
VARIATION AND RIGIDITY OF QUASI-LOCAL MASS
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Abstract. Inspired by the work of Chen and Zhang [5], we derive an evolution
formula for the Chen-Wang-Wang-Yau quasi-local energy in reference to a static
space. If the reference static space represents a mass minimizing, static extension
of the initial surface Σ, we observe that the derivative of the Chen-Wang-Wang-Yau
quasi-local energy is equal to the derivative of the Bartnik quasi-local mass at Σ.

Combining the evolution formula for the quasi-local energy with a localized Pen-
rose inequality proved in [10], we prove a rigidity theorem for compact 3-manifolds
with nonnegative scalar curvature, with boundary. This rigidity theorem in turn
gives a characterization of the equality case of the localized Penrose inequality in
3-dimension.

1. Introduction

The purpose in this paper is twofold. We derive a derivative formula for the integral

(1.1)

∫
Σt

N(H̄ −H) dσ

along a family of hypersurfaces {Σt} evolving in a Riemannian manifold (M, g) with
an assumption that Σt can be isometrically embedded in a static space (N, ḡ) as a
comparison hypersurface Σ̄t. Here H, H̄ are the mean curvature of Σt, Σ̄t in (M, g),
(N, ḡ), respectively, and N is the static potential on (N, ḡ). When {Σt} is a family
of closed 2-surfaces in a 3-manifold (M, g), integral (1.1) represents the Chen-Wang-
Wang-Yau quasi-local energy in reference to the static space (N, ḡ). In this case, if
(N, ḡ) represents a mass minimizing, static extension of the initial surface Σ0, we find
that the derivative of the quasi-local energy agrees with the derivative of the Bartnik
quasi-local mass at Σ0 (see (2.7) in Section 2).

We also apply the derivative formula of (1.1) to prove a rigidity theorem for compact
3-manifolds with nonnegative scalar curvature, with boundary. Precisely, we have

Theorem 1.1. Let (Ω, ğ) be a compact, connected, orientable, 3-dimensional Rie-
mannian manifold with nonnegative scalar curvature, with boundary ∂Ω. Suppose ∂Ω
is the disjoint union of two pieces, Σ

O
and Σ

H
, where

(i) Σ
O

has positive mean curvature H; and
(ii) Σ

H
is a minimal hypersurface (with one or more components) and there are

no other closed minimal hypersurfaces in (Ω, ğ).
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Let M3
m be a 3-dimensional spatial Schwarzschild manifold with mass m > 0 outside

the horizon. Suppose Σ
O

is isometric to a convex surface Σ ⊂ M3
m which encloses a

domain Ωm with the horizon ∂M3
m. Suppose Ric(ν, ν) ≤ 0 on Σ, where Ric is the Ricci

curvature of the Schwarzschild metric ḡ on M3
m and ν is the outward unit normal to

Σ. Let Hm be the mean curvature of Σ in M3
m and |Σ

H
| be the area of Σ

H
in (Ω, ğ).

If H = Hm and

√
|Σ

H
|

16π
= m, then (Ω, ğ) is isometric to (Ωm, ḡ).

Theorem 1.1 gives a characterization of the equality case of a localized Penrose
inequality proved in [10].

Theorem 1.2 ([10]). Let (Ω, ğ) be a compact, connected, orientable, 3-dimensional
Riemannian manifold with nonnegative scalar curvature, with boundary ∂Ω. Suppose
∂Ω is the disjoint union of two pieces, Σ

O
and Σ

H
, where

(i) Σ
O

has positive mean curvature H; and
(ii) Σ

H
, if nonempty, is a minimal hypersurface (with one or more components)

and there are no other closed minimal hypersurfaces in (Ω, ğ).

Let M3
m be a 3-dimensional spatial Schwarzschild manifold with mass m > 0 outside

the horizon. Suppose Σ
O

is isometric to a convex surface Σ ⊂ M3
m which encloses a

domain Ωm with the horizon ∂M3
m. Suppose Ric(ν, ν) ≤ 0 on Σ, where Ric is the Ricci

curvature of the Schwarzschild metric ḡ on M3
m and ν is the outward unit normal to

Σ. Then

(1.2) m+
1

8π

∫
Σ

N(Hm −H) dσ ≥
√
|Σ

H
|

16π
.

Here N is the static potential on M3
m, Hm is the mean curvature of Σ in M3

m, and
|Σ

H
| is the area of Σ

H
in (Ω, ğ). Furthermore, equality in (1.2) holds if and only if

(1.3) H = Hm,

√
|Σ

H
|

16π
= m.

By Theorems 1.1 and (1.3), we have the following rigidity statement concerning
the equality case of (1.2).

Theorem 1.3. Equality in (1.2) in Theorem 1.2 holds if and only if (Ω, ğ) is isometric
to (Ωm, ḡ).

Our motivation to consider the evolution of (1.1) and the proof of Theorem 1.1
are inspired by a recent paper of Chen and Zhang [5]. In [5], Chen-Zhang proved the
global rigidity of a convex surface Σ with Ric(ν, ν) ≤ 0 among all isometric surfaces
Σ′ in M3

m having the same mean curvature and enclosing the horizon. As a key step
in their proof, they computed the first variation of the quasi-local energy of Σ′ in
reference to M3

m. Such a variational consideration is made possible by the openness
result of solutions to the isometric embedding problem into warped product space,
which is due to Li and Wang [8]. Combining the variation formula with inequality
(1.2), Chen-Zhang established the rigidity of Σ in M3

m.
This paper may be viewed as a further application of the method of Chen-Zhang.

In Section 2, we compute the derivative of (1.1) (see Formula 2.1) and relate it to the
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derivative of the Bartnik quasi-local mass. In Section 3, we prove Theorem 1.1 by
applying Formula 2.1 and Theorem 1.2. In Section 4, we give a proof of the derivative
formula of Bartnik mass for a specific class of Bartnik data, by applying Formula 2.1
and results in [10].

2. Evolution of quasi-local mass

In this section we derive a formula that is inspired by [5, Lemma 2]. First we fix
some notations. Let (M, g) be an (n + 1)-dimensional Riemannian manifold and Σ
be an n-dimensional closed manifold. Consider a family of immersed hypersurfaces
{Σt} evolving in (M, g) according to

F : Σ× I −→M,
∂F

∂t
= ην.

Here F is a smooth map, I is some open interval containing 0, Σt = Ft(Σ) with
Ft(·) = F (·, t), ν is a chosen unit normal to Σt = Ft(Σ), and η denotes the speed of
the evolution of {Σt}.

Let (N, ḡ) denote an (n + 1)-dimensional static Riemannian manifold. Here (N, ḡ)
is called static (cf. [6]) if there exists a nontrivial function N such that

(∆̄N)ḡ − D̄2N +NR̄ic = 0,(2.1)

where R̄ic is the Ricci curvature of (N, ḡ), D̄2N is the Hessian of N and ∆̄ is the
Laplacian of N . The function N is called a static potential on (N, ḡ).

In what follows, we consider another family of immersed hypersurfaces {Σ̄t} evolv-
ing in (N, ḡ) according to

F̄ : Σ× I −→ N
with Σ̄t = F̄t(Σ) and F̄t(·) = F̄ (·, t). We will make an important assumption:

(2.2) F̄ ∗t (ḡ) = F ∗t (g), ∀ t ∈ I.

In particular, this means that Σ̄t is assumed to be isometric to Σt for each t.

Remark 2.1. We emphasize that, when n = 2, given any {Σt} in (M, g), there exists
such a family of {Σ̄t} in (N, ḡ) satisfying condition (2.2). This is guaranteed by the
openness result of solutions to the isometric embedding problem, which is due to Li
and Wang [8, 9].

We will compute
d

dt

∫
Σ

Nt(H̄t −Ht) dσt,

where Nt = F̄ ∗t (N) is the pull back of the static potential N on (N, ḡ); Ht, H̄t are the
mean curvature of Σt, Σ̄t in (M, g), (N, ḡ), respectively; and dσt is the area element of
the pull back metric γt = F̄ ∗t (ḡ) = F ∗t (g). For simplicity, the lower index t is omitted
below.
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Formula 2.1. Given {Σt}, {Σ̄t} evolving in (M, g), (N, ḡ) as specified above,

d

dt

∫
Σ

N(H̄ −H) dσ

=

∫
Σ

N

[
1

2
|A− Ā|2 − 1

2
|H − H̄|2 +

1

2
(R− R̄)

]
η dσ

+

∫
Σ

[
(f − η)

∂N

∂ν̄
+ 〈∇N,X〉

]
(H̄ −H) dσ.

(2.3)

Here A, Ā are the second fundamental forms of Σt, Σ̄t in (M, g), (N, ḡ), respectively;
R, R̄ are the scalar curvature of (M, g), (N, ḡ), respectively; f and X are the lapse

and the shift associated to
∂F̄

∂t
, i.e.

∂F̄

∂t
= fν̄ + X, where f is a function and X is

tangential to Σ̄t; and ∇ denotes the gradient on (Σ̄t, γ).

Remark 2.2. Suppose (M, g) and (N, ḡ) both are M3
m and suppose H = H̄ at t = 0,

(2.3) becomes

d

dt
|t=0

∫
Σ

N(H̄ −H) dσ =
1

2

∫
Σ

N |A− Ā|2η dσ.(2.4)

This is the formula in [5, Lemma 2].

Remark 2.3. If X = 0 and R = R̄, (2.3) reduces to

d

dt

∫
Σ

N(H̄ −H) dσ

=

∫
Σ

N

[
1

2
|A− Ā|2 − 1

2
|H − H̄|2

]
η dσ +

∫
Σ

(f − η)
∂N

∂ν̄
(H̄ −H) dσ

=

∫
Σ

η−1(f − η)2

(
−Nσ2 − H̄

∂N

∂ν̄

)
dσ.

(2.5)

This is the formula in [10, Proposition 2.2].

We comment on the physical meaning of (2.3). Suppose n = 2. In [4], Chen,
Wang, Wang and Yau introduced a notion of quasi-local energy in reference to a
static spacetime. (The notion is a generalization of the Wang-Yau quasi-local energy
[13, 14] for which the reference spacetime is R3,1.) Setting τ = 0 in equation (2.10) in
[4], one sees that the quasi-local energy of a 2-surface Σ ⊂ (M3, g) defined in [4] with
respect to an isometric embedding of Σ into a constant t-slice of the static spacetime
(R1 × N,−N2dt2 + ḡ) is the integral

1

8π

∫
Σ

N(H̄ −H) dσ.

Therefore, up to a multiplicative constant, (2.3) gives the evolution formula of the
Chen-Wang-Wang-Yau quasi-local energy of the flowing surfaces {Σt} in (M, g).

Next, we tie (2.3) with the evolution formula of the Bartnik quasi-local mass m
B

(·).
We defer the detailed definition of the Bartnik mass m

B
(·) to Section 4. For the
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moment, we recall the following evolution formula of m
B

(·) derived in [12, Theorem
3.1] under a stringent condition.

Formula 2.2 ([12]). Suppose Σt has a mass minimizing, static extension (M s
t , g

s
t )

such that {(M s
t , g

s
t )} depends smoothly on t. One has

(2.6)
d

dt
|t=0mB

(Σt) =
1

16π

∫
Σ

N
(
|A− Ā|2 +R

)
η dσ.

To relate (2.3) to (2.6), we assume that (N, ḡ) represents a mass minimizing, static
extension of the surface Σ0 ⊂ (M, g). Then, by assumption, H = H̄ at t = 0. It
follows from (2.3) and (2.6) that

d

dt
|t=0

1

8π

∫
Σ

N(H̄ −H) dσ

=
1

16π

∫
Σ

N
[
|A− Ā|2 + (R− R̄)

]
η dσ

=
d

dt
|t=0mB

(Σt).

(2.7)

We will reflect more on this relation in Section 4.
In the remainder of this section, we give a proof of Formula 2.1.

Proof of Formula 2.1. To verify (2.3), we can pull the metrics g, ḡ back to Σ× I via
F , F̄ , respectively, and write them as

(2.8) g = η2dt2 + γ

and

(2.9) ḡ = f 2dt2 + γαβ(dxα +Xαdt)(dxβ +Xβdt).

It follows from (2.8) and (2.9) that

(2.10) γ′ = 2ηA, ∂tdσ = ηH dσ

and

(2.11) γ′ = 2fĀ+ LXγ, ∂tdσ = (fH̄ + divX) dσ,

where divX is the divergence of X on (Σ, γ). Thus, we have

(2.12) 2ηA = 2fĀ+ LXγ, ηH = fH̄ + divX .

We first compute

d

dt

∫
Σ

NH̄ dσ =

∫
Σ

(N ′H̄ +NH̄ ′) dσ +NH̄ ∂tdσ.(2.13)

Let ∇̄ denote the gradient on (N, ḡ). We have

N ′ = 〈∇̄N, ∂F̄
∂t
〉 = 〈∇̄N, fν̄ +X〉 = f

∂N

∂ν̄
+ 〈∇N,X〉.(2.14)
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Hence, ∫
Σ

N ′H̄ dσ =

∫
Σ

(
f
∂N

∂ν̄
+ 〈∇N,X〉

)
H̄ dσ.(2.15)

Recall that

(2.16) Ā′αβ = fĀαδĀ
δ
β + (LXĀ)αβ − (∇2f)αβ + f〈R̄(ν̄, ∂α)ν̄, ∂β〉,

where ∇2 denotes the Hessian on (Σ, γ). Hence,

H̄ ′ = (γαβ)′Āαβ + γαβĀ′αβ

= − 〈γ′, Ā〉+ f |Ā|2 + 〈γ, LXĀ〉 −∆f − R̄ic(ν̄, ν̄)f.
(2.17)

By (2.11),

〈γ′, Ā〉 = 〈2fĀ+ LXγ, Ā〉 = 2f |Ā|2 + 〈LXγ, Ā〉.

Thus,

H̄ ′ = − 〈LXγ, Ā〉+ 〈γ, LXĀ〉 −∆f − f |Ā|2 − R̄ic(ν̄, ν̄)f.(2.18)

One checks that

(2.19) − 〈LXγ, Ā〉+ 〈γ, LXĀ〉 = 〈X,∇H̄〉.
Hence,

(2.20) H̄ ′ = −∆f − f |Ā|2 − R̄ic(ν̄, ν̄)f + 〈X,∇H̄〉.
Thus, ∫

Σ

NH̄ ′ dσ =

∫
Σ

(−∆N − R̄ic(ν̄, ν̄)N)f +N
[
−f |Ā|2 + 〈X,∇H̄〉

]
dσ

=

∫
Σ

H̄
∂N

∂ν̄
f −Nf |Ā|2 +N〈X,∇H̄〉 dσ.

(2.21)

Here we have used

∆N + R̄ic(ν̄, ν̄)N = −H̄ ∂N

∂ν̄
,

which follows from the static equation (2.1).
By (2.15) and (2.21),∫

Σ

N ′H̄ +NH̄ ′ dσ

=

∫
Σ

(
f
∂N

∂ν̄
+ 〈∇N,X〉

)
H̄ + H̄

∂N

∂ν̄
f −Nf |Ā|2 +N〈X,∇H̄〉 dσ

=

∫
Σ

2f
∂N

∂ν̄
H̄ −Nf |Ā|2 + 〈X,∇(NH̄)〉 dσ.

(2.22)

On the other hand, by (2.11),

(2.23)

∫
Σ

NH̄ ∂tdσ =

∫
Σ

NH̄(fH̄ + divX) dσ.
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Therefore, it follows from (2.22) and (2.23) that

(2.24)
d

dt

∫
Σ

NH̄ dσ =

∫
Σ

2f
∂N

∂ν̄
H̄ +Nf(H̄2 − |Ā|2) dσ .

To proceed, we note that by (2.11),

2f(H̄2 − |Ā|2) = 〈H̄γ − Ā, 2fĀ〉 = 〈H̄γ − Ā, γ′〉 − 〈H̄γ − Ā, LXγ〉 .(2.25)

Thus,

2

∫
Σ

Nf(H̄2 − |Ā|2) dσ =

∫
Σ

N〈H̄γ − Ā, γ′〉 −N〈H̄γ − Ā, LXγ〉 dσ.(2.26)

Integrating by parts, we have∫
Σ

N〈H̄γ − Ā, LXγ〉 dσ

= − 2

∫
Σ

(H̄γ − Ā)(∇N,X)− 2

∫
Σ

N(dH̄ − divĀ)(X) dσ.

(2.27)

By the Codazzi equation and the static equation,

N(divĀ− dH̄)(X) = NR̄ic(X, ν̄) = D̄2N(X, ν̄).(2.28)

Here

D̄2N(X, ν) = −Ā(∇N,X) +X

(
∂N

∂ν̄

)
.

Hence, ∫
Σ

N〈H̄γ − Ā, LXγ〉 dσ =

∫
Σ

−2H̄〈∇N,X〉+ 2X

(
∂N

∂ν̄

)
dσ.(2.29)

Therefore, (2.24) can be rewritten as

d

dt

∫
Σ

NH̄ dσ

=

∫
Σ

2f
∂N

∂ν̄
H̄ + H̄〈∇N,X〉 −X

(
∂N

∂ν̄

)
+

1

2
N〈H̄γ − Ā, γ′〉 dσ.

(2.30)

We now turn to the term
∫

Σ
NH dσ. We have

d

dt

∫
Σ

NH dσ =

∫
Σ

N ′H +NH ′ +NHηH dσ

=

∫
Σ

(
f
∂N

∂ν̄
+ 〈∇N,X〉

)
H

+N
[
−∆η − (|A|2 + Ric(ν, ν))η

]
+NH2η dσ.

(2.31)

Here

−
∫

Σ

N∆η dσ = −
∫

Σ

(∆N)η dσ =

∫
Σ

(
H̄
∂N

∂ν̄
+ R̄ic(ν̄, ν̄)N

)
η.(2.32)
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Therefore,

d

dt

∫
Σ

NH dσ =

∫
Σ

f
∂N

∂ν̄
H + 〈∇N,X〉H + H̄

∂N

∂ν̄
η

+N
[
R̄ic(ν̄, ν̄)− (|A|2 + Ric(ν, ν)) +H2

]
η dσ

(2.33)

We group the zero order terms of N in
d

dt

∫
Σ

N(H̄ −H) dσ first. Using γ′ = 2ηA,

we have

(2.34)
1

2
N〈H̄γ − Ā, γ′〉 = N〈H̄γ − Ā, A〉η.

Thus, omitting the terms η and N , using the Gauss equation, we have

〈H̄γ − Ā, A〉 − R̄ic(ν̄, ν̄) + Ric(ν, ν)) + |A|2 −H2

= 〈H̄γ − Ā, A〉+
1

2
(R− R̄)− 1

2
(H2 − |A|2)− 1

2
(H̄2 − |Ā|2)

=
1

2
|A− Ā|2 − 1

2
|H − H̄|2 +

1

2
(R− R̄).

(2.35)

Integrating by part and using the fact ηH = fH̄ + divX, we conclude

d

dt

∫
Σ

N(H̄ −H) dσ

=

∫
Σ

N

[
1

2
|A− Ā|2 − 1

2
|H − H̄|2 +

1

2
(R− R̄)

]
η dσ

+

∫
Σ

(2fH̄ − fH − ηH̄ + divX)
∂N

∂ν̄
+ (H̄ −H)〈∇N,X〉 dσ

=

∫
Σ

N

[
1

2
|A− Ā|2 − 1

2
|H − H̄|2 +

1

2
(R− R̄)

]
η dσ

+

∫
Σ

[
(f − η)

∂N

∂ν̄
+ 〈∇N,X〉

]
(H̄ −H) dσ.

(2.36)

�

3. Equality case of the localized Penrose inequality

In this section, we apply Formula 2.1, the openness result of the isometric embed-
ding problem [8], and Theorem 1.2 to prove Theorem 1.1.

Proof of Theorem 1.1. Let A, Ā be the second fundamental form of Σ
O

, Σ in (Ω, ğ),
M3

m, respectively. Viewing Ā as a tensor on Σ
O

via the surface isometry, we want to
show A = Ā.

In (Ω, ğ), consider a smooth family of 2-surfaces {Σt}−ε<t≤0 such that Σ0 = Σ
O

and Σt is |t|-distance away from Σ
O

. We can parametrize {Σt} so that, as t increases,
Σt evolves in a direction normal to Σt and has constant unit speed. Applying the
openness result of the isometric embedding problem in [8], we obtain a smooth family
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of 2-surfaces {Σ̄t}−ε<t≤0 in M3
m so that Σ̄0 = Σ and condition (2.2) is satisfied by

{Σt} and {Σ̄t}. By (2.3) and the assumption H = Hm, we have

(3.1)
d

dt
|t=0

∫
Σt

N(H̄ −H) dσ =
1

2

∫
Σ

O

N(|A− Ā|2 +R) dσ.

Here N is the static potential on M3
m, which is positive away from the horizon, and

R is the scalar curvature of (Ω, ğ).
Suppose A 6= Ā. Then, by (3.1) and the assumption R ≥ 0,

(3.2)
d

dt
|t=0

∫
Σt

N(H̄ −H) dσ > 0.

Thus, for small t < 0,

(3.3)

∫
Σt

N(H̄ −H) dσ < 0.

We claim (3.3) contradicts Theorem 1.2. To see this, we can first consider the case
Ric(ν, ν) < 0 on Σ. By choosing ε small, we may assume Ric(ν, ν) < 0 on each Σ̄t.
Hence, we can apply Theorem 1.2 to the region in Ω enclosed by Σt and Σ

H
. It follows

from (1.2) and the assumption m =

√
|Σ

H
|

16π
that

(3.4)

∫
Σt

N(H̄ −H) dσ ≥ 0.

This is a contradiction to (3.3).
To include the case Ric(ν, ν) ≤ 0 on Σ, we point out that this assumption was

imposed in [10] only to guarantee that the flow in M3
m, which starts from Σ and

satisfies equation (4.2) in [10], has the property that its leaves have positive scalar
curvature (see Lemma 3.8 in [10]). Now, if Σ is slightly perturbed to a nearby surface
Σ′ in M3

m, though Σ′ may not satisfy Ric(ν, ν) ≤ 0, the flow to (4.2) in [10] starting
from Σ′ remains to have such a property. (More precisely, this follows from estimates
in Lemmas 3.6, 3.7 and 3.11 of [10].) Therefore, for small t < 0, we can still apply
Theorem 1.2 to conclude (3.4), which contradicts (3.3).

Thus we have A = Ā. For the same reason, we also know R = 0 along Σ
O

in (Ω, ğ).

Next, we consider the manifold (M̂, ĝ) obtained by gluing (Ω, ğ) and (M3
m \ Ωm, ḡ)

along Σ
O

that is identified with Σ. Since A = Ā, the metric ĝ on M̂ is C1,1 across Σ
O

and is smooth up to Σ
O

from its both sides in M̂ . To finish the proof, we check that

the rigidity statement of the Riemannian Penrose inequality holds on this (M̂, ĝ).
We apply the conformal flow used by Bray [2] in his proof of the Riemannian

Penrose inequality. Since ĝ is C1,1, equations (13) - (16) in [2] which define the flow
hold in the classical sense when g0 is replaced by ĝ. Existence of this flow with initial
condition ĝ follows from Section 4 in [2]. The difference is that, along the flow which
we denote by {ĝ(t)}, the outer minimizing horizon Σ(t) is C2,α and the green function
in Theorems 8 and 9 in [2] is C2,α, for any 0 < α < 1. These regularities are sufficient
to show Theorem 6 in [2] holds, i.e. the area of Σ(t) stays the same; and the results
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on the mass and the capacity in Theorems 8 and 9 in [2] remain valid. Moreover, at
t = 0, by the proof of Theorem 10 in [2], i.e. equation (113), we have

(3.5)
d

dt+
m(t)|t=0 = E(Σ

H
, ĝ)− 2m ≤ 0,

where E(Σ
H
, ĝ) is the capacity of Σ

H
in (M̂, ĝ) and the inequality in (3.5) is given by

Theorem 9 in [2].
Now, if d

dt+
m(t)|t=0 < 0, then for t small, we would have

(3.6) m(t) < m =

√
|Σ

H
|

16π
=

√
|Σ(t)|
16π

,

where m(t) is the mass of ĝ(t). But (3.6) violates the Riemannian Penrose inequality
(for metrics possibly with corner along a hypersurface, cf. [11]). Thus, we must have

d

dt+
m(t)|t=0 = E(Σ

H
, ĝ)− 2m = 0.

Since Theorem 9 in [2] holds on (M̂, ĝ), by its rigidity statement we conclude that

(M̂, ĝ) is isometric to M3
m. �

4. Implication on Bartnik mass

In (2.7) of Section 2, we have observed that, if (N, ḡ) represents a mass minimizing,
static extension of Σ0 ⊂ (M, g), then

(4.1)
d

dt
|t=0mB

(Σt) =
d

dt
|t=0

1

8π

∫
Σ

N(H̄ −H) dσ.

However, this observation was based on (2.6) in Formula 2.2, which requires a rather
stringent assumption that mass minimizing, static extensions of {Σt} exist and depend
smoothly on t.

In this section, assuming that m
B

(·) is differentiable, we prove that (2.6) is true
whenever the Bartnik data of Σ0 corresponds to a surface in a Schwarzschild manifold.
We recall the definition of m

B
(·) as follows. Given a closed 2-surface Σ in a 3-manifold

(M, g) with nonnegative scalar curvature, m
B

(Σ) is given by

(4.2) m
B

(Σ) = inf
{
m(g̃) | (M̃, g̃) is an admissible extension of Σ

}
.

Here m(g̃) is the mass of (M̃, g̃), which is an asymptotically flat 3-manifold with
nonnegative scalar curvature, with boundary ∂M̃ . (M̃, g̃) is called an admissible
extension of Σ if ∂M̃ is isometric to Σ and the mean curvature of ∂M̃ equals the
mean curvature H of Σ. Moreover, it is assumed that (M̃, g̃) satisfies certain non-
degeneracy condition that prevents m(g̃) from becoming trivially small. For instance,
one often assumes that (M̃, g̃) contains no closed minimal surfaces or ∂M̃ is outer
minimizing in (M̃, g̃) (cf. [1, 2, 3, 7]).

With the above definition of m
B

(·), we have
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Theorem 4.1. Let (M, g) be a 3-manifold of nonnegative scalar curvature. Suppose
Σ0 ⊂ (M, g) is isometric to a convex surface Σ̄0 with Ric(ν, ν) ≤ 0 in a spatial
Schwarzschild manifold (M3

m, ḡ). Suppose Σ̄0 encloses a domain Ωm with the horizon
and Σ0 and Σ̄0 have the same mean curvature. Let {Σt}|t|<ε be a smooth family of

2-surfaces evolving in (M, g) according to ∂F
∂t

= ην. If m
B

(Σt) is differentiable at
t = 0, then

(4.3)
d

dt
|t=0mB

(Σt) =
1

16π

∫
Σ0

N(|A− Ā|2 +R)η dσ.

Here A, Ā are the second fundamental form of Σ0, Σ̄0 in (M, g), M3
m, respectively,

and R is the scalar curvature of (M, g).

Proof. First we note that the assumptions on Σ0 shows m
B

(Σ0) = m. This is because,
M3

m \ Ωm is an admissible extension of Σ0, thus m
B

(Σ0) ≤ m by definition. On the

other hand, if (M̃, g̃) is any other admissible extension of Σ0, by gluing (M̃, g̃) with
Ωm along Σ̄0 and applying the Riemannian Penrose inequality, we have m(g̃) ≥ m.
Hence, m

B
(Σ0) = m.

Next, we proceed as in the proof of Theorem 1.1. By the result of Li-Wang [8],
there exists a smooth family of surfaces {Σ̄t} in M3

m such that Σ̄t is isometric to Σt

for each t. By [10, Theorem 5.1], we have

(4.4) m
B

(Σt) ≤ m+
1

8π

∫
Σt

N(H̄ −H) dσ

for small t. Note that the right side of (4.4) equals m when t = 0. Therefore, it
follows from (4.4) and the fact m

B
(Σ0) = m that

d

dt
|t=0mB

(Σt) =
d

dt
|t=0

1

8π

∫
Σt

N(H̄ −H) dσ

=
1

16π

∫
Σ0

N(|A− Ā|2 +R)η dσ.

(4.5)

Here in the last step we have used Formula 2.1. �
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