yo obeys the hypotheses for our inductive estimate (7.9), with
oo being the value of n that we have fixed.

The following geometric estimate will play a crucial role in our proof. Each set
Yn contains < op tubes in each strip parallel to the short axes of O. Since the angle
between the short axes of O and the z-axes is bounded away from 7 /2, it follows
that Yp contains < on cubes @ in any RY2-horizontal row. Therefore,

(7.13) Yo NY| < %Dm.

Next we sort the the boxes O according to the dyadic size of || fo|[z2. We can
restrict matters to < log R choices of this dyadic size, and so we can choose a set
of O’s, B, so that || fa||z2 is essentially constant for O € B and

(7.14) 12 fll o, S 1D €™ fa - Xvs llzs )
OeB
for a fraction ~ 1 of cubes @; in Y.

Finally we sort the cubes @; C Y according to the number of Y5 that contain
them. We let Y/ C Y be a set of cubes @); which obey (7.14) and which each lies
in ~ p of the sets {Yo}oep. Because (7.14) holds for a large fraction of cubes, and
because there are only dyadically many choices of u, |Y'| = |Y|. By the equation
(7.13), we see that

g

YanY'| < [VanY|S 2y~ 22y
(o2

ra
Therefore, the multiplicity p is bounded by
(7.15) ns =Bl

We now are ready to combine all our ingredients and finish our proof. For each
Q; CY’, we have

Z eitAfD . XYD

oeB

it A
1€ fllLoo,) £

L5(Q;)
Now we apply Lemma 7.4 to the function ) g @,evs Jo to bound the right
hand side by

1/2

QA

i 2
Z ||etAfDHL6(Qj)

0eB,Q;CYn
Since the number of Yp containing @; is ~ u, we can apply Holder to get
1/6

Z eitAfD . XYD

oeB

AN

ﬂ1/3 Z HeimeHiG(Qj)
L8(Qj) 0eB,Q;CYn
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Now we raise to the sixth power and sum over (); C Y’ to get
- 6 - 6
||eZtAf||L6(Y’) S0 He”AfDHLG(Yn) '
O€B

Since |Y’| Z [Y], and since each cube Q; C Y makes an equal contribution to
||6”Af||Le(y), we see that HeitAf”LG(y) ~ ||€itAfHL6(Y/) and so

i 6 i 6
||6 tAfHL“’(Y) S u? Z He " fa ||L6(Yu) ’
oeB

By a parabolic rescaling, Figure 2 becomes Figure 3. Henceforth, applying our

FIGURE 3. Cubes in a given strip in an RY?-cube

inductive hypothesis (7.9) at scale RY? to the right—hand side, we see that
(7.16) 162 Fll oy & BV R 12052 Y |l foll2e
OeB
Plugging in our bound for p in (7.15), this is bounded by
SEOWR 0B Y |Ifolf-
OeB
Now since || fo||z2 is essentially constant among all O € B, the last expression is
~ ECORT 0723 ||fal3:) < EOVR 072 G
OcB

Taking the sixth root, we obtain our desired bound:

e fllzovy £ BV RV 0073 £ 2.
This closes the induction on radius and completes the proof.

7.2. Proof of Theorem 7.2. It can be proved by the method used in the proof
of Theorem 7.1. By Hélder,

Jle e, < T -

For each i, we process ||€itAfi||L6(y) following the proof of Theorem 7.1. We de-
compose f; = Y 4 fio, and we follow the proof of Theorem 7.1. We define Y; o by
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dyadic pigeonholing, so that Y; o is arranged in several R*/%-strips (running parallel
to the short axes of O) with ~ 0; o RY/2 x RY2 x R3/*_tubes in each strip. When
we use dyadic pigeonholing to pick a subset of cubes @}; C Y, we pigeonhole for f;
and fo simultaneously, and so we pick out a set of cubes that works well for both
functions. Following the argument up to Equation (7.14), we see that for a fraction
~ 1 of cubes Q;,

(T17) " il S Y " o Xviallieqy) fori=1,2.
0eB;

Similarly, we sort the cubes @}; C Y according to the number of ¥; o that contain
them. We let Y” C Y be a set of cubes Q; which obey (7.17) and which each lies in
~ iy of the sets {Y1 o}oemr, and ~ pg of the sets {Y2 o}oes,. Because (7.14) holds
for a large fraction of cubes, and because there are only dyadically many choices
of pi, pe, |Y’| = |Y|. Following the proof of Theorem 7.1 further, up to Equation
(7.16), we see that for each i,

1/6
(7.18) €2 fill o vy £ ECVRTVE Juioid Y ||fi,u||%z] :

OeB;

Finally, we give a geometric estimate for p; and ps that takes advantage of the
bilinear structure. If 0; € B; and Oy € Bo, then the angle between their long axes
is ~ 1. Therefore, their intersection is contained in a ball of radius ~ R34, and so
Yo, N Yo, contains S 01, no o different RY/2_palls (see Figure 4). For each of the

FIGURE 4. at most O(c1,002,0) cubes created by two transversal
families of rectangular boxes

~ N cubes @; in Y’, for each i, the cube @Q; lies in ~ p; of the sets {Yq, }o,cB,.
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Therefore,

2 2
(7.19) NJw £ ]]oiolBil.
=1 1=1

Starting with (7.18) and inserting this estimate, we see that

2

1.1
2 62
Il 8 20T it 52 ot
=1

i=1 OB,

1.1
2 62 2
SECORTVET INTB® D ||fz-,m|%2] S ECORVONTVOTTIANL
i=1 0eB; i=1
as desired.

8. BILINEAR MAXIMAL ESTIMATE WITH SMALL SEPARATION

In this section, using Theorem 7.2 and parabolic rescaling, we prove the following
proposition, which implies Proposition 6.3.

Proposition 8.1. Suppose that & € B2(0,1) and that f; have Fourier supports
in B(&,1/M) for some M > 1. Also suppose that the Fourier supports of f; are
separated by at least 1/(KM), where K = K(e€) is a large constant. Suppose that
each f; is concentrated in wave packets from T z(E), where E > R° and Z = Z(P)
and P is a product of distinct non-singular polynomials. Then

8.1 H WA p 11/2) itA 1/2‘ < go 1/2 /2
N R Ry K L Y P

Proof. We can assume M < RY?, otherwise all wave packets were in the same
direction and a direct computation would give us the desired result.

Since f is concentrated in wave packets from Tz (E), we decompose Ngpi/2Z
into balls Q of radius R'/2. Let 1 be a smooth bump function approximating Xq.
As we saw in the proof of Lemma 7.4, in Equation (7.7), the Fourier support of
each function ne'*® f; is essentially supported on

S*i={(61,&.8&) : (61,&) € Sand |& — & — | S RV,

where S C B(0,1) is a strip of width ER~/2. Since the Fourier support of each
fi is also contained in B(&p, 1/M), the Fourier support of ne2 f; is also essentially
contained in B(&, 77) x R. The intersection of S* with the cylinder B(&, &) x R
is contained in a rectangle of dimensions ~ FR~/2 x 1/M x 1/M. We denote this
rectangle by A*(Q). Since the Fourier support of each nei*2 f; is contained in A*(Q),
[ne’A f;| is morally constant on dual rectangles with dimensions M x M x E-'RY/2,
We tile @ with such dual rectangles, which we denote Ax(Q). The projection of
each dual rectangle A;(Q) to the z-plane is an M x E~'RY?-rectangle.

Suppose that supy,< g |2 f1e®2 fo|'/2 ~ H on a set U C B(0, R). It suffices
for us to prove the bound

(8.2) H|UIM? g BOO| Al 2211 2157

We will bound |U| using the rectangles A (Q). For the time being, let us suppose
that |ne*® f;| is roughly constant on each Ay(Q). This is not quite rigorous, but
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useful for intuition. On the next page, we will come back to this point and give a
rigorous argument.

There must be a collection of dual rectangles Ax(Q;) whose projections cover
U and so that |eimfleimf2|1/2 ~ H on each dual rectangle. We let X denote the
union of these dual rectangles. Each M x M x E~'R'/2 rectangle Ax(Q,) C X has

a projection with area ME~'R'/2 and since these projections cover U, we have
the bound

(8.3) |U| < M~ X].

We can also assume that no two rectangles Ay (Q;) C X have essentially the
same projection. This implies that X contains < EC(M)RY2M~1 rectangles Ax(Q)
in each cube Q. So for each cube @, we get the bound

(8.4) IXNQ| < E°YMR.

We consider the R'/2-cubes @ in B2(R) x [0, R] that intersect X. We sort these
R'?-cubes Q according to the dyadic value of ||[e?4 fy[1/2[eA fo[1/2 We

can choose a set of of R'/2-cubes Qj,7=1,2,---,N, so that

(8.5) H|eitAf1‘1/2|eitAf2|l/2’

e (q)-

. is essentially constant in j,
L8(Qy)

apd | X| g |X NY|, where Y := Ujvzl Q;. Using the locally constant property that
et f1eA fo]1/2 ~ H on each rectangle A5 (Q;) C X, we see that

(86) H|X|1/6 é EO(l) H|eitAf1|1/2|eitAf2‘1/2‘

LS(Y)

Since | X N Q,| S ECMMR for each cube Qj, j = 1,..N, we see that |X| <
|IX NY| < ECOMNR. Therefore,

(8.7) H\X|1/3 < EOW) pf1/6 N1/6 R1/6 H‘eitAf1|1/2|eitAf2|1/2’

Ls(v)
Finally, since |U| < M~1|X|, we have

(8.8) H|U|1/3 < EOM) pr—1/6 N1/6 R1/6 H eitA f ‘1/2|eitAf2|l/2’

Ls(y)’
Therefore, our desired bound (8.2) follows from a generalization of Theorem 7.2,
which we now state.

Proposition 8.2. Suppose that f1 and fo are as in Proposition 8.1. Suppose that
Q1,Q2, -+ ,Qn are lattice R'/?-cubes in B3(R) so that

(89) H|€itAf1‘1/2|€itAf2|1/2’

is essentially constant in j.
L5(Q;)

Let Y denote U;V:1 Qj. Then

(8.10) H ‘eitAf1|1/2‘eitAf2|1/2‘ < EO(l)]\41/6]\[71/65{71/6”f1 ||1L/22||f2|\1/2-

2
sy ~ L
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If M = 1, then f; and fo have Fourier supports separated by ~ 1, and we
can apply Theorem 7.2. We first find Y/ C Y with |Y’| &~ |Y| so that for each 1,
lle®A £l L6(Q,) is essentially constant among all Q; C Y. Then we apply Theorem
7.2 t0 Y’ to get (8.10):

~
~

QA ¢ 1/2) itA 1/2‘
[l np e s |

. . _ — 1/2 1/2
<[t e B L S EOONTORT A R

~ L2

LS(Y")

For larger M, the Fourier supports of f; and fo are only separated by ~ 1/M,
and so we will need to apply parabolic rescaling before we can use Theorem 7.2.

Before we do this parabolic rescaling and prove Proposition 8.2, let us return to
the issue of |e* f;| being morally roughly constant on each rectangle A(Q). We
used the locally constant property to justify (8.6) above. We can rigorously prove
(8.6) as follows. We mentioned above that each function nge® f; has Fourier
transform essentially supported in a rectangle A*(Q) of dimensions ~ ER™/2 x
M~ x M~'. So the Fourier transform of their product, g := néeimfleimfg,
is essentially supported in a rectangle with the same orientation and roughly the
same dimensions. If 1 is designed to be identically 1 on this rectangle, then g * ¢
is essentially equal to g. We can choose such a v where |¢| is a rapidly-decaying
approximation of |Ax(Q;)| "X, (q,). Therefore, we see that

itA itA
(811) sup ‘eitAfleitAfﬂ < Ro((;) eriAk(Q) |6 fle f2‘
Ax(@Q) | 4% (Q5)]

where the second term accounts for the tail of . Since E > R?, we can assume
that R°Ax(Q) C Q.
We let X be a union of rectangles Ay (Q);) which each obeys

+RTOCN frll 2 foll e,

HS sup [e"fre" fof' V2,
Ar(Qj)

We can arrange that the projections of 10A4;(Q;) cover U and also that any two
rectangles Ag(Q;) in X have essentially different projections. Because of this cov-

ering, we still have |U| < M~1|X|. Now if H < R7100Hf1||1L/22||f2||1L/22, then (8.2)
follows trivially. Therefore, (8.11) tells us that for each Ax(Q;) C X:

/ |6itAf16itAf2| z R—O(é) |Ak (Q])|H2
R A(Q)
We define Y just as above, and this inequality lets us rigorously justify (8.6):

H|X|1/6 ~ H|X my|1/6‘ < EOM) H|eimf1|1/2|eimf2|1/2‘

Lo(y)
It only remains to prove Proposition 8.2.

Proof. For function f with Fourier support in B(&y, 1/M), by parabolic rescaling,
we have

i 4_ irA F
(8.12) 172 £ (@)1 o (m3ry) ~ M€ FO Lo (B ynr x Ty ar2):
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where f has Fourier support in B2(0,1), ||fllz = ||f|l2, the new coordinates (y,7)
and old coordinates (z,t) are related by

y=a/M + 2é/M,
r=t/M?

and Br/y X Ir/ar2 is a box of dimensions ~ % X % X %, which is the range for

(y,r) under the change of variables as above. By (8.12), we have

(8.13)  [leAfu2 et fo 12|

~ M-Y/3 H‘eirAf1|1/2|eirAf2‘l/2)

LS(Y) Ls(Y)’

where fi, fo have 1 /K-separated Fourier supports in B2(0,1), and Y is a union
of N % X % X ‘F -boxes in Br/y X Ig/n2, in correspondence to Y under the
change of variables as above.

To use Theorem 7.2 to estimate H\e"Af 1/2|eirA £, \1/2‘ _, we decompose

LS(Y)
Br/n < IR/ as a union of W—balls Qk,r/Mm2, and inside each Qy r/rr2 We consider
the VR R/M-cubes Q%) that intersect Y. First, we sort the balls Qk,r/Mm2 according

to the dyadic values He”"AfZHLz @, R/M2)’ = 1,2. Then inside each Q /a2 we

sort the cubes Q*) according to the dyadic values ||e”’AﬁHL6(Q(m), i=1,2. We
can choose balls Q. r/n2, k= 1,2, - , W, and inside each Qk,r/Mm2 We can choose
a set of vR/M-cubes Q;k), j=1,2,--+, Ng, so that

w
(8.14) ~ N boxes inY are contained in U Y,
k=1

where Y, := Ujvz"l Q§k), and the following conditions hold:

e (a). For each i = 1,2, ||€iTA'fi||L2(Qk,R/M2) is essentially constant in k =

1,---,W.
e (b). Foreachk =1,--- ,W, for each i = 1,2, HeirAfi”LG(Q(.k)) is essentially
constant in j =1,--- |, Np. ’
o H|6”Af |1/2|6"Af |1/2‘ _is essentially constant in k= 1,--- ,W.
LS(Yy)

Now by (8.9), (8.14) and the condition (c) as above, for each 1 < k < W we have

SWs

irA F(1/2) irA F 1/2‘
e ARG [~

irA F1/2) irA Fo(1/2
e = f1]7/7[e" 7 fa

LS (Vi)
Since tangent-to-variety condition is preserved under parabolic rescaling, we can
apply Theorem 7.2 to bound H |e”Af1|1/2|e"Af2|l/2‘ by

-1/6 _
o () e () T

By the condition (a) as above and parabolic rescaling (8.12), we have

2 ‘
i=1

LS (V)

7.7"Af 1/2
7

L2(Qy, R/M2)

1/2 —1/2 H e ”Af H1/22
L2(Qy, R/Mz) 2B x g )

eirAf ‘
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2 2
= - it 1/2 = - 1/2
~ WM T e fill Yoo oy S WPM R TT I
i=1 i=1
Combining (8.13) and the above estimates for |€"Af1|1/2|€"Af2|1/2‘ L)’ we get

2
H|eitAf1|1/2|eitAf2|l/2’ < EO(l)W—l/BNl;l/GR—l/ﬁ H HfiH;m-

Le) ™~ i=1
The above estimate holds for W indexes k’s. For each k, there are N}, ﬁ—cubes in
Y}, each \]/V[E—cube contains at most M % X % X ﬁ-boxes in Y, and there are

~N % X % X J‘\/E—boxes in Y that are contained in Ukw:1 Y. By pigeonholing

there is an index k satisfying

N S NyWM.
Therefore
2
(8.15) H|e”Af1|1/2\e“Af2|1/2’ . < EOOW 1SN -1/ /S gV S TT 504/
i=1
Since W > 1, this completes the proof of Proposition 8.2. ([
This finishes the proof of Proposition 8.1. U

Finally, to prove Proposition 6.3, we apply Proposition 8.1 to f;ang on each
ball B;. We expand fj iang into wave packets at the scale p = R'7% on the ball
Bj. Because of the definition of f;;ung, each wave packet will lie in the RY/2+6.
neighborhood of Z and the angles between the wave packets and the tangent space
of Z will be bounded by R=/2t20 For a detailed description of the wave packet
decomposition of f; 1q4ng on a smaller ball, see Section 7 of [10]. We define E so that
p'/?E = RY/?*%_ Since p = R %, we get E = R®/29 and so Ep~1/? = R~1/2+20,
Each new wave packet lies in the Fp'/2-neighborhood of Z, and the angles between
the wave packets and the tangent space of Z are bounded by Ep~'/2. Therefore,
the new wave packets are concentrated in Tz (FE). Now since EO(Y) = RO the
bound from Proposition 8.1 implies Proposition 6.3.
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