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We present a novel method for high-quality blue-noise sampling on mesh surfaces with prescribed cell-
sizes for the underlying tessellation (capacity constraint). Unlike the previous surface sampling approach
that only uses capacity constraints as a regularizer of the Centroidal Voronoi Tessellation (CVT) energy,
our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces.
Our approach is a generalization of the previous 2D blue noise sampling technique using an interleaving
optimization framework. We further extend this framework to handle multi-capacity constraints. We
compare our approach with several state-of-the-art methods and demonstrate that our results are
superior to previous work in terms of preserving the capacity constraints.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Sampling is an essential technique in computer graphics, and it
is a building block of various applications. One of the most
important sampling techniques generates the so-called blue-noise
patterns. The term “blue-noise” refers to any kind of noise with
minimal low frequency components and no concentrated spikes in
the power spectrum energy [1]. The quality of a blue noise sam-
pling can be evaluated by two one-dimensional functions that are
derived from the power spectrum analysis [2]. One is the radially
averaged power spectrum, and the second one is anisotropy. From a
geometric point of view, blue-noise sampling aims to generate
uniformly randomly distributed point sets in a given domain,
meanwhile, it requires both a certain regularity (equal spacing
between the samples) and randomness (there should be no
structure in the result).

Blue-noise sampling in the Euclidean domain has been exten-
sively studied [3] over the years. More recently, many approaches
focus on generating point sets on mesh surfaces with blue-noise
properties. Such sampling has many applications in practice, e.g.,
C. Dachsbacher.

ng),
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(P. Wonka).
rendering [4], solving some PDEs (e.g., water animation [5]),
stippling [6], and object distribution [7].

The classical way of generating blue-noise point sets are
Poisson-disk sampling and relaxation methods, e.g., Lloyd iteration
[8]. Although Poisson-disk sampling is fast and is able to generate
point sets with good blue-noise properties, it cannot explicitly
control the number of sampling points, which is important for
many applications. While Lloyd relaxation always results in more
regular patterns which reduces the blue-noise characteristics. This
iterative algorithm has to be terminated before reaching the local
minima to avoid regular patterns [9].

Balzer et al. [10] proposed a variant of the Lloyd iteration, called
capacity-constrained Voronoi tessellation (CCVT), where “capa-
city” means that the size of the cells of the power diagram of
weighted points should have the same size. However, the CCVT
method needs a discretization of the sampling domain and uses a
discrete optimizer to compute the final solution which is ineffi-
cient. Chen et al. [7] proposed CapCVT, which combines Centroidal
Voronoi Tessellation (CVT) and the capacity constrained Voronoi
tessellation to improve the efficiency of the CCVT algorithm.
However, the CapCVT is not able to enforce the exact capacity
constraints. More recently, de Goes et al. [11] proposed a practical
algorithm for blue noise sampling based on the theory proved by
Aurenhammer et al. [12], which could enforce exact capacity
constraints using an interleaving optimization framework that
iteratively optimizes the point positions and their associated
weights (more details are given in Section 3.2). In these works,
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Fig. 1. Results of multi-capacity constrained sampling. An earthen dragon and a ceramic Bunny. Both use 3k samples.

S. Zhang et al. / Computers & Graphics 55 (2016) 44–54 45
regularity of blue-noise is obtained by enforcing equal areas in
some tessellations yielded by the samples (capacity constraint)
and randomness is obtained by injecting some random Gaussian
noise or jittering sample positions. Such equal capacity tessella-
tions also have general interests in many research fields, such as
computational geometry [13] and architectural geometry [14].

In this paper, we propose a new method to enforce the capacity
constraint for sampling on 3D surfaces. The method is a general-
ization of Aurenhammer et al. algorithm [12] to 3D surfaces that
computes a power diagram with prescribed cell areas. Random-
ness is then obtained by using Gaussian noise, as in previous
approaches (e.g., [11]). We formulate the new objective function
on mesh surfaces, and provide rigorous mathematic proofs of the
gradient derivation. We demonstrate that our results exhibit the
best quality in terms of the capacity constraints among all the
state-of-the-art blue noise sampling techniques. Fig. 1 shows two
examples of our multi-capacity constrained sampling on surfaces.
The contributions of this paper include:

� A new approach for computing blue-noise sampling on mesh
surfaces under capacity constraints.

� A novel extension to handle multi-capacity constraints.
� The derivation of the gradient of the new formulation on mesh

surfaces.
2. Related work

We briefly review the previous work on blue-noise sampling
focusing on the approaches for surface sampling and their corre-
sponding 2D approaches. For more details, refer to recent survey
papers [3,15].

Surface Poisson-disk sampling: Inspired by the technique of
dart-throwing, Cline et al. [16] first propose to generate Poisson-
disk samples on surfaces by utilizing a hierarchical data structure.
Corsini et al. [17] present a new constrained Poisson-disk sampling
method, which carefully selects samples from a dense point set
pre-generated by Monte-Carlo sampling. The work of Bowers et al.
[18] proposes a parallel dart throwing algorithm for sampling
arbitrary surfaces. Geng et al. [19] generate approximate Poisson
disk distributions directly on surfaces based on the tensor voting
method. Ying et al. [20] propose another GPU-based approach by
using the geodesic distance as a metric. Then they further improve
the maximal property of the Poisson disk sampling in a parallel
manner [21]. Peyrot et al. [22] propose a feature sensitive dart-
throwing method with more focus on the complex shapes and
sharp features. Medeiros et al. [6] propose a hierarchical Poisson-
disk sampling algorithm on polygonal models, which is used for
surface stippling and non-photo realistic rendering. Yan and
Wonka [23] propose a gap analysis framework to achieve Maximal
Poisson-disk Sampling (MPS) on surfaces, and they also generalize
MPS to adaptive sampling. Based on this, Guo et al. [24] use a
subdivided mesh, instead of the common uniform 3D grid, to
improve both the sampling quality and the efficiency.

Relaxation sampling: Relaxation methods iteratively reposition
the samples in a random point set, where the most used optimi-
zation technique is Lloyd relaxation [8]. Fu and Zhou [25] extend
the 2D dart-throwing approach of [26] to surfaces sampling, and
then the Lloyd relaxation is applied for high quality remeshing.
Yan et al. [27,28,48] present efficient algorithms to compute the
CVT for isotropic surface sampling and remeshing. However, CVT
tends to generate point distributions with regular patterns that
lack some blue-noise properties. Xu et al. [29] generalize the
concept of CCVT [10] to surfaces, which generates point sets
exhibiting blue-noise properties. To improve the performance of
CCVT, Chen et al. [7] combine CCVT with the CVT framework for
blue-noise surface sampling. de Goes et al. [11] generate the blue-
noise point sets using optimal transport. Apart from Lloyd-based
methods, there are some other iterative approaches on surfaces.
Chen et al. [4] introduce bilateral blue-noise sampling which
integrates the non-spatial features/properties into the sample
distance measures. Yan et al. [30] use the Farthest Point Optimi-
zation (FPO) [31] to generate point sets with high quality of blue-
noise properties while avoiding regular structures.
3. Problem statement

In this section, we first give the definitions of the power dia-
gram and the restricted power diagram on surfaces, and the main
theory that connects the power diagram and the capacity con-
straint. Then, we generalize the formulation of 2D capacity con-
strained blue-noise sampling to mesh surfaces. Finally, we propose
a novel extension for multi-capacity constrained sampling.
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3.1. Definitions

Power diagram: A power diagram [32] tessellates the Eucli-
dean space Ω into a set of convex polytopes (e.g., polygons in 2D
and polyhedra in 3D), by a set of n weighted points fxi;wig,
where each xiARn, called site, is associated with a scalar value
wi called weight of site xi. Each polytope (or power cell) Vi of xi

contains the points that have smaller weighted distance to the
site xi than to others:

Vi ¼ fxAΩ∣dwðxi; xÞodwðxj; xÞ; 8 ja ig:

To compute the weighted distance dwðxi; xÞ, we adopt the
power product dwðxi; xÞ ¼ Jxi�xJ2�wi, here J � J denotes the
Euclidean norm.

Then the dual of the power diagram is called the regular tri-
angulation. Fig. 2 shows an example of the power diagram and
regular triangulation in a 2D square. Note that when the weights
of all the sites are the same, then the power diagram is equivalent
to the Voronoi diagram.

Restricted power diagram: If the input domain is a 3D surface S,
and the set of the weighted points are sampled on S, the inter-
section between the power diagram and the surface S is called the
restricted power diagram (RPD), each intersected cell Vij S is called
a restricted power cell on S, defined as

Vij S ¼ fxAS∣Πðxi;wi; x;0ÞoΠðxj;wj; x;0Þ; 8 ja ig:

The dual structure is called restricted regular triangulation (RRT) on
surfaces. Fig. 3 illustrates the concept of RPD and RRT on a sphere.
Fig. 2. Illustration of the power diagram (left) and the regular triangulation (right)
in 2D. The positive weights are shown in red and negative weights are shown in
blue. The radius of each point xi equals to

ffiffiffiffiffiffiffiffiffiffijwi j
p

. (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 3. Illustration of the RPD and RRT on a sphere. The restricted power cells
corresponding to each point are shown in random color. The boundary of RPC Vij S
is marked with white color. A triangle in the input mesh (highlighted in yellow) is
split into convex polygons and assigned to its incident cells. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
Optimal transport: The relation between the power diagram
and the capacity constraint has been proven by Aurenhammer
et al. [12]: Given a point set x¼ fxig and a set of corresponding
positive numbers fmig, and a probability measure μ such thatP

mi ¼
R
dμ, it is possible to find the weights wi of a power dia-

gram such that μðViÞ ¼mi and the optimal weights are obtained as
the maximum of a concave function.

Note that Aurenhammer, Hoffman and Aranov make the
remark that the map defined by 8xAVi; TðxÞ ¼ xi is an optimal
transport map with respect to the L2 cost. The equivalence can be
also directly shown using Brenier's polar factorization theorem
[33]. The proof of convergence and an implementation based on
[12] is given by Mérigot [34]. A similar algorithm was proposed by
Gu et al. [35] recently. This remark has been used in several works
in optimal transport [11,36–39]. We refer the readers to the text-
book [40] for more details on this topic.

3.2. Formulation on surfaces

In our setting, the goal is to compute a point set x¼ fxig on a
given 3D surface that fulfills the capacity constraint, i.e., for each
point xi, we want to constrain the (weighted) area of the restricted
power cell associated with xi.

Our target is to minimize the following objective function
subject to the equal capacity constraints on surfaces, i.e.,

EðX;WÞ ¼
Xn
i ¼ 1

Z
Vi j S

ρðxÞJx�xi J2 dx

s:t: mi ¼
Z
Vi j S

ρðxÞ dσ ¼m¼mγ

n
; ð1Þ

where mγ ¼
R
SρðxÞ dσ is a given constant. This optimization pro-

blem is usually solved by introducing Lagrange multipliers
Λ¼ fλigni ¼ 1, and the objective function becomes

Minimize EðX;WÞþ
Xn
i ¼ 1

λiðmi�mÞ ð2Þ

with respect to xi;wi; λi. However, since additional n variables λi
add complexity to the optimization problem, it can be reformu-
lated into a simple scalar function [11]:

F ðX;WÞ ¼ EðX;WÞ�
Xn
i ¼ 1

wiðmi�mÞ; ð3Þ

with respect to xi;wi. By our appendix and [11], the optimization
of (2) is equivalent to finding a stationary point of (3).

Note that the difference between our formulation and [11] is
that we use the restricted power diagram on surfaces instead of
the ordinary power diagram. We derive the gradient on surfaces
for variables X and W. We were surprised to find that the surface
and Euclidean gradient forms are similar. The gradients of the
energy F ðX;WÞ are
∇wiF ðX;WÞ ¼m�mi;

∇xiF ðX;WÞ ¼ 2miðxi�biÞ:

where bi ¼ 1
mi

R
Vi j S

xρðxÞ dx is the corresponding weighted bar-
ycenter. However, the derivation on surfaces is more involved.
Similar to [11], the objective function F is a concave maximization
problem when x is fixed, and it can be considered as a mini-
mization problem of the centroidal power diagram when W is
fixed. The formal proof and derivations are given in Appendix B.
Note that an alternative elegant proof was independently derived
by Bruno Lévy in a recent paper [39].
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3.3. Multi-capacity extension

The formulation discussed above considers only a single capa-
city value. In this paper, we further extend the sampling problem
to multiple capacity constraints. Given a ratio θi for xi, the custo-
mized capacity can be given as mc

i ¼ θim. In order to keep the total
capacity requirement, we require

Pn
i ¼ 1 m

c
i ¼mγ . Thus the new

energy can be written as

F cðX;WÞ ¼ EðX;WÞ�
Xn
i ¼ 1

wiðmi�mc
i Þ:

The gradient w.r.t. wi is changed to be

∇wiF cðX;WÞ ¼mc
i �mi;

and the gradient ∇xiF cðX;WÞ remains unchanged.
4. Implementation details

The input of our algorithm is a triangular mesh surface S, and
the number of desired sampling points n. A density function ρðxÞ
is defined on mesh vertices and piecewise linearly interpolated
over the triangles. In our implementation, we use the local
feature size introduced in [41] as the density function, i.e.,
lfs2ðxÞ. But other density can also be used. There are three main
steps in our framework, i.e., initialization and interleaving
weight/vertex optimization. Fig. 4 shows the main steps of our
pipeline.

4.1. Initial sampling

The sampling points X are initialized randomly according to the
density function. The initial power weights W are initialized to be
0. Before starting into optimization, we perform 3–5 steps of Lloyd
iteration to get a better initial distribution. Otherwise, the opti-
mization might get stuck in undesirable local minima quickly and
it becomes difficult to find optimal weights. In the case of multi-
capacity sampling, we initialize each type of capacity separately to
ensure a better distribution. Fig. 4(a) shows the initialization result
on a sphere model.

4.2. Weight optimization

Before starting the weight optimization, all weights are reset to
0. Weight optimization makes every sampling point share a
common capacity as much as possible when the positions of
Fig. 4. The main steps of our algorithm. The top row shows the restricted power diagra
respect to the prescribed capacities Jmi�mJ2. The colder color means small error and th
(for better visualization), (b) after weight optimization, (c) after vertex optimization, and
the reader is referred to the web version of this paper.)
sampling points remain fixed. The Hessian matrix w.r.t. weight HF
¼∇2

wF ðX;WÞ can be explicitly derived as (see Theorem 6 in
Appendix)

½HF �ij ¼
ρ ij

2

X
lAT ij

j enij \ τl j
jeij j τl

;

½HF �ii ¼
X
jAΩi

½HF �ij;

where jeij j τ is the length of projection of eij onto the triangular
plane τ, T ij is the index set of the triangles in the mesh that
intersect with the bisecting plane enij, and ρij is the average value of
ρ over enij \ T . Newton iterations are used to optimize weights.
Note that the Hessian on surfaces is different from the 2D case, the
edges of the restricted power diagram are not a single segment but
a set of connected segments.

The derivation of the multi-capacity sampling is similar. The
only difference is that the righthand side of the linear system is
changed to be ∇wiF cðX;WÞ instead of ∇wiF ðX;WÞ.

During the iterations, the step size is adapted by a line
search with Armijo condition [42]. The weight optimization
stops when the threshold is met. The threshold for weight

optimization is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 ð∇wiF ðX;WÞÞ2
q

rα1
n m

θ1
γ , where

α1 is a scaling coefficient accounting for the number of sam-
pling points and the density function (α1 ¼ 0:1, θ1 ¼ 1:0 in our
experiments). Typically, 5–7 iterations can reduce the δ0w within
the threshold.

4.3. Vertex optimization

Vertex optimization, which reduces the objective function F
when the weight remains unchanged, can be seen as the process
of finding a “centroidal power diagram” of the weighed sampling
points, which could be achieved by using either Lloyd iteration [8]
or quasi-Newton solvers [43].

During the optimization, the positions of the sampling points
will be updated to their weighted barycenters, and then projecting
bi to the input mesh S if Lloyd iteration is used. Otherwise, if a
quasi-Newton solver is used, the gradient ∇xiF ðX;WÞ should be
constrained within the tangent plane of xi, i.e.,

∇xi j SF ðX;WÞ ¼∇xiF ðX;WÞ�½∇xiF ðX;WÞ � NðxiÞ�NðxiÞ:
After each step of update, the vertices are then projected back to
the input surface. Optimizing vertices only reduces the energy
F ðX;WÞ, but might increase of capacity variance (see Fig. 6 in
Section 5). Typically after 3–5 iterations, the requirement of the
m of each step and the bottom row shows the corresponding quadratic errors with
e warmer color means high error. (a) Initial sampling after 3 steps of Lloyd iteration
(d) final result. (For interpretation of the references to color in this figure caption,
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threshold will be satisfied. We set the condition for vertex opti-

mization to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 J∇xiF ðX;WÞJ2
q

rα2
n m

θ2
γ (α2 ¼ 0:1, θ2 ¼ 1:2 in

our experiments).

4.4. Randomness improvement

Our optimization framework has the same shortcoming as
most relaxation methods, i.e., the restricted power cells form a
regular hexagonal pattern after optimization. To overcome this
problem, Gaussian noise is used to add randomness in such
regions to break regular patterns.

It is worth to point out that the local regular patterns of the
point distributions are detected and are broken up in a way that
is similar to [11]: we first measure the regularity for every point,
and then disturb the point and its one-ring neighbors in the
regular regions. The main difference of our implementation is
that the disturbances occur in the corresponding containing
triangles on the surface instead of resampling randomly. Our
procedure ensures that the perturbed points still lie on the
mesh.

Algorithm 1. Optimization algorithm.
1
2
3

4

5
6
7
8
9

10
11
12
13
14
15
16
17
Initialize sampling point set X with n points;

Run 3–5 times Lloyd iterations;

Compute the threshold for weight optimization

δw ¼ α1

n
mθ1

γ ;
Fig. 5. Uniform (top) and adaptive (bottom) sampling on the Pegaso model. The
Compute the threshold for vertex optimization

δx ¼
α2

n
mθ2

γ ;

number of sampling points is 10K in both tests. Left: sampled points, middle:
quadratic error with respect to the prescribed capacities, and right: restricted
repeat�

power diagram. Different colors indicate different valences of each vertex in the
dual restricted regular triangulation. Light green is valence 6 (v6), orange is v7, blue
is v5, dark blue is v4 and brown is v7. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
Set all power weights to be 0;
Call WEIGHT � OPTIMIZATION;
Optimize vertices and update RVD;

Compute δ0x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 J∇xiF ðX;WÞJ2
q

;

����������

until (δ0xrδx);

Call WEIGHT-OPTIMIZATION;

Randomness improvement;

Function WEIGHT-OPTIMIZATION

repeat

Solve the concave problem of weight optimization;
Update power weights and RVD;

Compute δ0w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 ð∇wiF ðX;WÞÞ2
q

;

��������

(δ0wrδw);
Fig. 6. Illustration of the convergence of the capacity variance against the number
of iterations. Each peak corresponds to a switch from the weight optimization to
vertex position optimization.
18

5. Experimental results

In this section, we demonstrate some results of the proposed
method and compare our approach with several state-of-the-art
surface sampling algorithms in various aspects. In our imple-
mentation, we use CGAL [44] for computing the 3D regular tri-
angulation. We use the implementation of [27] for RPD compu-
tation. Note that more recently, Bruno Lévy has released a new
open-source package, called Geogram [45], which contains an
improved version of the RVD computation library. Our experi-
ments are conducted on a PC with i5-2320, 3.00 GHz CPU, 16GB
memory and a 64-bit Ubuntu operating system.

Performance analysis: Our framework is able to generate a high
quality blue-noise point set efficiently. We test our method on a
complicated Pegaso model as shown in Fig. 5. The convergence
behavior of the optimization procedure run on the Pegaso model is
shown in Fig. 6. In our implementation, we set the number of
iterations of weight optimization and vertex optimization to 10
and 20 times, respectively. The optimization usually converges
after 3–5 iterations. The total running times are 89.2 and 182.5 s
for uniform and adaptive sampling, respectively. More results are
shown in Fig. 7.

Fig. 8 compares the timing statistics of different approaches.
The time cost of CVT and CapCVT is evaluated by applying 100 L-
BFGS iterations. Since MPS does not need iterative optimization, it
is the most efficient approach compared to the other methods,
while FPO is the most time consuming since it optimizes each
individual point once during each step of iteration. From this
comparison, we can see that the performance of our method is



Fig. 7. More sampling results. From top to bottom: uniform sampling of Venus and Elk, and adaptive sampling of Omotondo and Dragon. We use 10K samples for all the models.
The time costs are 92.34 s, 94.07 s, 123.23 s, and 125.45 s, respectively. From left to right: sampled points and their corresponding RPDs; color-coded RPDs, where the color indicates
different valences of each vertex in the dual restricted regular triangulation; quadratic error with respect to the prescribed capacities; and the power spectrum, the radial power and
the normal anisotropy. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 8. Comparison of the time cost of different methods using the Genus3 model.
Left: uniform sampling. Right: adaptive sampling.
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comparative to the other optimization-based approaches, while
we can generate results with minimum capacity variances.

Randomness improvement: We further analyze the effect of the
Gaussian noise introduced in Section 4.4 for randomness
improvement. We show two examples in Figs. 9 and 10 for both
uniform and adaptive sampling, respectively. In each example, we
first run our interleaving optimization framework until con-
vergence. As we can see in the left column, both results contain
many hexagonal cells. Then we apply Gaussian noise to break the
regular patterns and run the optimization again. The right column
in each figure shows the final results with more irregular patterns
while keeping small capacity variances. In the first example, the
percentage of valence-6 points is reduced from 80.55% to 54.95%
after adding Gaussian noise. In the second example, the percen-
tage of valence-6 points is reduced from 75.51% to 50.53% after
adding Gaussian noise.

Evaluation and comparison: We then evaluate our results in
terms of sampling irregularity, quadratic error with respect to the
prescribed capacities and the spectral property. The last column of
Figs. 11 and 12 demonstrates the visual qualities of these criteria of



Fig. 9. Randomness improvement of the uniform sampling on the Sphere model. Left: results without adding Gaussian noise; right: results of adding Gaussian noise and
further optimization.

Fig. 10. Randomness improvement of the adaptive sampling on the Botijo model. Left: results without adding Gaussian noise; right: results of adding Gaussian noise and
further optimization.

Fig. 11. Comparison of the uniform sampling results. From left to right: results of MPS, FPO, CVT, CapCVT and ours. The top row shows the sampling results of each method.
The second row shows the restricted Power diagram of the sampling points. The third row shows quadratic errors with respect to the prescribed capacities. The colors from
blue to red indicate the errors from low to high. The fourth row is the power spectrum of the differential domain analysis [46] and the last row shows the radial power and
the normal anisotropy of each method. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 12. Comparison of the adaptive sampling results.
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uniform sampling and adaptive sampling, respectively. It is easy to
see that our results present high irregularity and low capacity
variation, as well as good blue-noise property.

Next, we compare the above criteria with several state-of-the-
art techniques in Figs. 11 and 12, including maximal Poisson-disk
sampling (MPS) [23], farthest point optimization (FPO) [30], cen-
toridal Voronoi tessellation (CVT) [27] and capacity-constrained
centroidal Voronoi tessellation (CapCVT) [7]. To make a precise
comparison, we use the same density function ρðxÞ ¼ 1=lfs2ðxÞ for
all methods. The results of CVT and CapCVT are generated after 100
LBFGS iterations. The balance coefficient λ used in CapCVT is set to
50 to enforce better capacity constraints. Usually MPS has the
maximal variance, and FPO and CVT also have large values since
these methods do not have explicit control of the capacity con-
straints. CapCVT is better since it tends to equalize the capacity
values using a penalty term in addition to CVT energy, which
controls the regularity of the point distribution. Our result exhibits
the lowest capacity variance among all the methods thanks to the
exact capacity formulation.

Fig. 13 compares the capacity variances against the increasing
number of points for all approaches. The relative capacity variance

is computed as 1
mγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i ¼ 1 ðmi�mÞ2

q
. We use the logarithmic



Fig. 14. Spectral analysis of examples of feature preserving (top) and multi-capacity
sampling (bottom). The feature curves of the joint model are shown in green. Left:
results of RPDs; middle: quadratic error with respect to the prescribed capacities;
and right results of spectral analysis. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)

Fig. 13. Comparison of the capacity variance against the increasing number of
sample points. Left: uniform sampling. Right: adaptive sampling.
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coordinates for better visualization. From this figure, we can see
that capacity variances converge when increasing the number of
sampling points for all sampling methods. The magnitude of our
method is several orders smaller than other approaches.

Feature preserving: Our framework is able to handle sharp
features easily. We assume that the sharp features are given as
input. During the optimization, the points whose restricted power
cells are clipped with feature curves are project back to the feature
skeletons. Fig. 14 shows an example of feature preserving sampling
and its spectral analysis. This simple extension does not spoil the
blue-noise property.

Multi-capacity constraints: Two examples of multi-capacity con-
straints are shown in Fig. 1. Fig. 14 shows the quadratic error with
respect to the prescribed capacities and the spectral analysis results
of a two-capacity example on a sphere model. This new extension
keeps the variances small and maintains high blue-noise quality.

Limitations: One limitation of our algorithm is that we cannot
guarantee the maximal sampling property as [23]. Gaps can be
detected if we draw a sphere at each vertex using the shortest
edge length as radius in uniform sampling case and using the
shortest incident edge length as radius in adaptive sampling case.
Although our algorithm works well in practice, the connection
between the capacity constraint and the blue-noise property is
still not well explained. We would like to address these issues as
future works.
6. Conclusions

We present a new method for blue noise sampling on mesh
surfaces under exact capacity constraints. The problem is for-
mulated as an optimization problem on mesh surfaces. A closed-
form formula for gradient computation on surfaces has been
derived and it has been proved that the gradient of the new for-
mulation coincide with its Euclidean counterpart, thus can be
minimized efficiently using modern solvers. We also extend the
presented sampling framework to handle multi-capacity con-
straints. We make a complete comparison of various criteria
between the state-of-the-art surface sampling approaches, and we
show that our results perform better than others when preserving
capacity constraints. In the future, we would like to investigate
more properties of this sampling framework, and apply it for more
applications, such as remeshing.
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Appendix A. Reynolds transport theorem

Let ΩðtÞ be a 3D domain changing continuously with respect to
time t, with boundary ∂ΩðtÞ. Let f ¼ fðx; tÞ be a smooth function with
respect to xAΩðtÞ and t. Denote by nðx; tÞ the outwards pointing
normal vector at the boundary point x at time t, and vb(x; t) the
changing velocity vector at the boundary point x. Then the derivation
of the function f with respect to time t is in the following form:

d
dt

Z
ΩðtÞ

f dV ¼
Z
ΩðtÞ

∂f
∂t

dVþ
Z
∂ΩðtÞ

ðvb � nÞf dA;

where dV and dA are volume and surface elements at x [47].
Appendix B. Gradient derivation on surfaces

In this appendix, we derive the gradient ∇wi and ∇xi of the
objective function. We assume that when applying a sufficiently
small perturbation to the weight wi or the location of xi, only the
shapes of the Voronoi regions fVj j jAΩig will change.

We denote by eij the edge connecting the sites xi and xj, enij the
bisecting plane of the weighted sites xi and xj, j � j the length of an
edge, j eij j τ the length of the projection of eij onto the triangle τ, T ij

the index set of the triangles in the mesh that intersect with the
Voronoi face enij, and ρ ij the average value of ρ over enij \ S.

Let mi ¼
R
Vi j S

ρðxÞ dσ. Since for a fixed domain, the partition of
the density function ρðxÞ into cells Vij S sums up to a constant, i.e.,X
i

mi ¼mγ ; ðB:1Þ

we take derivative of (B.1) w.r.t. wi and xi:

∇wimiþ
X
jAΩi

∇wimj ¼ 0

∇ximiþ
X
jAΩi

∇ximj ¼ 0 ðB:2Þ



Fig. B1. Illustration of the notations of restricted power diagram. A triangle of input
mesh is denoted as τ. The intersection of the triangle with a bisecting plane of two
neighboring cells i; j is shown in white.

1 A slight difference here is that xi is now a vector. Taking the derivative of any
vector f ¼ ðf 1; f 2 ; f 3Þ w.r.t. xi ¼ ðxi1; xi2 ; xi3Þ gives a matrix, i.e., ∇xi f ¼ ðf jkÞ3�3, whose
element f jk ¼∇xik f j . Correspondingly, the vector dot-product in (B.5) now becomes
the matrix production.
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Fig. B1 illustrates the notations of the RVD used in the following
proof.

Lemma 1.

∇wimj ¼ �ρij

2

X
lAT ij

jenij \ τl j
jeij j τl

:

Proof. By Reynolds' theorem, noticing that ρðxÞ is independent of
ðxi;wiÞ, we have

∇wimj ¼
X
kAΩj

X
lAT jk

Z
en
jk
\τl
ρðxÞvwi � b ds¼ �

X
lAT ji

Z
enij⋂τl

ρðxÞvwi � b ds;

ðB:3Þ
where Ωj is the index set of the cells that are adjacent with Vjj S,
vwi ¼∇wix for those intersection points x of the bisecting plane enjk
and a mesh triangular τl (with normal nτl and a vertex pτl ), b is the
outpointing normal at the boundary points.

Now we formulate vwi by writing out the explicit representa-
tion of the intersection point x:

ðxj�xiÞ � ðx�cijÞ ¼ 0

ðx�pτl Þ � nτl ¼ 0; ðB:4Þ

where

cij ¼ xiþ
dij
jeij j

ðxj�xiÞ; dij ¼
jeij j 2þwi�wj

2jeij j

Taking the derivative ∇wi of (B.4) yields

∇wix � ðxj�xiÞ ¼ 1
2

∇wix � nτl ¼ 0 ðB:5Þ

Noticing that the unit normal b is given by

b¼ ðxj�xiÞ�ððxj�xiÞ � nτl Þnτl
J ðxj�xiÞ�ððxj�xiÞ � nτl Þnτl J

ðB:6Þ

Hence

∇wix � b¼ 1
2J ðxj�xiÞ�ððxj�xiÞ � nτl Þnτl J

¼ 1
2jeij j τl

: ðB:7Þ

Substituting (B.7) back to (B.3) gives

∇wimj ¼ �
X
lAT ij

1
2j eij j τl

Z
enij \τl

ρðxÞ ds¼ �ρ ij

2

X
lAT ij

jenij \ τl j
jeij j τl

:□ ðB:8Þ

Lemma 2.

∇ximj ¼
X
lAT ij

�R
enij \τl

ρðxÞx ds

jenij j τl
�

X
lAT ij

jenij \ τl j
jenij j τl

ρ ijmij; ðB:9Þ

where

mij ¼ �xiþ 1� 2dij
jeij j

� �
ðxj�xiÞ:
Proof. The derivation is similar to1 the previous proof, hence we
directly write out

∇ximj ¼
X
lAT ij

Z
enji \τl

ρðxÞbvxi ds¼ �
X
lAT ij

Z
enij \τl

ρðxÞbvxi ds; ðB:10Þ

where vxi now represents ∇xix for those boundary point x. The
formulation of these boundary point x has already been provided
by Eq. (B.4). So we now take the derivative for (B.4):

ðxj�xiÞ∇xix¼ ðx�xiÞþ 1� 2dij
jeij j

� �
ðxj�xiÞ

nτl∇xix¼ 0: ðB:11Þ

The outpoint normal b still preserves the representation in (B.6).
Hence

b∇xix¼
ðx�xiÞþ 1� 2dij

jeij j

� �
ðxj�xiÞ

jenij j τl
: ðB:12Þ

Substituting (B.12) back to (B.10) gives

∇ximj ¼
X
lAT ij

�R
enij \τl

ρðxÞx ds�mij
R
enij \τl

ρðxÞ ds
jenij j τl

¼
X
lAT ij

�R
enij \τl

ρðxÞx ds

jenij j τl
�

X
lAT ij

jenij \ τl j
jenij j τ

ρijmij; ðB:13Þ

where

mij ¼ �xiþ 1� 2dij
jeij j

� �
ðxj�xiÞ:□

B.1. Total cost change rate

The total cost is defined by

EðX;WÞ ¼
X
i

Z
Vi j S

ρðxÞJx�xi J2 dx ðB:14Þ

Theorem 3.

∇xiE ¼ 2miðxi�biÞþ
X
jAΩi

ðwj�wiÞ∇ximj; ðB:15Þ

where

bi ¼
R
Vi j S

xρðxÞ dx
mi

:

Proof. By (B.12) and (B.13),

∇xiE ¼
Z
Vi j S

∇xi ðρðxÞJx�xi J2Þ dxþ
X

jA i[Ωi

Z
∂Vj j S

ρðxÞJx�xi J2ð∇xix � bÞ ds
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¼ 2miðxi�biÞþ
X
jAΩi

ðwj�wiÞ∇ximj□ ðB:16Þ

Theorem 4.

∇wiE ¼
X
jAΩi

ðwj�wiÞ∇wimj; ðB:17Þ

Proof. The proof is similar to the above using Lemma 1.□

B.2. New functional

We use the new energy functional

F ðX;WÞ ¼ EðX;WÞ�
X
i

wiðmi�mÞ

Theorem 5.
∇wiF ðX;WÞ ¼m�mi

∇xiF ðX;WÞ ¼ 2miðxi�biÞ ðB:18Þ
Proof. By Theorem 4 and by Eq. (B.2), we have

∇wiF ðX;WÞ ¼∇wiEðX;WÞ�ðmi�mÞ�
X
jAΩi

ðwj�wiÞ∇wimj ¼m�mi:

ðB:19Þ
By Theorem 3 and by Eq. (B.2), we have

∇xiF ðX;WÞ ¼∇xiEðX;WÞ�
X
jAΩi

ðwj�wiÞ∇ximj ¼ 2miðxi�biÞ ðB:20Þ

By (2), Lemma 1 and Theorem 5 we directly have

Theorem 6.

½HF �ij ¼
ρij

2

X
lAT ij

jenij \ τl j
jeij j τl

½HF �ii ¼
X
jAΩi

½HF �ij: ðB:21Þ
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