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a b s t r a c t

We present a system for automatically synthesizing a diverse set of semantically valid, and well-
arranged 3D interior scenes for a given empty room shape. Unlike existing work on layout synthesis, that
typically knows potentially needed 3D models and optimizes their location through cost functions, our
technique performs the retrieval and placement of 3D models by discovering the relationships between
the room space and the models' categories. This is enabled by a new analytical structure, called Wall Grid
Structure, which jointly considers the categories and locations of 3D models. Our technique greatly
reduces the amount of user intervention and provides users with suggestions and inspirations. We
demonstrate the applicability of our approach on three types of scenarios: conference rooms, living
rooms and bedrooms.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Efficient tools for the interior design of 3D indoor scenes remain
in high demand in many applications. Since users may have only a
rough idea about their desired design, it is hard for them to draw
sketches or search for desired examples. Designers cannot come up
with a pleasant solutionwithout fully understanding users' demands.
A promising solution to this problem is to provide users with diverse
examples and discuss requirements based on these examples. As the
building structures differ from one to another, it is a complicated and
time-consuming task to build such examples. Examples on the
internet (e.g., Google warehouse) may contain several drawbacks:
(1) the number of plausible and well-arranged interior scenes is
small. (2) Some of them have the problem of content missing.
(3) Some even violate the principles of interior design. Thus, a tool
which can generate a diverse set of plausible interior scenes for a
certain room structure is desired.

Several criteria should be met for such an intuitive design tool.
First, as space enclosed by building elements (floors, walls, ceil-
ings, roofs, etc.) is essential raw materials of interior design [1], the
design tool should take building structures and available space
into consideration. Second, it should generate plausible scenes
that look reasonable to a casual observer. Third, the generated
scenes should be diverse enough to cover users' demands. Fourth,
the amount of user intervention should be reduced to meet the
requirements for efficient communication.

In this paper, we present a framework for interior scene
synthesis that meets the above criteria. We encode the probability
of occurrence of shapes on the surfaces of the scenes (as opposed
to volumes) and this is sufficient in many cases to produce good
layouts. A novel structure, called Wall Grid Structure (WGS) is used
for our purpose. The WGS is an analytical structure which consists
of a set of grid cells generated from the input room shape. The
WGS can effectively characterize the arrangement information
using probabilities by analyzing the relationships between grid
cells and models. Our system consists of two stages: a learning
stage and a synthesis stage. In the learning stage, our system
establishes WGS to capture the arrangement information from a
small database collected from the internet. In the synthesis stage,
given the user-specified room shape (including windows, doors,
vertical walls, floors, ceilings, etc.), our approach uses the WGS of
the room shape to find out available space and generates a diverse
set of well-arranged interior scenes.

We demonstrate the utility of our system by synthesizing a
variety of interior scenes from the given room structures. The main
contributions can be summarized as follows:

� A novel structure, WGS, that captures the structure of a room
shape and learns the arrangement and symmetry information
of the room.

� An interior scene synthesis method based on WGS, that
generates plausible interior scenes conforming to the principles
of interior design.

� A context-based algorithm that automatically extracts the front
directions of models.
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� Several meaningful requirements for the assessment of interior
scenes: functional requirements, illumination requirements,
aesthetic requirements and greening requirements.

2. Related work

Our work is closely related to component-based modeling,
indoor scene analysis and synthesis. In this section, we briefly
review these approaches and discuss how they relate to our
system.

Component-base modeling: In recent years, many techniques
have been proposed for synthesizing new models from existing
components. Kalogerakis et al. [2] and Chaudhuri et al. [3] use
probabilistic graphical models to encode the cardinality, style, and
the adjacency information of shape parts, respectively. The new
models are then generated by recombining the sub-components
based on probabilistic reasoning. Other geometric data structures
such as hierarchical structures [4] and symmetry functional
arrangements (SFARR) [5] are also used to guide the recombina-
tion of shape parts. Our work is inspired by these approaches, that
give us the intuition to treat 3D interior scenes as combinations of
3D models and to synthesize new scenes through recombination.
However, the sub-components of objects are often functionally
related and have connectivity information, which can rarely be
found in 3D interior scenes. Moreover, the structures, i.e., slots [2]
and contacts [4] used for object modeling are not appropriate for
interior scenes, because the relationships and constraints differ
greatly from models to scenes. The reader is referred to the recent
survey by Mitra et al. [6] for more details of component-based
modeling.

Indoor scene analysis and synthesis: Indoor scene analysis has
attracted more attention recently. The concurrent work of Nan
et al. [7], Shao et al [8] and Kim et al. [9] focuses on detecting and
recognizing repeated indoor objects from laser scanned data or
RGBD images. Once the contents of scenes are detected, they can
be easily used for further manipulation and reorganization [10].

Furniture layout synthesis aims to compute a feasible arrange-
ment for a given set of models inside a room. Some specific design
guidelines are used to define energy functions that evaluate the
“goodness” of the layouts. Since the solution space is always very
large, stochastic optimization methods are used for finding solu-
tions [11,12]. While these approaches can generate plausible

interior scenes, the set of furniture objects have to be specified
beforehand.

Gaussian mixture models (GMM) are used to learn the pairwise
spatial placement [13,14]. However, in interior scenes, many
models are loosely related and some are even related by symmetry
which can be hard to describe using GMMs. Fisher and coauthors
use graph structures to characterize 3D scenes for comparison [15]
and context-based searching [16]. But the lack of the arrangement
information makes it difficult for scene synthesis. Bayesian net-
works together with arrangement models and GMM [14] are used
to synthesize scenes. However, it is hard to learn a reliable
Bayesian network from imperfect input datasets like ours. Factor
graphs [17–19] are widely used to characterize relationships using
constraints. But the prior knowledge of models and their potential
locations are required. For example, a desk put in the center of the
room and the same desk placed against a wall have different
constraints with wall model. Reshuffle based method [20] gen-
erates new scenes by replacing models in the original scene
according to some relationships, while in our case these relation-
ships cannot totally characterize our arrangement information.

Sketch-based modeling is an alternative way for indoor scene
synthesis. Eitz et al. [21] propose to use sketches for model
retrieval. While Xu et al. [13] present an interactive modeling
system by co-placement of indoor models from user-input
sketches. However, these systems are not suitable for users with-
out specific training. In contrast, our work aims at providing an
easy-to-use tool for a larger range of users.

Pioneer work uses the artificial intelligence algorithms for
layout generation and visualization, e.g., space reduction [22],
genetic algorithms [23] and meta heuristics [24]. These works do
not learn the existing database, and they need to describe the
scene with some specific declarative rules. Then a solver is used to
solve the constraint-based system. While our approach generates
new scenes simply using a function evaluation based on the wall
grid structure.

3. System overview

Our system consists of two main stages, a learning stage and a
synthesis stage. In the learning stage, we learn the WGS and
functional groups which contain arrangement information and
group information from a database of existing interior scenes. In
the synthesis stage, a user specifies a room shape, which is
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Fig. 1. Algorithm pipeline. In the learning stage, our technique pre-processes a small set of 3D interior scenes to extract functional groups and corresponding wall grid
structure with arrangement information. In the synthesis stage, our system takes a room shape as an input and synthesize a diverse set of well-arranged interior scenes
based on the learned information.
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typically a cuboid-shaped 3D room model, together with its type,
numbers and locations of windows and doors. Doors relate to
pathways in the room and windows have relationship with
illumination. It should be guaranteed that doors and windows
are not overlapped by furniture objects. Our algorithm then
automatically analyzes available space and generates a diverse
set of plausible and well-arranged interior scenes. The pipeline of
our framework is shown in Fig. 1.

The learning stage requires a repository of 3D interior scenes as
the training data. We separate our input data into three distinct
databases: conference rooms, bedrooms, and living rooms con-
taining 52 scenes, 45 scenes, and 48 scenes respectively. Each
database is composed of complete interior scenes with room
structures and scenes with a set of arranged models. All scenes
are pre-segmented into semantic objects with labels. Several
relationships have been specified beforehand. Thus, it is possible
to algorithmically infer the front direction of models using the
contextual information in scenes (Section 4.1) and extract func-
tionally related model groups, named as functional groups (Section
4.2). We use functional groups instead of models to synthesize
interior scenes. We demonstrate later that our concept of func-
tional groups is different from structure groups [13] and is more
suitable for our purpose. To capture the arrangement information
of functional groups, we introduce the WGS and show that this
structure can help us find relationships between functional groups
and their locations quickly and effectively (Section 4.3).

In the synthesis stage, given a room shape as input, we first
establish the corresponding WGS and analyze its occupancy
information (Section 6.1). Next, we use the learnt arrangement
information and functional groups to generate a diverse set of
well-arranged scenes (Section 6.2). In order to make the results
plausible and aesthetic, we propose a few criteria to filter out the
bad results. Note that our input room does not contain any
guidance of the models in the room, which is different from
previous approaches [13,14,11].

4. Wall grid structure

Placing models according to the relationships between room
space and arranged models is the right way to synthesize an
interior scene. However, directly placing models according to the
relationships may result in two problems. First, the models placed
in the right locations may not be placed in correct orientations.
Second, the functions of the placed models could be incomplete.

WGS is a new analytical tool for learning the relationships
between room space and arranged models. It breaks the surfaces
of a room into grid cells, and encodes in each grid cell the
probability of FGs appearing at that location. To build the WGS
we use three steps. First, we propose an algorithm to extract from
interior scenes the arrangement information of individual models,
which contains a front direction and back-against-wall informa-
tion. Second, to ensure the integrity of functions, a new concept of
functional groups (FG for short), which characterizes the

functional relationships among models, is introduced. The orien-
tations of FGs are inferred from context information and orienta-
tions of models. Third, our WGS analyzes the arrangement and
symmetry information of FGs and uses probability values to
measure the compactness between room space and FGs. By
synthesizing interior scenes using FGs instead of models, our
technique not only greatly simplifies evaluations for function
integrity but also reduces the computation for arranging models
in certain patterns.

4.1. Context-based front extraction

The orientations of 3D models are essential information in
scene synthesis and layout optimization. The way to extract up-
direction has been explored by Fu et al. [25] using machine
learning methods. However, the extraction of front direction is
even harder than up direction. There is no clue as effective as
supporting faces. Most of the scene synthesis methods have the
front direction pre-specified, which is a time consuming task. In
our case, models have a default up direction, as interior scenes
downloaded from google warehouse have the up direction in line
with y-axis. It can also be quickly calculated by analyzing the
supporting frame of the room shape. Having the context informa-
tion, our algorithm automatically extracts the front directions of
models.

Our method is based on several observations. First, models
with their backs against walls are most likely to have the front
direction perpendicular to the wall and face to the room center.
Second, model groups which are functionally related are likely to
face to the group center for functional purpose, such as conversa-
tion and entertainment. Third, the front direction is more likely to
be perpendicular to faces with larger area which show more
details. We calculate the oriented bounding box of models and
limit the candidate front directions to the normals of four faces
(excluding the up and down faces). According to the positions and
relationships of the models, we extract the front directions as
follows.

Models against wall: We say a model is against wall if the
distance between its center and a wall is less than the radius of its
bounding sphere. As shown in Fig. 2(a), we consider the candidate
front directions gi;i ¼ 1;2;3;4 of a sofa, the vector fc from the center of
the sofa to the center of the room and the normals of walls fw.
Models against walls are likely to face to the center of the room
and have their backs against walls. Thus, if gi is the front direction,
the angle αgiw between gi and fw and the angle θi between gi and fc
should be in the range of ½0;90Þ. The smaller the angle αgiw is, the
better the model is placed against the wall. Thus, as shown in
Fig. 2(a), we can get the front direction g1. For models in the
corner, it can be placed either against the wall or diagonally as
shown in Fig. 2(b). In this case, to decide the front direction, we
need to take the angles αgiw1 ; αgiw2 between the model and both
walls, and the angle θi between gi and fc into consideration. If all

Fig. 2. Front direction extraction. g1 is the front direction in these examples: (a) sofa against wall and (b) sofa in the corner. We need to consider both two walls in this case:
(c) sofas in groups and (d) laptop supported by the desk.
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the angles are in the range of ½0;90Þ, then gi is the front direction,
such as g1 in Fig. 2(b).

Models in groups: Elements in groups are likely to face to the
center for functional purpose, such as conversation, projection,
and entertainment. We consider the candidate front directions
gi;i ¼ 1;2;3;4 of elements, the vector fc from the center of the element
to the center of the central model, and the vector vc from the
center of the element to the center of a corresponding face of the
central model's bounding box. The corresponding face is found by
checking the angles between gi and normals of the bounding box
faces and the distance from the center of the model to the
bounding box faces. If the angle θi between gi and fc and the angle
βi between gi and vc are both in the range of ½0;90Þ, then gi has the
highest probability of being the front direction. As shown in Fig. 2
(c), g1 is the most probable front direction.

Supported models: To calculate the front direction of supported
models, we need to consider three factors: (1) the distance
between the supported model and the edges of supporting frame.

Models are likely to be placed near the edge with a good view of
the front face. (2) Front faces are likely to have larger area,
showing more details. (3) Supported models are likely to have
orientations similar to the supporting models. Thus, for each
candidate front face, we calculate its confidence coefficient T(f):

Tðf Þ ¼ κ exp � df
∑f A Fd

� �
þλ

sf
∑f AF s

þμðg � n0Þ; ð1Þ

where F is the set of candidate faces, f is a candidate face in F, d is
the shortest distance between the face center and edges of
supporting frame, s is the area of face f and n0 is the front direction
of supporting model. We set κ; λ; μ to 0.4, 0.5, 0.1, empirically. The
face with the largest term value is set as the front face and its
normal is the front direction. As shown in Fig. 2(d), g1 is set as the
front direction of the laptop.

Other models: Some models, like bottle, bonsai, vase, do not
have a clear front direction. If they are in accordance with
conditions mentioned above, we use them to calculate the front

Fig. 3. (a) and (b) Desks with clear front direction, shown by the red arrow. (c) and (d) Desks that do not have a clear front direction. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)

Fig. 4. Results of front extraction in three types of interior scenes: conference room, bedroom and living room.
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directions. For models like table and desk, we check models
surrounding them. If only one side or three sides have chairs
facing it, the front direction corresponds to the special face. If the
number of sides is even, the front direction is decided by the front
direction of the room, as shown in Fig. 3. We define the front
direction of a room based on the orientations of models of core
importance, for example, screens of conference rooms, beds of
bedrooms and the sofas and TV of living rooms.

We start calculating front directions with models in group
relationships. Next, we calculate those with backs against walls,
which correct some miscalculated directions in group-based step.
The front directions of supported models are calculated after the
calculation of their supporting models. Finally, we decide the front
direction of the room and recalculate those without clear front
directions. Fig. 4 shows some results of our front extraction
method in three types of interior scenes.

To evaluate the performance of our front extraction method, we
manually specify the front directions of models in the three kinds
of interior scenes as a benchmark. The evaluation result is shown
in Fig. 5. The accuracy of conference rooms is lower than those of
living rooms and bedrooms because conference rooms are more
sophisticated. Among the wrongly calculated models, many are
supported decorations whose placement has a certain random-
ness. As our synthesis method is based on FGs, the wrongly
calculated decorations do not affect our results. Models in the
corner such as a cube style cabinet may also be wrongly calculated,
because there are two possible faces reasonable to be the front
face. We need to manually correct those ones. The placement of
unconventional cases is rare and not considered in our cases.

4.2. Functional group

As we do not have examples or sketches as guides, simply
recombining models may result in cases like a table with eight
different chairs. This is not aesthetically plausible. We use FGs to
synthesize scenes, thus guaranteeing that functionally related
models have a unified style.

Functional Groups contain one or more models that are func-
tional related. Xu et al. [13] propose the concept of structural
groups (SG for short), which consist of multiple objects that have a
high co-occurrence frequency. Our FGs capture more of the
functional relationships, such as a projector and a screen for
presentation purpose, a table and several chairs for conversation
purpose. Some of the FGs are the same as SGs, but they are
different in some aspects. For example, Sofas, a TV and a tea table
is a SG, as they often co-occur in interior scenes. But they are two
FGs in our case. Sofas and a tea table form an FG for conversation
purpose and a TV alone is an FG for display purpose. In our case, a
TV is changeable with a computer, a screen etc., and sofas and a
tea table can be replaced by chairs and a table, chairs and sofas and
a table, providing us with more flexibility. Moreover, the relation-
ships described in SGs and FGs are also different. We will describe
this in the next paragraphs.

The FG is represented as a graph G¼ ðV ; EÞ. Each node viAV
represents an object and each edge ei;jAE describes a pairwise
relationships between vi and vj. The pairwise relationships in FG
are listed below:

� Center-element: a model with core importance is defined as the
center. Objects surrounding it are the elements, e.g., the table
and chair in Fig. 6. A center may have no element around it,
such as cabinet and bookshelf.

� Supporting relationship: models supported by others have the
supporting relationship, e.g., the laptop and the desk in Fig. 6.

FGs are extracted automatically based on the relationships which
are specified by human. For models that do not have co-appeared
models belonging to above relationships, they are treated individu-
ally as an FG. Note that we do not consider the spatial relationship,
symmetry relationship and coplanar relationship as SGs do, because
we treat FGs as the basic units when synthesizing the indoor scenes.

However, some models are not appropriate to do the transfor-
mations together although they are functionally related. For
example, a screen is always put on the front wall and a projector
is hanging on the ceiling. But if the room structure changes
dramatically, placing them as one FG may result in an unappropri-
ate projection distance. So we need to split them into two FGs to

Fig. 5. The accuracy of our front extraction method in conference room, living
room and bedroom.

Fig. 6. The solid lines represent the supporting relationship and the arrows point to supported objects. The dashed line represents center-element relationship with arrow
pointing to elements.
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make sure that each one is correctly placed. To ensure the
functional integrity in such cases, the split FGs should be either
arranged or not arranged at all. We find this kind of FGs by their
corresponding supporting walls. In an FG, if the center and
elements are supported by different walls, we need to split them
for proper arrangements.

Through this step, scenes in our database are translated into
sets of FGs. We then find out the main FGs (mFG for short), which
appear in more than 80 percent of scenes in our database. The
mFGs are linked to the main functions of scenes, such as FGs of
table and chairs, projector and screen in conference room and FGs
of bed in bedroom.

4.3. Wall grid structure analysis

The WGS is used to learn the arrangement information from
the database, which incorporates design guidelines as well as
designers' experience. While the Gaussian Mixture Model can find
possible positions of models, it typically knows their types and
decides possible positions by fixing one model. Our WGS learns
the relationships between model categories and positions, making
it possible to both decide model categories by positions and find
positions by model categories. To establish the WGS, we select the
bottom left corner of the room as origin after rotating the entire
scene according to the front and up directions of the room model.
As shown in Fig. 7(b), each wall is divided into a set of grid cells.
The WGS is the set of grid cells divided on the wall, denoted as
WG¼ fwg1;wg2;…g. We use M, N, K to represent the resolutions of
the length, width and height of the room, respectively. The lager
the resolution is, the more precise the WGS is. In our implementa-
tion, we set M¼ 7, N¼ 5 and K ¼ 5 empirically by default. These

values can be adapted to the aspect ratio of the given room shapes.
3D cells are not used because many 3D cells in the center contain
models that are either supported or indirectly supported by walls
and models suspending in the air are rare in real world.

Arrangement analysis: We first find the supporting wall surfaces
w of an FG and project the center of the FG to w. We say an FG lies
in a wall grid cell wg if its projected center lies in wg. For each
wgAWG, we record the categories c of FGs that lie in it and their
corresponding occurrence times t. Thus, for each wg, we get a set
S¼ c1; t1ð Þ; c2; t2ð Þ⋯� �

. We calculate the probabilities P(wg) and
PðcjwgÞ using the following equations:

PðwgÞ ¼ ∑sAStðsÞ
∑wgAWG∑sAStðsÞ

; ð2Þ

PðcjwgÞ ¼ tðsjcÞ
∑sAStðsÞ

; ð3Þ

Pðc;wgÞ ¼ PðwgÞnPðcjwgÞ; ð4Þ
where t(s) is the occurrence number corresponding to an item
sAS, P(wg) is the probability of a wg occupied by FGs. Given a wg,
PðcjwgÞ is the probability an FG of category c lies in it. Pðc;wgÞ
denotes the probability an FG of category c lies in a wg, according
to which we decide our needed FGs.

Symmetry detection: The symmetry in our scene is detected in a
wall and between walls. As show in Fig. 7(c), the red lines are
symmetry axis for detecting the up and down, left and right
symmetry in vertical walls and on the floor. If two FGs are
geometrically the same and the grid cells in which they lie,
wg1;wg2, are symmetrical according to the symmetry axis, we
say that a symmetry pair in category c, located in wg1;wg2, is
detected. For example, the bonsai in Fig. 7(a) are detected to be

Fig. 7. (a) A conference room. (b) The WGS of (a). (c) The symmetry axis in WGS. Two bonsai in (a) are symmetric as labeled in red dots. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 8. Different ceiling light patterns.
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symmetric with respect to vertical symmetry axis on the floor. The
symmetry information between walls is detected between the left
and right, front and back walls. If two FGs are geometrically the
same and lie in symmetric grid cells in different walls, we say that
they are symmetric between walls. For example, the wall lamps on
the left and right wall are always symmetric.

Ceiling light pattern: The illumination of a room is highly related to
the number and arrangement of ceiling lights. We cannot directly
learn the arrangement information of ceiling lights in the same way
as what we do in arrangement analysis step. Because ceiling lights
are always placed in aesthetic ways, as shown in Fig. 8. Directly
placing ceiling lights by probabilities may produce disordered and
inaesthetic results. We do not choose to treat all ceiling lights as an
FG and place them as a whole part, because transformations of the
FG may damage the structure of individual ceiling lights. Thus,
learning the arrangement patterns of ceiling lights is needed. We
treat the arrangement of ceiling lights in a scene as a pattern
P ¼ fðFG1;wg1Þ; ðFG2;wg2Þ…g. Each ceiling light in the pattern is
represented by its corresponding FG and location wg. When placing
a ceiling light pattern, lights should be all placed in their correspond-
ing locations. If not, we will change to another pattern rather than
deforming the used one.

5. Synthesizing new scenes

In this section, we present an approach to generate a diverse
set of plausible and well-arranged indoor scenes using WGS. This
method can automatically analyze the available space in the room,
find FGs with the maximum probabilities and place them with
appropriate orientations and locations. We use the height of a
room as a reference to calculate the scaling factor. The scene
synthesis method consists of three sub-steps: room occupancy
detection, FGs arrangement and scene assessment.

5.1. Occupancy and overlapping detection

When users input an empty room including its structure, scene
type and front direction, our method automatically establishes its
corresponding WGS and calculates its occupancy information, as
shown in Fig. 9. Our WGS consists of 2nðMnNþMnKþNnKÞ grid
cells. Each grid cell has a state flag indicating whether this cell is
occupied or not. Fig. 9(a) is an empty input room and Fig. 9
(b) shows its occupancy information. Fig. 9(d) shows the updated
occupancy information of scenes with FGs placed. Note that the
occupancy information on both the floor and vertical wall is

updated if models are placed against wall such as the cabinets in
Fig. 9(c). The occupancy information is calculated by analyzing the
bounding boxes of FGs and its covering area.

Overlapping may happen between FGs. Some guidelines [11,12]
reveal that pathways and clearance around models are necessary
for function and accessibility purposes, e.g., cabinets need space in
front of them and dinning tables need space around them. Merrell
et al. [11] use an anthropometric constraints table to specify the
clearance of different models. In our method, we ensure that
enough clearance is set aside in the front faces of models against
walls and around the entire perimeter of models in the center. To
check the clearance constraints, we simply enlarge the bounding
box of FGs to cover the clearance and check overlapping based on
them. For FGs in the central part of walls, such as pictures, clocks
and desks, overlapping is checked based on grid cells it covers. For
FGs against walls, such as bookshelves, cabinets and beds, grid
cells on the floor and grid cells on the vertical wall which they put
against are considered. Only when no conflict exists in all covered
grids, we say that no overlapping is detected.

5.2. FGs arrangement

To furnish an interior scene, we consider the design process
that furniture objects with great importance have the priorities.
mFGs which appear in more than 80% of scenes in our databases
are placed first. Other supplemental FGs are added next. Finally,
the arrangement of illumination objects is considered according to
the layout of the scene. We achieve our goal through three steps:
seed scene generation, supplemental FG arrangement and ceiling
pattern arrangement.

Seed scene generation: Seed scenes correspond to scenes with
mFGs arranged as shown in Fig. 10(b). Some kinds of interior
scenes only have one mFG, such as bedrooms. Others may have
more than one, such as conference rooms. If more than one mFG
exist, we then generate seed scenes based on the number of mFGs.
For example, if there are M FGs of conference table and N FGs of
projector and screen, there will beMnN seed scenes. Some of them
might be removed according to the conflict test. The locations of
mFGs are determined by PðwgjcÞ which is derived from Eqs. (2) to
(4) using Bayes' rule and the orientations of mFGs are decided by
the rules used in the front direction extraction method. The scale
factor is calculated by the ratio of height between mFG and room
shape. If the mFG has back-against-wall property and is placed
near the wall, we automatically transform it to have its back
against wall.

Fig. 9. Red means the grid cell is occupied. (a) Input empty room structure. (b) The occupancy information of (a) is shown. (c) Room with some FGs placed is shown. (d) The
occupancy information of (c). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Supplemental FG arrangement: Supplemental FGs are added
after the placement of mFGs. The decision of supplemental FGs
is evaluated by Pðc;wgÞ. When placing FGs, we need to consider
the symmetry information detected. If wg1 and wg2 are symmetry
grid cells in category c and, a FG of category c is going to be placed
in wg1, then the same FG has to be also placed in wg2. In order to
lower the probabilities of chosen FGs, we decrease Pðc;wgÞ by a
decreasing factor α after the arrangement of an FG of category c in
wg. When no FG is added, an intermediate scene with supple-
mental FGs arranged is generated as shown in Fig. 10(c). For one
seed scene, it can generate lots of intermediate scenes with
different supplemental FGs.

Ceiling pattern arrangement: Ceiling lights which have a tight
relationship with the illumination of a room are decided based on
the layout of the room [1]. Inspired by Lam et al. [26], we use
point-wise mutual information (PMI) to characterize the relation-
ships between the number of ceiling lights and the number of
furniture:

PðCjnf Þ ¼ ∑
nAN

PMIðnc;nÞ
0:01þωnabsðnf �nÞ ð5Þ

where C is the ceiling pattern, nc is the number of lights in C, nf is
the furniture number and N is the set of furniture numbers related
to C. Given an intermediate scene, we find its most suitable ceiling
patterns by PðCjnf Þ and place it into the room (Fig. 10(d)).

Ceiling pattern is added immediately after the generation of an
intermediate scene. The generation step of a seed scene ends after
a repeat times T or a failure result generated. We reset the
probability Pðc;wgÞ in the beginning of the generation step of
another seed scene.

5.3. Scene assessment

Since our results are achieved by recombining FGs based on
Pðc;wgÞ, some results may not be pleasant. To assess the quality of
synthesized scenes, some basic requirements that a good scene
should meet are introduced:

� Functional requirements: A good synthesized scene should meet
the main functional requirements of its type. For example,
bedrooms should have beds and conference rooms should have
conference tables, chairs and displaying devices.

� Illumination requirements: Illumination equipments in an inter-
ior scene are related to windows and ceiling lights. Good
synthesized scenes should consider the overlapping problem
of windows, doors and the patterns of ceiling lights.

� Aesthetic requirements: Well-designed interior scenes share a
common point that they are in accordance with some aesthetic
standards. We consider three kinds of aesthetic requirements:
symmetry requirements, the richness of arranged furniture and
the degree of crowdedness. A good scene can neither be too
crowd nor too empty.

� Greening requirements: The greening condition which corre-
sponds to the arrangement of plants is another consideration in
interior design nowadays.

As our algorithm already considers mFGs and ceiling light
pattern arrangements in scene synthesis stage, our assessing
algorithm concentrates on aesthetic requirements and greening
requirements. Symmetry information is considered but not guar-
anteed in arrangement step. The richness of generated scenes,
which is considered by the number of categories of FGs in a scene
and the degree of crowdedness can be approximately calculated by
checking the states of grid cells. Greening condition is judged by
checking if there is an FG corresponding to plants in the results.
Ten penalty points are added if one condition is not matched.We
discard scenes with penalty scores above 20. This step guarantees
that our results meet the function, illumination, aesthetics and
greening requirements of interior design.

6. Results

6.1. Synthesis results

We evaluate the proposed framework with three kinds of
interior scenes: conference room, bedroom and living room. Our
database are directly downloaded from Google warehouse. Con-
ference room database consists of 52 scenes and 1111 models.
Bedroom database contains 45 scenes and 741 models. Living
room database has 48 scenes and 875 models. It takes about 7 min
per scene to do the segmentation, annotating and relationship
specifying using sketchup. Functional groups are extracted based
on the relationships automatically. The generated number of
interior scenes is decided by the input room shape, seed number,
repeat times T and scene assessment. For the input room structure
in Fig. 11(a) and the repeated times T set to 10, we get 198 new
scenes. For the input room structure in Fig. 11(d) and the repeated
times T set to 5, we get 154 new scenes. As the selection of models
has some kinds of randomness, the number of generated scenes
diverse each time. However, the larger the database and repeated
times T are, the more results will be generated.

Fig. 10. (a) The input empty room structure. (b) The result with mFGs placed is shown. (c) The result with supplemental FGs placed is shown. (d) The final result with ceiling
light pattern placed.
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Fig. 11 shows some selected results generated by our frame-
work. Fig. 11(a) shows the results of generated new conference
rooms from an empty room. The room has three windows
and a door. From the results, we can see that our method can
automatically generate interior scenes without violating the con-
straints of the input room and design guidelines. Besides, the
selection of ceiling light pattern corresponds to the numbers of
furniture used. Fig. 11(b) shows that our method can be

used to replenish a half-made room with models, which is very
useful for designers, who only have a general idea about their design.
Fig. 11(c) and (d) shows the results of bedroom and living room.

Users can also orientate the results by selecting their desired
FGs from generated results. As shown in Fig. 12, given the empty
room shape in the top left corner, our system automatically
generates a diverse set of results. Furniture objects that users
interested in are combined as an intermediate scene, shown in

Fig. 11. (a) Results of giving an empty conference room. (b) Results of giving a conference room with some pre-placed models. (c) Results of giving an empty living room.
(d) Results of giving an empty bedroom.
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the center. Our method can turn the intermediate result to a
functionally and aesthetically plausible interior scene, shown in
the bottom right corner. All furniture objects user preferred are
preserved and some more furniture which can replenish and

beautify the results are added, such as the screen, projector and
cabinet.

Fig. 14 shows the influence of windows and doors on room
layouts. Compared to Fig. 14(a) and (c), boards and cabinets are not

Fig. 12. Top left corner is the input room shape. The center is the intermediate scene generated by users' desired furniture. The bottom right corner is the synthesised scenes.
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Fig. 13. Unsatisfied results.

Fig. 14. Boards, pictures and cabinets are placed on and against the left wall in (a) and (c). They are not placed in (b) and (d) for the visibility of windows. TVs are placed on the back
wall in (e) and (g), cabinets and bonsai are placed in the bottom right corner. In (f) and (h), since the door is located to the middle of back wall, the TVs cannot be preserved anymore.
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placed in Fig. 14(b) and (d), because they damage the visibility of
windows. In Fig. 14(e) and (g), TVs are placed on the back wall.
However, since the door is enlarged and located to the middle of
back wall, the TVs cannot be preserved in Fig. 14(f) and (h). Fig. 15
shows the windows and doors of our results from another
viewpoint.

We also apply our method to house plans to generate a
complete design as shown in Fig. 16. By gradually applying our
method to different room space in the house plan, some designed
plans with living rooms, conference rooms and bedrooms well
furnished are synthesized.

Our framework might also generate unsatisfied results in some
cases. Fig. 13(left) shows the case that the selected mFGs are too
small, such that the result contains a lot vacant space. Fig. 13(right)
shows the case that same FGs (cabinets) appear too many times in
one room. Our method cannot filter out such cases. However, it
only happens in a very low possibility.

The style and quality of our generated results partially rely on
the database used for learning. If all scenes in the database are
modern with a very few furniture but a high percentage of useful
ones and a few purely aesthetic ones, many grid cells in the
learned WGS may be vacant. The generated results shall share the
same style with scenes in the database. Penalty scores need to be
modified to filter out crowded scenes.

6.2. User evaluation

To evaluate whether our system generates plausible scenes, we
ran a user study on the synthesized scenes of three types :
conference room, bedroom and living room. For each scene type,
we set T¼3 and randomly select 30 scenes from the synthesis
results. We then render images of all these scenes and 13
participants are asked to specify the plausibility of the scene on
a 5-point Likert scale [14] (1¼ implausible scene, 3¼somewhat
plausible scene, and 5¼very plausible scene).

Fig. 17 shows a summary of the ratings obtained. About 60%
scenes get the results of 4 and 5, and over 80% scenes are somewhat

Fig. 15. Another viewpoint shows the doors and windows of our results.

Fig. 16. Results of applying our method to a house plan. Our method generates the layouts of two bedrooms, one living room and one conference room in the house plan step
by step.

Fig. 17. User study on three types of generated scenes.
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plausible. The result suggests that on average, at least 80% of
synthesized scenes can give you some design ideas in the real world.

7. Conclusion

In this paper, we propose a novel framework for interior scene
synthesis from an empty room. The context-based front extraction
method introduced can automatically get a knowledge of the
orientations of models. Our newly introduced concept of WGS
can effectively analyze the arrangement and symmetry informa-
tion of models. We also present a few criteria to assess the quality
of generated scenes. Experimental results demonstrate that our
approach can synthesize well-arranged, functionally and aestheti-
cally plausible interior scenes given an empty room shape, with
few user intervention. The results are diverse and can provide
clients and designers with suggestions and inspirations.

There are several limitations to our current system. First, the
WGS is cuboid, which is intrinsic and not suitable for space in
complex shapes. We would like to try polyhedra cells which can
considerably change based on the room shape instead of rectangle
cells and explore a more general WGS shape for complex shape
rooms. Second, we only consider the type, fitness and symmetry
information when recombining new FGs. Adding “style semantic
information” can make the results more consistent. New scenes,
such as “antique style scene” or “modern style scene” can be
generated either. In our current implementation, we did not take
the relationships between neighboring FGs into account. We
would like to address this issue in the future. Applying WGS-
based synthesis method to large scale indoor scenes, such as coffee
shops or exhibition halls, would be a new challenge.
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