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In this paper, we study the generation of maximal Poisson-disk sets with
varying radii. First, we present a geometric analysis of gaps in such disk
sets. This analysis is the basis for maximal and adaptive sampling in Eu-
clidean space and on manifolds. Second, we propose efficient algorithms
and data structures to detect gaps and update gaps when disks are inserted,
deleted, moved, or when their radii are changed. We build on the concepts
of regular triangulations and the power diagram. Third, we show how our
analysis contributes to the state of the art in surface remeshing.
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1. INTRODUCTION

Maximal Poisson-disk sampling (MPS) can generate point sets
with interesting properties. One issue in MPS is how to locate and
approximate the gaps in an already sampled disk set.

This research was partially funded by National Natural Science Founda-
tion of China (No. 61271431, 61172104 and 61271430), and the National
Science Foundation.
Authors’ addresses: D.-M. Yan (corresponding author), KAUST, email:
yandongming@gmail.com; P. Wonka (corresponding author), KAUST, e-
mail: pwonka@gmail.com.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/13-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

In this paper, we study the geometry of gaps in disk sets. Given a
set of disks with varying radii in a compact domain Ω in Euclidean
space or on a manifold, we would like to know if they fully cover
the domain or if there is a gap, i.e., if there is uncovered space to
insert other disks into the disk set. We are interested in knowing if
gaps exist, where the gaps are, and how to implement efficient gap
processing operations.

There are three important papers that conduct such an analysis
in the context of uniform 2D MPS: Dunbar and Humphreys [2006],
Jones [2006], and Ebeida et al. [2011]. In the first part of this paper,
we present a simpler and more natural analysis that additionally ex-
tends to 1) disk sets with varying radii, 2) arbitrary dimensions, and
3) 2-manifolds. The main idea of our approach is to study gaps in
the context of the regular triangulation and the power diagram [Au-
renhammer 1991] of the disk sets.

Besides the general curiosity about an interesting geometric
problem, gaps in disk sets play an important role in sampling ap-
plications, e.g., sample generation for ray tracing, image stippling,
video stippling, environment map sampling, surface remeshing,
plant ecosystem simulation, texture synthesis, video synthesis, and
particle-based simulation. By analyzing this set of interesting ap-
plications to find commonalities, we identified several operations
that need to be performed efficiently: gap detection, gap clustering,
gap primitive extraction, updating gap primitives when points are
deleted or inserted, updating gap primitives when points move, and
updating gap primitives when the sampling radius changes. The
second part of the paper will introduce algorithms for these opera-
tions, based on the analysis in the first part.

While our algorithms do not improve all aforementioned appli-
cations, in the third part of this paper, we investigate an application
to surface remeshing (as well as 2D meshing), where we can suc-
cessfully improve the state of the art in aspects such as minimal
angle, vertex valence and triangle quality. We discuss why remesh-
ing benefits from blue noise properties, maximal sampling, bound-
s on vertex valence, and geometric bounds (e.g., angle bounds).
These properties are important to simulation applications. For ex-
ample, Schechter and Bridson [2012] demonstrated that the simu-
lation result based on Poisson-disk sampling performs much better
than that based on the regular grid sampling. We propose a remesh-
ing framework that jointly optimizes these criteria and evaluate it
in a comparison to several recent remeshing algorithms. The main
contributions of these three parts are:

—A simple and elegant theoretical analysis of the gap geometry
that improves the work of [Ebeida et al. 2011] for 2D, and is the
first analysis for d-D and manifolds.

—The design of efficient algorithms and data structures for all the
gap processing operations identified above.

—A surface remeshing (as well as 2D meshing) algorithm that
compares favorably to the state of the art in aspects such as min-
imal angle, vertex valence and triangle quality.
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Fig. 1: Left: Illustration of gaps of a disk set; the uncovered regions are
shown in red. Right: zoom in view of the uncovered regions.

1.1 Related work

We briefly review techniques for generating Poisson-disk point
sets, but refer the reader to [Lagae and Dutré 2008] for a more com-
prehensive survey. Our review focuses on the treatment of gaps in
these algorithms.

There are a large number of sampling algorithms that produce
point sets with different attributes [Lloyd 1982; Dippé and Wold
1985; Cook 1986; Mitchell 1987; 1991; McCool and Fiume 1992;
Turk 1993] that are either not concerned with the geometry of gaps
or do not use an acceleration data structure. Our work can improve
upon some of these methods, e.g., [McCool and Fiume 1992].

Poisson-disk sampling. Most recent algorithms for efficient
Poisson-disk sampling maintain a data structure of gap primitives.
The simplest primitive is a square, because it is easy to sam-
ple [White et al. 2007; Bridson 2007; Gamito and Maddock 2009;
Ebeida et al. 2012] and it can be efficiently subdivided. These al-
gorithms are extremely efficient when trying to fill a large mainly
uncovered region, but even when filling small gaps, they are ef-
ficient enough so that the overall running time is much faster than
the algorithm built on an exact representation of gaps [Dunbar and
Humphreys 2006]. Ebeida et al. [2011] propose a hybrid approach
that first uses squares and later convex polygons bounding the inter-
sections of a square and multiple circles as gap primitives. A two-
step Poisson-disk sampling framework is proposed that first per-
forms dart-throwing in the grid and then against the extracted gaps.
The maximal property is achieved and the sampling framework is
shown to be more efficient then previous approaches. Jones [2006]
uses a Voronoi diagram to extract gap primitives. The algorithm
repeatedly generates disks and inserts them in a global Voronoi di-
agram one by one. Each vertex in the Voronoi diagram maintains
a value that indicates the area of empty region of the correspond-
ing Voronoi cell. A new sampling is generated by first selecting a
Voronoi cell based on the empty area. The Voronoi diagram and the
value of each vertex is updated each time a new sample is gener-
ated. Jones’ algorithm uses the fact that a maximal sampling can
be obtained if and only if the Voronoi cell of each vertex is fully
covered by the disk centered at the vertex. However, Jones [2006]
as well as the other approaches discussed above handle only 2D
uniform sampling. In contrast, we use a power diagram and the d-
ual regular triangulation for our analysis, which results in a more
general and much simpler solution.

Adaptive sampling. Fattal presents an adaptive sampling al-
gorithm based on kernel density estimation [Fattal 2011]. Kalantari
et al. [2011] propose to use joint distributions by breaking down
the 2D probability density function (pdf) into a 1D conditional pdf

(cpdf) and a 1D pdf for maximal adaptive sampling. However, the
proposed algorithm is dependent on a threshold for discretizing the
1D pdf, which cannot achieve maximal sampling. In concurrent
work, Mitchell et al. [2012] study 2D Poisson-disk sampling with
various radii, and de Goes et al. formulate the blue noise sampling
problem using optimal transport [de Goes et al. 2012]. However,
the maximality is not discussed in these approaches.

Sampling on surfaces. Fu and Zhou [2008] generalize scal-
loped sector based sampling [Dunbar and Humphreys 2006] to 3D
mesh surfaces, and present an isotropic remeshing algorithm by ex-
tracting a mesh from the samples. Lloyd iterations are used to fur-
ther smooth the resulting mesh. Cline et al. [2009] propose dart
throwing algorithms on surfaces based on a hierarchical triangu-
lation. Bowers et al. [2010] extend the parallel sampling method
[Wei 2008] to mesh surfaces and introduce a spectral analysis for u-
niform surface sampling algorithms as well. Wei and Wang [2011]
present a framework for spectral analysis of nonuniform blue noise
sampling for both 2D domains and surfaces. Again, none of these
methods satisfy the maximal sampling property. Xu et al. [2012]
extend the concept of Capacity-Constrained Voronoi Tessellation
(CCVT) [Balzer et al. 2009] by introducing capacity-constrained
Delaunay triangulations for blue noise sampling on surfaces. Chen
et al. [2012] combine the CCVT [Balzer et al. 2009] and the Cen-
troidal Voronoi Tessellation (CVT) framework [Yan et al. 2009]
for blue noise sampling on surfaces. However, the approaches of
Chen et al. [2012] and Xu et al. [2012] are also based on the Lloy-
d iterations. Corsini et al. [2012] present an algorithm for surface
blue noise sampling based on a space subdivision combined with
a pre-generation of the samples. Although many surface blue noise
sampling algorithms have been proposed recently, few of them use
blue noise sampling for geometric applications, such as remeshing.

Other approaches. There are several extensions to Poisson-
disk sampling that we did not consider in our current framework,
but that might be interesting avenues for future work, e.g., parallel
sampling [Wei 2008; Gamito and Maddock 2009] and multi-class
sampling [Wei 2010]. Schlömer et al. [2011] proposed the use of
the farthest Voronoi diagram for blue noise sampling. Some ap-
proaches pre-compute tile sets and then quickly arrange them in
realtime [Ostromoukhov et al. 2004; Kopf et al. 2006]. Our work
might be beneficial for the tile pre-computation phase.

2. THEORETICAL GAP ANALYSIS

We study a set of disks D = {(pi, ri)}ni=1 in a compact d-D do-
main Ω, where pi and ri are the center and the radius of the ith
disk, respectively. Here, we use the word disk to represent a gen-
eral disk, i.e., a sphere in 3D and a hyper-sphere in d-D (d > 3).
We assume that the center pi of any disk cannot be covered by the
other disks, i.e., ∀i, j (i 6= j), ‖pi − pj‖ ≥ max(ri, rj). If we
draw a disk at each center pi with radius ri, the domain Ω will be
fully or partially covered. We are interested in the properties of the
uncovered region, which is defined as Ω−D. As shown in Figure 1,
if the domain Ω is partially covered by a set of disks, the uncovered
region is split into a set of isolated regions. We use the term gap to
refer to a connected component of the uncovered region.

At first glance, a gap can be arbitrarily complex or can be ar-
bitrarily small so that it is very difficult to sample gaps direct-
ly. Therefore, like most previous work, we shall decompose these
complex gaps to a set of gap primitives GPi such that 1) the union
of these gap primitives covers the gaps Ω−D ⊆ ∪GPi, 2) the gap
primitives are non-intersecting ∀i, j (i 6= j), GPi ∩GPj = ∅, and
3) it is easy to sample a gap primitive using rejection sampling.
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Fig. 2: The power diagram (left) and the regular triangulation (right) of a
set of disks.

2.1 Power diagram and regular triangulation

We analyze the geometric properties of gaps based on the concep-
t of the power diagram [Aurenhammer 1987], and its dual, called
regular triangulation. The power diagram is a tessellation of the
Euclidean space into a set of convex polygons defined by a set of
disks. Figure 2 shows an example of the power diagram of a set of
disks. The power diagram and the regular triangulation are equiv-
alent to the Voronoi diagram and the Delaunay triangulation when
the radius of all the points are the same.

The disk set D is represented by a set of weighted points Pw =
{(pi, wi)}ni=1, where wi = r2i . The power of two weighted points
is defined as

Π(pi, wi,pj , wj) = ‖pi − pj‖2 − wi − wj .

Then, the power diagram PD of Pw is a set of non-overlapping
power cells {Ωi}ni=1, such that

Ωi = {x ∈ Ω | Π(pi, wi,x, 0) ≤ Π(pj , wj ,x, 0), ∀j 6= i}.

A vertex of the power diagram is called a power vertex and an edge
is called a power edge. A d-D power diagram can be interpreted as
the intersection of a (d+ 1)-D Voronoi diagram and a d-D hyper-
plane [Ash and Bolker 1986].

The regular triangulation of Pw is a d-D simplicial complex T
and it is the dual of the power diagram. A d-D simplicial complex
is the union of a set of k-simplices (0 ≤ k ≤ d). Each k-simplex is
the convex hull of k+ 1 linear independent points that are dual to a
(d− k)-D convex polyhedron of the power diagram. The simplicial
complex T satisfies: i) any face of a simplex is also in T , and ii)
the intersection of any two simplices is either empty, or is a face of
both simplices. We denote the set of the d-simplices (i.e., triangles
in 2D and tetrahedra in 3D) asRT = {tj}. For each t ∈ RT , there
exists a point ct ∈ Ω that has equal powers w.r.t. the d+ 1 vertices
of t, and this power is less than the power of ct w.r.t. any other
weighted points in the triangulation. Each ct is called the power
center of t, which is a power vertex of PD. We denote the power
of a d-simplex t by Π(t) = Π(p, w, ct, 0), where p refers to one
of the vertices of t, and w is the corresponding weight of p.

2.2 Existence of gaps

In the following, we give the theorems that state the condition of the
existence of gaps in d-D spaces and on 3D surfaces, respectively.

THEOREM 1. A gap exists iff ∃ t ∈ RT ,Π(t) > 0.

Here, we give the proof only in 2D (see Figure 3), as it is more
intuitive and the proof for higher dimensions is similar.

t
c

pi

pk pj

x
t

pk

pi

pj

x
c

(a) (b)

Fig. 3: Existence of gaps in the 2D plane. The power center c of a triangle
4pi pj pk can be used to test for the existence of gaps.

PROOF. ⇒ Suppose that there is a gap. For any point x in this
gap, we define the function F (x) as the minimal power between
the point x and the weighted points Pw. Suppose that x falls in the
power cell Ωi of the sample (pi, wi). Clearly, F (x) = Π(x,pi)
by definition of the power diagram. F (x) attains its maxima when
x coincides with a power vertex c, which is the power center of a
triangle t ∈ RT . When x is in the gap, by definition F (x) > 0
since Π(x,pi) > 0. Note that Π(t) = Π(c,pi) = max(F (x)).
Hence, Π(t) > F (x) > 0.
⇐ If ∃t, Π(t) > 0, then the power center of the triangle t is not

covered. Therefore, there exists a gap.

Gaps on 3D surfaces. If the input domain Ω is a 3D surface,
Thm. 1 does not apply since the domain is not flat. In this case, we
generalize the approach of Jones [2006] to 3D surfaces using the
concept of the Restricted Power Diagram (RPD).

The restricted power diagram is a generalization of the Restrict-
ed Voronoi Diagram (RVD) [Edelsbrunner and Shah 1997] on sur-
faces. The RPD is defined as the intersection of the 3D pow-
er diagram and the surface, i.e., RPD(Pw) = PD(Pw)

⋂
Ω =

{Ωi
⋂

Ω}ni=1.

THEOREM 2. A gap in the disk set D (sphere set in 3D) on a
3D surface exists iff there exists a sample pi whose correspond-
ing restricted power cell is not fully covered by the sphere (pi, ri)
centered at pi.

Thm. 2 describes the global condition of gap existence on surfaces.
The proof is straightforward and we omit it here. In Section 5.3, we
show how to locally detect gaps on mesh surfaces in the context of
ε-sampling and Restricted Regular Triangulations (RRT ).

3. 2D GAP PRIMITIVE PROCESSING

In the following, we describe the most important operations related
to gap processing in the 2D plane. In the following discussion, a
triangle t is called a gap triangle if Π(t) > 0, or in other words,
the power center of the triangle is not covered by the three disks
centered on the vertices of the triangle. We provide a short overview
of each of these operations here and in the subsections we describe
each operation in more detail:

—Gap detection: gap detection refers to analyzing an existing point
set to determine if gaps exist and where they are. If no gap exists,
we can determine that a point set is maximal. In our solution, this
operation outputs a list of gap triangles (see Section 3.1).

—Gap clustering: this operation groups all gap triangles belonging
to the same independent gap set (Section 3.2) together. In our
proposed solution, this clustering is performed on the level of
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gap triangles, before the actual gaps are extracted. This step is
optional but it enables a simple parallelization of gap sampling.

—Gap primitive extraction: given a set of input points, this oper-
ation computes a set of gap primitives covering all gaps (Sec-
tion 3.3).

—Gap primitive updates: these operations update the gap primi-
tives after points are inserted, deleted, moved, or when one or
multiple disk radii are changed (Section 3.4).

The state of the framework is the weighted point set Pw and the
corresponding regular triangulationRT . At the beginning,RT has
to be initialized once.

3.1 Gap detection

We can optionally collect all the gap triangles in an array for later
use or simply return a Boolean to indicate the existence of gaps.
Note that a gap triangle does not necessarily mean that the triangle
itself contains some uncovered region, since its power center can
be outside the triangle. See Figure 5(b) for an example where the
triangle t0 is fully covered but Π(t0) > 0. The incident gap region
is outside of the triangle t0. Also, since a gap might contain several
triangle power centers, one gap can have several corresponding gap
triangles. We traverse all the triangles in RT , compute the power
center ci and power Π(ti) of each triangle ti. If Π(ti) > 0, triangle
ti is marked as a gap triangle according to Thm. 1.

3.2 Gap clustering

We say that two gaps are dependent, if a disk inserted in one gap
might intersect the other gap. We cluster all dependent gaps into
independent gap sets (IGS), which can be used later for parallel
sampling. With slight abuse of notation, we sometimes also use
IGS to refer to the corresponding collection of gap triangles or gap
primitives.

It is clear that connected gaps are dependent. However, even dis-
connected gaps can be dependent if the sampling radius inside the
gaps is larger than the distance between the gaps. This is only a
sufficient condition, because additionally a disk can only be placed
if it does not cover another existing disk center. Since it is difficult
to exactly compute the dependence of gaps, we propose a conser-
vative approach to compute IGS clustering: all gap triangles in the
one-ring neighborhood of each other are clustered in the same IGS
(Figure 4). While we checked that the clustering is conservative in
praxis, we do not offer a formal proof in this paper.

Fig. 4: Gap clustering. There are five gaps (left) that clustered together
forming an independent gap set (right) by the clustering algorithm.

In our implementation, the algorithm is performed for gap trian-
gles, but there is a simple one-to-one correspondence to gap primi-
tives (see Section 3.3). All the gap triangles are marked as unvisited

c0

c1

t0

t1

p1p0

(a)

p1p0

t0

t1

c1

c0

(b)

p1

p0

t0
t1c0

c1

(c)

p1

p0

t0 t1

c0 c1

(d)

Fig. 5: Illustration of the connectivity between two neighboring gap tri-
angles t0, t1 (blue triangles) where c0, c1 are the corresponding power
centers, respectively. p0 p1 are on the common edge shared by t0, t1.
(a) |p0 p1| > r0 + r1, and c0, c1 are on the different sides of p0 p1.
(b) |p0 p1| > r0 + r1, and c0, c1 are on the same side of p0 p1.
(c) |p0 p1| < r0 + r1, and c0, c1 are on the same side of p0 p1.
(d) |p0 p1| < r0 + r1, but c0, c1 are on the different sides of p0 p1.

at the beginning. We then traverse all the gap triangles. Each time
when we encounter an unvisited triangle, we extract the IGS using a
simple region growing algorithm, i.e., if two neighboring triangles
are gap triangles, then they belong to the same group of an IGS. The
grouped triangles are marked as visited and the traversal continues.
This step ends when all the gap triangles are marked as visited.
There are three cases of the relationship between two neighboring
gap triangles, which are called connectivity rules. To cluster IGSs,
all three rules apply, but if only connected components are desired,
the last rule does not apply.

Connectivity rules. Given a pair of neighboring gap triangles
t0, t1, and their power centers c0, c1, respectively (Figure 5), we
use the following connectivity rules:

—The length of the common edge shared by t0, t1 is larger than
r0 + r1, where r0, r1 are the corresponding sampling radii at the
vertices of the common edge p0,p1 (Figure 5(a) and 5(b)).

—The length of the common edge shared by t0, t1 is smaller than
r0 + r1, but c0, c1 are on the same side of the common edge
(Figure 5(c)).

—The length of the common edge shared by t0, t1 is smaller than
r0 + r1, and c0, c1 are on different sides of the common edge
(Figure 5(d)). In this case, although two gaps are disconnected,
putting a new disk in one empty region may affect the geometry
on the other side. The two triangles are therefore classified as
belonging to the same IGS.

3.3 Gap primitive extraction

The algorithm extracts a gap primitive for each triangle of the gap
separately. Each gap primitive is a simple convex polygon with up
to six edges. The connectivity rules are used to assist the extraction.
Given a triangle t0 belonging to a gap, we simply traverse the three
neighbors of t0 and extract the vertices of the gap primitive based
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(a) triangle (b) quad (c) pentagon

(d) hexagon
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t1
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Fig. 6: (a)-(d) Simple gap primitives contained inside the triangle, and (e)
a special case when the power center is outside the triangle.

on the classification of the types of neighboring triangles. We as-
sume that t1 is one of t0’s neighbors, and c0, c1 are power centers
of t0 and t1, respectively. p0 p1 is the common edge shared by t0
and t1, and the direction of p0 p1 is ccw (counter-clockwise) in
triangle t0. Then, there can be the following two cases:

First, if the triangle t0 contains only the power center c0 of itself
(see Figure 6(a)-(d)), then we can extract the gap primitive directly
by traversing its three (ccw) edges using the following rules:

—If |p0 p1| ≤ r0 + r1, we compute the intersection points of the
disks centered at p0 and p1 and the intersection point on the left
side of p0 p1 is added to the gap primitive of t0.

—If |p0 p1| > r0 + r1, we compute the intersection points of the
disks and edge p0 p1 and the resulting points p01 and p10 are
added to the gap primitive of t0.

Second, if the triangle t0’s power center is outside t0, e.g., if it
lies in its neighboring triangle t1, then all these triangles belong to
the same connected gap component according to the connectivity
rules. Note that in complex cases, t0’s power center can also lie
in its neighbor’s neighboring triangle. This case is equivalent to
that of a triangle containing more than one power center. To extract
gap primitives is equivalent to decomposing the gap w.r.t. each gap
triangle. We handle this configuration as follows:

—For the edges we currently traversed, if the power centers of t-
wo incident triangles lie on two different sides, we compute the
intersection points as before.

—For the edges with two power centers of two incident triangles
lying on the same side, e.g., edge p0 p1 shown in Figure 6(e), we
simply connect t0’s power center c0 and p0, p1, which results in
two intersection points A and B. The segment AB is then added
to the primitive polygon of t0. Similarly, if the neighboring trian-
gle’s power center lies on the same side of of the common edge
of the current triangle, e.g., t1 in Figure 6(e), we also add the
segment BA to t1’s gap primitive.

The above extraction process decomposes a connected gap com-
ponent into non-overlapping simple polygons. Since the time com-
plexity of extracting each gap is constant (each gap primitive has
up to six edges), the total time complexity of the gap extraction al-
gorithm is O(nt), where nt is the number of triangles. However,

given an initial sampling generated by dart-throwing, the number
of gap triangles is much less than the total number of triangles. We
provide more details in Appendix A to show the validness of this
process.

Boundary handling. We also consider bounded domains. The
boundary can be a simple polygon with or without holes. In these
cases, we first compute the clipped power diagram using the tech-
nique presented in [Yan et al. 2013]. The gaps that touch the do-
main boundary are simply computed by clipping the power cells
that contain parts of gaps with the surrounding disks. Figure 11
shows a result of sampling/meshing a 2D polygon.

3.4 Gap primitive updates

Appropriate algorithms exist to construct regular triangulation-
s [Edelsbrunner and Shah 1996]. The points can be dynamically
inserted and deleted from a regular triangulation. Inserting points
requires O(n2) in the worst case and O(log(n)) in the average
case [Edelsbrunner and Shah 1996], where n is the total number
of points. A point can be deleted in constant time [Devillers and
Teillaud 2006]. Deleting k points requires O(k) time.

If all points move in a coherent fashion, the regular triangula-
tion might be updated efficiently by existing algorithms [Vigo et al.
2002], but in our implementation, we simply rebuild the data struc-
tures if all points move at once. Movement of individual points is
handled by deletion and insertion.

Changing the sampling radius of all disks causes a change in
the combinatorial structure and we also have to rebuild the regular
triangulation. However, if the sampling radius is constant, the reg-
ular triangulation is equivalent to the Delauney triangulation and
remains unchanged in this case.

4. GAP COMPUTATION ON SURFACES

In this section, we generalize the gap analysis and computation
framework to mesh surfaces. Suppose that the input domain Ω =
{fj}mj=1 is a triangle mesh surface (where fj refers to a triangle)
and Pw is a set of weighted samples lying on the surface. Recal-
l that in Section 2.2, we defined the restricted power diagram on
surfaces. In this case, each restricted power cell is the intersec-
tion of the 3D power cell and the mesh surface, i.e., Ωi

⋂
Ω =

{
⋃
{Ωi

⋂
fj}, ∀ fj ∈ Ω}. Figure 7 shows an example of theRPD

of a torus. There are three types of vertices in the RPD of a mesh
surface, called restricted power vertices, i.e., A) the original ver-
tices of the mesh, B) the intersection of a mesh edge and a bi-sector
power plane, and C) the intersection of a power edge and a mesh
triangle (Figure 7(right)). Thm. 2 can be adapted as follows:

THEOREM 3. A gap of a disk setPw exists on a mesh surface iff
there exists a restricted power cell of a sample pi, whose restrict-
ed power vertices are not fully covered by the respective sphere
(pi, ri) centered at pi with radius ri.

In the above definition, a type C restricted power vertex is also
called a restricted power center. Note that each restricted power
center is dual to a triangle of the so-called restricted regular trian-
gulation (RRT ). The triangles of the RRT do not lie on the sur-
face, only the vertices do. Since the restricted triangles no longer lie
on the surface, we cannot use the 2D per-triangle gap computation
(Section 3) for meshes. Alternatively, based on Thm. 3, we present
an approach similar to [Jones 2006] to compute the gap primitives
on surfaces. The gap primitives are computed by clipping the re-
stricted power cell by the sphere centered at each weighted point.
Each restricted power cell can be split into a set of triangles. Then,
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Type A

Type A

Type A

Type B
Type C

Fig. 7: Illustration of the restricted power diagram on a surface (left); mid-
dle: a restricted power cell; right: a mesh triangle is split into polygons
shared by the incident cells.

the clipping problem is reduced to a triangle-sphere intersection
problem. The clipped regions, i.e., the gap primitives, are approxi-
mated by a set of triangles and associated with their incident gaps,
as shown in Figure 8. The details of the RPD computation are
analogous to the restricted Voronoi diagram computation in [Yan
et al. 2009].

Now we are able to identify and compute gaps on mesh surfaces.
However, in the maximal sampling framework (see Section 5.1), we
are willing to cluster the independent gap sets as in the 2D coun-
terpart, which can be used for parallel gap filling. A simple region-
growing-based approach can be used by detecting the connectivity
between clipped gap primitives. Furthermore, if the initial sampling
Pw adapts to the local properties of the mesh surface (e.g., the ε-
sampling property [Amenta and Bern 1999]) and the topological
ball property [Edelsbrunner and Shah 1997] is met, then the dual
restricted regular triangulation is homeomorphic to the input do-
main Ω. In this case, we are able to define the 3D gap triangles
similarly to the 2D plane. A gap triangle is a triangle of the RRT
with at least one vertex whose restricted power cell is not fully
covered by the sphere centered at the vertex. Once the gap triangles
are detected, we group the neighboring gap triangles/primitives into
IGSs for further processing.

5. SURFACE SAMPLING AND REMESHING

In this section, we first describe a framework for adaptive Poisson-
disk sampling on surfaces, which also works well in 2D. Then, we
present a brief discussion of the link between Poisson-disk sets and
surface remeshing. Moveover, we present a high-quality surface
remeshing algorithm, as well as a randomized mesh optimization
algorithm built on top of the sampling framework, which greatly
improves the sampling/meshing quality.

5.1 Adaptive sampling on surfaces

As input, we use a mesh Ω = {fi}mi=1, a minimal sampling radius
rmin, a maximal sampling radius rmax (default value 16 rmin),
as well as a density function ρ(x) defined on the mesh surface. A
voxel grid is built for accelerating the sampling process. We first
voxelize the mesh with voxels whose sizes are equal to rmin√

3
. Each

voxel records the indices of samples that fully cover it. A voxel is
valid if it is not fully covered by any sphere. We follow the two-
step sampling strategy presented in [Ebeida et al. 2011]: 1) dart
throwing with a grid and 2) gap filling.

Initial sampling. In the first step, we perform classic dart
throwing on surfaces. Each triangle f is associated with a weight
wf = ρ(cf )|f |, where cf is the barycenter and |f | is the area
of the triangle. The cumulative probability density function (cpdf)
of the weights is stored in a flat array. Each time, a dart is
generated by first selecting a triangle from the cpdf and then a

Fig. 8: Gap computation on surfaces by triangle-sphere clipping. Gaps are
shown in red.

point p is randomly generated in the triangle, as well as a radius
r = min(rmax,max(rmin,

1√
ρ(p)

)) associated with the point.

The new dart is tested against the grid. The dart is accepted if it
is not contained by previous samples and does not contain any oth-
er existing samples. The index of the new sample is recorded by
the voxels that are fully contained by this sample. The first step is
terminated when k consecutive rejections are observed (k = 300
in our implementation).

Gap filling. The second step is an iterative algorithm. At each
iteration, all gap triangles are first grouped into IGSs. All gap prim-
itives of each IGS are triangulated and each triangle is associated
with a weight as before. For each IGS, we create a cpdf for the
triangles belonging to it. Since the sampling of each IGS does not
affect another IGS, we perform gap filling in parallel. We use the
same method as in the initial sampling stage to generate new disks
for each IGS. Note that in the gap filling step, the newly generated
disks whose centers are not covered by existing disks may cover the
centers of the existing disks. In this case, we recompute the radius
of the new disk so that it will not contain any previous samples,
i.e., we set the radius of the new disk as the distance to the near-
est sample. Here, we choose the maximal conflict metric [Kalantari
and Sen 2011] since we assume that the centers of the disks cannot
be covered by any other disks. This solution is reasonable for a s-
mooth density function. Actually, our gap computation framework
can also handle the cases when the disk centers are covered by oth-
er disks. This will be further explored in future work. While there
are multiple applications for sampling points on surfaces, the most
important application is remeshing, which we will describe next.

5.2 Poisson-disk sampling and surface remeshing

Surface remeshing is a broad topic and the best choice of a sur-
face remeshing algorithm depends on the application [Alliez et al.
2008]. Poisson-disk sampling is mainly useful for remeshing for
simulations. In other applications, e.g., architectural panel layouts,
the blue noise pattern will often be considered unattractive. Before
presenting our solution to adaptive remeshing, we would first like
to discuss what criteria are required for good mesh and also es-
tablish the link between our disk sampling method and remeshing.
This discussion suggests why our work can be more successful than
previous surface sampling algorithms at remeshing for simulation.

First, the blue noise property is important because it reduces di-
rectional bias in the simulation [Ebeida et al. 2012]. While this fact
has been used for uniform remeshing using disk sampling with a
global uniform radius, it is also important for adaptive remeshing.
Second, the most important geometric characteristic of a triangle
mesh is the minimal angle in a triangle or the percentage of trian-
gles with small angles [Shewchuk 2002]. Statistics relating to the
minimal angle θmin, as well as Q(t) = 6√

3

|t|
p(t)h(t)

, (where |t| is
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the area of t, p(t) is the half-perimeter of t and h(t) the longest
edge length of t [Frey and Borouchaki 1997]) are mentioned in al-
most all recent remeshing papers. The reason for this is that the
minimal angle influences the condition number of the matrices in
FEM. Interestingly, there is a theoretical guarantee that the mini-
mal angle is 30 degrees in a uniform 2D maximal sampling [Chew
1989; Ebeida et al. 2011]. It can also be shown that the same con-
clusion still holds on surfaces. However, in the case of adaptive
sampling, we do not have any angle guarantees. We propose a ran-
domized optimization technique that can improve the angle bounds
dramatically for adaptive remeshing (see Section 5.3). This is an
important link that is often overlooked in previous work: maximal
sampling is essential for theoretical guarantees about triangle an-
gles. Maximal sampling is also important in praxis. We verified
this by generating 100 point sets with 10k samples and then remov-
ing the last 20 sampled points. The minimal angle is significantly
worse. Only in about 10% of the cases it is still≥ 30o. Third, irreg-
ular vertices are undesirable, because they require special handling
and often separate code. Therefore, we aim at reducing the different
types of irregular vertices to only two types: valence 5 and valence
7 vertices. It would also be helpful to reduce the total number of ir-
regular vertices, but this conflicts with the blue noise property and
the minimal angle properties. Fourth, the surface approximation is
important. Most commonly, this is measured in the Hausdorff dis-
tance or the root mean squared error. Fifth, it is important to use
Euclidean distances and not geodesic distances. While sampling
geodesic disks seems more complex and sophisticated, this can be
counterproductive for remeshing. The edges in a mesh are straight
and not geodesic paths on surfaces. A simple implication is that the
use of geodesic distances voids all angle guarantees.

5.3 Surface remeshing and optimization

To obtain a mesh, we extract the dual triangulation from the restrict-
ed power diagram of the samples, which is a good remeshing of the
input surface Ω. There are several potential challenges to surface
remeshing that we address here.

Topological validity. In this work, we adapt the sampling ra-
dius to the local feature size to ensure the topological validity. The-
oretically, the ε-sampling theorem [Amenta et al. 1998] requires
that for each point x ∈ Ω, there exists a sample p, such that
|x−p| < 0.3 lfs(p). TheRRT of the samples is then homeomor-
phic to Ω. However, in practice, even if these theoretical guarantees
are not met, our algorithm still generates topologically correct re-
sults as shown in Figure 18. We can detect topological inconsis-
tencies using the algorithm presented in [Yan et al. 2009]. Once
such a configuration is detected, we discard the samples that cause
the problem and resample the gaps. We refer to [Yan et al. 2009]
for more details of the mesh extraction algorithm since it is not the
main contribution of this paper.

Valence and angle optimization. Uniform blue noise
remeshing has many nice properties. Given a constant sampling
radius r, the meshes generated from blue noise sampling exhibit
the following bounds: an angle bound [30o, 120o], an edge length
bound [r, 2 r] and an area bound [

√
3
4
r2, 3

√
3

4
r2] as its 2D coun-

terpart. All these properties are desired in many applications, par-
ticularly the angle bound, which is crucial to FEM application-
s [Shewchuk 2002]. However, in the case of adaptive sampling,
the above theoretical bounds do not hold. To improve the meshing
quality, we introduce a novel and simple randomized optimization
algorithm, i.e., angle bound and valence optimization.

This algorithm iteratively removes the sample points with un-
satisfactory properties and their neighborhoods and then refills the
gaps. In angle bound optimization, the vertices with one triangle
angle less than a minimal angle threshold or larger than a maximal
threshold are removed. In valence optimization, the vertices whose
degrees are less than 5 or larger than 7 are removed. These two
optimization criteria can either be performed separately or joint-
ly. The valence/angle optimization terminates when the required
criteria are met or the maximal iteration number (25 in our imple-
mentation) is reached. In a joint valence and angle optimization, a
global optimization is performed interleaving between valence and
angle optimization. Typically, it takes 5-10 global iterations to meet
both quality requirements. During the optimization, the RRT and
RPD are locally updated.

Edge length optimization. Besides the valence/angle opti-
mization, we are also able to optimize other geometric properties,
such as edge length, using the same framework. Given a user in-
put threshold λe, we iteratively remove all the edges (pi,pj) with
|pj − pi| > λe (ri + rj), followed by a gap filling step, until the
desired edge length quality is met.

Feature preservation. We also implemented a simple feature-
preserving sampling step in our framework. The features are pro-
vided by the user, in the form of a 1D curved skeleton. The cor-
ners (vertices of the skeleton with more than 2 neighboring edges,
or with sharp turning angles) are inserted directly as sample points,
and the feature curves are first sampled before the surface sampling.
The edge lengths of the feature samples are optimized by edge
length optimization (λe =

√
3) so that the neighboring spheres are

deeply intersected [Cheng et al. 2007]. The samples of the feature
skeleton remain fixed during the surface sampling/optimization
stages.

6. RESULTS AND DISCUSSION

In this section, we present several sampling and meshing results
using our framework based on the proposed gap processing tech-
niques. We also compare our results with current state-of-the-art
approaches. We use CGAL [cga ] for the sequential 2D/3D regular
triangulation, and the OpenMP library for parallel gap filling. The
experimental results are conducted on an Intel X5680 Dual Core
3.33GHz CPU with 4GB memory and a 64-bit Windows 7 operat-
ing system.

6.1 2D sampling and meshing

We first present the results of 2D sampling. Figure 9 shows two
examples of uniform sampling and optimization. The first example
is a 2D square with a periodic boundary condition, and the second
is defined by two concentric circles. The statistics of these results
are given in Table I.

We show a comparison to uniform 2D sampling and the corre-
sponding spectral analysis in Figure 10, which demonstrates that
our optimization framework preserves the blue noise properties
well. We use the PSA software [Schlömer and Deussen 2011] to
perform the spectral analysis of the Poisson-disk sets. Table. II lists
the statistics of vertex valences of different approaches.

An example of adaptive meshing is given in Figure 11, where
we set the desired angle bounds to [35o, 105o]. For the examples
with boundaries, we first perform 1D maximal sampling on the
boundary; then, we apply edge length optimization to ensure that
the boundary disks are deeply intersected [Cheng et al. 2007] (we
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Result #v θmin θmax |e|′min |e|′max |t|′min |t|′max θ < 30o v567
Square1 26.8k 21.6 130.3 1.0 1.458 0.947 2.043 3.33 94.2%
Square2 34.5k 30.1 118.6 1.0 0.999 1.001 0.998 0.00 96.4%
Square3 35.1k 35.0 104.9 1.0 0.999 1.001 0.997 0.00 100%
Circles1 19.6k 18.9 131.4 1.0 1.950 1.088 2.950 8.83 93.1%
Circles2 24.9k 30.0 118.5 1.0 0.999 1.003 0.996 0.00 96.2%
Circles3 25.3k 35.0 105.0 1.0 0.999 1.003 0.995 0.00 100%

Table I. : Statistics of 2D uniform sampling/meshing (rmin = 4.5× 10−3). |e|′min = |e|min
rmin

is the ratio of the minimal edge length over the

theoretical minimal edge length bound, as it is for |e|′max = |e|max

2rmin
, |t|′min = |t|min√

3
4 r2

min

, and |t|′max = |t|max

3
√
3

4 r2
min

. θ < 30o is the percentage

of the triangles with θmin smaller than 30 degrees. v567 is the percentage of vertices with valence 5, 6, or 7. For each model, we show the
meshing quality of 1) classic dart throwing, 2) maximal sampling and 3) optimized sampling. The data shown in the table are averages of 10
runs for each model.

Fig. 9: Illustrations of uniform 2D sampling/optimization. Top: a unit
square with a periodic boundary condition; bottom: two concentric circles.
Left column: dart throwing; middle: maximal sampling; right: optimized
sampling (angle and valence). Vertices with valence 5: blue, 6: green, 7:
orange. Darker points correspond to higher (> 7) or lower (< 5) valences.
The triangles with θmin < 30o or θmax > 120o are shown in dark gray,
triangles with θmin ∈ [30o, 35o] or θmax ∈ [105o, 120o] are shown in
red.

v4 v5 v6 7v v8 v9 v10
Lloyd 0 7.42 85.15 7.43 0 0 0
CCVT 0.49 21.63 56.30 20.55 1.02 4.9 e−5 0
MPS 1.23 24.04 50.48 22.06 2.18 4.7e−4 7.5 e−7

Ours1 0 23.02 53.96 23.02 0 0 0
Ours2 0 22.01 55.98 22.01 0 0 0

Table II. : Statistics of the vertex valences of different methods. Each col-
umn is the percentage of the vertices of the corresponding valence. MPS s-
tands for any maximal Poisson sampling generated by dart throwing. Ours1
is the result of valence optimization, and Ours2 is the valence and angle op-
timization.

set λe =
√

3 in all our experiments). The boundary samples remain
fixed during the later sampling/optimization inside the boundary.

6.2 Comparison of 2D uniform MPS

If the sampling radius is a constant r, then the regular trian-
gulation/power diagram is equivalent to the Delaunay triangula-
tion/Voronoi diagram. In this case, we can use the more efficient

implementation of the Delaunay triangulation instead of the regular
triangulation. In the following, we compare results from our frame-
work with previous approaches for 2D uniform MPS. We call these
approaches Ebeida [Ebeida et al. 2011], White [White et al. 2007],
Gamito [Gamito and Maddock 2009], and Jones* [2006]. Here,
Jones* stands for an improved version of Jones’ method [2006]
where we changed the code to follow the framework of Ebeida by
using a lazy update instead of continuously updating the data struc-
tures after each new sample.

First, we show that our gap primitives capture the geometry of
the problem very well. Figure 12 (left) compares the number of
gaps and gap primitives computed for a varying number of initial
samples in the first stage. For 1M points, we obtain 129.3K gaps
and 695.3K gap primitives compared with 841.7K gap primitives
in Ebeida and 3.57M in Jones*. In Figure 12 (right), we illustrate
the advantage of extracting connected components. We compare
the number of iterations in the second stage to generate a point
set with sampling radius r = 5 × 10−4 in a unit square domain
with a periodic boundary (this gives approximately 2.8M points for
each method). We perform multiple tests and select a representative
experiment for each method. Typically our approach only needs 4
or 5 iterations to obtain a maximal point set while others need 10
or more iterations.

Second, we compare the running times of different algorithm-
s. Our running time is slightly faster than the performance report-
ed by White, Gamito, and Ebeida. However, we could only ver-
ify White’s performance on our machine. One advantage of our
method compared with Ebeida is that it relies on Delaunay triangu-
lation, a well-tested method where the code is publicly available,
e.g., CGAL [cga ] and Qhull [Barber et al. 1996]1. It takes only
1.91s to triangulate one million points obtained in stage one of the
algorithm. Another advantage of Delaunay triangulation is that it
can nicely track changes to the point set. For example, after an ini-
tial Delaunay triangulation is available, newly sampled points can
be inserted into Delaunay triangulation using only O(1) instead of
O(log(n)), because we know the gap triangle that contains the new
sampling point. This tracking ability is also especially useful for
the applications we will describe next.

A good extension to dart throwing is to make the algorithm pro-
gressive by starting with a large radius and then continually shrink-
ing the radius [McCool and Fiume 1992]. In this way, a progres-
sive randomized triangulation (or point set) is obtained where the
final triangulation as well as all intermediate ones has nice spectral
properties. We reimplemented [McCool and Fiume 1992] and ex-

1http://www.qhull.org
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Fig. 10: Spectral analysis of different approaches (10k samples). From top
to bottom: Lloyd iteration [Lloyd 1982]; CCVT [Balzer et al. 2009]; max-
imal Poisson sampling; valence optimization; valence and angle optimiza-
tion. The left column is the point set generated by each method, where green
dots show vertices with valence 6, red for valence 7, and blue for valence
5. Darker colors signify higher valences.

perimented with various heuristics to determine when to change the
sampling radius to obtain a progressive triangle mesh (Figure 13).
In this application, we need the updating operation that changes the
sampling radius.

6.3 Surface sampling and remeshing

Uniform sampling/remeshing. We show several experimen-
tal results of surface remeshing and optimization. Figure 14 shows
the results of uniform sampling on a sphere and a torus. The min-
imal radius is set to rmin = 4.5 × 10−3. In this example, we
generate three meshes for each model using non-maximal sam-

Fig. 11: Adaptive 2D sampling/meshing. Left: density field; middle: initial
sampling. Triangles with θmin < 30o and θmax > 120o are shown in
dark gray and triangles with θmin ∈ [30o, 35o] and θmax ∈ [105o, 120o]
are shown in red; right: optimized sampling.
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Fig. 12: The convergence of sampling independent gaps is much faster than
sampling all gap primitives together. Left: comparison of the number of gap
primitives. Right: our independent gap sampling uses fewer iterations than
do Ebeida and Jones*.
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Fig. 13: Spectral analysis of different levels of hierarchical sampling. Top
680 points, middle 5.9K points and bottom 10K points.

pling (dart throwing without gap filling), maximal sampling, and
optimized sampling. The statistics of the meshes are shown in Ta-
ble III. We can see that the theoretical bounds do not hold for non-
maximal sampling (first experiment), while these bounds are guar-
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Result #v θmin θmax |e|′min |e|′max |t|′min |t|′max θ < 30o v567
Sphere1 23.5k 22.1 129.3 1.0 1.618 0.993 2.182 1.12 94.5
Sphere2 29.7k 30.2 119.0 1.0 0.998 1.002 0.991 0.00 96.6
Sphere3 30.4k 35.0 105.0 1.0 0.998 1.002 0.996 0.00 100
Torus1 22.4k 21.3 126.8 1.0 1.382 0.979 1.816 0.88 94.6
Torus2 25.1k 30.1 119.1 1.0 0.998 1.004 0.994 0.00 96.3
Torus3 27.4k 35.1 104.9 1.0 0.999 1.003 0.995 0.00 100

Table III. : Statistics of uniform sampling/remeshing on surfaces (rmin = 4.5× 10−3).

anteed by maximal sampling (second experiment). For optimized
(uniform) sampling, the desired angle bound is set to [35o, 105o].
This third experiment shows that the geometric properties are great-
ly improved.

Fig. 14: Illustration of uniform sampling/optimization on surfaces (we set
rmin = 0.03 for better visualization). Left column: dart throwing; middle:
maximal sampling; right: optimized sampling (angle and valence). (Please
refer to Figure 11 for the color coding of vertices and triangles.)

Fig. 15: Comparison with [Corsini et al. 2012]. Left: uniform sampling
result of [Corsini et al. 2012] with 3909 samples (r ≈ 0.012). Gaps are
detected by our technique (red regions); right: maximal sampling (4560
samples) by filling the gaps using our approach, and the new sampled points
are shown in red (the model is from the Aim@Shape repository).

We compare the uniform surface sampling with the most recen-
t approach [Corsini et al. 2012]. To make a fair comparison, we
set the over-sampling factor to 200 so that their result has better
maximality and the algorithm takes a similar time as our approach
for the same sampling radius (both methods take about 0.3s for
r ≈ 0.012). However, as shown in Figure 15(a), we are able to

detect the gaps from their output and show that this competing re-
sult is not maximal. In another comparison of uniform sampling,
the Elk model is remeshed with 31k vertices. We set the desired
angle bound to [37o, 98o] and still obtain a higher quality output,
compared with the state of the art [Yan et al. 2009]. The results are
summarized in Table IV.

We compare our feature-preserving (uniform) remeshing result
with previous work in Figure 16. In this example, we request a
minimal angle of 35o, but we can only obtain 33.9o. We also cannot
get a pure valence 5, 6, 7 solution because of the feature constraints.

Adaptive remeshing. We applied our adaptive remesh-
ing/optimization to various models. We use the local feature size
(lfs) [Amenta et al. 1998] as the density function, i.e., ρ(x) =

1
lfs(x)2

. Several results are shown in Figure 18 and 17. Another
example of adaptive sampling on a mesh surface with boundaries
is shown in Figure 19. The boundary is treated the same as a 1D
feature curve.

We compare our remeshing algorithm with the state-of-the-art
remeshing approaches [Cheng et al. 2007; Valette et al. 2008; Fu
and Zhou 2008; Yan et al. 2009], in terms of Qmin, θmin, θmax,
Hausdorff and RMS distances, the ratio of angles smaller than 30o

and the ratio of the valence 5,6,7 vertices (see Table IV). In Ta-
ble IV, SAG refers to [Surazhsky et al. 2003], DEL refers to [Cheng
et al. 2007], DSR refers to [Fu and Zhou 2008], CVD refers to
[Valette et al. 2008], CVT refers to [Yan et al. 2009], CAP refer-
s to [Chen et al. 2012], and MPS refers to our approach without
optimization. In adaptive remeshing, the desired angle bound is set
to [32o, 115o]. Similar to the uniform meshing case, we can ob-
serve that our approach exhibits better Qmin and θmin, as well
as high approximation quality to the input surface. For CVT and
CAP, we use 100 iterations to generate all the results shown in this
paper. Our method has a larger Hausdorff distance compared with
CVT-based remeshing [Yan et al. 2009] due to the fact that we did
not explicitly optimize the Hausdorff distance, while CVT tends
to approximate the input mesh by minimizing the Hausdorff dis-
tance [Nivoliers et al. 2012]. We would like to address this issue in
future work using our randomized optimization framework.

Efficiency. Figure 20(a) shows the timing curve of our algorith-
m with an increasing number of sample points, and the convergence
of the valence/angle optimization is shown in Figure 20(b) on the
Bunny model shown in Figure 17. For this example, our algorithm
takes 12.4s for the initial sampling, 6.4s for gap filling and 4.9s
for optimization (23.7s in total), while CVT takes 182s and CAP
takes 391s for the same number of samples.

Limitations. There are several limitations to our current ap-
proach that can be addressed in future work. 1) Although the sam-
pling framework works well for mesh surfaces, we might fail to
compute a valid remeshing if the minimal radius is larger than the
local feature size of the surface. For example, we can remesh a thin
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(a) (c)(b) (d) (e)

Fig. 16: Comparison of the remeshed Joint model, 3.2k vertices. (a) Input mesh, (b) DelPSC [Cheng et al. 2007]; (c) CVD [Valette et al.
2008]; (d) CVT [Yan et al. 2009]; (e) ours (the model is from the Aim@Shape repository).

(a) (b) (e)(d)(c)

Fig. 17: Adaptive maximal Poisson-disk sampling on the Bunny model. (a) the density map, where cooler colors correspond to a smaller
radius while warmer colors correspond to a larger radius; (b) non-maximal sampling results in gaps (red regions); (c) triangles of the
remeshing that are effected by gaps (red triangles); (d) maximal sampling; and (e) remeshing using maximal sampling. Only maximal
sampling leads to good triangle shapes that are essential for simulation (the model is from the Stanford 3D scanning repository).

Fig. 18: Adaptive sampling/remeshing. Top: input mesh and the densi-
ty function; Bottom: remeshing result (the model is from the Aim@Shape
repository).

sheet mesh with parallel planes using small triangles, but we cannot
remesh it using large triangles. Another limitation is that we do not
have any theoretical guarantee for convergence of the randomized
mesh optimization. This is partially due to the fact that in some ex-
treme cases the valence and angle optimization conflict with each

Fig. 19: Boundary handling, 9k vertices. (a) maximal sampling/remeshing.
The triangles with θmin < 30o are shown in dark gray and the triangles
with θmin ∈ [30o, 32o] are shown in red. (b) Optimized sampling and
remeshing. The optimized angle range is [32o, 115o] (the model is from the
Aim@Shape repository).

other. One possible solution is to enlarge the region further to be re-
sampled. The third limitation is that our framework depends on the
regular triangulation/power diagram, which limits the performance
of our algorithm compared with GPU-based approaches [Bowers
et al. 2010].
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Model #v Qmin θmin θmax Hdist RMS θ<30o v567 Time(s)
adaptive remeshing

Rockerarm[CVD] 5.8k 0.353 16.5 133.2 0.44 0.048 0.30 98.1 3.0
Rockerarm[DSR] 5.8k 0.004 0.14 152.9 0.55 0.057 1.34 93.1 35.0
Rockerarm[CVT] 5.8k 0.428 21.3 124.4 0.34 0.032 0.11 99.7 47.5
Rockerarm[CAP] 5.8k 0.413 23.5 126.4 0.58 0.050 0.12 98.8 59.8
Rockerarm[MPS] 5.3k 0.320 14.0 130.0 0.48 0.034 1.49 90.6 3.2
Rockerarm[OUR] 5.8k 0.516 32.0 113.6 0.48 0.033 0 100 4.8

Homer[CVD] 7.2k 0.049 2.82 173.2 0.35 0.057 2.03 94.3 3.1
Homer[DSR] 7.5k 0.150 21.7 129.9 0.43 0.068 0.10 95.2 67.0
Homer[CVT] 7.2k 0.334 16.2 120.8 0.20 0.029 2.04 99.5 74.2
Homer[CAP] 7.2k 0.405 21.0 126.6 0.23 0.046 0.42 96.4 81.9
Homer[MPS] 7.3k 0.371 21.8 131.4 0.32 0.028 0.29 95.4 3.5
Homer[OUR] 7.2k 0.513 32.0 115.0 0.31 0.023 0 100 5.1

Triceratops[CVD] 9k 0.007 0.46 179.1 0.59 0.050 4.37 94.1 4.8
Triceratops[CVT] 9k 0.385 15.5 127.3 0.24 0.038 0.29 99.2 82.9
Triceratops[CAP] 9k 0.411 21.2 126.4 0.32 0.035 0.43 97.2 116.4
Triceratops[MPS] 9k 0.29 13.5 138.6 0.48 0.062 1.23 92.0 6.3
Triceratops[OUR] 9k 0.506 32.0 114.8 0.46 0.062 0 100 28.4
Elephant[CVD] 11k 0.040 1.33 173.2 0.38 0.039 4.15 95.4 7.2
Elephant[CVT] 11k 0.408 21.2 126.6 0.23 0.024 0.72 94.0 102.5
Elephant[CAP] 11k 0.316 18.5 138.1 0.24 0.024 0.04 93.7 115.6
Elephant[MPS] 11k 0.301 13.0 130.0 0.46 0.029 1.09 92.6 8.4
Elephant[OUR] 11k 0.505 32.0 114.9 0.38 0.061 0 100 30.6
Bunny[CVD] 12k 0.15 9.6 160.1 0.34 0.028 0.71 96.0 5.2
Bunny[CVT] 12k 0.36 17.8 133.2 0.20 0.029 0.38 96.4 176.3
Bunny[CAP] 12k 0.20 7.48 137.8 0.48 0.038 4.99 97.5 185.0
Bunny[MPS] 9.8k 0.36 19.2 133.2 0.46 0.042 0.90 94.7 18.8
Bunny[OUR] 12k 0.51 32.0 114.6 0.37 0.035 0 100 23.7

uniform remeshing
Joint[CVD] 3.2k 0.040 2.4 174.6 0.12 0.011 15.6 96.0 2.5
Joint[DEL] 3.2k 0.057 2.83 171.5 0.38 0.031 2.6 91.1 8.9
Joint[CVT] 3.2k 0.555 29.6 108.4 0.26 0.056 0.005 99.2 23.7
Joint[OUR] 3.2k 0.688 33.9 104.9 0.37 0.056 0 99.4 4.5

Bunny[CVD] 12k 0.111 3.81 146.2 0.43 0.037 17.2 97.6 4.3
Bunny[CVT] 12k 0.618 37.4 101.2 0.20 0.029 0 100 171.9
Bunny[CAP] 12k 0.215 20.5 126.0 0.35 0.029 0.41 99.5 181.2
Bunny[MPS] 12k 0.480 30.3 118.0 0.44 0.037 0 96.5 10.6
Bunny[OUR] 12k 0.629 38.0 100.0 0.47 0.034 0 100 56.8

Elk[SAG] 31k 0.092 4.72 166.8 0.30 0.047 0.07 99.7 60.0
Elk[CVD] 31k 0.037 2.28 175.0 0.20 0.012 1.60 96.5 6.1
Elk[CVT] 31k 0.634 36.5 99.2 0.21 0.014 0 99.9 215.3
Elk[CAP] 31k 0.305 11.4 133.4 0.30 0.027 1.93 98.7 242.8
Elk[MPS] 31k 0.475 30.1 118.6 0.22 0.020 0 96.4 6.3
Elk[OUR] 31k 0.645 37.0 97.9 0.26 0.020 0 100 87.5

Table IV. : Statistics of the remeshing quality compared with previous work. #v is the number of sampled points. Qmin is the minimal
triangle quality [Frey and Borouchaki 1997]; θmin and θmax are the minimal and maximal angle; Hdist and RMS are the Hausdorff
distance and the root mean square distance between remeshing and the input mesh (% of the diagonal length of the bounding box); v567 is
the percent of vertices with valences 5,6 and 7. The best result is highlighted with bold font.

7. CONCLUSION AND FUTURE WORK

We presented a theoretical analysis of gaps in disk sets with varying
radii in arbitrary dimensions. Based on this analysis, we proposed
algorithms and data structures for gap detection and gap updates
when the disk set changes in the 2D plane and on 3D surfaces. The
contribution of our work is illustrated with an adaptive remeshing
algorithm that can improve the remeshing quality in aspects of min-

imal angle, vertex valence and triangle quality. In future work, we
would like to build a solution for volumetric remeshing that can
be applied to static and deformable objects and to extend our gap
processing framework to higher dimensions.
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Fig. 20: Left: Timing curves of our sampling algorithm on the Bunny mod-
el. Right: convergence curve of the valence/angle optimization of Figure 17.
Each peak of the curve corresponds to a switch between valence/angle op-
timization.
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SCHLÖMER, T., HECK, D., AND DEUSSEN, O. 2011. Farthest-point op-
timized point sets with maximized minimum distance. In High Perfor-
mance Graphics Proceedings. 135–142.

SHEWCHUK, J. R. 2002. What is a good linear element? interpolation,
conditioning, and quality measures. In 11th Intl. Meshing Roundtable.
115–126.

SURAZHSKY, V., ALLIEZ, P., AND GOTSMAN, C. 2003. Isotropic remesh-
ing of surfaces: a local parameterization approach. In 12th Intl. Meshing
Roundtable. 204–231.

TURK, G. 1993. Generating random points in triangles. In Graphics Gems.
24–28.

VALETTE, S., CHASSERY, J.-M., AND PROST, R. 2008. Generic remesh-
ing of 3D triangular meshes with metric-dependent discrete Voronoi dia-
grams. IEEE Trans. on Vis. and Comp. Graphics 14, 2, 369–381.

VIGO, M., PLA, N., AND COTRINA, J. 2002. Regular triangulations of
dynamic sets of points. Comp. Aided Geom. Design 19, 2, 127 – 149.

WEI, L.-Y. 2008. Parallel Poisson disk sampling. ACM Trans. on Graphics
(Proc. SIGGRAPH) 27, 3, 20:1–20:9.

WEI, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. on Graph-
ics (Proc. SIGGRAPH) 29, 4, 79:1–79:8.

WEI, L.-Y. AND WANG, R. 2011. Differential domain analysis for non-
uniform sampling. ACM Trans. on Graphics (Proc. SIGGRAPH) 30, 4,
50:1–50:8.

WHITE, K. B., CLINE, D., AND EGBERT, P. K. 2007. Poisson disk point
sets by hierarchical dart throwing. In Proceedings of the IEEE Symposium
on Interactive Ray Tracing. 129–132.

XU, Y., HU, R., GOTSMAN, C., AND LIU, L. 2012. Blue noise sampling
of surfaces. Computers & Graphics 36, 4, 232–240.
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APPENDIX

A. CORRECTNESS OF GAP DECOMPOSITION

In this appendix, we prove that the primitive extraction algorithm
presented in Section 3.3 gives a valid decomposition of a gap.

A.1 Properties of gaps

Recall that a connected gap component is incident to a set of gap
triangles. The gap triangles of a gap can be clustered together us-
ing the first three connectivity rules (Section 3.2). In the following
discussion, when we refer to a triangle, we mean that the triangle is
a gap triangle that is incident to the same gap.

The edges of gap triangles can be classified into two types,
boundary edges (solid black) and inner edges (blue), as illustrated
in Figure 21(a). A boundary edge has an edge length smaller than
the sum of the radii of its two endpoints, i.e., |pi pj | < ri + rj ,
which means that the edge is covered by the two disks. The bound-
ary edges isolate the gap from other gaps. Each inner edge is shared
by two neighboring gap triangles. The inner edges can be further
classified into two types: (a) inner edges with two power centers
of neighboring gap triangles that lie on different sides of the edge,
e.g., edge p3 p5 in Figure 21(b); (b) inner edges with two power
centers of neighboring gap triangles that lie on the same sides of
the edge, e.g., edges p1 p7, p1 p6,p1 p3 and p3 p6.

A gap is bounded by a set of circular arcs. The vertices of the
arcs are the intersection points of the disks (yellow points in Fig-
ure 21). Each vertex of the arcs is incident to a boundary edge of
the regular triangulation. Note that no arc intersects with other arcs
except with two neighboring arcs at the arc vertices (otherwise the
gap is not connected). The arcs are simply connected. Without loss
of generality, we assume the ccw orientation, such that the gap is
on the left side when we traverse the arcs, see Figure 21(a) for an
example.

If we replace each arc with a segment, then the resulting poly-
gon covers the gap. The polygon is called a gap polygon, as
shown in Figure 21(b). As discussed in Section 2, the gap is de-
fined as the difference between the domain and the disks, i.e.,
Ω − ∪i{(pi, ri)} = ∪{Ωi} − ∪i{(pi, ri)}, which is equivalen-
t to the union of each power cell minus its incident disk, i.e.,
∪i{Ωi − (pi, ri)}. Each power cell contains exactly one arc of the
gap boundary. The gap polygon can be decomposed by the pow-
er cells (intersecting the gap polygon with the power cell of each
disk), as shown in Figure 21(c). We call each such (colored) poly-
gon a gap cell of this disk.

A.2 Proof of the validness

We prove the correctness of our algorithm by constructing a valid
decomposition of the gap polygon and show that our algorithm is
equivalent to this valid decomposition. We define deg(pi) as the
number of incident triangles of each disk. Hence, each disk is inci-
dent to two boundary edges and deg(pi) − 1 inner edges. We first
split the gap cell of each disk into deg(pi) sub-cells by inserting
deg(pi) − 1 auxiliary vertices on each arc, such that each sub-cell
is associated with an incident triangle of the disk. For each type (a)
inner edge of a disk, we simply split the arc by the edge, and we
also split the power edge by the edge, e.g., edge p5p3; For each
type (b) inner edge of a disk, we split the arc by connecting the
disk center and the power vertex incident to the edge.

After this splitting process, each gap cell is split into deg(pi)
sub-cells, each sub-cell is a convex polygon and the union all the
sub-cells covers the gap, as shown in Figure 21(d). Until now, all
the sub-cells are associated with disks. Next, we reassign the sub-
cells to triangles. Since each gap cell is split into deg(pi) sub-cells,
we associate each sub-cell to an incident triangle of the disk. After
the regrouping, each triangle has three sub-cells, and each pair of
sub-cells shares a common power edge, as shown in Figure 21(e).
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Fig. 21: An illustration our gap decomposition algorithm. (a): power diagram (red) and regular triangulation (solid black and blue) of a
connected gap component. Five power centers fall into the same triangle t2; (b) initial gap polygon; (c) the gap polygon is subdivided into
several gap cells; (d) each gap cell is split into deg(pi) sub-cells; (e) the sub-cells are regrouped to from tri-cells for each triangle; (f) the
tri-cells are split and merged by auxiliary splitting edges.

We call the union of the three sub-cells associated with a triangle a
tri-cell. The tri-cell of a triangle has the following properties:

—Each tri-cell is a simple polygon in ccw orientation.
—The vertices on the arcs of a tri-cell are convex in ccw orientation

(white and yellow vertices).
—The tri-cell is convex if the triangle has one or no type (b) inner

edge.
—A power center of a tri-cell contributes to a convex vertex to its

own triangle and contributes to a concave vertex to its neighbor-
ing triangle (Figure 21(e)).

There are two types of vertices on the arc, the intersection point
of two neighboring arcs (yellow) and the auxiliary vertices (white)
by intersecting the disk center to its power vertices. An auxiliary
vertex is convex since it is from a convex sub-cell by our splitting
process. To see that the yellow vertices are convex, we use the tri-
cell of t0 as an illustration, as shown in Figure 21(e). There are two
arc-arc vertices p70 and p01 and two auxiliary vertices p71 and
p17. Let us look at the quad c0p7p0p7, since c0 is the power center
of triangle p7p0p1, which lies outside of the triangle. Hence, c0
must lie on the left side of edge p70p01. Since p17 lies on the
left side of the power edge c0p01, and similarly p71 lies on the
right side of the power edge c0p70, and c0 lies on the right side of
p17p71, we can see that the tri-cell c0p71p70p01p17 is a convex
polygon. Hence the arc-arc vertices are convex. The convexity of
the other arc-arc vertices can be explained in a similar way.

Now, we add our auxiliary edges by connecting the pair of auxil-
iary vertices incident to each inner edge. The auxiliary edge for type

(a) inner edges is just the edge itself. We restrict our discussion to
type (b) inner edges only. It is obvious that the auxiliary edges in a
convex region do not intersect other edges in other convex regions,
e.g., the union of sub-cells of t0, t3, t5 cannot intersect with each
other. These auxiliary edges split the convex union of sub-cells into
two convex parts, i.e., a triangle and the remaining part, which is
still a convex polygon. We reassign the triangle part to its neigh-
boring cell, which fills the concave part. For triangle t2, which has
one concave and one convex power center, once the concave part
is filled by its neighboring cell, it becomes convex. The auxiliary
edge of t2 now lies in a convex region. It cannot intersect with any
other auxiliary edges. Similarly, we reassign the regions using the
auxiliary edge of t2. Figure 21(f) shows the final result of the gap
decomposition, which is equivalent to the output of the algorithm
described in Section 3.3.

To this end, we have shown that the splitting edges do not inter-
sect with each other, and we can conclude that our decomposition
algorithm fulfills the following properties:

—Each gap triangle is associated with a simple convex polygon
with up to six edges (three edges from three arcs and the edges
or vertices connecting the arcs).

—All these polygons are non-intersecting except along the com-
mon edges (auxiliary splitting edge).

—The union of these polygons covers the whole gap.
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Fig. 1: Illustration of gap computation and valence optimization of the Bunny model. (a) The RPD and gaps on the surface, (b) remeshed
triangles correspond to the non-maximal samples (red), (c) maximal sampling without optimization, (d) optimized remeshing. (The vertices
with valence 5 (v5) are shown in blue, v6 green and v7 orange. Vertices with other valences are shown in dark.
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Fig. 2: Remeshing results of the Homer model.
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Fig. 3: Remeshing results of the RockerArm model.
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Fig. 4: Remeshing results of the Bunny model.
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Fig. 5: Remeshing results of the Triceratops model.
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Fig. 6: Remeshing results of the Elephant model.



• 7

[Input] [CVD]

[CVT] [CAP]

[MPS] [OUR]

Fig. 7: Uniform remeshing results of the Elk model. The angle bound of our result is [37o, 98o].
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Fig. 8: Top row: sampling of the David head. (a) Sample points, (b) spheres centered at points that cover the surface, (c) remeshing result.
Bottom row: sampling results of the David model. (a) Sample points, (b) covering spheres, (c) restricted power diagram on the surface. The
remeshed David has Qmin = 0.505, θmin = 32.0o and θmax = 115.0o.


	2013_TOG_AMPS
	2013_TOG_AMPS_suppl



