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a b s t r a c t

The patch layout of 3D surfaces reveals the high-level geometric and topological structures. In this paper,
we study the patch layout computation by detecting and enclosing feature loops on surfaces. We present
a hybrid framework which combines several key ingredients, including feature detection, feature
filtering, feature curve extension, patch subdivision and boundary smoothing. Our framework is able to
compute patch layouts through concave features as previous approaches, but also able to generate nice
layouts through smoothing regions. We demonstrate the effectiveness of our framework by comparing
with the state-of-the-art methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The patch layout of 3D surfaces encodes the underlying high-
level geometric and topological structure. Various criteria have
been used for defining specific patch layouts. For example, the
geometric criteria include planarity, developability, conformality,
and concavity, while the topological criteria include the suitability
for quad meshing, triangle meshing, or subdivision surfaces.

Many computer graphics applications require a patch layout of
a 3D model, e.g., texture mapping [1], paper-craft design [2],
reverse engineering [3], model simplification and shape abstrac-
tion [4]. In many cases, multiple criteria are required for a good
patch layout, e.g., in an architecture design, both planarity and
suitability for quad remeshing are required to generate Planar
Quad Meshes (PQMesh) that are useful for construction [5].

The problem of patch layout generation has been extensively
studied during the last few decades. Most of the existing work
focuses on defining patch boundaries along the concave/sharp
features of the surfaces. However, there are many other types of
features available on the surfaces that are seldom been used for
patch layout computation, such as ridges and valleys [6]. The
reason is that most of the ridge and valley curves are discretely
distributed on the surfaces, and it is difficult to connect then to
form a valid feature network.

In this paper, we propose a framework for patch layout
generation from the ridges and valleys on surfaces. Our approach
combines several key ingredients, including feature detection,

feature curve extension, boundary smoothing and patch subdivi-
sion. Fig. 1 shows an example of our algorithm. Unlike previous
methods, our approach is able to generate patch boundaries on
sharp features as well as smooth regions on the surfaces. In the
results section we will compare the approximation quality with
existing state-of-the-art approaches by triangulating the patch
networks. The main contributions of this paper include:

� A hybrid framework that can extract patch layouts that are
better than the state-of-the-art.

� A novel criterion to evaluate the quality of patch layouts by
measuring the reconstruction error between input and recon-
structed models.

2. Related work

The problem of patch layout generation is closely related to
parameterization, feature detection, mesh segmentation, multi-
resolution modeling and quadrilateral mesh generation. We briefly
review the most related work in the following.

Feature extraction: An exhaustive survey of the feature extraction
techniques is out of the scope of this paper (see [7] and references
therein), we only focus on the methods that are most related to
our work. Lee et al. [8] generalize the 2D active contour model
(snakes) to 3D mesh surfaces. The user sketches an initial feature
curve on the input surface, and the 3D snake iteratively snaps to
the features. Lee et al. [9] further apply the 3D snake method for
mesh segmentation. Our work is similar to [9], but our curve
network computation does not only rely on the concave features.
Ohtake et al. [6] construct an implicit surface FðxÞ ¼ 0 to
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approximate the set of the mesh vertices and normals, and then
use the implicit surface fitting method to calculate extremal
coefficients for ridges and valleys detection. Kim and Kim [10]
use a modifiedMoving-Least-Squares (MLS) approximation method
to generate a local fitting surface around each vertex, and then use
this fitted surface to calculate the local curvatures. Hildebrandt
et al. [11] propose a new computation scheme based on discrete
differential geometry which avoids costly computations of higher
order approximating surfaces. In the post-processing, they use a
Laplacian smoothing to smooth the extremality coefficients on a
surface to improve the stability of the extraction of feature lines
and the smoothness of their appearance. Nomura and Hamada

[12] extract the feature curves by calculating the skeleton of the
feature region defined by the concavity and convexity.

Segmentation/layout generation: There are two main types of sur-
face segmentation methods, patch-based and part-based [13]. The
patch-based approach shares many similarities with patch layout
generation. Lévy et al. [1] chartificate the surface into texture-atlas
under the Least-Square Conformal Mapping constraints. Cohen-Steiner
et al. [14] proposed a powerful variational approach for computing
planar patch layouts of surfaces, called Variational Shape Approximation
(VSA). Instead of minimizing the L2 distance, they minimize the L2;1

metric which considers the normal approximation of each patch. Wu
and Kobbelt [15] and Yan et al. [16,17] extend the VSA framework to
spherical/cylindrical patches and quadric patches, respectively. Varady
et al. [3] propose a region growing based method for reverse
engineering of CAD surfaces.

The recent work of Chen et al. [18] presents a framework to
evaluate different mesh segmentation techniques, and they also build
a benchmark for surface mesh segmentation, called Princeton Segmen-
tation Benchmark (PSB), which is widely used by the subsequent
research. de Gose et al. [19] introduce a new type of surface feature
skeleton for surface abstraction. The segmented meshes of PSB are
used as input, and then VSA is then applied for each part. However,
this approach only works well for models with concave features, it
fails to generate a patch layout for general surfaces. The reader is
referred to the comprehensive survey paper by Shamir [13] for more
details of mesh segmentation.

Another branch of patch layout generation emphasizes quad-
rilateral patches computation [20–24]. We refer to the recent
survey [25] for details.

Surfaces from curves: Given the curve network of a surface, it is a
challenging task to recover the geometry of the original surface.
Orbay and Kara [26] propose a sketch-based modeling interface for
creating smooth surfaces [26]. Abbasinejad et al. [27] introduce
a new algorithm for automatic generation of piecewise-smooth
surfaces from curve networks. Bessmeltsev et al. [28] present
a design-driven approach for quadrangulating closed 3D curve
networks. Zou et al. [29] present an algorithm for triangulating 3D
spatial polygons. In this paper, we use the algorithm of [29] to
evaluate the quality of the generated patch layouts of different
algorithms.

3. Methodology

3.1. Overview

In this paper, we present a hybrid framework for extracting a
high quality patch layout from an input triangle mesh surface on

Fig. 1. Patch layouts (top) generated by VSA and our method (bottom). The black
lines are the feature curves computed by the first step of our framework, and the
gray lines are the inner boundaries after applying VSA to patches. The curve
networks are then triangulated (middle) or filled by N-sided patches (right) for
quality evaluation. Our framework generates better results when the number of
patches is small. The problematic regions where VSA cannot generate feasible
segmentations are highlighted, while our method computes better layouts.

Fig. 2. Pipeline of the presented layout computation framework. (a) Input mesh. (b) Results of feature extraction. (c) Salient feature curves after filtering. (d) Initial patch
layout after feature extension. (e) Final patch layout after subdivision and boundary smoothing. Different patches are shown in different colors. The new boundaries
introduced by subdivision are shown in gray. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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which the triangles are distributed uniformly. We assume that the
input triangle mesh is 2-manifold, with or without boundaries, an
example is shown in Fig. 2(a).

Our framework consists of five main steps, as shown in Fig. 2.
Given an input surface, we first extract the ridges and valleys as
the basic feature elements (Section 3.2). Next, we filter out the
short and unimportant feature elements based on some intuitive
heuristics (Section 3.3). We further extend the remaining feature
curves to form a complete feature network (Section 3.4). Once the
curve network is generated, we employ variational shape approx-
imation to subdivide certain patches (Section 3.5). The boundary
of the curve network is finally smoothed using a local geodesic
smoothing operation (Section 3.6). We evaluate the quality of the
patch layout by triangulating the curve networks with a recent
algorithm [29] and present comparisons (Section 4).

3.2. Feature detection

We start by detecting features on mesh surfaces. In this step,
we follow the method of [30] to extract the feature curves. Given a
mesh M, the surface at the k-ring neighborhood of a vertex P can
be locally fitted by a bivariate cubic polynomial

hðx; yÞ ¼ 1=2ðb0x2þ2b1xyþb2y2Þ
þ1=6ðc0x3þ3c1x2yþ3c2xy2þc3y3Þ ð1Þ

in the local coordinate system where the normal direction of
vertex P is the Z-direction and the tangent plane at P is the XY-
plane. The coefficients of this polynomial ðb0; b1; b2; c0; c1; c2; c3Þ
can be solved by the so-called adjacent-normal cubic approxima-
tion method in [31].

Then the extremity coefficients emax and emin defined as the
derivatives of the principal curvatures kmax; kmin along their corre-
sponding principal directions tmax ¼ ðt1; t2Þ; tmin ¼ ðt3; t4Þ can be
calculated from ðc0; c1; c2; c3Þ directly

emax ¼ ∂kmax=∂tmax ¼
t21
t22

 !T
c0 c1
c2 c3

 !
t1
t2

 !
; ð2Þ

emin ¼ ∂kmin=∂tmin ¼
t23
t24

 !T
c0 c1
c2 c3

 !
t3
t4

 !
: ð3Þ

Then we use the procedure described in [6] to check whether
the mesh edge contains a ridge vertex. If there are two ridge
vertices on edges of a triangle, they are connected by a straight
line segment. If there are three ridge vertices on edges of a
triangle, we connect these three ridge vertices to the centroid of
the triangle. The result of this step is shown in Fig. 2(b).

Although the feature extraction described above works well for
smooth inputs, it is still difficult to choose a proper scale k to extract

all the features on the surface for complicated models. As shown in
Fig. 3, using a small scale could generate many disconnected short
feature curves, while using a large scale cannot capture the small
details. Hence, we propose to use multi-scale feature extraction. First,
we define a parameter to measure the surface variation using the
normal tensor voting theory [32,33]. The normal voting tensor Tk(P)
of vertex P is defined as

TkðPÞ ¼ ∑
f i ANkðPÞ

μf i nf i n
T
f i
; ð4Þ

where Nk(P) is the k-ring triangle set of vertex P, and nf i is the unit
normal vector of each triangle fi. μf i is a weight defined by

μf i ¼
Aðf iÞ
Amax

exp � Jcf i �P J
maxJcf �P J

� �
; ð5Þ

where the Aðf iÞ is the area of fi, Amax is the maximum area of a
triangle in Nk(P), cf i is the barycenter of fi and maxJcf �P J is the
maximum distance from the barycenter to the vertex P. Then the
surface variation of the k-ring neighborhood of vertex P is defined as

ωkðPÞ ¼
λ2þλ3
λ1

; ð6Þ

where the λ1Zλ2Zλ3Z0 are the eigenvalues of tensor Tk(P). Then
we design a simple way to set the scale k for each vertex by
ωk; k¼ 1⋯m, and two predefined threshold ω� oωþ . If the number
of ωkZω� is less than m=2, we consider that the neighborhood of
the current vertex is approximately flat and set k¼1 for this vertex.
If the number of ωkZω� is larger than m=2, we consider the
neighborhood of the current vertex as a bent area and set k to its
corresponding ωk which is most close to ωþ . For other cases, k is set
by the maximum variation of ωk which is the ratio of ωk and ωkþ1.
In our experiment, we set m, ω� and ωþ to 6, 0.1 and 0.25

Fig. 3. Ridges and valleys on the surface with different scales. (a) Input mesh. (b) The results are noisy when the scale is small. (c) When the scale is large, some features
cannot be captured. (d) All the feature curves are captured using our multi-scale method.

Optimal Scale
1 2 3 4 5 6

1.0

2.0

3.0

4.0

5.0

6.0

Fig. 4. Scale selection for three representative points. Left: three different vertices
on the rocker-arm model; Right: the ωk of three different vertices and the black
diamond symbols indicate the optimal scale k.
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respectively. An example that describes the validity of the scale
selection is shown in Fig. 4.

3.3. Feature filtering and connection

The feature curves extracted in previous step usually contain
lots of short curves and non-salient curves. In this step, we filter
out the curves that we are not interested in. We extend the
filtering algorithm presented in [30], where the strength of a
feature line is measured by the following scale-independent
quantity:

T ¼
Z

ds �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jemaxj2þjeminj2
q

ds: ð7Þ

In our experiments, we found that it is not enough to filter out the
non-salient curves based on Eq. (7). We propose to add two more
parameters for the filtering. Given a curve represented by a set of
vertices P1;P2;…;Pn: the curve length L and the curve curvature R

L¼ ∑
i ¼ n�1

i ¼ 1
JPiþ1�Pi J ; R¼∑i ¼ n

i ¼ 1CRMSðPiÞ
n

are considered as additional measurements, where CRMSðPiÞ is the
root mean square curvature of Pi.

We first use the curve length parameter to filter out very
short curve segments. For the remaining curve segments, we try
to connect two curve segments to generate a longer curve by
checking the ending points of these two curves. If two ending
points of two curve segments are in 1-ring neighborhoods and the
angles αrπ=3; βrπ=3; γrπ=2, we connect these two ending
points to generate a longer curve (as shown in right figure). And
then we use the other two parameters T and R to filter the curve
segments and only keep the salient feature curves. The result of
this step is shown in Fig. 2(c). One example of using parameters

L;R; T to filter features is shown in Fig. 5.

3.4. Feature extension

The salient feature curves capture the key parts of the curve
network of the input mesh. However, these curves are discon-
nected and we cannot derive a valid layout directly from them.
Therefore, we have to extend these feature curves in the curvature
directions to let them meet. We extend the method of Hsu et al.
[34] for this purpose. We only describe our improvement in the
following.

Assume that a feature curve is represented by a sequence of
n ordered points fP1;P2;…;Png. The points lie on the mesh, but
they do not have to be vertices of the mesh. To simplify our
presentation, we assume that the end points of feature curves to
be extended are located on mesh vertices (e.g., we snap them to
the nearest vertices). The new vertices to be added to the extended
curves will only be selected from the mesh vertices.

We first consider how to extend a curve from its end point Pn

(extending P1 works in the same way). Let fNng denote the 1-ring
neighbors of Pn. We first select a set of candidates fCngDfNng for
the extension. Each vertex PcAfCng is selected from Nn by using a

Fig. 5. Illustration of our filter process using L, R and T. (a) All the feature curves on the model. (b) First using L¼0.023 parameter to filter the feature. (c) Then using the
parameter R¼12.158 to filter feature. (d) Finally using T¼0.252 to get the salient feature.

Fig. 6. Illustration of our improved curve extension algorithm. Left: the initial
feature curves; middle: the extension result of [34]; and right: our result.

Fig. 7. One feature extension result with more finer feature curves on surface
compared to Fig. 2.
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simple angle filtering criterion such that Pc�Pn does not deviate
from the curve too much. Next, we calculate a cost value FðPcÞ for
each vertex PcAfCng to indicate the possibility of Pc to be selected.
The cost function F jointly considers multiple factors: curvature,
continuity of principal directions, smoothness. We follow most of
these terms of [34], and we have improved one of them in the
following.

When computing the directional energy term, the algorithm in
[34] only uses the minimal principle direction of the current end
point for energy evaluation. This does not work in the regions with
non-consistent principle directions, e.g., isotropic regions. We
instead evaluate the directional energy by averaging the principle

direction of previous m (m¼5 in our experiments) points on the
curve. And we choose the new vertex with the minimal distortion.

Next, we describe how to extend multiple curves at the same
time instead of extending only one curve. We collect all the
candidates of all curves and evaluate the cost for each candidate.
The candidate with the minimal cost is selected to be added to
the curve it is connected to. Once a new vertex is selected, the
candidate set and the cost values are update. We stop the extension
of the ending point of a feature curve if there is any point on the
existing feature curves within a threshold (e.g., the one ring
neighborhood of this ending point is used in our implementation).
Then we fill the gap between the ending point with existing feature
points so that the ending of curve is as straight as possible. This step
is repeated until the candidate set is empty.

We compare our improved curve extension algorithm with the
original approach in Fig. 6 and show another feature extension result
with more finer features on the surface compared to Fig. 2 in Fig. 7.

3.5. Patch subdivision

The model has actually been segmented into different patches
by the feature curve networks and there is no feature curve that
we need in each region. But we still further process each patches
with patch subdivision so that each refined patch is approximately
flat for the purpose of reconstruction. We make use of VSA
algorithm to realize patch subdivision. For each patch, we started
the VSA algorithm from two seeds which are selected randomly

Fig. 9. Feature networks computed by our framework.

Fig. 8. The final patch layout of rocker-arm model before and after boundary
smoothing. Left: the patch layout before smoothing with so many zigzags on
boundary curve. Right: the smooth boundary curves of the patch layout after
smoothing.
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and then add one more seed to this region if the maximum angle
between normals of two triangles in this patch is larger than π=2.

3.6. Boundary smoothing

Our patch layout generation pipeline ends up after patch
subdivision. Each patch is enclosed by some boundary edges.
Since the boundary curves are usually not smooth, we need a
postprocessing step to further smooth the boundaries. We use the
method of [35] to smoothen the boundary curve γ by minimizing
alignment energy

EðγÞ ¼
Z
γ

〈_γ ; JXmin〉

J _γ J JX J

� �2

ds ð8Þ

such that boundary curve γ is aligned to the field of minimal principle
curvature directions Xmin, where J is the 901 rotation of Xmin in the
tangent planes. One smoothed patch layout is shown in Fig. 8.

3.7. Complexity analysis

Each step of our pipeline has linear complexity with regard to the
size of the input mesh. We discuss the feature detection step as an
example. For a triangular mesh with m points and n triangles, we
calculate the extremity coefficient of each point through a locally fitted
bivariate cubic polynomial to its k-ring neighborhood. The complexity

is O(m). Then we traverse all the triangles to check whether this
triangle contains a ridge curve and the complexity is O(n).

4. Experimental results

We tested our framework on various input surfaces. Fig. 9
shows a collection of generated patch layouts. Our experiments
are conducted on a PC with 3.33 GHz GPU, 24 GB memory, and
Windows7 operating system. Our algorithm is very efficient since
we do not involve any time-consuming optimization.

Evaluation: We evaluate our layout quality by reconstructing
the surfaces from the curve networks with different techniques,
using a 3D polygon triangulation approach [29] and an N-sided
hole filling technique [36]. We compute the Haursdoff distance
and the Root Mean Square (RMS) distance between the recon-
structed surfaces and the input surfaces to measure the recon-
struction quality. We use the Metro tool [37] for this purpose.

Comparison: We compare our approach with previous methods
including VSA [14], QSE [16], and ExoSkel [19], as shown in Fig. 10.
Since QSE and our method always generate fewer patches than other
approaches, we further insert new patches in regions with larger
non-planar distortion by applying VSA subdivision. To make a fair
comparison, we use the same number of patches for all the methods
on the same test model. The quality evaluation of the reconstruction
results are listed in Table 1. The meshes reconstructed from our

Fig. 10. Comparison with VSA, QSE, and ExoSkel methods. For each example, the top row are the patch layouts, middle row are the triangulation results and the bottom row
are the results of filling N-sided patches.
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patch layouts always exhibit smaller approximation error compared
to others.

Unlike QSE and ExoSkel, which are only suitable for CAD models
or free-form models with part components, our framework works
well on more general input surfaces. E.g., both QSE and ExoSkel are
failed to generate a valid patch layout for examples shown in Fig. 11.
While our framework is able to compute more naturally layouts
aligned to local salient features even for smooth regions. The
approximation quality is also shown in Table 1. Fig. 12 shows a
visual comparison with the slippage analysis method [38], where
our approach generates better boundary curves.

Failure example: Our algorithm fails to generate a nice layout if the
input mesh has too many small details. Fig. 13 shows such an example.

5. Conclusion and future work

In this paper, we have presented a framework for computing a
patch layout on surfaces. Our pipeline combines and improves
upon several existing algorithms, and is able to generate more
natural patch layouts following the salient feature curves of the
surfaces.

One limitation of our work is that we only take clean
2-manifold input meshes as an input, and we cannot generate a

nice layout for noisy/non-manifold input data. Our algorithm is
also sensitive to the mesh quality and density. In these cases, the
feature extension algorithm fails to generate a plausible patch

Table 1
Evaluation and comparison of the curve network generation methods. jf j is the number of triangles in each model, jPj is the number of patches, H is the Haursdoff distance,
and R is the RMS distance between reconstructed meshes and input surfaces, respectively. The best results are shown in bold font.

Model jf j Alg. [29] N-sided

jPj H R jPj H R

Phone 41512 VSA 40 0.0024 0.0008 40 0.0014 0.0003
QSA 40 0.0027 0.0008 40 0.0017 0.0004
EXO 40 0.0069 0.0010 40 0.0068 0.0009
Ours 40 0.0024 0.0005 40 0.0016 0.0004

Vase 28950 VSA 39 0.0347 0.0125 39 0.0226 0.0058
QSA 39 0.0580 0.0188 39 0.0333 0.0072
EXO 39 0.0827 0.0245 39 0.0319 0.0087
Ours 39 0.0315 0.0118 39 0.0213 0.0055

Face 11162 VSA 22 0.0187 0.0055 22 0.0211 0.0036
Ours 22 0.0164 0.0065 22 0.0101 0.0019

Octa 32716 VSA 24 0.5233 0.2368 24 0.1278 0.0428
Ours 24 0.3171 0.1676 24 0.0589 0.0197

Blade 97576 VSA 63 1.5401 0.4332 63 1.0241 0.2295
Ours 63 1.3287 0.3805 63 0.9742 0.2186

Fig. 11. Comparison with VSA. For each test, we show the patch layout, the triangulation result of [29], and the results of filling with N-sided patches [36].

Fig. 12. Comparison with [38] (Part3 model). Left: result of [38] and right: our
result.
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layout. We plan to improve our approach by considering the
distance of details in the feature extension. Another limitation is
that we did not consider high level structure information of the
input surfaces, such as symmetry. We cannot preserve the sym-
metric structures in the generated layouts, e.g., the face model. We
plan to address this problem as well in the future. We are also
interested in computing feature aligned quad layout using our
approach.

Acknowledgments

This work was funded by the KAUST Visual Computing Center,
Boeing company, the National Natural Science Foundation of China
(61372168, 61331018, and 61271431), and the U.S. NSF.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2014.09.022.

References

[1] Lévy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for
automatic texture atlas generation. ACM Trans Graph (SIGGRAPH) 2002;21
(3):362–71.

[2] Mitani J, Suzuki H. Making papercraft toys from meshes using strip-based
approximate unfolding. ACM Trans Graph (SIGGRAPH) 2006;23(3):259–63.

[3] Várady T, Facello MA, Terék Z. Automatic extraction of surface structures in
digital shape reconstruction. In: 4th International conference on geometric
modeling and processing—GMP, 2006. p. 1–16.

[4] Mehra R, Zhou Q, Long J, Sheffer A, Gooch A, Mitra NJ. Abstraction of man-
made shapes. ACM Trans Graph (SIGGRAPH Asia) 28 (5) (2009) #137, 1–10.

[5] Liu Y, Pottmann H, Wallner J, Yang Y-L, Wang W. Geometric modeling with
conical meshes and developable surfaces. ACM Trans Graph (SIGGRAPH)
2006;25(3):681–9.

[6] Ohtake Y, Belyaev A, Seidel H-P. Ridge–valley lines on meshes via implicit
surface fitting. ACM Trans Graph (SIGGRAPH) 2004;23(3):609–12.

[7] Lai Y-K, Zhou Q-Y, Hu S-M, Wallner J, Pottmann H. Robust feature classification
and editing. IEEE Trans Vis Comput Graph 2007;13(1):34–45.

[8] Lee Y, Lee S. Geometric snakes for triangular meshes. Comput Graph Forum
(EUROGRAPHICS) 2002;21(3):299–320.

[9] Lee Y, Lee S, Shamir A, Cohen-Or D, Seidel H-P. Mesh scissoring with minima
rule and part salience. Comput Aided Geom Des 2005;22(5):444–65.

[10] Kim S-K, Kim C-H. Finding ridges and valleys in a discrete surface using a
modified mls approximation. Comput Aided Des 2006;38(2):173–80.

[11] Hildebrandt K, Polthier K, Wardetzky M. Smooth feature lines on surface
meshes. In: Proceedings of the third Eurographics symposium on geometry
processing, 2005.

[12] Nomura M, Hamada N. Feature edge extraction from 3D triangular meshes
using a thinning algorithm. In: Society of photo-optical instrumentation
engineers (SPIE) conference series, vol. 4476, 2001. p. 34–41.

[13] Shamir A. A survey on mesh segmentation techniques. Comput Graph Forum
2008;27(6):1539–56.

[14] Cohen-Steiner D, Alliez P, Desbrun M. Variational shape approximation. ACM
Trans Graph (SIGGRAPH) 2004;23(3):905–14.

[15] Wu J, Kobbelt L. Structure recovery via hybrid variational surface approxima-
tion. Comput Graph Forum (EUROGRAPHICS) 2005;24(3):277–84.

[16] Yan D-M, Liu Y, Wang W. Quadric surface extraction by variational shape
approximation. In: 4th international conference on geometric modeling and
processing, 2006. p. 73–86.

[17] Yan D-M, Wang W, Liu Y, Yang Z. Variational mesh segmentation via quadric
surface fitting. Comput Aided Des 2012;44(11):1072–82.

[18] Chen X, Golovinskiy A, Funkhouser T. A benchmark for 3D mesh segmentation.
ACM Trans Graph SIGGRAPH 2009;28(3).

[19] de Goes F, Goldenstein S, Desbrun M, Velho L. Exoskeleton: curve network
abstraction for 3D shapes. Comput Graph 2011;35(1):112–21.

[20] Boier-Martin I, Rushmeier H, Jin J. Parameterization of triangle meshes over
quadrilateral domains. In: Proceedings of the symposium on geometry
processing, SGP '04, 2004. p. 193–3.

[21] Tarini M, Puppo E, Panozzo D, Pietroni N, Cignoni P. Simple quad domains for
field aligned mesh parametrization. ACM Trans Graph (SIGGRAPH Asia)
2011;30(6):142–1-142:12.

[22] Campen M, Bommes D, Kobbelt L. Dual loops meshing: quality quad layouts
on manifolds. ACM Trans Graph (SIGGRAPH) 2012;31(4):110:1–110:11.

[23] Bommes D, Campen M, Ebke H-C, Alliez P, Kobbelt L. Integer-grid maps for
reliable quad meshing. ACM Trans Graph (SIGGRAPH) 2013;32(4):98:1–12.

[24] Gunpinar E, Suzuki H, Ohtake Y, Moriguchi M. Generation of bi-monotone
patches from quadrilateral mesh for reverse engineering. Comput Aided Des
2013;45(2):440–50.

[25] Bommes D, Lévy B, Pietroni N, Puppo E, Silva C, Tarini M, et al. Quad-mesh
generation and processing: a survey. Comput Graph Forum 2013;32(6):51–76.

[26] Orbay G, Kara LB. Sketch-based modeling of smooth surfaces using adaptive
curve networks. In: Proceedings of the eighth Eurographics symposium on
sketch-based interfaces and modeling, SBIM '11, 2011. p. 71–8.

[27] Abbasinejad F, Joshi P, Amenta N. Surface patches from unorganized space
curves. Comput Graph Forum (Proc SGP) 2011;30(5):1379–87.

[28] Bessmeltsev M, Wang C, Sheffer A, Singh K. Design-driven quadrangulation of
closed 3D curves. ACM Trans Graph (SIGGRAPH Asia) 2012;31(5).

[29] Zou M, Ju T, Carr N. An algorithm for triangulating multiple 3D polygons.
Comput Graph Forum 2013;32(5):157–66.

[30] Yoshizawa S, Belyaev A, Seidel H-P. Fast and robust detection of crest lines on
meshes. In: Proceedings of the ACM symposium on solid and physical
modeling, 2005. p. 227–32.

[31] Goldfeather J, Interrante V. A novel cubic-order algorithm for approximating
principal direction vectors. ACM Trans Graph 2004;23(1):45–63.

[32] Kim HS, Choi HK, Lee KH. Feature detection of triangular meshes based on
tensor voting theory. Comput Aided Des 2009;41(1):47–58.

[33] Park MK, Lee SJ, Lee KH. Multi-scale tensor voting for feature extraction from
unstructured point clouds. Graph Models 2012;74(4):197–208.

[34] Hsu S-H, Lai J-Y. Semi-automatic feature point extraction using one seed point.
Int J Adv Manuf Technol 2010;51(1–4):277–95.

[35] Nieser M, Schulz C, Polthier K. Patch layout from feature graphs. Comput
Aided Des 2010;42(3):213–20.

[36] Várady T, Rockwood A, Salvi P. Transfinite surface interpolation over irregular
n-sided domains. Comput Aided Des 2011;43(11):1330–40.

[37] Cignoni P, Rocchini C, Scopigno R. Metro: measuring error on simplified
surfaces. Comput Graph Forum 1998;17(2):167–74.

[38] Gelfand N, Guibas LJ. Shape segmentation using local slippage analysis. In:
Proceedings of symposium on geometry processing, 2004. p. 214–23.

Fig. 13. A failure example. (a) The result of feature extraction. (b) The result of
feature filtering. (c) The result of patch layout generation. (d) Different patches are
shown in different colors. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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