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Abstract For each natural odd number n ≥ 3, we exhibit a maximal family of
n-dimensional Calabi–Yau manifolds whose Yukawa coupling length is 1. As a con-
sequence, Shafarevich’s conjecture holds true for these families. Moreover, it fol-
lows from Deligne and Mostow (Publ. Math. IHÉS, 63:5–89, 1986) and Mostow
(Publ. Math. IHÉS, 63:91–106, 1986; J. Am. Math. Soc., 1(3):555–586, 1988) that,
for n = 3, it can be partially compactified to a Shimura family of ball type, and for
n = 5,9, there is a sub Q-PVHS of the family uniformizing a Zariski open subset of
an arithmetic ball quotient.
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1 Introduction

The local Torelli theorem for Calabi–Yau (abbreviated as CY) manifolds says that
the Kodaira–Spencer map for a versal local deformation of a CY manifold is an iso-
morphism. This important fact has a consequence on the Yukawa coupling length
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which is introduced in the work [13]. For a family f : X → S of CY manifolds of
dimension n, let (

E =
⊕

p+q=n

Ep,q, θ =
⊕

p+q=n

θp,q

)

be the associated Higgs bundle, where Ep,q = Rqf∗Ωp

X /S
and the Higgs field

θp,q : Ep,q → Ep−1,q+1 ⊗ ΩS

is given by the cup product with the Kodaira–Spencer map. The length of the Yukawa
coupling ς(f ) of f is then defined by

ς(f ) = min
{
i ≥ 1, θ i = 0

}− 1,

where θi is the ith iterated Higgs field

θi : En,0 θn,0−→ En−1,1 ⊗ ΩS
θn−1,1−→ · · · θn−i+1,i−1−→ En−i,i ⊗ SiΩS.

The local Torelli theorem implies that, for a non-isotrivial family f of n-dimensional
CY manifolds, it holds true that 1 ≤ ς(f ) ≤ n. The connection of Yukawa coupling
length with Shararevich’s conjecture for CY manifolds has been intensively studied
(see e.g., [5, 14]). It has been shown that, for example, if the Yukawa coupling length
of f is maximal, i.e., ς(f ) = n, then f is rigid. The maximality of Yukawa coupling
length seems to be very often for moduli spaces of CY manifolds as anti-canonical
classes of a toric variety (it is the case for moduli spaces of CY manifolds with a
maximal degeneration point). Our motivation is then to look for many examples of
moduli spaces of CY manifolds whose Yukawa coupling lengths are minimal, i.e., 1.
As far as we know, higher dimensional examples are rare in the literature. What we
have obtained in this paper is an infinite series of maximal families of n-dimensional
CY manifolds with Yukawa coupling length 1 for any odd n ≥ 3. Here a family f is
said to be maximal if it is locally a versal deformation of each CY closed fiber of f .
Our main result is summarized as follows.

Theorem 1.1 Let n ≥ 3 be an odd number and Mn,n+3 be the moduli space of n + 3
hyperplane arrangements of Pn in general position. Let fn : Xn → Mn,n+3 be the
family of n+3

2 -fold cyclic covers of Pn branched along the n + 3 hyperplanes in gen-
eral position. Then the following statements are true:

(i) The family fn admits a simultaneous resolution f̃n : X̃n → Mn,n+3 which is a
maximal family of n-dimensional projective CY manifolds.

(ii) ς(f̃n) = 1. Consequently, Shafarevich’s conjecture holds for f̃n.
(iii) The family f̃3 admits a partial compactification to a Shimura family over an

arithmetic quotient of B3.
(iv) The families f̃5, f̃9 have a sub Q-PVHS which uniformizes a Zariski open subset

of an arithmetic ball quotient.
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2 The Cyclic Cover and Its Crepant Resolution

The meaning of letters in the tuple (n,m, r) will be fixed throughout the paper: n is
a natural odd number ≥ 3, m = n + 3 and r = m

2 .

Remark 2.1 The technique of this section can be applied equally to a tuple (n,m, r)

where n is a natural number, r a positive factor of m and m = n + 1 + m
r

, and yields
the same result as the special case.

2.1 The Cyclic Cover of Pn

An hyperplane arrangement A = (H1, . . . ,Hm) in Pn is said to be in general posi-
tion if no n + 1 hyperplanes in A do meet. One constructs the r-fold cyclic cover
π : X → Pn branched along H = H1 + · · · + Hm as follows. For the line bundle
L = OPn(2) over Pn, one denotes Tot(L) for the total space of L. There is the
tautological section s ∈ Γ (Tot(L),p∗L) of the pull-back of L via the natural pro-
jection p : Tot(L) → Pn. Suppose the hyperplane Hi,1 ≤ i ≤ m is defined as the
zero locus of the section si ∈ Γ (Pn, O(1)), then we have the pull-back section
p∗si ∈ Γ (Tot(L),p∗O(1)). The r-fold cover X is defined as the zero locus of the
section

sr − p∗s1 ⊗ · · · ⊗ p∗sm ∈ Γ
(
Tot(L),p∗O(m)

)
.

The natural projection p induces the one π : X → Pn. It is generically étale and
Galois, whose Galois group is cyclic of order r , and singular over H . The variety X

is projective with trivial KX . It is a singular CY variety whose singular locus under
π is exactly the singularity of H .

2.2 The Crepant Resolution

In this paragraph we aim to obtain a good smooth model of the cyclic cover X. First
recall the order function on a smooth variety. Let M be a smooth variety over an
algebraically closed field and I be an ideal sheaf on M . For any point x ∈ M , the
order of I at x is defined as Ordx I := max{r | Ix ⊂ mr

x OM,x}, where mx is the
maximal ideal of the local ring OM,x . For a smooth and irreducible closed subvariety
Z of M , the order of I along Z is defined as OrdZ I := Ordp I , where p ∈ Z is
the generic point of Z. We have the following well-known formula for the canonical
bundle under a blow-up.

Lemma 2.2 Let M be a smooth variety over an algebraically closed field and X ⊂ M

be a (possibly singular and non-reduced) hypersurface. Suppose I(X) is the defining
ideal sheaf of X in M . Let Z ⊂ X be a smooth and irreducible closed subvariety
of M , with codimension codim(Z,M) = n. Suppose that the order of I(X) along Z is

OrdZ I(X) = r . Consider the blow-up of M along Z: M̃
π̃−→ M . Let X̃ = BlZX

π−→ X

be the strict transform of X and E = π̃−1(Z) the exceptional divisor. Then we have
the following formula relating the canonical bundles of X̃ and X:

K
X̃

	 π∗KX + (n − r − 1)O
M̃

(E)|
X̃
.
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In particular, if codim(Z,M) = 2 and OrdZ I(X) = 1, then K
X̃

	 π∗KX .

Proof The proof is a direct application of the adjunction formula. �

In order to fix notation, we recall the following definition.

Definition 2.3 If M is a smooth variety, and E1, . . . ,Ek are divisors of M , we say
E1, . . . ,Ek meet transversally at a closed point x ∈ M if one can choose a regular
system of parameters z1, . . . , zl ∈ OM,x at x such that for each 1 ≤ i ≤ k

(1) either x /∈ Ei , or
(2) Ei = (zc(i) = 0) in a neighborhood of x for some c(i), and
(3) c(i) 
= c(i′) if i 
= i′.

and the regular system of parameters z1, . . . , zl ∈ OM,x is called a coordinate system
at x admissible to E1, . . . ,Ek . E1, . . . ,Ek are said to meet transversally if they meet
transversally at each closed point of M . In this case, D =∑k

i=1 Ei is called a simple
normal crossing divisor on M and a subvariety Z ⊂ M is said to meet transversally
with E1, . . . ,Ek if at each closed point x ∈ Z, one can choose z1, . . . , zl as above
such that in addition

(4) Z = (zj1 = · · · = zjs = 0) for some j1, . . . , js , again in some open neighborhood
of x.

In particular, Z is smooth, and some of the Ei are allowed to contain Z.

Let M be a smooth variety, and E = {E1, . . . ,Es}, F = {F1, . . . ,Ft } be sets of smooth
divisors of M such that the s + t divisors E1, . . . ,Es,F1, . . . ,Ft meet transversally
on M . A reduced and irreducible hypersurface X ⊂ M is called pre-binomial with
respect to (E,F) if for any closed point x ∈ X,

(1) either X,E1, . . . ,Es,F1, . . . ,Ft meet transversally at x, or
(2) there exists a coordinate system (y1, . . . , ym, x1, . . . , xn) at x admissible to

E1, . . . ,Es,F1, . . . ,Ft (refer to Definition 2.3 for the notation) such that

– the defining equation of X is

y
a1
1 · · ·yap

p − x1 · · ·xq = 0

in a nonempty open neighborhood of x, where the integers satisfy

1 ≤ p ≤ m, 1 ≤ q ≤ n, a1 ≥ 1, . . . , ap ≥ 1,

and
– for each 1 ≤ i ≤ p, yi = 0 is a defining equation for some Eci

∈ E in a
nonempty open neighborhood of x, and

– for each 1 ≤ j ≤ q , xj = 0 is a defining equation for some Fdj
∈ F in a

nonempty open neighborhood of x.
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If X is a pre-binomial hypersurface of M with respect to (E,F), keeping the notations
in the above definition, then for any closed point x ∈ X, for any E ∈ E, F ∈ F, define

e(E,x) =
{

ai, if E = Eci
for some i in the above definition;

0, otherwise,

e(F,x) =
{

1, if F = Fdj
for some j in the above definition;

0, otherwise.

It is not difficult to verify that the above definitions of e(E,x), e(F, x) do not depend
on the choice of local coordinates, so they are well-defined nonnegative integers.

Let M , E, F be as above, then a hypersurface X of M is called binomial with
respect to (E,F) if it is pre-binomial with respect to (E,F) and satisfies the following
two additional conditions:

(3) ∀E ∈ E ∪ F, ∀ closed points x1, x2 ∈ E ∩ X, e(E,x1) = e(E,x2).
(4) ∀E ∈ E, ∀F ∈ F, if there exists a closed point x ∈ X such that e(E,x) > 0 and

e(F,x) > 0, then E ∩ F ⊂ X.

Our key observation is the following stable proposition for binomial hypersurfaces.

Proposition 2.4 Let M , E = {E1, . . . ,Es}, F = {F1, . . . ,Ft } be as above. Suppose
X is a hypersurface of M binomial with respect to (E,F) and there exists a closed
point x ∈ X such that e(E1, x) > 0 and e(F1, x) > 0. Let M1 = BlZM

π−→ M be the
blow-up of M along Z = E1 ∩ F1 ⊂ X and X1,E

′
1, . . . ,E

′
s ,F

′
1, . . . ,F

′
t be the strict

transforms of X,E1, . . . ,Es,F1, . . . ,Ft , respectively. Let E1 = {E′
1, . . . ,E

′
s ,E

′
s+1},

F1 = {F ′
1, . . . ,F

′
t }, where E′

s+1 = π−1(Z) is the exceptional divisor. Then

(1) E1 ∪ F1 is a set of smooth divisors meeting transversally on M1, and X1 is a
hypersurface of M1 binomial with respect to (E1,F1).

(2) Each irreducible component of the singular locus of X, say Sing(X), has the
form Ei1 ∩ Fj1 ∩ Fj2 ⊂ X or Ei1 ∩ Ei2 ∩ Fj1 ∩ Fj2 ⊂ X, for 1 ≤ i1 
= i2 ≤ s,
1 ≤ j1 
= j2 ≤ t .

(3) For the induced morphism X1
π1−→ X we have π−1

1 (E1 ∩ F1 ∩ Sing(X)) → E1 ∩
F1 ∩ Sing(X) is a P1-bundle, and π−1

1 (X − E1 ∩ F1 ∩ Sing(X)) → X − E1 ∩
F1 ∩ Sing(X) is an isomorphism.

(4) Let T = {E′
i1
, . . . ,E′

ik
,F ′

j1
, . . . ,F ′

jl
} ⊂ E1 ∪ F1 be a subset of E1 ∪ F1 satisfying

V = E′
i1

∩ · · · ∩ E′
ik

∩ F ′
j1

∩ · · · ∩ F ′
jl

⊂ X1, then V = ∅ if {E′
1,F

′
1} ⊂ T. Suppose

V 
= ∅, then

π(V ) =
{

Ei1 ∩ · · · ∩ Eik ∩ Fj1 ∩ · · · ∩ Fjl
, if E′

s+1 /∈ T;
E1 ∩ F1 ∩ Ei2 ∩ · · · ∩ Eik ∩ Fj1 ∩ · · · ∩ Fjl

, if E′
i1

= E′
s+1.

(5) Notations as in (4). If {E′
1,F

′
1} ∩ T 
= ∅, then the induced morphism V

π̃−→ π(V )

is an isomorphism. If {E′
1,F

′
1} ∩ T = ∅, then the induced morphism V

π̃−→ π(V )

satisfies that π̃−1(E1 ∩ F1 ∩ π(V )) → E1 ∩ F1 ∩ π(V ) is a P1-bundle, and
π̃−1(π(V ) − E1 ∩ F1) → π(V ) − E1 ∩ F1 is an isomorphism.
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Proof The verification is straightforward in local coordinates. �

Let M , E = {E1, . . . ,Es}, F = {F1, . . . ,Ft } be as above. Suppose X is a hypersur-
face of M binomial with respect to (E,F). In order to get a resolution of X, we define
a function on X to measure the singularities on it. For any closed point x ∈ X, define
g1(x) =∑

F∈F e(F,x), g2(x) =∑
E∈E e(E,x). Then we get a function on X:

g : X → N × N, x �→ (
g1(x), g2(x)

)
.

It is easy to see that if g(x) 
= (0,0), then g−1(g(x)) is a disjoint union of smooth
subvarieties of X. In this case, let n(x) be the number of irreducible components of
g−1(g(x)). Then we define the following function:

f : X → N × N × N

f (x) =
{

(g1(x), g2(x), n(x)), if g(x) 
= (0,0);
0, if g(x) = (0,0).

Given the lexicographic order, N × N × N is a well-ordered set, i.e., for

(a1, b1, c1), (a2, b2, c2) ∈ N × N × N,

(a1, b1, c1) < (a2, b2, c2) if and only if a1 < a2, or a1 = a2 and b1 < b2, or a1 = a2
and b1 = b2 and c1 < c2. Then it is easy to see that f is an upper semi-continuous
function on X. Therefore we get the following algorithm (∗) to resolve the singularity
of X:

(0) If the maximal value maxx∈X f (x) = (0,0,0), then X is already a smooth variety
meeting transversally with the divisors in E ∪ F.

(1) If maxx∈X f (x) > (0,0,0), take any closed point x ∈ X such that f (x) at-
tains the maximal value of f . It is not difficult to see that we can choose
Ei ∈ E, Fj ∈ F such that e(Ei, x) > 0 and e(Fj , x) > 0. Then blow up M

along Z = Ei ∩ Fj (we have Z = Ei ∩ Fj ⊂ X by the definition of bino-
mial hypersurfaces). Let E be the exceptional divisor. Let M1 = BlZM , and
X1,E

′
1, . . . ,E

′
s ,F

′
1, . . . ,F

′
t be the strict transforms of X,E1, . . . ,Es,F1, . . . ,Ft ,

respectively. Let E1 = {E,E′
1, . . . ,E

′
s}, F1 = {F ′

1, . . . ,F
′
t }, then according to

Proposition 2.4, X1 is a hypersurface of M1 binomial with respect to (E1,F1).
So we can define a function f1 : X1 → N × N × N in the same way as above. Let
π1 : X1 → X be the blow-up morphism. Then it is direct to verify:

– for any point x ∈ X1, f1(x) ≤ f (π1(x)), and
– the maximal value drops strictly, i.e. maxx∈X1 f1(x) < maxx∈X f (x).

Note also that since Z has codimension 2 everywhere in M , and X has order 1
at the generic point of each irreducible component of Z, we have KX1 	 π∗

1 KX ,
according to Lemma 2.2.

(2) If maxx∈X1 f1(x) > (0,0,0), then continue to blow up M1 and get

M2, X2, E2, F2, f2.

. . .
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We summarize the above discussions in the following theorem.

Theorem 2.5 Let M , E = {E1, . . . ,Es}, F = {F1, . . . ,Ft } be as above. Suppose
X is a hypersurface of M binomial with respect to (E,F). Then the above algo-
rithm (∗) terminates after finite steps. Suppose it terminates after N steps, then we get
MN,XN,EN,FN such that XN is a smooth hypersurface of MN meeting transver-
sally with the set of divisors EN ∪ FN . Moreover, let π = πN ◦ · · · ◦ π1 : XN → X be
the composition of blow-up morphisms, then

• π is crepant, i.e. KXN
	 π∗KX ;

• π is a strong resolution of X, i.e. if U = X −Sing(X) is the regular part of X, then
π induces an isomorphism π−1(U)

∼−→ U ;
• π is a projective morphism, moreover, it is a composition of blow-ups along smooth

centers.

Proof Most of the theorem follows from the above discussions. We just explain why
π is a strong resolution. Note that in each blow-up step the smooth center Zi is
contained completely in Xi . So in the regular part of Xi , we just blow up a Cartier
divisor. Therefore, the regular part of Xi remains unchanged. �

Now we give an application of Theorem 2.5. Suppose Q is a smooth variety,
and D = ∑t

j=1 Fj is a simple normal crossing divisor on Q defined by the section
sD ∈ Γ (Q, OQ(D)). Let a be a positive integer and L ∈ Pic(Q) such that aL = D.

Then in the total space of L: M = Tot(L)
p−→ Q, we have the tautological section s0 ∈

Γ (M,p∗L). The hypersurface X of M defined by the equation sa
0 = p∗sD is called

the a-fold cyclic cover of Q branched along D. It is easy to verify that X is a hyper-
surface of M binomial with respect to (E,F) = ({E0 = (s0 = 0)}, {p∗F1, . . . , p

∗Ft }).
So we can apply Theorem 2.5 to get a crepant resolution of X. That is, we have the
following corollary.

Corollary 2.6 Suppose Q is a smooth variety and D =∑t
j=1 Fj is a simple normal

crossing divisor on Q, for any a ≥ 1, if there exists L ∈ Pic(Q) such that aL = D,
then the a-fold cyclic cover of Q branched along D admits a crepant resolution,
which can be obtained by applying the crepant resolution algorithm (∗).

For the cyclic cover X constructed in Sect. 2.1, we can simply apply the above
result to obtain a crepant resolution σ : X̃ → X.

2.3 The Middle Cohomology Does Not Change Under Resolution

In this paragraph we show that σ : X̃ → X induces an isomorphism on the middle
cohomologies. To start with, we show first that the Hodge structure Hn(X,Q) is
actually pure. This is mostly easy if one notices that there is another CY, Y arising
from the same hyperplane arrangement as X, which is indeed smooth. We follow
[3, Sect. 2.2] for the construction of Y , the Kummer cover associated with A. Let
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A be a matrix whose columns define the hyperplane arrangement A and B = (bij )

a matrix fitting into a short exact sequence

0 → Cm−2 A−→ Cm B−→ C2 → 0.

We define Y to be the complete intersection of m
r

= 2 degree r hypersurfaces in
Pm−1 = Proj C[z0 : · · · : zm−1] defined by

bi1z
r
0 + · · · + bimzr

m−1 = 0, i = 1,2.

Using the Jacobian criterion, one sees easily that Y is smooth, and by the adjunc-
tion formula has trivial canonical bundle. The structure of Y as a Kummer cover is
seen as follows. Put G1 =⊕m

i=1 Z/r/�(Z/r). Here � denotes for the diagonal em-
bedding Z/r →⊕m

i=1 Z/r . For a = (a0, . . . , am) ∈ G1, we define an automorphism

σa : Pm−1 → Pm−1 by

σa(z0 : · · · : zm−1) = (
ζ a0
r z0 : · · · : ζ am−1

r zm−1
)
,

where ζr is a primitive r th root of unit. The matrix A defines a linear embedding
j : Pn → Pm−1 of projective spaces. Similar to Lemma 2.4 loc. cit., one sees that the
map

Pm−1 → Pm−1, (z0 : · · · : zm−1) �→ (
zr

0 : · · · : zr
m−1

)
realizing Y as the Kummer cover Y → j (Pn) with Galois group G1 and with branch
locus j (H). The group G1 contains a distinguished normal subgroup N1 � G1 of
index r , the kernel of the map a �→ ∑m−1

i=0 ai . We state the following result whose
proof is referred to Proposition 2.5 loc. cit.

Lemma 2.7 We have X 	 Y/N1. Consequently, there is an isomorphism of pure
polarized Q-Hodge structures

Hn(X,Q) 	 Hn(Y,Q)N1 .

Proposition 2.8 If p,q ≥ 0 and p 
= q , then σ induces an isomorphism

σ ∗ : Hp,q(X)
∼−→ Hp,q(X̃).

In particular, one has the isomorphism of Q-PVHS:

σ ∗ : Hn(X,Q)
∼−→ Hn(X̃,Q).

We need some lemmas.

Lemma 2.9 Let f : X̃ → X be a proper modification with discriminant D. Put E =
f −1(D). For p,q ≥ 0, if Hp,q(X) = Hp,q(E) = 0, then Hp,q(X̃) = 0.

Proof This follows directly from [10, Corollary-Definition 5.37]. �
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Lemma 2.10 Let π : Ṽ → V be a surjective morphism between projective varieties,
Z ⊂ V a closed subvariety such that π−1(Z)

π−→ Z is a P1-bundle and π−1(V −
Z)

π−→ V − Z is an isomorphism. For p,q ≥ 0 and p 
= q , if Hp,q(Z) = 0, then the

natural homomorphism Hp,q(V )
π∗−→ Hp,q(Ṽ ) is surjective.

Proof This follows from Lemma 2.9 and the Leray–Hirsch Theorem for the
P1-bundle π−1(Z)

π−→ Z. �

We come to the proof of Proposition 2.8.

Proof Set M = Tot(L) and E1 = {s = 0},Fj = {p∗sj = 0} divisors in M . Put

E = {E1}, F = {F1, . . . ,Fm}.
Then X is a binomial hypersurface of M with respect to (E,F). The crepant reso-
lution algorithm applied to the data X,M, (E,F) provides us with the blow-up se-
quence

X̃ = XN
σN−→ XN−1

σN−2−−−→ · · · σ1−→ X

such that for any i = 1,2, . . . ,N , Xi is a binomial hypersurface of Mi with respect to
(Ei ,Fi ), and X̃ = XN is smooth and meet transversally to the divisors in EN ∪FN . An
induction using Proposition 2.4 and Lemma 2.10 shows that for any i = 1,2, . . . ,N ,
for any elements D1, . . . ,Dk ∈ Ei ∪ Fi , if D1 ∩ · · · ∩ Dk ⊂ Xi , then Hp,q(D1 ∩
· · · ∩ Dk) = 0, for any p,q ≥ 0 and p 
= q . Then a further induction using (3) of

Proposition 2.4 and Lemma 2.10 shows that Hp,q(X)
σ ∗−→ Hp,q(X̃) is surjective,

for any p,q ≥ 0 and p 
= q , where σ = σN ◦ · · · ◦ σ1. [10, Theorem 5.41] shows

that Hp,q(X)
σ ∗−→ Hp,q(X̃) is injective, for any p,q ≥ 0. So we finally find that

Hp,q(X)
σ ∗−→ Hp,q(X̃) is an isomorphism, for any p,q ≥ 0 and p 
= q . �

Corollary 2.11 Let π : X → Pn be the r-fold cyclic cover of Pn branched along m

hyperplanes in general position in Sect. 2.1. Let X̃
σ−→ X be the crepant resolution

constructed after Corollary 2.6. The obtained X̃ is a smooth projective CY manifold.

Proof By Theorem 2.5, X̃ is smooth. Also, as the morphism σ : X̃ → X is projective
by the same result, X̃ is projective whose canonical bundle is trivial. By Proposi-
tion 2.8, for any 0 < i < n, we have

Hi(X̃, O
X̃
) 	 H 0,i (X̃) 	 H 0,i (X) = H 0,i (Y )N1 = 0.

This shows the result. �

3 The Hodge Structure of the Cyclic Cover

Let π : X → Pn be the r-fold cyclic cover branched along H = ∑m
i=1 Hi where

{H1, . . . ,Hm} is a hyperplane arrangement of Pn in general position. In this section
we investigate the Hodge structure Hn(X,Q). We first record its Hodge numbers.
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Lemma 3.1 Let hp,q = dimHp,q(X) for p,q ≥ 0 and p + q = n. One has

hp,q(X) =
{

q + 1, if q is even;
n + 1 − q, if q is odd.

Proof By Lemma 2.7, we can derive the Hodge numbers of X from those of Y , which
is a smooth complete intersection. By the work of Terasoma [12], one can represent
the cohomology classes of Y by a certain Jacobian ring, together with an explicit
description of the action of G1. After the computation has been implemented, we
found that [2, Lemma 8.2] actually contains our result (set μ = ( 1

r
, . . . , 1

r
) in the

cited lemma). The detail is therefore omitted. �

3.1 The Cyclic Cover of P1 Branched Along m Distinct Points

For m distinct points pi,1 ≤ i ≤ m in P1, we consider the r-fold cyclic cover
of P1 branched along

∑
i pi . Call it the curve C, and let p : C → P1 be the nat-

ural projection. Fix a generator ι ∈ Aut(C | P1). Let Q(ζr ) ⊂ C be the r th cyclo-
tomic field. The induced action ι∗ on VQ := H 1(C,Q) induces a decomposition of

VQ(ζr ) := VQ ⊗ Q(ζr ) into direct sum of Q(ζr )-PHSs:

VQ(ζr ) =
r−1⊕
i=0

Vi,

where Vi is the eigenspace of ι∗ with eigenvalue ζ i
r . The following lemma is well

known.

Lemma 3.2 Let Vi ⊗ C = V
1,0
i ⊕ V

0,1
i be the induced Hodge decomposition from

the weight 1 PHS of C. We have V
1,0
i = V

0,1
r−i and

dimV0 = 0, dimV
1,0
i = 2i − 1, 1 ≤ i ≤ r − 1.

Proof See for example [6, Lemma 4.2]. �

The next lemma is purposed for a later use.

Lemma 3.3 The weight n Q-PHS
∧n

VQ admits a decomposition

n∧
VQ = W1,Q ⊕ W2,Q

with W1,Q ⊗ Q(ζr ) =⊕r−1
i=1

∧n
Vi . Furthermore, only for n = 3,5,9, one has a fur-

ther decomposition of Q-PHS

W1,Q = Wunif,Q ⊕ W ′
1,Q
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such that

Wunif,Q ⊗ Q(ζr ) =
n∧

V1 ⊕
n∧

Vr−1.

Proof Consider the Galois action on the decomposition

n∧
(VQ(ζr )) =

n∧(⊕
i

Vi

)

=
⊕

i

n∧
Vi ⊕

⊕
I,|I |≥2

rI∧
VI .

Here I = (i1, . . . , i|I |) for 1 ≤ i1 < · · · < i|I | ≤ n is a multi-index, rI = (r1, . . . , r|I |)
is a sequence of nonnegative integers satisfying

∑
ri = n and

rI∧
VI =

r1∧
Vi1 ⊗ · · · ⊗

r|I |∧
Vi|I | .

It is clear that
⊕

i

∧n
Vi is invariant under the Galois action. So is the other factor.

Thus they underlie Q-subspaces of
∧n

VQ. Consider furthermore the Galois orbit of∧n
V1. It contains at least

∧n
Vr−1, and

∧n
V1 ⊕∧n

Vr−1 has a sub Q-structure iff
the Galois orbit contains no more direct summand. As the Galois group is isomorphic
to the unit group of Z/r and it is an elementary fact that the unit group is of order two
only if r = 3,4,6, it follows that only when n = 3,5,9,

∧n
V1 ⊕∧n

Vr−1 underlie a
sub Q-structure. The lemma is proved. �

Now we perform a similar construction to the one taken in [3, Sect. 2.3]. Let γ :
(P1)n → Symn(P1) = Pn be the Galois cover with Galois group Sn, the permutation
group of n letters, and the identification attaches to a divisor of degree n the ray of its
equation in H 0(P1, O(n)).

Lemma 3.4 Put Hi = γ ({pi} × (P1)n−1). Then (H1, . . . ,Hm) is a hyperplane ar-
rangement in Pn in general position.

Proof The divisors of degree n in P1 containing a given point form a hyperplane and,
as a divisor of degree n cannot contain n + 1 distinct points, no n + 1 hyperplanes in
the arrangement do meet. �

In this case, we have more: for any natural number n (not necessarily odd), we will
show that any (ordered) m hyperplane arrangement in Pn is projectively equivalent
to a(n) (ordered) one arising from the above way. In fact, we will prove a stronger
statement. Let M1,n+3 be the moduli space of ordered n + 3 distinct points in P1 and
similarly Mn,n+3 ordered n + 3 hyperplane arrangements in Pn in general position.

Lemma 3.5 The map γ : (P1)n → Pn induces an isomorphism

Γ : M1,n+3 	 Mn,n+3,
[
(p1, . . . , pm)

] �→ [
(H1, . . . ,Hm)

]
.
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Proof We adopt an elementary but direct proof. The two moduli spaces admit affine
descriptions. Any ordered m = n+3 distinct points in P1 is transformed into a unique
tuple (0, t1, . . . , tn−1,∞,1, tn) with ti ∈ C and M1,n+3 is therefore identified with the
complement of the following hyperplanes in Cn = Spec C[t1, . . . , tn] defined by

{ti , ti − 1, ti − tj ,1 ≤ i, j ≤ n}.
Similarly, the following matrix represents a unique point in Mn,n+3:

⎛
⎜⎜⎜⎜⎝

1 . . . 0 1 1

0
. . . 0 1 s1

...
. . .

...
...

...

0 . . . 1 1 sn

⎞
⎟⎟⎟⎟⎠

n+1×n+3

,

where (s1, . . . , sn) is a point in Cn = Spec C[s1, . . . , sn] away from the union of
hyperplanes

{si, si − 1, si − sj ,1 ≤ i, j ≤ n}.
The following claim implies the lemma:

Claim 3.6 Under the above affine coordinates, one has

Γ (t1, . . . , tn−1, tn) =
(

tn(t1 − 1)

t1 − tn
, . . . ,

tn(tn−1 − 1)

tn−1 − tn
, tn

)
.

Proof The following Vandermonde-type matrix of size (n + 1) × (n + 3) gives the
defining equations of the hyperplane arrangement corresponding to

(0, t1, . . . , tn−1,∞,1, tn)

under γ :

A =

⎛
⎜⎜⎜⎝

1 1 . . . 1 0 1 1
0 t1 . . . tn−1 0 1 tn
...

...
...

...
...

...
...

0 tn1 . . . tnn−1 1 1 tnn

⎞
⎟⎟⎟⎠ .

The first n + 1 columns make the square matrix

B =

⎛
⎜⎜⎜⎝

1 1 . . . 1 0
0 t1 . . . tn−1 0
...

...
...

...
...

0 tn1 . . . tnn−1 1

⎞
⎟⎟⎟⎠ .

By Cramer’s rule, one uses the determinant of a Vandermonde matrix to determine
the vector

(λ1, . . . , λn+1)
t = B−1(1, . . . ,1)t ,
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as well as the vector

(μ1, . . . ,μn+1)
t = B−1(1, tn, . . . , t

n
n

)t
.

Put D = diag{λ1, . . . , λn+1}. Then the invertible (n + 1) × (n + 1) matrix P =
λ1μ

−1
1 D−1B−1 transforms the hyperplane arrangement defined by A to the one by

columns of the matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0 1 1

0
. . . 0 1 tn(t1−1)

t1−tn
... . . .

...
...

...

0 . . . 0 1 tn(tn−1−1)

tn−1−tn

0 . . . 1 1 tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

�

Let p : C → P1 as above. The n-fold product

h : Cn pn

−→ (
P1)n γ−→ Pn

is a Galois cover with Galois group N � Sn, where N = 〈ι1, . . . , ιn〉 is the group
generated by the cyclic automorphisms on factors. The group N has a natural normal
subgroup N ′ given by the kernel of the trace map

N 	 (Z/r)×n

∑
−→ Z/r.

It has a set of generators {δi}1≤i≤r−1 with

δi = 〈
id, . . . , ι, ι−1, . . . , id

〉
,

where ι appears at the ith component and ι−1 the i + 1th component and the identity
elsewhere. Consider the quotient Cn/G with G = N ′ � Sn. Similar to Lemma 2.8
loc. cit., one checks that the natural map Cn/G → Pn induced by h is a Galois cover
with Galois group Z/r and its branch locus is exactly H1 + · · · + Hm. As the Picard
group of a projective space has no torsion, one concludes that Cn/G is isomorphic to
the r-fold cyclic cover XC of Pn branched along

∑
i Hi .

3.2 The Abel–Jacobi Map and the Hodge Structure of the Cyclic Cover

Recall that (see e.g. [4, Chap. 2]) the Abel–Jacobi map φ : C → Jac(C) = Cg/Λ is
defined by the period integral

q �→
(∫ q

q0

ω1, . . . ,

∫ q

q0

ωg

)
,

where q0 ∈ C is a chosen base point and {ωi}1≤i≤g is a basis of holomorphic
one forms on C. Here Λ denotes for the period lattice of C. Let (z1, . . . , zg) be
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the standard coordinates of Cg . Then one sees that φ∗ induces an isomorphism
H 1(Jac(C),Q) 	 H 1(C,Q) such that φ∗(dzi) = ωi,1 ≤ i ≤ g. The Abel–Jacobi
map induces the natural morphism

φn : Cn → Jac(C), (q1, . . . , qn) �→
n∑

i=1

φ(qi).

We are in the situation to study the following diagram of morphisms:

Cn

δ

φn

Jac(C).

XC

	
Cn/G

Here the map δ : Cn → Cn/G is the natural projection. Note that after Lemma 3.5
any r-fold cyclic cover X in Sect. 2.1 is isomorphic to an XC . The consequence of
the morphisms on the level of Q-PHS is summarized in the following.

Proposition 3.7 The morphisms in the above diagram induces an isomorphism of
Q-PHS:

Hn(XC,Q) 	 W1,Q,

where W1,Q is the PHS in Lemma 3.3.

Proof By labeling the curve factors of Cn by Ci,1 ≤ i ≤ n, we obtain from the
Künneth decomposition a decomposition of Q-PHS:

Hn
(
Cn,Q

) =
n⊗

i=1

H 1(Ci,Q)

⊕
⊗

1≤i 
=j≤n

[
H 0(Ci,Q) ⊗ H 2(Cj ,Q) ⊗

⊗
1≤k≤n,k 
=i,j

H 1(Ck,Q)

]
.

Denote κ : Hn(Cn,Q) → ⊗n
i=1 H 1(Ci,Q) for the projection onto the first factor.

We claim that the composite

W1,Q ⊂
n∧

H 1(C,Q)
φ∗
	 Hn

(
Jac(C),Q

) φ∗
n−→ Hn

(
Cn,Q

) κ−→
n⊗

i=1

H 1(Ci,Q)

is injective and the image is G-invariant. Assuming the claim, the result follows. As

Hn(XC,Q) 	 Hn
(
Cn/G,Q

)= Hn
(
Cn,Q

)G



Maximal Families of Calabi–Yau Manifolds with Minimal Length 87

and W1,Q have the same dimensions by Lemmas 3.1 and 3.2 (both are equal to
2(r − 1)2), the injective map W1,Q ↪→ Hn(Cn,Q)G of Q-PHSs is indeed an iso-
morphism. Notice that by Lemma 3.2 we can take the basis {ωi}1≤i≤g in the above
description of φ as eigenvectors with respect to the action of ι on VC. This im-
plies that the corresponding dzi to ωi is an eigenvector with the same eigenvalue
with respect to the induced natural action of ι on Jac(C). This will make the veri-
fication of the invariance of the resulting class under G-action straightforward. Let
πi : Cn → C,1 ≤ i ≤ n be the ith projection. Then the induced map φ∗

n on the level
of differential one forms is given by

φ∗
n(dzi) =

n∑
l=1

π∗
l ωi, φ∗(dz̄i) =

n∑
l=1

π∗
l ω̄i , 1 ≤ i ≤ g.

Therefore the map φ∗
n : Hn(Jac(C),C) → Hn(Cn,C) on the degree n cohomology

groups is given by sending [dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jn−p ] to

[∑
l

π∗
l ωi1 ∧ · · · ∧

∑
l

π∗
l ωip ∧

∑
l

π∗
l ω̄j1 ∧ · · · ∧

∑
l

π∗
l ω̄jn−p

]
.

The bracket means the cohomology class of the differential form. Now for each direct
factor

∧n
Vk ⊂ W1,Q ⊗ Q(ζr ), we claim that the image of its element under κ ◦ φ∗

n is
invariant under G-action. Note that the map φn factors as

Cn /Sn−→ SnC → Jac(C).

Thus it suffices to show the invariant property under the subgroup N ′ of G. It is also
equivalent to show this property for elements in

∧n
(Vk ⊗ C), which for dimension

reason, is just equal to

2k−2∧
V

1,0
k ⊗

n−2k+2∧
V

0,1
k ⊕

2k−1∧
V

1,0
k ⊗

n−2k+1∧
V

0,1
k .

Let {dzi1, . . . , dzi2k−1} (resp. {dz̄j1, . . . , dz̄jn−2k+2}) be the basis of V
1,0
k (resp. V

0,1
k ).

Consider the image under φ∗
n of a typical element (omitting dzi2k−1 in the wedge

product)

[α] := [dzi1 ∧ · · · ∧ dzi2k−2 ∧ dz̄j1 ∧ · · ·dz̄jn−2k+2 ] ∈
2k−2∧

V
1,0
k ⊗

n−2k+2∧
V

0,1
k .

For clarity we set

α1 = ωi1, . . . , α2k−2 = ωi2k−2, α2k−1 = ω̄j1, . . . , αn = ω̄jn−2k+2 .

Then it follows that

κ ◦ φ∗
n

([α])=
∑
ν∈Sn

(−1)Sign(ν)
[
π∗

1 αν(1) ∧ · · · ∧ π∗
nαν(n)

]
.
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(For n = 3 mod 4, we have κ ◦φ∗
n([α]) = φ∗

n([α]).) Now one sees its invariance under
N ′-action immediately. One tests simply the action of any generator δi of N ′ and
it acts on π∗

1 αν(1) ∧ · · · ∧ π∗
nαν(n) by multiplying ζ k

r ζ−k
r = 1. This completes the

proof. �

4 Maximal Families of CY Manifolds with Length 1 Yukawa Coupling

Our aim in this section is to exhibit families of CY manifolds with claimed properties,
and make some complements to these families at the end.

Recall that in the proof of Lemma 3.5 we have explained that Mn,n+3 is identified
with an open subset of Cn. Call it Un with coordinates s = (s1, . . . , sn). Let [x0 : · · · :
xn] be the homogeneous coordinates of Pn. Put

t1 = x0, . . . , tm−2 = xn, tm−1 =
n∑

i=0

xi, tm = x0 +
n∑

i=1

sixi .

They give m sections of O(1) whose zero divisors in Pn meet transversally. Let
pi, i = 1,2 be the projection of Tot(L) × Un to the ith factor. Define

Xn ⊂ Tot(L) × Un

to be the zero locus of the section

p∗
1sr −

m⊗
i=1

(p ◦ p1)
∗ti ∈ Γ

(
Tot(L) × Un, (p ◦ p1)

∗O(m)
)
,

and fn : Xn → Un the composite Xn ⊂ Tot(L) × Un
p2→ Un. The is the family of

r-fold cyclic covers of Pn branched along a universal family of n + 3 hyperplane ar-
rangements of Pn in general position. We can do the simultaneous crepant resolution
of the family fn. The divisors of Tot(L) × Un given by

Ẽ0 := (
p∗

1s = 0
)
, Ẽ1 := (

(p ◦ p1)
∗t1 = 0

)
, . . . , Ẽm := (

(p ◦ p1)
∗tm = 0

)

meet transversally and the hypersurface X is binomial with respect to

(
E = {Ẽ0},F = {Ẽ1, . . . , Ẽm}).

By Theorem 2.5, we can apply the crepant resolution algorithm to X and get a simul-
taneous crepant resolution of fn:

X̃ Xn

fn

Un
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This is not unique and a different choice leads to a fiberwise birationally equivalent
family of CY manifolds. We choose one and call f̃n : X̃n → Un = Mn,n+3 the family
of CY manifolds by our construction.

We can also consider M1,n+3 and obtain a family gn : C → M1,n+3 whose fibers
are r-fold cyclic covers of P1 branched along n+3 distinct points. The nth self prod-
uct (gn)

n : Cn → M1,n+3 of gn admits a natural action of G which acts fiberwisely
as what we have described at the end of Sect. 3.1. For

hn : Cn/G
(gn)n−→ M1,n+3

Γ−→ Mn,n+3,

there is an isomorphism

Cn/G
	

hn

Xn

fn

Mn,n+3

.

Some notations before the main computational result. Write VQ = R1gn∗Q. By
Lemma 3.2, the fiberwise cyclic automorphism induces a decomposition of Q(ζr )-
PVHS:

VQ ⊗ Q(ζr ) =
r−1⊕
i=1

Vi .

By Lemma 3.3, there is a decomposition of Q-PVHSs:

n∧
VQ = W1,Q ⊕ W2,Q

such that W1,Q ⊗ Q(ζr ) =⊕r−1
i=1

∧n
Vi . Write Hn = Rnf̃n∗Q.

Theorem 4.1 Let f̃n : X̃n → Mn,n+3 be the family of n-dimensional CY manifolds.
Then one has an isomorphism of Q-PVHSs:

Hn 	 W1,Q.

Proof It follows from Propositions 2.8 and 3.7. �

Remark 4.2 Note that, for and only for n = 3,5,9, the Q(ζr )-PVHS

n∧
V1 ⊕

n∧
Vr−1

underlies a sub Q-PVHS Wunif,Q of W1,Q. Write Hunif,Q to be the sub Q-PVHS of
Hn corresponding to Wunif,Q under the above isomorphism.
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Corollary 4.3 The following statements are true:

(i) The family f̃n is maximal.

(ii) ς(f̃n) = 1. Consequently, Shafarevich’s conjecture holds true for f̃n.
(iii) A suitable partial compactification of the family f̃3 is a Shimura family of

U(1,3)-type.
(iv) For n = 5,9, the sub Q-PVHS Hunif,Q ⊂ Hn gives a uniformization to a Zariski

open subset of an arithmetic ball quotient.

Proof Let (F,η) be the corresponding Higgs bundle to VQ, (E, θ) to Hn. The above
theorem on PVHS implies the corresponding result on Higgs bundles, that is,

(F,η) =
r−1⊕
i=1

(Fi, ηi), (E, θ) 	
r−1⊕
i=1

n∧
(Fi, θi).

Lemma 3.2 implies that

rank
(
F

1,0
i

)= 2i − 1, rank
(
F

0,1
i

)= n + 2 − 2i.

Adding the information on the Hodge components, one has a more explicit descrip-
tion of the Higgs bundle (E, θ), which is equal to

(
En,0 ⊕ En−1,1, θn,0)
⊕(

En−2,2 ⊕ En−3,3, θn−2,2)⊕ · · · ⊕ (
E1,n−1 ⊕ E0,n, θ1,n−1),

together with isomorphisms of Higgs bundles

(
En,0 ⊕ En−1,1, θn,0) 	

( n∧
F

1,0
r−1 ⊕

n−1∧
F

1,0
r−1 ⊗ F

0,1
r−1,

n∧
ηr−1

)
,

. . .

(
E1,n−1 ⊕ E0,n, θ1,n−1) 	

(n−1∧
F

1,0
1 ⊗ F

0,1
1 ⊕

n∧
F

0,1
1 ,

n∧
η1

)
.

Note that the family gn : C → M1,n+3 is in connection with the theory of Deligne–
Mostow [1] (see also [6]). It follows from Proposition 3.9 loc. cit. that

ηr−1 : F 1,0
r−1 → F

0,1
r−1 ⊗ ΩM1,n+3

is an isomorphism. So is θn,0. This shows (i). It follows also that ς(f̃n) = 1 as

θn−1,1 : En−1,1 → En−2,2 ⊗ ΩMn,n+3

is simply zero. As f̃n is maximal, the length of the Yukawa coupling of the corre-
sponding coarse moduli is also equal to 1. By [5, Theorem 6], Shafarevich’s conjec-
ture holds for this coarse moduli. This shows (ii). The eigen-PVHS V1 is a special
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case of C-PVHSs over M1,n+3 studied by Deligne–Mostow loc. cit. In our case,

μ =
(

μ1 = 1

r
, . . . ,μm = 1

r

)

in the notation of loc. cit. It is shown in Sect. 10 loc. cit. that when the condition INT
(see Theorem 3.11 loc. cit. for its meaning) is satisfied, the monodromy representa-
tion of V1 has discrete image in Aut(Bn). The condition to guarantee the discreteness
of the image has been relaxed by Mostow [8] to

∑
INT, which turns out to be also

sufficient by Mostow [9]. In the appendix of [9], he gives also a complete list of μ

satisfying
∑

INT for n ≥ 3. Checking the list, one finds immediately that there are
exactly three cases labeled as No. 1, No. 8 and No. 23 which have equal μis, and they
come exactly from V1 for n = 3,5,9. Moreover, in these three cases, the monodromy
groups are actually arithmetic. Note that

Hunif,Q ⊗ Q(ζr ) 	
(
V1 ⊕ Vr−1

)
⊗ Q(ζr )(2 − r),

and V1,Vr−1 are dual to each other. The period map of Hunif,Q gives an open embed-
ding of Mn,n+3 into an arithmetic ball quotient. For the case n = 3, it is even more
special. In this case, one has

H3 = Hunif,Q 	 VQ ⊗ Q(−1).

By Deligne–Mostow [1], the family g3 : C → M1,6 can be partially compactified so
that the image of its period map in the moduli space of principally polarized Abelian
4-folds with a suitable level structure is an arithmetic quotient of B3. See a recent
work [7] by Moonen on the classification of Shimura subvarieties in the Jacobian
locus of moduli spaces of principally polarized Abelian varieties arising from cyclic
covers of P1. This example appears as No. (10) in Table 1 loc. cit. It is quite obvious
that the partial compactification of g3 yields the one of f3 and also of f̃3. The detail is
omitted since what it will involve is not closely relevant to the paper. This completes
the proof. �

We conclude the paper with the following remark.

Remark 4.4 (i) For n = 3, the Hodge numbers of X̃ read h1,1 = 51, h2,1 = 3. Rohde
has constructed in his doctor thesis (see [11]) a maximal family of CY 3-folds with
the same Hodge numbers which is also a Shimura family. Note that the parameter of
his family comes also from M1,6. Are these two families birationally equivalent?

(ii) One constructs more maximal families of CY manifolds from the moduli space
of hyperplane arrangements in a projective space. Do our families exhaust all possi-
bilities with length 1 Yukawa coupling?

(iii) We have shown that Hunif,Q ⊂ Hn exists only for n = 3,5,9, which are the
unique three cases appeared in Mostow’s list with equal μis. Is there some deeper
reason than a mere coincidence?
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