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Abstract

We study minimal graphic functions on complete Riemannian manifolds Σ with
non-negative Ricci curvature, Euclidean volume growth and quadratic curvature
decay. We derive global bounds for the gradients for minimal graphic functions
of linear growth only on one side. Then we can obtain a Liouville type theorem
with such growth via splitting for tangent cones of Σ at infinity. When, in con-
trast, we do not impose any growth restrictions for minimal graphic functions,
we also obtain a Liouville type theorem under a certain non-radial Ricci curva-
ture decay condition on Σ. In particular, the borderline for the Ricci curvature
decay is sharp by our example in the last section.

c© 2000 Wiley Periodicals, Inc.

1 Introduction

The minimal surface equation on a Euclidean space,

(1.1) div

(
Du√

1+ |Du|2

)
= 0

has been investigated extensively by many mathematicians. Let us recall some fa-
mous results that constitute a background for our present work. In 1961, J. Moser
[37] derived Harnack inequalities for uniformly elliptic equations that imply weak
Bernstein results for minimal graphs in any dimension. In 1969, Bombieri-De
Giorgi-Miranda [4] showed interior gradient estimates for solutions to the min-
imal surface equation (see also the exposition in chapter 16 of [26]); the two-
dimensional case had already been obtained by Finn [22] in 1954.
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In this paper, we study the non-linear partial differential equation describing
minimal graphs over complete Riemannian manifolds of non-negative Ricci curva-
ture. Formally, the equation for a minimal graph over a Riemannian manifold Σ is
the same as for Euclidean space,

(1.2) divΣ

(
Du√

1+ |Du|2

)
= 0,

where the divergence operator and the norm now are defined in terms of the Rie-
mannian metric of Σ.

The geometric content of (1.2) is that a solution u is the height function in the
product manifold N = Σ×R of a minimal graph M in N. We therefore call a
solution to (1.2) a a minimal graphic function.

Of course, the Riemannian equation (1.2) is more difficult than its Euclidean
version (1.1). In order to obtain strong results, one needs to restrict the class of
underlying Riemannian manifolds. The linear analogue, the equation for harmonic
functions on Riemannian manifolds, suggests that non-negative Ricci curvature
should be a good geometric condition. In fact, harmonic functions on complete
manifolds with non-negative Ricci curvature have been very successfully studied
by S. T. Yau [44], Colding-Minicozzi [18], P. Li [32] and many others. Our problem
can be considered as a non-linear generalization of harmonic functions on complete
manifolds with non-negative Ricci curvature.

More precisely, we consider complete non-compact n−dimensional Riemann-
ian manifolds Σ satisfying the three conditions:
C1) Non-negative Ricci curvature;
C2) Euclidean volume growth;
C3) Quadratic decay of the curvature tensor.

Fischer-Colbrie and Schoen [23] studied stable minimal surfaces in 3-dimensional
manifolds with nonnegative scalar curvature, and showed their rigidity. In our com-
panion paper [21], we study minimal hypersurfaces in Σ and obtain existence and
non-existence results for area-minimizing hypersurfaces in such an Σ. Here, we
restrict the dimension n + 1 ≥ 4 for ambient product manifolds and investigate
minimal graphs from the PDE point of view.

Cheeger and Colding [10, 11, 12] studied the structure of pointed Gromov-
Hausdorff limits of sequences {Mn

i , pi)} of complete connected Riemannian mani-
folds with RicMn

i
≥−(n−1). They showed that the singular set S of such a space

has dimension no bigger than n− 2. Subsequently, Cheeger-Colding-Tian [14]
showed the stronger statement that S has dimension no bigger than n− 4 under
some additional assumption. We should point out that conditions C1) –C3) still
permit some nasty behavior of the manifold Σ. For instance, as G. Perelman point-
ed out, the tangent cones at infinity need not be unique. Our conditions C2) and
C3) also have appeared in the investigation of the uniqueness of tangent cones at
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infinity for Ricci flat manifolds by Cheeger and Tian [15]. This theory has recently
been further developed by Colding and Minicozzi [19].

In the last decade, minimal graphs in product manifolds received considerable
attention. Concerning gradient estimates, J. Spruck [42] obtained interior gradient
estimates via the maximum principle. He went on to apply them to the Dirichlet
problem for constant mean curvature graphs. Recently, Rosenberg-Schulze-Spruck
[39] obtained a new gradient estimate and then showed that there is no trivial posi-
tive entire minimal graph over any manifold with nonnegative Ricci curvature and
curvature bounded below.

For a complete manifold Σ with conditions C1), C2) and C3) we obtain the
gradient estimates for minimal graphic functions by integral methods, see Theo-
rem 3.3. Such results in Euclidean space were given by [4], [5]. Our results and
methods are different from those in [42].

Let us now describe our results in more precise PDE terms. Theorem 3.3 en-
ables us to obtain global bounds for gradients when the growth for the minimal
graphic functions is linearly constrained only on one side. So linear growth is e-
quivalent to linear growth on one side for minimal graphic functions. Since the
Sobolev inequality and the Neumann-Poincaré inequality both hold on Σ, and thus
also on the minimal graph M in Σ×R represented by a minimal graphic function
with bounded gradient, this will then yield mean value inequalities for subharmon-
ic functions on the domains of M. Hence, we have the mean value equalities both
in the extrinsic balls or the intrinsic balls of M. Therefore, we obtain a Liouville
type theorem for minimal graphic functions with sub-linear growth on one side,
see Theorem 3.6. It is interesting to compare this Liouville type theorem with the
half-space theorem of Rosenberg-Schulze-Spruck [39]. The corresponding result
for harmonic functions on manifolds with non-negative Ricci curvature is due to S.
Y. Cheng [7]. Furthermore, we can relax sub-linear growth to linear growth in the
above Liouville type theorem if Σ is not Euclidean space, and obtain the following
theorem.

Theorem 1.1. Let u be an entire solution to (2.1) on a complete Riemannian man-
ifold Σ with conditions C1), C2), C3). If u has at most linear growth on one side,
then u must be a constant unless Σ is isometric to Euclidean space.

For showing Theorem 1.1, using the harmonic coordinates of Jost-Karcher [31],
we first obtain scale-invariant Schauder estimates for minimal graphic functions u.
Then combining this with estimates for the Green function and a Bochner type for-
mula, we get integral decay estimates for the Hessian of u. The Schauder estimates
then imply point-wise decay estimates for the Hessian of u. Finally, by re-scaling
the manifold Σ and the graphic function u we can show that Σ is asymptotic to a
product of a Euclidean factor R and the level set of u at the value 0. This will allow
us to deduce Theorem 1.1. By the example in the last section, the assumption of
linear growth cannot be removed. Moreover, one should compare this theorem with
the result of Cheeger-Colding-Minicozzi [13] on the splitting of the tangent cone at
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infinity for complete manifolds with nonnegative Ricci curvature supporting linear
growth harmonic functions.

We shall also investigate minimal graphic functions without growth restriction-
s. Analogously to [21] we prove that for any scaling sequence of a minimal graph
M in Σ×R there exists a subsequence that converges to an area-minimizing cone
T in Σ∞×R, where Σ∞ is some tangent cone at infinity (not necessarily unique) of
Σ satisfying conditions C1), C2) and C3). However, our proof here is more compli-
cated than [21] as the ambient manifold Σ×R does no longer satisfy condition C3)
unless Σ is flat. In the light of stability inequalities for minimal graphs, one might
expect that T is vertical, namely, T = X ×R for some cone X ∈ N∞. Howev-
er, since we lack Sobolev and Neumann-Poincaré inequalities on minimal graphs
whose gradient is not globally bounded, it seems difficult to show verticality, al-
though such inequalities hold for ambient Euclidean space [35], [5]. Fortunately,
we are able to show that T is asymptotically vertical at infinity. This also suffices
to estimate the measure of a ’bad’ set and employ stability arguments, as in [21], to
eliminate the unbounded situation of |Du|, when the lower bound κ for the curva-
ture decay (see below) is large, that is, when the curvature can only slowly decay to
0 at infinity (more precisely, the curvature decay is quadratic, but the value of the
lower bound must be above some critical threshold; actually that threshold is sharp
showed in the last section). Thus combining Theorem 1.1 we obtain a Liouville
type theorem for minimal graphic functions.

Theorem 1.2. Let Σ be a complete n−dimensional Riemannian manifold satis-
fying conditions C1), C2), C3) and with non-radial Ricci curvature satisfying
inf∂Bρ

RicΣ

(
ξ T ,ξ T

)
≥ κρ−2|ξ T |2 for some constant κ , for sufficiently large ρ > 0,

where ρ is the distance function from a fixed point in Σ and ξ T stands for the part
that is tangential to the geodesic sphere ∂Bρ (at least away from the cut locus of

the center), of a tangent vector ξ of Σ at the considered point. If κ > (n−3)2

4 , then
any entire solution to (1.2) on Σ must be constant.

In the last section, we construct a nontrivial minimal graph to show that the
constant (n−3)2

4 in Theorem 1.2 is sharp. Our approach is inspired by the method
developed by Simon [41], where for each strictly minimizing isoparametric cone
C in Rn he constructed an entire minimal graph in Rn+1 converging to C×R as
tangent cylinder at ∞. Geometrically, our method is different from that of Simon,
but analytically, it is quite similar.

2 Preliminaries

Let (Σ,σ) be an n-dimensional complete non-compact manifold with Riemann-
ian metric σ = ∑

n
i, j=1 σi jdxidx j in a local coordinate. Set (σ i j) be the inverse

matrix of (σi j) and Ei be the dual frame of dxi. Denote Du = ∑i, j σ i juiE j and
|Du|2 = ∑i, j σ i juiu j. Let divΣ be the divergence of Σ. We shall study the following
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quasi-linear elliptic equation for a minimal graphic function on Σ

(2.1) divΣ

(
Du√

1+ |Du|2

)
,

1√
detσkl

∂ j

(√
detσkl

σ i jui√
1+ |Du|2

)
= 0.

A solution {(x,u(x)) ∈ Σ×R| x ∈ Σ} represents a minimal hypersurface in the
product manifold N , Σ×R with the product metric

ds2 = dt2 +σ = dt2 +∑
i, j

σi jdxidx j.

Let M denote this hypersurface, i.e., M = {(x,u(x)) ∈ N| x ∈ Σ}, with the induced
metric g from N

g = ∑
i, j

gi jdxidx j = ∑
i, j
(σi j +uiu j)dxidx j,

where ui =
∂u
∂x j

and and ui j =
∂ 2u

∂xi∂x j
in the sequel. Moreover, detgi j =(1+|Du|2)detσi j

and gi j = σ i j− uiu j

1+|Du|2 with ui = ∑ j σ i ju j.

Let ∆, ∇ be the Laplacian operator and Levi-Civita connection of (M,g), re-
spectively. The equation (2.1) then becomes

(2.2) ∆u =
1√

detgkl
∂ j

(√
detgklgi jui

)
= 0.

Thus, u is a harmonic function on the hypersurfaceM, which in turn depends on u.
Similar to the Euclidean case ([43] or by Lemma 2.1 in [21]), any minimal

graph over a bounded domain Ω is an area-minimizing hypersurface in Ω×R.
From the proof of Lemma 2.1 in [21], it is not hard to see that any minimal graph
over Σ is an area-minimizing hypersurface in Σ×R.

Let ∇ and R be the Levi-Civita connection and curvature tensor of (N,h). Let
〈·, ·〉 be the inner product on N with respect to its metric. Let ν denote the unit
normal vector field of M in N defined by

(2.3) ν =
1√

1+ |Du|2
(−Du+En+1).

Choose a local orthonormal frame field {ei}n
i=1 in M. Set the coefficients of the

second fundamental form hi j = 〈∇eie j,ν〉 and the squared norm of the second fun-
damental form |B|2 = ∑i, j hi jhi j. Then the mean curvature H = ∑i hii = 0 as M is
minimal.

Let Ric be the Ricci curvature of Σ×R. Due to the Codazzi equation hi jk =

hk ji−〈Rekeie j,ν〉 (see [43], for example), we obtain a Bochner type formula

(2.4) ∆〈En+1,ν〉=−
(
|B|2 +Ric(ν ,ν)

)
〈En+1,ν〉.

Let Ric denote the Ricci curvature of Σ. With (2.3), then

(2.5) −∆ log〈En+1,ν〉= |B|2 +
Ric(Du,Du)

1+ |Du|2
+ |∇ log〈En+1,ν〉|2.
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The above formula will play a similar role as Bochner’s formula for the squared
length of the gradient of a harmonic function.

In the present paper we usually suppose that Σ is an n(≥ 3)-dimensional com-
plete non-compact Riemannian manifold satisfying the following three conditions:

C1) Nonnegative Ricci curvature: Ric ≥ 0;
C2) Euclidean volume growth: for the geodesic balls Br(x) in Σ,

VΣ , lim
r→∞

Vol
(
Br(x)

)
rn > 0;

C3) Quadratic decay of the curvature tensor: for sufficiently large ρ(x) =
d(x, p), the distance from a fixed point in N,

|R(x)| ≤ c
ρ2(x)

.

By the Bishop-Gromov volume comparison theorem limr→∞
Vol(Br(x))

rn is mono-
tonically nonincreasing, and hence

(2.6) VΣrn ≤Vol
(
Br(x)

)
≤ ωnrn for all x ∈ Σ and r > 0,

where ωn is the volume of the standard n-dimensional unit ball in Euclidean space.
The above three conditions have been used in [21] to study minimal hypersurfaces
in such manifolds. Now we list some properties of Σ satisfying conditions C1),
C2), C3) (see [21] for completeness), which will be employed in the following
text.

• By [8], there is a sufficiently small constant δ0 > 0 depending only on
n,c,VΣ so that for any 0 < δ < δ0 the injectivity radius at q ∈ ∂BΩr(p)
satisfies i(q)≥ r, where Ω =

(√
c

δ
+1
)

.

• Let G(p, ·) be the Green function on Σ with limr→0 sup∂Br(p)

∣∣Grn−2−1
∣∣=

0 and b = G
1

2−n (see [36] and [17] for details). Then

(2.7) ∆Σb2 = 2n|Db|2

with |Db| ≤ 1 and c′r ≤ b(x) ≤ r for any n ≥ 3, x ∈ ∂Br(p) and some
constant c′ > 0. Moreover, we have asymptotic estimates

(2.8) limsup
r→∞

(
sup

x∈∂Br

(∣∣∣∣∣br −
(

VΣ

ωn

) 1
n−2

∣∣∣∣∣+
∣∣∣∣∣Db−

(
VΣ

ωn

) 1
n−2

∣∣∣∣∣
))

= 0,

and

(2.9) limsup
r→∞

(
sup

x∈∂Br

∣∣∣∣∣Hessb2−2
(

VΣ

ωn

) 2
n−2

σ

∣∣∣∣∣
)

= 0.
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• By Gromov’s compactness theorem [28] and Cheeger-Colding’s theory
[9], for any sequence ε̄i → 0 there is a subsequence {εi} converging to
zero such that εiΣ = (Σ,εiσ , p) converges to a metric cone (Σ∞,d∞) with
vertex o in the pointed Gromov-Hausdorff sense. Σ∞ is called the tangent
cone at infinity and
Σ∞ =CX =R+×ρ X for some (n−1)-dimensional smooth compact man-
ifold X of Diam (X)≤ π and the metric si jdθidθ j with si j ∈C1,α(X) (see
also [27][38]). For any compact domain K ⊂ Σ∞ \ {o}, there exists a dif-
feomorphism Φi : K→Φi(K)⊂ εiΣ such that Φ∗i (εiσ) converges as i→∞

to σ∞ in the C1,α -topology on K.

3 Gradient estimates and applications

Let u be a minimal graphic function on a Riemannian manifold Σ, and

v,
1

〈En+1,ν〉
=
√

1+ |Du|2.

Let ṽ(z) = v(x) for any z = (x,u(x)) ∈M, and we usually denote ṽ by v, which will
not cause confusion from the context in general.

Let Br(x) be the geodesic ball in Σ with radius r and centered at x ∈ Σ. Some-
times we write Br instead of Br(p) for simplicity. Let dµ be the volume element
of M.

Lemma 3.1. Suppose Σ has nonnegative Ricci curvature and u(p) = 0, then for
any constant β > 0

(3.1)
∫

Br∩{|u|<β r}
logvdµ ≤ (1+10β )

(
2+β + r−1 sup

B3r

u
)

Vol(B3r).

Proof. We define a function us by

us =


β s if u≥ β s

u if |u|< β s

−β s if u≤−β s.

ρ(x) is a global Lipschitz function with |Dρ| ≡ 1 almost everywhere. We define a
Lipschitz function ζ (r) on [0,∞) satisfying suppζ ⊂ [0,2r], ζ

∣∣
[0,r) ≡ 1 and |Dζ | ≤

1
r . Then η(x) = ζ (ρ(x)) is a Lipschitz function with suppη ⊂ B̄2r, η

∣∣
Br
≡ 1 and

|Dη | ≤ 1
r . Then by using (2.1) and integrating by parts we have

(3.2)

0 =−
∫

divΣ

(
Du
v

)
ηurdµΣ ≥

∫
Br∩{|u|<β r}

|Du|2

v
dµΣ +

∫ Du ·Dη

v
urdµΣ,
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which implies

(3.3)

∫
Br∩{|u|<β r}

1dµ ≤
∫

Br∩{|u|<β r}

(
|Du|2

v
+1
)

dµΣ

≤Vol(Br)+β r
∫

B2r

|Dη |dµΣ ≤ (1+β )Vol(B2r).

From integrating by parts, we deduce

(3.4)

0 =−
∫

divΣ

(
Du
v

)
· (ur +β r)η logv dµΣ

≥
∫

Br∩{|u|<β r}

|Du|2

v
logv dµΣ +

∫ Du ·Dη

v
(ur +β r) logv dµΣ

+
∫ Du ·D logv

v
(ur +β r)ηdµΣ

≥
∫

Br∩{|u|<β r}

|Du|2

v
logv dµΣ−2β r

∫
B2r∩{u>−β r}

|Dη | logv dµΣ

−2β r
∫

B2r∩{u>−β r}
|D logv|ηdµΣ,

then we obtain

(3.5)

∫
Br∩{|u|<β r}

logvdµ ≤
∫

Br∩{|u|<β r}

(
|Du|2

v
+1
)

logv dµΣ

≤(1+2β )
∫

B2r∩{u>−β r}
logv dµΣ +2β r

∫
B2r∩{u>−β r}

|D logv|ηdµΣ.

Obviously, (2.5) implies ∆ logv≥ |∇ logv|2, then for any ξ ∈C1
0(B2r×R) we have

(3.6)

∫
|∇ logv|2ξ

2dµ ≤
∫

ξ
2
∆ logvdµ =−2

∫
ξ ∇ξ ·∇ logvdµ

≤1
2

∫
|∇ logv|2ξ

2dµ +2
∫
|∇ξ |2dµ.

Set ξ (x, t) = η(x)τ(t) for (x, t) ∈ Σ×R, where 0≤ τ ≤ 1, τ ≡ 1 in (−β r,supB2r
u),

τ ≡ 0 outside (−(1+β )r,r+ supB2r
u), |τ ′|< 1

r . Then

(3.7)

∫
|∇ logv|2ξ

2dµ ≤4
∫
|∇ξ |2dµ ≤ 8

∫ (
|∇η |2τ

2 + |∇τ|2η
2)dµ

≤16
r2

∫
B2r∩{u>−(1+β )r}

1dµ.

At any considered point z = (x,u(x)) ∈M,

∇ log ṽ(z) = ∑
i, j

(
gi j

∂i logv(x)
)
(E j +u j(x)En+1) ,
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then

(3.8) |∇ log ṽ(z)|2 = ∑
i, j

gi j
∂i logv(x) ·∂ j logv(x).

So we obtain

(3.9) |∇ logv|2 = |D logv|2− |Du ·D logv|2

1+ |Du|2
≥ |D logv|2

1+ |Du|2
.

Together with (3.9) and (3.7) it follows that

(3.10)

∫
B2r∩{u>−β r}

|D logv|ηdµΣ ≤
∫

B2r∩{u>−β r}
|∇ logv|ηvdµΣ

≤
∫

B2r∩{u>−β r}

(
|∇ logv|2η2r

8
+

2
r

)
vdµΣ

≤ r
8

∫
|∇ logv|2ξ

2dµ +
2
r

∫
B2r∩{u>−β r}

vdµΣ

≤2
r

∫
B2r∩{u>−(1+β )r}

1dµ +
2
r

∫
B2r∩{u>−β r}

vdµΣ

≤4
r

∫
B2r∩{u>−(1+β )r}

vdµΣ.

Note that logv≤ v as v≥ 1, substituting (3.10) into (3.5) we obtain
(3.11)∫

Br∩{|u|<β r}
logvdµ ≤ (1+2β )

∫
B2r∩{u>−β r}

vdµΣ +8β

∫
B2r∩{u>−(1+β )r}

vdµΣ

≤ (1+10β )
∫

B2r∩{u>−(1+β )r}
vdµΣ.

Let η̃ be a Lipschitz function with suppη̃ ⊂ B̄3r with η̃
∣∣
B2r
≡ 1 and |Dη̃ | ≤ 1

r . Then

(3.12)

0 =−
∫

B3r

divΣ

(
Du
v

)
η̃ ·max{u+(1+β )r,0}dµΣ

≥
∫

B2r∩{u>−(1+β )r}

|Du|2

v
dµΣ +

∫
B3r

Du ·Dη̃

v
max{u+(1+β )r,0}dµΣ

≥
∫

B2r∩{u>−(1+β )r}

|Du|2

v
dµΣ−

1
r

∫
B3r

max{u+(1+β )r,0}dµΣ,

which implies

(3.13)

∫
B2r∩{u>−(1+β )r}

vdµΣ ≤
∫

B2r∩{u>−(1+β )r}

(
|Du|2

v
+1
)

dµΣ

≤
∫

B2r

dµΣ +
1
r

∫
B3r

(
sup
B3r

u+(1+β )r
)

dµΣ

≤
(

2+β + r−1 sup
B3r

u
)

Vol(B3r).
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Combining (3.11) and (3.13) we complete the proof of the Lemma. �

For any zi = (xi, ti), i = 1,2, denote the distance function ρ̄ on Σ×R by

ρ̄z1(z2) =
√

ρ2
x1
(x2)+(t2− t1)2.

For any q,x∈ Σ there are q̃= (q,u(q))∈M and x̃ = (x,u(x))∈M such that ρ̄q̃(x̃) =√
ρ2

q (x)+(u(x)−u(q))2.

Lemma 3.2. Suppose the sectional curvature R(x)≤ K2 on Bi(q)(q) with injective
radius i(q) at q, then we have

∆ρ̄
2
q̃ (x̃)≥ 2+2(n−1)Kρq(x)cot(Kρq(x)) for 0 < ρq(x)< min

{
i(q),

π

2K

}
.

Proof. By the Hessian comparison theorem, for any ξ⊥ ∂

∂ρq
we have

Hessρq(ξ ,ξ )≥ K cot(Kρq)|ξ |2.

Let {ei}n
i=1 be a local orthonormal frame field of M. Note that M is minimal, we

obtain

(3.14)

∆ρ̄
2
q̃ =

n

∑
i=1

(
∇ei∇ei ρ̄

2
q̃ − (∇eiei) ρ̄

2
q̃
)

=
n

∑
i=1

(
∇ei∇ei ρ̄

2
q̃ −
(

∇eiei

)
ρ̄

2
q̃

)
+

n

∑
i=1

(
∇eiei−∇eiei

)
ρ̄

2
q̃

=∆N ρ̄
2
q̃ −Hess

ρ̄2
q̃
(ν ,ν)

=∆Σρ
2
q +2− 1

v2 Hessρ2
q
(Du,Du)− 2

v2 .

If Du 6= 0, we set (Du)T =Du−
〈

Du, ∂

∂ρq

〉
∂

∂ρq
. Let {Eα}n−1

α=1
⋃

∂

∂ρq
be an orthonor-

mal basis of T Σ with E1 =(Du)T
∣∣(Du)T

∣∣−1. Combining Hessρ2
q

(
Eα ,

∂

∂ρq

)
= 0 and

Hessρ2
q

(
∂

∂ρq
, ∂

∂ρq

)
= 2 give

(3.15) Hessρ2
q
(Du,Du) = Hessρ2

q

(
(Du)T ,(Du)T )+2

〈
Du,

∂

∂ρq

〉2

.
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Hence
(3.16)

∆ρ̄
2
q̃ =∑

α

Hessρ2
q
(Eα ,Eα)+4− 1

v2 Hessρ2
q

(
(Du)T ,(Du)T )− 2

v2

〈
Du,

∂

∂ρq

〉2

− 2
v2

=∑
α

Hessρ2
q
(Eα ,Eα)+2−

∣∣(Du)T
∣∣2

v2 Hessρ2
q
(E1,E1)+

2
v2

∣∣(Du)T
∣∣2

≥2(n−2)Kρq cot(Kρq)+2+

(
2−2

∣∣(Du)T
∣∣2

v2

)
Kρq cot(Kρq)+

2
v2

∣∣(Du)T
∣∣2

≥2(n−1)Kρq cot(Kρq)+2.

If |Du|= 0, clearly ∆ρ̄2
q̃ = ∆Σρ2

q ≥ 2(n−1)Kρq cot(Kρq)+2. �

Suppose that Σ satisfies conditions C1), C2) and C3). For sufficiently small
δ > 0 depending only on n,c,VΣ and any fixed q ∈ ∂BΩr(p) with Ω =

(√
c

δ
+1
)

,
by [8] the injectivity radius at q satisfies i(q)≥ r and

d(p,x)≥
√

c
δ

r, for any x ∈ Br(q).

Then by condition C3)

(3.17) |R(x)| ≤ δ 2

r2 , for any x ∈ Br(q).

Hence ρq(x) is smooth for x ∈ Br(q) \ {q}. For q̃ = (q,u(q)) ∈ M, we denote
Bs(q̃) = {z ∈ N| ρ̄q̃(z)< s} and Ds(q̃) = Bs(q̃)∩M. If x̃ = (x,u(x)) ∈ Ds(q̃), then
obviously x ∈ Bs(q).

For any t ∈ [0,1) we have cos t ≥ 1− t, then(
tan t− t

1− t

)′
=

1
cos2 t

− 1
(1− t)2 ≤ 0.

So on [0,1)

tan t ≤ t
1− t

.

Hence on Dr(q̃) we have

∆ρ̄
2
q̃ (x̃)≥ 2+2(n−1)

(
1− δ

r
ρq(x)

)
≥ 2n−

2nδρq(x)
r

.
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For any smooth function f on M, combining the above inequalities we get
(3.18)

2n
∫

Ds(q̃)
f
(

1−
δρq

r

)
≤
∫

Ds(q̃)
f ∆ρ̄

2
q̃ =

∫
Ds(q̃)

div
(

f ∇ρ̄
2
q̃
)
−
∫

Ds(q̃)
∇ f ·∇ρ̄

2
q̃

=
∫

∂Ds(q̃)
f ∇ρ̄

2
q̃ ·

∇ρ̄q̃

|∇ρ̄q̃|
−
∫

Ds(q̃)
div
(
(ρ̄2

q̃ − s2)∇ f
)
+
∫

Ds(q̃)
(ρ̄2

q̃ − s2)∆ f

=2s
∫

∂Ds(q̃)
f |∇ρ̄q̃|+

∫
Ds(q̃)

(ρ̄2
q̃ − s2)∆ f .

Since
(3.19)

|∇ρ̄q̃|2 =
1

4ρ̄2
q̃

gi j
∂i(ρ

2
q +(u−u(q))2) ·∂ j(ρ

2
q +(u−u(q))2)

=
1

ρ̄2
q̃

(
ρ

2
q

(
1−
|Du ·Dρq|2

v2

)
+2ρq(u−u(q))

Du ·Dρq

v2 +(u−u(q))2 |Du|2

v2

)
≤ 1

ρ̄2
q̃

(
ρ

2
q +(u−u(q))2 1

v2 +(u−u(q))2 |Du|2

v2

)
=1,

we have

(3.20)

∂

∂ s

(
s−n

∫
Ds(q̃)

logv
)
=−ns−n−1

∫
Ds(q̃)

logv+ s−n
∫

∂Ds(q̃)

logv
|∇ρ̄q̃|

≥−ns−n−1
∫

Ds(q̃)
logv+ s−n

∫
∂Ds(q̃)

logv|∇ρ̄q̃|

≥−ns−n−1
∫

Ds(q̃)
logv+ s−n n

s

∫
Ds(q̃)

(
1−

δρq

r

)
logv

≥− nδ

r
s−n

∫
Ds(q̃)

logv.

Let ωn be the volume of the standard n-dimensional unit ball in Euclidean space.
For 0 < s≤ r integrating the above inequality implies

(3.21) logv(q̃)≤ e
nδ s

r

ωnsn

∫
Ds(q̃)

logv.

We say that a function f has at most linear growth on Σ if

limsup
x→∞

| f (x)|
ρ(x)

< ∞.

and say that f has linear growth on Σ if

0 < limsup
x→∞

| f (x)|
ρ(x)

< ∞.

Denote f+ = max{ f ,0} and f− = min{ f ,0}.
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Theorem 3.3. Let u be a minimal graphic function on a complete Riemannian
manifold Σ which satisfies conditions C1), C2) and C3). Then we have gradient
estimates

(3.22) |Du(x)| ≤C1e
C2r−1

(
u(x)−supy∈B(Ω+1)r(p) u(y)

)
for any r > 0 and x ∈ ∂BΩr(p), where C1,C2 are positive constants depending only
n, and Ω is a constant depending only on n,c,VΣ. Moreover, if u+ (or u−) has at
most linear growth, then |Du| is uniformly bounded on all of Σ.

Proof. For any p ∈ Σ fixed, let Ω =
(√

c
δ
+1
)

as before. For any r > 0, x ∈
∂BΩr(p), combining (3.21) and (3.1) with β = 1 and u(x)− u replacing u, we
have

(3.23)

log |Du(x)| ≤ logv(x̃)≤ enδ

ωnrn

∫
Dr(x̃)

logv

≤11enδ

(
3+

supy∈Br(x)(u(x)−u(y))

r

)
Vol(B3r)

ωnrn

≤11enδ

(
3+

supy∈B(Ω+1)r(p)(u(x)−u(y))

r

)
Vol(B3r)

ωnrn ,

where x̃ = (x,u(x)). Take 0 < δ < 1, then invoking (2.6) we obtain

(3.24) log |Du(x)| ≤ 11(3e)n

(
3+

u(x)− supy∈B(Ω+1)r(p) u(y)

r

)
.

Thus (3.22) holds. Obviously, we can substitute u in (3.22) by −u. Hence if u+
or u− has at most linear growth, then letting r→ ∞ implies that |Du| is uniformly
bounded on all of Σ. �

Lemma 3.4. Let Σ be a Riemannian manifold with conditions C1), C2) C3), and
u be a smooth solution to (2.1) on Σ with at most linear growth. Then for any
nonnegative subharmonic(superharmonic) function ϕ+(ϕ−) on M, we have

sup
Dλ r(q)

ϕ
+ ≤ C1

rn

∫
Dr(q)

ϕ
+ and inf

Dλ r(q)
ϕ
− ≥ C2

rn

∫
Dr(q)

ϕ
−

for arbitrary r > 0 and some constant 0 < λ < 1 independent of r. Here C1,C2 > 0
are constants depending only on n,c,VΣ,λ .

Proof. In the manifold Σ we have the Sobolev and Neumann-Poincaré inequali-
ties. So we have those inequalities also on the manifold M by the boundedness of
|Du|. Then we can use De Giorgi-Moser-Nash’s theory and the volume doubling
condition to obtain the mean value inequality(see [37] for the details). �

Denote |Du|0 = supx∈Σ |Du(x)|. Now we want to use the above Lemma to de-
duce the mean value equalities for the bounded gradient of u.
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Lemma 3.5. Let Σ be a Riemannian manifold with conditions C1), C2) C3), and u
be a smooth solution to (2.1) on Σ with at most linear growth. Then we have mean
value equalities on both exterior balls and interior balls:

(3.25) |Du|20 = lim
r→∞

1
Vol(Dr(z))

∫
Dr(z)
|Du|2dµ,

and

(3.26) |Du|20 = lim
r→∞

1
Vol(Br(x))

∫
Br(x)
|Du|2dµΣ.

Proof. Denote φmax, supz∈M logv(z). If u has linear growth at most, for any q̃∈M
we have

(3.27)
1
rn

∫
Dr(q̃)

(φmax− logv)≤C (φmax− logv(q̃)) ,

which implies for any z ∈M

(3.28) φmax = lim
r→∞

1
Vol(Dr(z))

∫
Dr(z)

logv < ∞.

Since e2logv−1= |Du|2 is a bounded subharmonic function on M, we obtain (3.25).
For any 0 < ε < |Du|0 and any fixed point z = (x,u(x)) there is an r0 > 0 such

that for any r ≥ r0

1
Vol(Dr(z))

∫
Dr(z)
|Du|2dµ > |Du|20− ε

2.

Denote Ωr , {(q,u(q)) ∈ Dr(z)| |Du|2(q)< |Du|20− ε}, then

|Du|20− ε
2 <

1
Vol(Dr(z))

(∫
Dr(z)\Ωr

|Du|20dµ +
∫

Ωr

|Du|2dµ

)
≤
(

1− Vol(Ωr)

Vol(Dr(z))

)
|Du|20 +

Vol(Ωr)

Vol(Dr(z))

(
|Du|20− ε

)
=|Du|20− ε

Vol(Ωr)

Vol(Dr(z))
,

which implies

Vol(Ωr)≤ εVol(Dr(z)).

Let ΩT
r be the projection from Ωr to Σ defined by

{q ∈ Σ| (q,u(q)) ∈Ωr}= {q ∈ Σ| (q,u(q)) ∈ Dr(z), |Du|2(q)< |Du|20− ε}.
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There exists a constant C > 1 such that the projection of DCr(z) contains Br(x) for
any r ≥ r0 . By the definition of DCr(z), it follows that
(3.29)

1
Vol(Br(x))

∫
Br(x)
|Du|2dµΣ ≥

1
Vol(Br(x))

∫
Br(x)\ΩT

Cr

(
sup

Σ

|Du|2− ε

)
dµΣ

≥ 1
Vol(Br(x))

∫
Br(x)

(
sup

Σ

|Du|2− ε

)
dµΣ−

1
Vol(Br(x))

∫
ΩT

Cr

(
sup

Σ

|Du|2− ε

)
dµΣ

≥sup
Σ

|Du|2− ε− Vol(ΩCr)

Vol(Br(x))

(
sup

Σ

|Du|2− ε

)
≥sup

Σ

|Du|2− ε− ε
Vol(DCr(z))
Vol(Br(x))

(
sup

Σ

|Du|2− ε

)
.

Let r→ ∞, then ε → 0 implies that (3.26) holds. �

Theorem 3.6. If the minimal graphic function u on a complete manifold with con-
ditions C1), C2) and C3) has sub-linear growth for its negative part, namely,

limsup
x→∞

|u−(x)|
ρ(x)

= 0,

where u− = min{u,0}. Then u is a constant.

Proof. From Theorem 3.3, |Du| is globally bounded. For any small δ > 0, there is
a Cδ > 0 such that u(x)≥−Cδ −δρ(x). Lemma 3.4 implies a Harnack inequality
for positive harmonic functions on M. Hence there is an absolute constant C > 1
so that for any r > 0 and q ∈M we have

sup
x∈Dλ r(q)

(
u(x)− inf

Dr(q)
u+1

)
≤C inf

x∈Dλ r(q)

(
u(x)− inf

Dr(q)
u+1

)
≤C

(
u(q)− inf

Dr(q)
u+1

)
.

Thus
(3.30)

sup
x∈Dλ r(q)

u(x)≤Cu(q)+(C−1)
(

1− inf
Dr(q)

u
)
≤Cu(q)+(C−1)(1+Cδ +δ r)

Therefore, for any ε > 0 there is r0 > 0 such that for any x with ρ(x)≥ r0 we have

|u(x)|< ερ(x).

For any r≥ r0, let η be a Lipschitz function on M with suppη ⊂D2r with η
∣∣
Dr
≡ 1

and |∇η | ≤ 1
r on D2r \Dr. Due to ∆u = 0, we see that

(3.31) 0 =−
∫

M
uη

2
∆u =

∫
M

∇u ·∇(uη
2) =

∫
M
|∇u|2η

2 +2
∫

M
uη∇u ·∇η .

From the Cauchy inequality we conclude that

(3.32)
∫

Dr

|∇u|2 ≤
∫

M
|∇u|2η

2 ≤ 4
∫

M
|∇η |2u2 ≤ 4

r2

∫
D2r\Dr

u2 ≤ 16ε
2Vol(D2r).
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With |∇u|2 = |Du|2
v2 , we get

(3.33)

sup
y∈Σ

|Du|2(y) = lim
r→∞

1
Vol(Dr)

∫
Dr

|Du|2dµ

≤ limsup
r→∞

1+ |Du|20
Vol(Dr)

∫
Dr

|∇u|2dµ

≤16ε
2(1+ |Du|20) limsup

r→∞

Vol(D2r)

Vol(Dr)
.

Forcing ε → 0 gives |Du| ≡ 0, namely, u is a constant. �

Actually, if Σ is not Euclidean space, we can give a stronger theorem by replac-
ing sub-linear growth by linear growth in the following section.

4 A Liouville theorem via splitting for tangent cones at infinity

Let Σ be an n-dimensional manifold with conditions C1), C2), C3), and u be a
smooth linear growth solution to (2.1). We shall now derive pointwise estimates for
the Hessian of u. We first rewrite (2.1), in order to apply elliptic regularity theory
as can found, for instance in [26, 30]. In a local coordinate, (2.1) is

(4.1) ∂ j

(
√

σ
σ i jui√

1+ |Du|2

)
= 0,

where
√

σ =
√

detσkl . Take derivatives and set w = ∂ku to turn this equation into

(4.2) ∂ j

( √
σ√

1+ |Du|2

(
σ

i j− uiu j

1+ |Du|2

)
wi

)
+∂ j f j

k = 0,

where

f j
k =

ui√
1+ |Du|2

∂k
(√

σσ
i j)− 1

2
√

σσ
i j uiupuq

(1+ |Du|2)3/2 ∂kσ
pq.

Define an operator L on C2(Σ) by

L f = ∂ j

( √
σ√

1+ |Du|2

(
σ

i j− uiu j

1+ |Du|2

)
fi

)
,

then
Lw+∂ j f j

k = 0.
Since Σ satisfies conditions C1), C2) and C3), by [3, 27, 38] there exist harmon-
ic coordinates satisfying the estimates of [31]. That is, for a fixed point p ∈
Σ, there are positive constants α ′ = α ′(n,c,VΣ),θ = θ(n,c,VΣ) ∈ (0,1) and C =
C(n,c,VΣ,α

′) such that for any q ∈ ∂Br(p) and r > 0 there is a harmonic coordi-
nate system {xi : i = 1, · · · ,n} on Bθr(q) satisfying

(4.3) ∆Σ xi ≡ 0, (σi j)n×n ≥
1
C
, σi j + r|Dσi j|+ r1+α ′ [Dσi j]α ′,Bθr(q) ≤C,
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where 0 < α ′ < 1, σi j = σ

(
∂

∂xi
, ∂

∂x j

)
and

[ϕ]α ′,Bθr(q) = sup
x,y∈Bθr(q),x 6=y

|ϕ(x)−ϕ(y)|
d(x,y)α ′

.

Lemma 4.1. For any q ∈ ∂Br(p)⊂ Σ, r > 0 and s≤ θr we have

(4.4) oscBs(q)Du≤Csαr−α ,

where C =C(n, |Du|0,c,VΣ) and α = α(n, |Du|0,c,VΣ)≤ α ′ < 1 are positive con-
stants.

Proof. For any fixed s≤ 1
4 θr, denote M4(s)= supB4s(q) w, m4(s)= infB4s(q) w, M1(s)=

supBs(q) w, m1(s) = infBs(q) w. Then we have

L(M4−w) = ∂i f i
k, L(w−m4) =−∂i f i on Bθr(q).

Due to (4.3), it is not hard to find out that | f i
k| ≤

C
r on Bθr(q). By the weak Harnack

inequality (Theorem 8.18 of [26]), we have

(4.5) s−n
∫

B2s(q)
(M4(s)−w)dµΣ ≤C

(
M4(s)−M1(s)+

s
r

)
,

and

(4.6) s−n
∫

B2s(q)
(w−m4(s))dµΣ ≤C

(
m1(s)−m4(s)+

s
r

)
,

where C =C(n, |Du|0,c,VΣ). Denote ω(s) = oscBs(q)w = M1(s)−m1(s). Combin-
ing (2.6), (4.5) and (4.6) gives

(4.7) 2nVΣ ω(4s)≤ Vol(B2s(q))
sn ω(4s)≤C

(
ω(4s)−ω(s)+

2s
r

)
,

which implies that there is a γ ∈ (0,1) such that for all s ∈ [0, 1
4 θr]

ω(s)≤ γω(4s)+
2s
r
.

By an iterative trick(see Lemma 8.23 in [26]), we complete the proof. �

The above Lemma implies the following Hölder continuity for the gradient of
u.

Corollary 4.2. For any q ∈ ∂Br(p)⊂ Σ, r > 0 we have

(4.8) [Du]
α,Bθr(q) ≤Cr−α ,

where C =C(n, |Du|0,c,VΣ) and α = α(n, |Du|0,c,VΣ)< 1 are positive constants.
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Standard elliptic regularity theory (the scale-invariant Schauder estimates, see
[26, 30]) implies that there exists a constant C =C(n, |Du|0,c,VΣ,α) such that for
q ∈ ∂Br(p)

(4.9)
sup

B θr
2
(q)
|D2u| ≤Cr−2 sup

Bθr(q)
|u|,

and

(4.10) [D2u]
α,B θr

2
(q) ≤Cr−2−α sup

Bθr(q)
|u|.

Theorem 4.3. If u is solution to (2.1) with linear growth, then

(4.11) limsup
r→∞

(
r sup

∂Br(p)
|D2u|

)
= 0.

Proof. For the fixed point p ∈ Σ, there is a constant C such that {(x,u(x))| x ∈
Br(p)} ⊂ DCr(p). Let b be the function defined on Σ in section 2. Together with
(2.7) and the computation in (3.14), we have

(4.12)
∆b =∆Σb− 1

v2 Hessb(Du,Du)

=(n−1)
|Db|2

b
− 1

2v2b

(
Hessb2(Du,Du)−2〈Db,Du〉2

)
.

By the properties of the function b, there is a large r0 so that for any x with b(x)≥ r0
one has

|∆b| ≤ n+2
b

.

Denote Us = {(x,u(x)) ∈ M| x ∈ {b < s}} for s > 0. Let ζ be a nonnegative
smooth function on R+ with suppζ ⊂ [0,2r], ζ

∣∣
[0,r] ≡ 1, |ζ ′| ≤ C

r and |ζ ′′| ≤ C
r2 .

Set
η(x) = ζ (b(x)) for any x ∈ Σ.

Then η is a smooth function with suppη ⊂U2r, η
∣∣
Ur
≡ 1, |∇η | ≤ C

r and |∆η | ≤ C
r2

for sufficiently large r. Recalling (2.5) and b(x)≤ ρ(x) we obtain

(4.13)

∫
Br

|Hessu|2dµΣ ≤
∫
{b<r}

|Hessu|2dµΣ ≤
∫

U2r

|Hessu|2ηdµ

≤C
∫

U2r

|B|2η ≤C
∫

U2r

η∆(logv−φmax)

=C
∫

U2r

(logv−φmax)∆η ≤ C
r2

∫
U2r

(φmax− logv) ,

where φmax = supz∈M logv(z) as before. Due to (3.28) we see that

(4.14) lim
r→∞

(
1

rn−2

∫
Br

|Hessu|2dµΣ

)
= 0.
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From (4.9) we have

(4.15) sup
∂Br(p)

|D2u| ≤ C
r

for some fixed C =C(n, |Du|0,c,VΣ,α). If

(4.16) limsup
r→∞

(
r sup

∂Br(p)
|D2u|

)
> 0,

then there exist ε > 0, ri→ ∞ and qi ∈ ∂Bri(p) such that

(4.17) ri|D2u(qi)| ≥ ε.

By (4.10), we conclude that

(4.18) [D2u]
α,B θri

2
(qi)
≤Cr−1−α

i .

There is a sufficiently small δ = δ (n, |Du|0,c,VΣ,α,ε) ∈ (0, θ

2 ) such that for any
y ∈ Bδ ri(qi)

(4.19) |D2u(qi)|− |D2u(y)| ≤ [D2u]
α,B θri

2
(qi)

d(y,qi)
α ≤Cr−1−α

i (δ ri)
α <

ε

2ri
,

which together with (4.17) implies

(4.20) |D2u(y)| ≥ ε

2ri
.

Hence

(4.21)

1
rn−2

i

∫
B(1+δ )ri (p)\B(1−δ )ri (p)

|D2u|2dµΣ ≥
1

rn−2
i

∫
Bδ ri (qi)

|D2u|2dµΣ

≥ 1
rn−2

i

∫
Bδ ri (qi)

ε2

4r2
i

dµΣ ≥
ε2

4
δ

nVΣ.

Letting ri→ ∞ deduces a contradiction to (4.14). This completes the proof. �

Re-scale the metric by σ → r−2σ and denote the inner product, norm, gradient,
Hessian and volume element for this re-scaled metric by 〈·, ·〉r, | · |r, Dr, Hessr and
dµr, respectively. Set ũr = r−1u and let Br

s be the ball with radius s and centered at
p for this re-scaled metric. Namely, Br

s is the ball with radius s and centered at p in
r−2Σ = (Σ,r−2σ , p). Then for any fixed r0 > 0 (3.26) implies

(4.22) lim
r→∞

1
Vol(Br

r0
)

∫
Br

r0

|Drũr|2r dµr = sup
Σ

|Du|2,

and (4.11) implies that there is a constant C > 0 so that

(4.23) lim
r→∞

sup
∂Br

r0

|Hessr
ũr
|r = 0 and sup

∂Bs
r0

|Hesss
ũr
|s <

C
r0

for any s > 0.
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For any x,y ∈ Br
r0
(p) there exists a minimal normal geodesic γxy connecting x

and y such that γxy(0) = x, γxy(1) = y and |γ̇xy|= lxy is a constant. Clearly, lxy ≤ 2r0.
Parallel translating the vector Drũr(x) along γxy(t) produces a unique vector at y
denoted by Dr

πy
ũr(x). Denote by C a constant depending only on n. We have

(4.24)

∣∣∣Dr
πy

ũr(x)−Drũr(y)
∣∣∣
r
=
∣∣Drũr(x)−Dr

πx
ũr(y)

∣∣
r

≤C · lxy

∫ 1

0
|Hessũr |r(γxy(t))dt.

For any fixed ε > 0, together with (4.22)(4.23) and the above inequality we get

(4.25) lim
r→∞

sup
γxy∈Br

r0
\Br

ε

∣∣∣Dr
πy

ũr(x)−Drũr(y)
∣∣∣
r
= 0,

and

(4.26) lim
r→∞

inf
x∈Br

r0
\Br

ε

|Drũr(x)|r = sup
Σ

|Du|.

Note that |Du|0 , supΣ |Du|> 0. Suppose u(p) = ũr(p) = 0. Set

Γr = ũ−1
r (0) = {x ∈ r−2

Σ| ũr(x) = 0}.

For any x ∈ Br
r0

, there exists x0 ∈ Br
2r0
∩Γr so that

dr(x,x0) = dr(x,Γr), inf
z∈Γr

dr(x,z).

Here dr is the distance function on r−2Σ. Set the signed distance function dΓr(x) =
dr(x,Γr) for ũr(x)≥ 0, and dΓr(x) =−dr(x,Γr) for ũr(x)≤ 0.

Lemma 4.4. For any fixed r0 > 0 there is

(4.27) lim
r→∞

sup
y∈Br

r0

|ũr(y)−|Du|0 ·dΓr(y)|= 0

Proof. For any r > 0 there is a yr ∈ Br
r0

such that∣∣ũr(yr)−|Du|0 ·dΓr(yr)
∣∣= sup

z∈Br
r0

∣∣ũr(z)−|Du|0 ·dΓr(z)
∣∣.

Without loss of generality, we suppose ũr(yr),dΓr(yr)> 0. Clearly,

ũr(yr)−|Du|0 ·dΓr(yr)≤ 0.

For any ε > 0 we set

Γ
ε
r = ũ−1

r (ε|Du|0) = {x ∈ r−2
Σ| ũr(x) = ε|Du|0}.

Hence, for any xr ∈ Γε
r one has xr ∈ r−2Σ\Br

ε . For any fixed ε > 0 from (4.22) and
(4.23) there is an r∗ > 0 so that for any r ≥ r∗ we have |Drũr|r

∣∣∣
Γε

r∩Br
2r0

≥ 1
2 |Du|0.

Clearly there exist zr ∈ Γε
r satisfying dr(yr,zr) = dΓε

r
(yr) and a unique normal
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geodesic γr connecting yr,zr with γr(0) = zr, γr(lr) = yr and |γ̇r|r = 1, where
lr = dΓε

r
(yr). Smoothness of Γε

r implies γ̇r(0) =−Drũr(zr)/|Drũr(zr)|r, then

(4.28)

ũr(yr) =ũr(yr)− ũr(zr) =
∫ lr

0
〈Drũr(γr(t)), γ̇r(t)〉r dt

=
∫ lr

0

〈
Drũr(γr(t))−Dr

πγ (t)ũr(zr), γ̇r(t)
〉

r
dt +

∫ lr

0
|Drũr(zr)|rdt

≥−
∫ lr

0

∣∣∣Dr
πγr (t)

ũr(zr)−Drũr(γr(t))
∣∣∣
r
dt + |Drũr(zr)|r dΓε

r
(yr)

≥−C
∫ lr

0

∫ t

0
|Hessũr(γr(s))|r dsdt + |Drũr(zr)|r dΓε

r
(yr).

Combining (4.23) and (4.26) implies

(4.29) liminf
r→∞

(
ũr(yr)−|Du|0 ·dΓε

r
(yr)
)
≥ 0.

Letting ε → 0 completes the proof. �

Remark 4.5. Analogously to the proof of Lemma 4.4, we have

lim
r→∞

sup
y∈Br

r0

∣∣ũr(y)−|Du|0
(
dΓs

r
(y)+ s

)∣∣= 0

for s ∈ R, where Γs
r = ũ−1

r (s|Du|0) = {x ∈ r−2Σ| ũr(x) = s|Du|0}.

For any x,y ∈ Γs
r, let γs

r,xy be a normal geodesic joining x to y with length ls
r,xy.

Since
∂ 2

∂ t2 ũr
(
γ

s
r,xy(t)

)
= Hessũr

(
γ̇

s
r,xy(t), γ̇

s
r,xy(t)

)
,

then by the Newton-Leibniz formula we conclude that

(4.30) lim
r→∞

sup
x,y∈Γs

r∩Br
r0

(
sup

t∈[0,ls
r,xy]

∣∣ũr
(
γ

s
r,xy(t)

)
− s|Du|0

∣∣)= 0.

For any sequence ri→ ∞ there is a subsequence ri j such that r−1
i j

Σ = (Σ,r−1
i j

σ , p)
converges to a regular metric cone Σ0 with vertex o in the pointed Gromov-Hausdorff
sense. Clearly, the geodesic γs

ri j ,px should converge to a radial line starting from o
in Σ0. Therefore, combining (4.30) and Remark 4.5 we know that Γs

ri j
must con-

verge to an (n−1)-dimensional cone CYs in Σ0. Moreover, for any z1,z2 ∈CYs the
geodesic joining z1 and z2 in Σ0 must live in CYs. Let Ω be a connected component
of Σ0 \CYs and z3,z4 ∈Ω. Then the geodesic γz3,z4 joining z3 and z4 in Σ0 satisfies
γz3,z4 \CYs ⊂Ω.

Consider y,z ∈ {x ∈ r−2Σ| ũr(x) ≥ 0}. For any x ∈ Γr, dΓr(y) ≤ dr(y,x) ≤
dr(x,z)+dr(y,z). Taking all the points in Γr it follows that

dΓr(y)≤ dΓr(z)+dr(y,z).
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The same method implies

dΓr(z)≤ dΓr(y)+dr(y,z).

Hence

(4.31) |dΓr(z)−dΓr(y)| ≤ dr(y,z).

For some fixed point z with ũr(z)> 0 and small ε > 0, choose δ > 0 sufficiently
small, then there is an x ∈ Γr such that

dΓr(z)+ εδ ≥ dr(z,x).

Let l(t) be a minimal geodesic connecting z and x, and denote y∈ l(t)∩∂Br
δ
. Then

dΓr(z)+ ε dr(z,y)≥ dr(y,x)+dr(z,y)≥ dΓr(y)+dr(z,y).

Combining this with (4.31) we conclude that |DrdΓr |r ≡ 1 almost everywhere.

Lemma 4.6. For any fixed r1 > 0

(4.32) lim
r→∞

∫
Br

r1

∣∣Dr (ũr−|Du|0 ·dΓr)
∣∣2
r = 0.

Proof. Let η be a Lipschitz function with η
∣∣
Br

r1
≡ 0, |Drη |r ≤ 1 and supp η ⊂ Br

2r1
.

Let 〈·, ·〉r and divr be the inner product and divergence in r−2Σ, then
(4.33)∫

Br
r1

|Dr (ũr−|Du|0 ·dΓr)|
2
r ≤

∫
Br

2r1

|Dr (ũr−|Du|0 ·dΓr)|
2
r η

2

=
∫

Br
2r1

(
|Du|20 · |DrdΓr |2r −|Drũr|2r

)
η

2−2
∫

Br
2r1

〈Drũr,Dr (|Du|0 ·dΓr − ũr)〉r η
2

=
∫

Br
2r1

(
|Du|20−|Drũr|2r

)
η

2

+2
∫

Br
2r1

(
2η〈Dr

η ,Drũr〉r +η
2divr (Drũr)

)
(|Du|0 ·dΓr − ũr) .

Together with (4.22)(4.23) and Lemma (4.4), we complete the proof. �

If (Z,d) is a metric space and S1,S2 ⊂ Z, then we set

d(S1,S2) = inf{d(s1,s2)| s1 ∈ S1, s2 ∈ S2}, B(S1,ε) = {z ∈ Z| d(z,S1)< ε}.
And we define Hausdorff distance dH on S1,S2 by

dH(S1,S2) = inf{ε > 0| S1 ⊂ B(S2,ε), S2 ⊂ B(S1,ε)}.
If Z1,Z2 are both metric spaces, then an admissible metric on the disjoint union
Z1
⊔

Z2 is a metric that extends the given metrics on Z1 and Z2. With this one can
define the Gromov-Hausdorff distance as

dGH(Z1,Z2) = inf{dH(Z1,Z2)| adimissible metrics on Z1
⊔

Z2}.
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Now we consider a mapping Br
r1
→ B(p,0)(r1,Γr×R) : y 7→ (y0, |Du|−1

0 ũr(y)),
where y0 ∈ Γr satisfies dr(y,y0) = dΓr(y) and B(p,0)(r1,Γr×R) denotes the ball in
Γr×R with radius r1 and centered at (p,0). Together with Lemma 4.4 and Lemma
4.6, using Theorem 3.6 in [9], we obtain

(4.34) lim
r→∞

dGH
(
Br

r1
,B(p,0)(r1,Γr×R)

)
= 0.

In fact, we can also obtain (4.34) through the following Lemma.

Lemma 4.7. For any fixed r1 > 0

(4.35) lim
r→∞

sup
y,z∈Br

r1

∣∣∣(ũr(y)− ũr(z))
2−|Du|20 ·

(
dr(y,z)2−dr(y0,z0)

2)∣∣∣= 0,

where y0,z0 ∈ Γr satisfy dr(y,y0) = dΓr(y) and dr(z,z0) = dΓr(z).

Proof. We shall use the idea of the proof of (23.16) in [24] to show our Lemma. For
any small δ > 0, let εi(r) be a general positive function satisfying limr→∞ εi(r) = 0,
which depends only on n,r1,c,VΣ,δ for i = 1,2, · · · . It is sufficient to show that∣∣∣(ũr(y)− ũr(z))

2−|Du|20 ·
(
dr(y,z)2−dr(y0,z0)

2)∣∣∣≤ ε1(r)+δ

for any y,z ∈ Br
r1

. Suppose dΓr(y) ≥ dΓr(z) ≥ 0 (dΓr(y)dΓr(z) ≤ 0 is similar).
Let l1 : [0,dΓr(y)] → r−2Σ be a normal minimal geodesic joining y0 to y, and
l2 : [0,dΓr(z)] → r−2Σ be a normal minimal geodesic joining z0 to z. When
dΓr(z) ≤ t ≤ dΓr(y), we set l2(t) = z for convenience. Let Q(t) = dr(l1(t), l2(t))
and γt = γt,r : [0,Q(t)]→ r−2Σ be a normal minimal geodesic joining l2(t) to l1(t).

Let ht(s) = ũr(γt(s)), then

(4.36)
∣∣∣∣d2ht

ds2

∣∣∣∣= |Hessũr(γ̇t(s), γ̇t(s))| ≤ |Hessũr |r .

Note that γt,ri j
converges to a normal minimal geodesic γ̃t as r−1

i, j Σ converges to a
cone Σ0. Hence due to Γs

ri j
converging to a cone CYs ⊂ Σ0 and γ̃t living on one

side of CY 3t
4|Du|0

we obtain γt,ri j
(s) ∈ r−2Σ \Br

ε

2|Du|0
for any 0 ≤ s ≤ Q(t) and t ≥ ε

if r is sufficiently large. Since we can choose any sequence ri and then choose a
suitable subsequence, we conclude γt,r ∈ r−2Σ \Br

ε

2|Du|0
for t ≥ ε and sufficiently

large r. Hence combining (4.23) and the Newton-Leibniz formula we have

(4.37)
∣∣∣∣ht(Q(t))−ht(0)−Q(t)

dht

ds
(Q(t))

∣∣∣∣≤ ε2(r)

for any fixed t ≥ ε . Note ht(Q(t)) = ũr(l1(t)) and ht(0) = ũr(l2(t)), Lemma 4.4
implies

(4.38)
|ht(Q(t))−|Du|0t| ≤ ε3(r) for 0≤ t ≤ dΓr(y),

|ht(0)−|Du|0t| ≤ ε4(r) for 0≤ t ≤ dΓr(z).
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Without loss of generality, we assume dΓr(y)> ε . So we obtain
(4.39) ∣∣∣∣Q(t)

dht

ds
(Q(t))

∣∣∣∣≤ ε5(r) for ε ≤ t < max{dΓr(z),ε},∣∣∣∣Q(t)
dht

ds
(Q(t))−|Du|0 (t−dΓr(z))

∣∣∣∣≤ ε6(r) for max{dΓr(z),ε} ≤ t ≤ dΓr(y).

Analogously we get
(4.40)∣∣∣∣Q(t)

dht

ds
(0)
∣∣∣∣+ ∣∣∣∣Q(t)

dht

ds
(Q(t))

∣∣∣∣≤ 2ε5(r) for ε ≤ t ≤max{dΓr(z),ε}.

Note initial data Q(0) = dr(y0,z0), then for 0≤ t ≤ dΓr(z) we have

(4.41)

∣∣Q2(t)−dr(y0,z0)
2∣∣≤ 2

∫ t

0

∣∣∣∣Q(s)
dQ
ds

∣∣∣∣ds

=2
∫ t

0
Q(s)

∣∣〈γ̇s(Q(s)), l̇1(s)
〉

r−
〈
γ̇s(0), l̇2(s)

〉
r

∣∣ds.

Since∣∣∣∣dht

ds

∣∣∣∣
t=0

+

∣∣∣∣dht

ds

∣∣∣∣
t=Q(s)

=

∣∣∣∣〈γ̇s(0),Drũr

∣∣∣
l2(s)

〉
r

∣∣∣∣+ ∣∣∣∣〈γ̇s(Q(s)),Drũr

∣∣∣
l1(s)

〉
r

∣∣∣∣ ,
then combining (4.40) and (4.41) gets
(4.42)

|Du|0
∣∣Q2(t)−dr(y0,z0)

2∣∣≤ 2
∫ t

0
Q(s)

∣∣∣〈γ̇s(Q(s)), |Du|0 l̇1(s)−Drũr
∣∣
l1(s)

〉
r

∣∣∣ds

+2
∫ t

0
Q(s)

∣∣∣〈γ̇s(0), |Du|0 l̇2(s)−Drũr
∣∣
l2(s)

〉
r

∣∣∣ds+4ε5(r)+Cε,

where C stands for a general positive constant. Lemma 4.4 indicates

(4.43)
∫ t

0

(
|Du|0−

〈
l̇i(s),Drũr

∣∣
li(s)

〉
r

)
ds≤ ε6(r)

for i = 1,2. Then
(4.44)(∫ t

0

∣∣∣|Du|0 l̇i(s)−Drũr
∣∣
li(s)

∣∣∣
r
ds
)2

≤ t
∫ t

0

∣∣∣|Du|0 l̇i(s)−Drũr
∣∣
li(s)

∣∣∣2
r

ds

=t
∫ t

0

(
|Du|20 + |Drũr(li(s))|2r −2|Du|0

〈
l̇i(s),Drũr

∣∣
li(s)

〉
r

)
ds

≤t
∫ t

0

(
|Drũr(li(s))|2r −|Du|20

)
ds+2t2|Du|0ε6(r)≤ 2t2|Du|0ε6(r)≤ (ε7(r))

2 .

Hence combining (4.42) and (4.44) we obtain

(4.45) |Du|0
∣∣Q2(t)−dr(y0,z0)

2∣∣≤ ε8(r)+Cε.
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For dΓr(z)≤ t ≤ dΓr(y) we have
(4.46)∣∣∣∣dht

ds
(Q(t))−|Du|0

dQ
dt

(t)
∣∣∣∣= ∣∣∣〈γ̇t(Q(t)),Drũr

∣∣
l1(s)

〉
r
−|Du|0

〈
γ̇t(Q(t)), l̇1(t)

〉
r

∣∣∣ ,
then similar to the argument for t ≤ max{dΓr(z),ε}, employing (4.43) and (4.46),
and integrating the second inequality in (4.39) give

(4.47)
∣∣∣Q2(dΓr(y))−Q2(dΓr(z))− (dΓr(y)−dΓr(z))

2
∣∣∣≤ ε9(r)+Cε,

where C is a constant. Note dr(y,z) = Q(dΓr(y)). Combining (4.45), (4.47) and
Lemma 4.4 we have

(4.48)

∣∣∣(ũr(y)− ũr(z))
2−|Du|20 ·

(
dr(y,z)2−dr(y0,z0)

2)∣∣∣
≤
∣∣∣(ũr(y)− ũr(z))

2−|Du|20 ·
(
Q2(dΓr(y))−Q2(dΓr(z))

)∣∣∣
+ |Du|20

∣∣Q2(dΓr(z))−dr(y0,z0)
2∣∣

≤|Du|0 (ε8(r)+Cε)+ |Du|20 (ε9(r)+Cε)

+
∣∣∣(ũr(y)− ũr(z))

2−|Du|20 · (dΓr(y)−dΓr(z))
2
∣∣∣

=ε10(r)+Cε +
∣∣∣(ũr(y)− ũr(z))

2− (|Du|0 ·dΓr(y)−|Du|0 ·dΓr(z))
2
∣∣∣

≤ε11(r)+Cε.

Hence we complete the proof. �

For any sequence ri→∞ there is a subsequence ri j such that r−1
i j

Σ=(Σ,r−1
i j

σ , p)
converges to a metric cone CX with vertex o over some smooth manifold X in the
pointed Gromov-Hausdorff sense. Let Br be the geodesic ball with radius r and
centered at o in CX. Then with (4.34) we get

(4.49) lim
j→∞

dGH
(
Br1 ,B(p,0)(r1,Γri j

×R)
)
= 0.

By the previous argument, there exists an (n−1)-dimensional cone Y so that Γri j

converges to Y . Hence CX = Y ×R, namely, any tangent cone of Σ at infinity
splits off a factor R isometrically.

Let Br
s(z) be the ball with radius s and centered at z in r−2Σ = (Σ,r−2σ , p). For

any ε > 0 and s > 0, by volume comparison theorem and condition C3), there is a
sufficiently large r0 > 0 such that

Vol
(
Bri

s (zi)
)
≥ (ωn− ε)sn

for each zi ∈ r−2
i Σ with dri(zi, p) ≥ r0 + s and ri→ ∞. Let Bs(z) be the geodesic

ball with radius s and centered at z in CX. Taking limit in the above inequality gets

(4.50) Vol
(
Bs(z)

)
≥ (ωn− ε)sn



26 Q.DING, J.JOST, Y.L.XIN

for any z∈CX with d∞(z,o)≥ r0+s, where d∞ is the distance function on CX. Let
B̃s(y) be the geodesic ball with radius s and centered at y in CY . Let z = (y, tz) ∈
Y ×R, then (4.50) implies

(4.51)
∫ s

−s
Vol
(
B̃√s2−t2(y)

)
dt ≥ (ωn− ε)sn.

Let r0 → ∞, and we fix y, then tz → ∞. So we obtain (4.51) for any y ∈ Y and
ε > 0. Hence ∫ s

−s
Vol
(
B̃√s2−t2(y)

)
dt ≥ ωnsn,

which means

(4.52) Vol
(
Bs(z)

)
≥ ωnsn for any z ∈CX and s > 0.

Since limr→∞
Vol(Br(x))

rn is monotonically nonincreasing, then (4.52) implies

(4.53) Vol
(
Bs(z)

)
≥ ωnsn for any z ∈ Σ and s > 0.

By the Bishop volume estimate, Σ is isometric to Rn (see also the proof of Theorem
0.3 in [16]).

Altogether, we obtain the following Liouville type theorem for minimal graphic
functions with linear growth. This should be compared with the harmonic function
theory in [13].

Theorem 4.8. Let u be an entire solution to (2.1) on a complete Riemannian man-
ifold Σ with conditions C1), C2), C3). If u has at most linear growth on one side,
then u must be a constant unless Σ is isometric to Euclidean space.

5 A Liouville theorem for minimal graphic functions without growth
conditions

Let G(p, ·) be the Green function on Σn(n ≥ 3) and b = G
1

2−n as before. Now
we set

b̃ =

(
ωn

VΣ

) 1
n−2

b

and define a function R in Σ×R by

R(x, t) =
√

b̃2(x)+ t2, for (x, t) ∈ Σ×R.

Then

(5.1) ∆NR2 = 2n|∇b̃|2 +2, |∇R|2 = b̃2|∇b̃|2 + t2

b̃2 + t2
≤
(

ωn

VΣ

) 2
n−2

.

Let Br be the ball in Σ×R with radius r and centered at (p,0). By the properties
(2.7)(2.8)(2.9) of the function b we have

(5.2) ∆NR2−2n|∇R|2 = 2+2n
t2

R2

(
|∇b̃|2−1

)
,
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(5.3) limsup
r→∞

(
sup
∂Br

∣∣∣∣Rr −1
∣∣∣∣+ sup

∂Br

∣∣∣ ∣∣∣∇R
∣∣∣−1

∣∣∣)= 0,

and

(5.4) limsup
r→∞

(
sup

∂Br×R

∣∣HessR2−2ḡ
∣∣)= 0.

Let ν be the unit normal vector on M as before. A simple calculation gives

(5.5)
∆R2 =∆NR2−HessR2(ν ,ν) = 2n|∇b̃|2 +2−HessR2(ν ,ν)

=2n|∇R|2 +2+2n
t2

R2

(
|∇b̃|2−1

)
−HessR2(ν ,ν).

Since M is an entire graph,

lim
ri→∞

(
inf
{

d(x)
∣∣∣ there is a t ∈ R such that (x, t) ∈M \B√ri

})
= ∞.

Combining (5.4)(5.5)(2.8) there exists a sequence δi → 0+ such that on M \B√ri

we have

(5.6)
∣∣∣∆R2−2n|∇R|2

∣∣∣≤ 2δi|∇R|2.

Obviously Σ×R has nonnegative Ricci curvature. Therefore, Vol(∂Br) ≤
|Sn|rn, where |Sn| is the volume of n-dimensional unit sphere in Rn+1. Since M
is an area-minimizing hypersurface in Σ×R by Lemma 2.1 in [21], then

Vol(M∩Br)≤
1
2

Vol(∂Br)≤
|Sn|

2
rn.

With (5.3),

r−n
∫

M∩{R≤r}
|∇R|2dµ

is uniformly bounded for any r ∈ (0,∞), and so, there exists a sequence ri → ∞

such that

limsup
r→∞

(
r−n

∫
M∩{R≤r}

|∇R|2dµ

)
= lim

ri→∞

(
r−n

i

∫
M∩{R≤ri}

|∇R|2dµ

)
.

With the proof of Lemma 5.2 in [21], we obtain the following Lemma.

Lemma 5.1. There is a sequence δi→ 0+ such that for any constants K2 > K1 > 0
and ε ∈ (0,1) and any bounded Lipschitz function f on N \B1 we have

(5.7)

limsup
i→∞

∣∣∣∣∣
(

δi

K2ri

)n ∫
M∩{R≤K2ri

δi
}

f |∇R|2−
(

δi

K1ri

)n ∫
M∩{R≤K1ri

δi
}

f |∇R|2
∣∣∣∣∣

≤Cε
n sup

N\B1

| f |+ limsup
i→∞

∫ K2ri
δi

K1ri
δi

(
s−n−1

∫
M∩{ εK1ri

δi
<R≤s}

R∇ f ·∇R

)
ds.
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There is a subsequence {εi} of {δ 2
i r−2

i } converging to zero such that εiΣ =
(Σ,εiσ , p) converges to a metric cone (Σ∞,d∞) with vertex o in the measured
Gromov-Hausdorff sense. Denote εi = δ 2

i r−2
i for simplicity. The cone Σ∞ is over

some (n−1)-dimensional smooth compact manifold X with C1,α Riemannian met-
ric and Diam X ≤ π , namely, Σ∞ =CX , R+×ρ X .

Let Bi
r(x) be the geodesic ball with radius r and centered at x in (Σ,εiσ), and

Br(x) be the geodesic ball with radius r and centered at x in Σ∞. In particular,
X = ∂B1(o). Note that for convenience our definitions of Bi

r(x) are different from
the previous ones in section 4. Let Bi

r(x) be the geodesic ball with radius r and
centered at x in (Σ×R,εi(σ +dt2)), and B̃r(x) be the geodesic ball with radius r
and centered at x in Σ∞×R.

Let εiM = (M,εig) and Di
r(x) = εiM ∩Bi

r(x). We always omit x in Di
r(x) (or

Bi
r(x),Br(x),B̃r(x)) if x = p (or x = (p,0),o,(o,0)) respectively, for simplicity.

Clearly, εiM is still a minimal graph in (Σ×R,εi(σ +dt2)).

Lemma 5.2. There exists a subsequence {εi j} ⊂ {εi} such that εi j M converges to
an area-minimizing cone T =CY , R+×ρ Y in Σ∞×R, where Y ∈ ∂B̃1(o) is an
(n−1)-dimensional Hausdorff set.

Proof. For any fixed r > 1 let ϒi :
(
Br+1 \B 1

2r

)
×R→ εiΣ×R be a mapping

defined by ϒi(x, t) = (Φi(x), t) ∈ εiΣ×R, where Φi is a diffeomorphism from
Br+1 \B 1

2r
to Φi(Br+1 \B 1

2r
) ⊂ εiΣ such that Φ∗i (εiσ) converges as i→ ∞ to

σ∞ in the C1,α -topology on Br+1 \B 1
2r

. Thus ϒ∗i (εiσ + εidt2) converges as i→ ∞

to σ∞ +dt2 in the C1,α -topology on B̃r+1 \ B̃ 1
2r

. By compactness of currents (see
[2], [34], [40] or [21]), there is a subsequence of εi j such that

ϒ
−1
i j

(
εi j M

⋂(
Bi j

r \Bi j
1
r

)
×R

)
⇀ T as j→ ∞,

where T is an integral-rectifiable current in Σ∞×R. By choosing a diagonal se-
quence, we can assume that the above limit holds for any r > 1. For convenience,
we still write εi instead of εi j .

Let Ω0 be an arbitrary bounded domain in T , and W0 be an arbitrary bounded
set with induced metric in Σ∞×R with ∂Ω0 = ∂W0. There is a constant R > 0
such that Ω0∪W0 ⊂ B̃R. For any small δ > 0 let Ωi = ϒi(Ω0 \ (Bδ × [−R,R]))⊂
εiM and Wi = ϒi(W0 \ (Bδ × [−R,R])) with induced metrics in εiN. Then there
exists U0 ⊂ ∂ (Bδ × [−R,R]) (possibly empty) such that ∂Ωi = ∂ (Wi ∪Ui) with
Ui = ϒi(U0)⊂ εiN. Since εiM is an area-minimizing hypersurface in εiN, then
(5.8)

Hn(Ω0 \ (Bδ × [−R,R])) = lim
i→∞

Hn(Ωi)≤ lim
i→∞

Hn(Wi∪Ui)

≤ lim
i→∞

Hn(Wi)+ lim
i→∞

Hn(Ui) = Hn(W0 \ B̃δ )+Hn(U0)

≤Hn(W0)+Hn(∂ (Bδ × [−R,R])).
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Let δ → 0 to obtain

Hn(Ω0)≤ Hn(W0).

Namely, T is an area-minimizing set in Σ∞×R.

For any f ∈C1(∂B̃1), we could extend f to Σ∞×R\{(o,0)} by defining

f (ρθ) = f (θ)

for any ρ > 0 and θ ∈ ∂B̃1. Let Πi be the map of rescaling from (N,σ + dt2) to
εiN = (N,εiσ +εidt2). Set Us = Bs×R for s > 0. Note εi = δ 2

i r−2
i , then similar to

the proof of (4.12) and (4.13) in [21], for any K2 > K1 > 0 we have

(5.9)
limsup

i→∞

sup
BK2ri

δi

\U εK1ri
δi

∣∣∣〈∇( f ◦ϒ
−1
i ◦Πi),∇R2

〉∣∣∣= 0,

and

(5.10)
limsup

i→∞

sup
BK2ri

δi

\U εK1ri
δi

(
R
∣∣∣∇( f ◦ϒ

−1
i ◦Πi)

∣∣∣)< ∞,

Now we can extend the function f ◦ϒ
−1
i ◦Πi to a uniformly bounded function Fi in

BK2ri
δi

\U εK1ri
δi

with Fi = f ◦ϒ
−1
i ◦Πi on BK2ri

δi

\U εK1ri
δi

. Obviously, we can extend Fi

to a C1-function on BK2ri
δi

∩U εK1ri
δi

with |Fi| ≤ 2| f0|C0(∂B̃1)
.

Note R2(x, t) = b̃2(x)+ t2 for any (x, t) ∈ Σ×R. Due to the proof of Lemma
5.3 in [21], it is sufficient to show that there is a sequence τi ∈ [ε,2ε] so that

(5.11) limsup
i→∞

∫ K2ri
δi

K1ri
δi

(
1

sn+1

∫
M∩{ τiK1ri

δi
<R≤s}∩

(
{b̃≤ τiK1ri

δi
}×R

)R∇Fi ·∇R

)
ds <Cε

for some absolute constant C > 0.
We show (5.11) by the following consideration.

Let Ωs,i,τ = M∩{ τK1ri
δi

< R ≤ s}∩
(
{b̃≤ τK1ri

δi
}×R

)
for s ∈

(
K1ri
δi

, K2ri
δi

)
. In-

tegrating by parts implies

(5.12)

∫
Ωs,i,τ

∇Fi ·∇R2 +
∫

Ωs,i,τ

Fi∆R2 =
∫

Ωs,i,τ

divM
(
Fi∇R2)

=
∫

∂Ωs,i,τ

Fi〈∇R2,ν∂Ωs,i,τ 〉 ≤
∫

∂Ωs,i,τ

Fi|∇R2| ≤C1s
∫

∂Ωs,i,τ

1
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for some absolute constant C1. Recall |∇R| ≤
(

ωn
VΣ

) 1
n−2

. It is easy to see that

(5.13)

(
VΣ

ωn

) 1
n−2 K1ri

δi

∫ 2ε

ε

(∫
∂Ωs,i,τ

1
)

dτ ≤ K1ri

δi

∫ 2ε

ε

(∫
∂Ωs,i,τ

1
|∇R|

)
dτ

≤Vol
(

M∩{R ≤ s}∩
({

εK1ri

δi
≤ b̃≤ 2εK1ri

δi

}
×R

))
+Vol

(
M∩

{
εK1ri

δi
≤R ≤ 2εK1ri

δi

})
≤Vol

(
∂

(
{R ≤ s}∩

({
εK1ri

δi
≤ b̃≤ 2εK1ri

δi

}
×R

)))
+Vol

(
∂

({
εK1ri

δi
≤R ≤ 2εK1ri

δi

}))
≤C2s

(
εK1ri

δi

)n−1

for some absolute constant C2. Hence, for every i there exists a τi ∈ [ε,2ε] such
that

(5.14)
∫

∂Ωs,i,τi

1≤C3s
(

εK1ri

δi

)n−2

.

Through a simple calculation we have

(5.15)

∣∣∣∣∫
Ωs,i,τi

Fi∆R2
∣∣∣∣≤C4Vol (Ωs,i,τi)

≤C4Vol
(

∂

({
τK1ri

δi
< R ≤ s

}⋂({
b̃≤ τK1ri

δi

}
×R

)))
≤C5s

(
εK1ri

δi

)n−1

.

Hence

(5.16)
∫

Ωs,i,τi

∇Fi ·∇R2 ≤−
∫

Ωs,i,τi

Fi∆R2 +C1s
∫

∂Ωs,i,τi

1≤C6s2
(

εK1ri

δi

)n−2

,

which implies that (5.11) holds. Then, as in Lemma 5.3 in [21], we can show that

(5.17)
1

Kn
2

∫
T∩B̃K2

f =
1

Kn
1

∫
T∩B̃K1

f

for arbitrary f . This means T is a cone in Σ∞×R. Therefore, we complete the
proof. �

Set si = (εi)
− 1

2 for convenience. The definitions of Dsi , ũsi ,〈·, ·〉si , | · |si are as in
section 4. We define ρ∞(x) = d∞(o,x) and ρ̄∞(x) = d̄∞(o,x) as distance functions
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on Σ∞ and N∞, respectively. Let ρi(x) be the distance function on εiΣ from o to x,
and ρ̄i(z) be the distance function on εi(Σ×R) from (o,0) to z.

For each x ∈ εiΣ there is a minimal normal geodesic γ i
x from p to x such that

Dsiρi(x) = γ̇ i
x. When εi = 1, we define Dρ(x) corresponding to the normal geodesic

γ̇x. Hence Dsiρi(x) depends on the choice of γ i
x. Note that ρi(x) is just a Lipschitz

function on εiΣ, but the definition of Dsiρi(x) is equivalent to the common one if ρi
is C1 at the considered point.

Let Ti = εiM
⋂(

(Bi
2 \Bi

ε)×
[ 1

δ
, 1

δ
+ 2

ε

])
for δ > 0 and a ’bad’ set

(5.18)

Ei ,

{
z = (x, t) ∈ Ti

∣∣∣∣ |Dsi ũsi(x)|si ≤
1
ε

or
∣∣∣(Dsi ũsi(x))

T
∣∣∣2
si
≤
(
1− ε

4) |Dsi ũsi(x)|
2
si

}
,

where ξ T = ξ −〈ξ ,Dsiρi〉si
Dsiρi for any local vector field ξ on εiΣ.

Lemma 5.3. Suppose supΣ |Du|= ∞. For any ε > 0 there is a sufficiently small δ0
such that for any 0 < δ < δ0 there is a sufficiently large i0 so that for i≥ i0 we have

Hn(Ei)< ε
n.

Proof. Let U j be the subgraph of ũsi in εiΣ×R defined by

{(x, t) ∈ εiΣ×R| t < ũsi(x)}.

By Rellich theorem, for any compact K ⊂ Σ∞ there is a subsequence of the char-
acteristic functions χUj

converging to χ
Ũ

in L1(K) up to a diffeomorphism (see

Proposition 16.5 in [25] for the Euclidean case). Clearly, Ũ can be represented as
a subgraph of some generalized function u (possibly equal to ±∞ somewhere) in
Σ∞×R, namely,

Ũ = {(x, t) ∈ Σ∞×R| t < u(x)}.

Note T = ∂Ũ . u(x) is a homogeneous function of degree 1 in Σ∞ \ {o} as T is a
cone through o.

If supΣ |Du|= ∞, T contains a half line {o}× (0,∞) or {o}× (−∞,0). Without
loss generality, we assume {o}× (0,∞) ⊂ T . Now we define a set P by {x ∈
Σ∞| u(x) = +∞}. Since T is a cone through the point o, then P is also a cone
through o in Σ∞. In fact, for any x ∈ P we have u(x) = +∞. In particular, there is
(r,θ) ∈ R+×ρ X =CX so that x = (r,θ). Then u(tx) = +∞ for tx = (tr,θ), which
means that P is a cone.

For any z ∈ T
⋂
((B2 \Bε)×{s}), the slope of the line connecting z and o

becomes larger and larger as s increases to infinity. Hence for any 0 < ε < 1 we
have
(5.19)

lim
δ→0

dGH

(
T
⋂(

(B2 \Bε)×
[

1
δ
,

1
δ
+

2
ε

])
,
(

∂P∩ (B2 \Bε)
)
×
[

0,
2
ε

])
= 0.



32 Q.DING, J.JOST, Y.L.XIN

Combining (3.18)-(3.21) and that M is area-minimizing, it is clear that there is a
constant ε0 > 0 depending only on Σ so that

ε0rn ≤
∫

M∩Br(z)
1≤ 1

2
Vol(∂Br(z))≤

|Sn|
2

rn for any r > 0, z ∈M.

Since εiM ⇀ T , for any r > 0 and y ∈ T we have

ε0rn ≤
∫

T∩Br(y)
1≤ |S

n|
2

rn.

Due to (5.19) and {o}× (0,∞)⊂ T , it is not hard to see that

(5.20) Hn−1
(

∂P∩ (B2 \Bε)
)
> 0 and Hn−2

(
∂P∩∂B1

)
> 0

as P is a cone through o.
Let Φi : B 2

δ

\Bε→Φ(B 2
δ

\Bε)⊂ εiΣ be a diffeomorphism such that Φ∗i (εiσ)

converges as i→∞ to σ∞ in the C1,α -topology on B 2
δ

\Bε , and ϒi(x, t)= (Φi(x), t)

for any x ∈B 2
δ

\Bε . Note that Φi and ϒi depend on δ . Obviously, limi→∞ ρi ◦

Φi = ρ∞ in B 2
δ

\Bε and limi→∞ ρ̄i ◦ϒi = ρ̄∞ in
(
B 2

δ

\Bε

)
×
(
− 2

δ
, 2

δ

)
. Since

εiM
⋂(

Bi
4
δ

\Bi
ε

)
converges to T

⋂(
B̃ 4

δ

\ B̃ε

)
in the varifold sense, for any com-

pact set K̃ ∈ B̃ 4
δ

\ B̃ε we have

(5.21) 0 = lim
i→∞

(
εiMxϒi(K̃)

)
(ω̄∗ ◦ϒ

−1
i ) = lim

i→∞

∫
εiM∩ϒi(K̃)

〈ω̄∗ ◦ϒ
−1
i ,νi〉dµi,

where ω̄∗ is the dual form of ∂

∂ ρ̄∞
in T N∞. For any compact set K ⊂ (B2 \Bε)×[ 1

δ
, 1

δ
+ 2

ε

]
, we let Ks = {x| (x,s) ∈ K} be a slice of K for s ∈

[ 1
δ
, 1

δ
+ 2

ε

]
.

Since εiM ⇀ T , (5.19) implies

(5.22) lim
i→∞

Hn
({

(x, t) ∈ Ti

∣∣∣ |Dsi ũsi(x)|si ≤
1
δ

})
= 0.

Thus from (5.21) we obtain

(5.23) limsup
i→∞

∣∣∣∣∣∣∣
∫ 1

δ
+ 2

ε

1
δ

∫
εiM∩Φi(Ks)

〈
ω
∗ ◦Φ

−1
i ,

Dsi ũsi√
1+ |Dsi ũsi |2si

〉
si

ds

∣∣∣∣∣∣∣≤C
δ

ε

for some constant C, where ω∗ is the dual form of ∂

∂ρ∞
in T Σ∞. Note that Dsiρi→

∂

∂ρ∞
as i→ ∞ on any compact set in Σ∞ \ {o} up to a diffeomorphism Φi, then it

follows that

(5.24) limsup
i→∞

∣∣∣∣∣∣
∫ 1

δ
+ 2

ε

1
δ

∫
εiM∩Φi(Ks)

〈Dsiρi,Dsi ũsi〉si√
1+ |Dsi ũsi |2si

ds

∣∣∣∣∣∣≤C
δ

ε

Together with (5.22) and (5.24), we complete the proof. �
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Since M is a minimal graph in Σ×R, it is stable, and εiM is also a stable
minimal hypersurface in εi(Σ×R). Let Bi be the second fundamental form of εiM
in εiN and RicεiN be Ricci curvature of εiN. For any Lipschitz function ϕ with
compact support in εiM we have

(5.25)
∫

εiM

(
|Bi|2 +RicεiN(νi,νi)

)
φ

2 ≤
∫

εiM
|∇i

φ |2,

where ∇i is the Levi-Civita connection of εiM.
Now we suppose that there exists sufficiently large r0 > 0 such that the non-

radial Ricci curvature of Σ satisfies

(5.26) inf
∂Br

RicΣ

(
ξ

T ,ξ T )≥ κ

r2 > 0

for all r ≥ r0 and n ≥ 3, where ξ is a local vector field on Σ with ξ T = ξ −
〈ξ ,Dρ〉Dρ and |ξ T |= 1. The definition of Dρ is as before.

Lemma 5.4. If supΣ |Du|= ∞, then κ in (5.26) satisfies κ ≤ (n−3)2

4 .

Proof. By re-scaling we get

inf
∂Bi

r

RicεiΣ

(
η

T ,ηT )≥ κ

r2 > 0

for all r≥√εir0, where η ∈Γ(T (εiN)), ηT =η−〈η ,Dsiρi〉si
Dsiρi with |ηT |si = 1.

Noting that conditions C1) and C3) are both invariant under scaling, we obtain

(5.27)

RicεiN(νi,νi) =
1

1+ |Dsi ũsi |2si

RicεiΣ(D
si ũsi ,D

si ũsi)

≥ 1
1+ |Dsi ũsi |2si

(
RicεiΣ

(
(Dsi ũsi)

T ,(Dsi ũsi)
T )

+2〈Dsi ũsi ,D
siρi〉si

RicεiN
(
(Dsi ũsi)

T ,Dsiρi
))

≥ 1
1+ |Dsi ũsi |2si

(
κ
′ ∣∣(Dsi ũsi)

T
∣∣2
si
− c′

∣∣(Dsi ũsi)
T
∣∣
si
〈Dsi ũsi ,D

siρi〉si

)
ρ
−2
i

for some absolute constant c′ > 0.
Let η be the Lipschitz function on εiΣ defined by

η(x) =
(
ρi(x)

) 3−n
2 sin

(
π

logρi(x)
logε

)
in Bi

1 \Bi
ε and η = 0 in other places. Let τ be a Lipschitz function on R satisfying

τ ≡ 1 on
[ 1

δ
+1, 1

δ
+ 2

ε
−1
]
, τ(t)≡ 0 for t ∈

(
−∞, 1

δ

]⋃
[ 1

δ
+ 2

ε
,∞), and |τ ′| ≤ 1.
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For z = (x, t)∈ Σ×R set ϕ(z) = η(x)τ(t). Let ∇
i
be the Levi-Civita connection

of εiN. Then
(5.28)∫

εiM
RicεiN(νi,νi)ϕ

2 ≤
∫

εiM
|∇i

ϕ|2 =
∫

εiM

(
|Dsiη |2si

τ
2 +η

2|τ ′|2
)

≤
∫ 1

δ
+ 2

ε

1
δ

(∫
εiM∩εiΣ×{t}

|Dsiη |2si

)
dt +

(∫ 1
δ
+1

1
δ

+
∫ 1

δ
+ 2

ε

1
δ
+ 2

ε
−1

)(∫
εiM∩εiΣ×{t}

η
2
)

dt

=
∫ 1

δ
+ 2

ε

1
δ

(∫
εiM∩(Bi

1\Bi
ε )×{t}

(
3−n

2
sin
(

π
logρi

logε

)
+

π

logε
cos
(

π
logρi

logε

))2

ρ
1−n
i

)
dt

+

(∫ 1
δ
+1

1
δ

+
∫ 1

δ
+ 2

ε

1
δ
+ 2

ε
−1

)(∫
εiM∩(Bi

1\Bi
ε )×{t}

sin2
(

π
logρi

logε

)
ρ

3−n
i

)
dt.

Denote Ei as (5.18). For any z ∈ Ti \Ei we have |Dsi ũsi(z)|si >
1
ε

and

|〈Dsi ũsi(z),D
siρi〉si | ≤ ε

2 |Dsi ũsi(z)|si
.

Note RicεiN(νi,νi) =
(
1+ |Dsi ũsi |2si

)−1 Ric(Dsi ũsi ,D
si ũsi). Combining (5.27) we get

(5.29)∫
εiM

RicεiN(νi,νi)ϕ
2 ≥

∫
εiM∩{ 1

δ
+1≤t≤ 1

δ
+ 2

ε
−1}

RicεiN(νi,νi)η
2

≥
∫ 1

δ
+ 2

ε
−1

1
δ
+1

(∫
(εiM\Ei)∩(Bi

1\Bi
ε )×{t}

1
ρ2

i

1
1+ |Dsi ũsi |2si

(
κ
∣∣(Dsi ũsi)

T
∣∣2
si

− c′
∣∣(Dsi ũsi)

T
∣∣
si
〈Dsi ũsi ,D

siρi〉si

)
sin2

(
π

logρi

logε

)
ρ

3−n
i

)
dt

≥
∫ 1

δ
+ 2

ε
−1

1
δ
+1

(∫
(εiM\Ei)∩(Bi

1\Bi
ε )×{t}

|Dsi ũsi |2si

1+ |Dsi ũsi |2si

(
κ(1− ε

2)

− c′ε2
)

sin2
(

π
logρi

logε

)
ρ

1−n
i

)
dt

≥κ(1− ε2)− c′ε2

1+ ε2

∫ 1
δ
+ 2

ε
−1

1
δ
+1

(∫
(εiM\Ei)∩(Bi

1\Bi
ε )×{t}

sin2
(

π
logρi

logε

)
ρ

1−n
i

)
dt.
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Due to Hn(Ei)< εn in Lemma 5.3, it follows that
(5.30)∫

εiM
RicεiN(νi,νi)ϕ

2 ≥κ− (κ + c′)ε2

1+ ε2

∫ 1
δ
+ 2

ε
−1

1
δ
+1

(
− ε

1−nHn(Ei)

+
∫

εiM∩(Bi
1\Bi

ε )×{t}
sin2

(
π

logρi

logε

)
ρ

1−n
i

)
dt

≥ κ− (κ + c′)ε2

1+ ε2

∫ 1
δ
+ 2

ε
−1

1
δ
+1

(∫
εiM∩(Bi

1\Bi
ε )×{t}

sin2
(

π
logρi

logε

)
ρ

1−n
i

)
dt

−2
1− ε

1+ ε2 (κ−(κ + c′)ε2).

Combining this with (5.28) we let i→ ∞ and obtain
(5.31)

κ− (κ + c′)ε2

1+ ε2

∫ 1
δ
+ 2

ε
−1

1
δ
+1

(∫
CY∩(B1\Bε )×{t}

sin2
(

π
logρ∞

logε

)
ρ

1−n
∞

)
dt

−2
1− ε

1+ ε2 (κ− (κ + c′)ε2)

≤
∫ 1

δ
+ 2

ε

1
δ

(∫
CY∩(B1\Bε )×{t}

(
3−n

2
sin
(

π
logρ∞

logε

)
+

π

logε
cos
(

π
logρ∞

logε

))2

ρ
1−n
∞

)
dt

+

(∫ 1
δ
+1

1
δ

+
∫ 1

δ
+ 2

ε

1
δ
+ 2

ε
−1

)(∫
CY∩(B1\Bε )×{t}

sin2
(

π
logρ∞

logε

)
ρ

3−n
∞

)
dt,

where ρ∞ is the distance function on Σ∞ =CX from the fixed point o to the consid-
ered point. Letting δ → 0, and using (5.19) we get
(5.32)

κ− (κ + c′)ε2

1+ ε2

∫ 2
ε
−1

1

(∫
∂P∩(B1\Bε )

sin2
(

π
logρ∞

logε

)
ρ

1−n
∞

)
dt

−2
1− ε

1+ ε2 (κ− (κ + c′)ε2)

≤
∫ 2

ε

0

(∫
∂P∩(B1\Bε )

(
3−n

2
sin
(

π
logρ∞

logε

)
+

π

logε
cos
(

π
logρ∞

logε

))2

ρ
1−n
∞

)
dt

+

(∫ 1

0
+
∫ 2

ε

2
ε
−1

)(∫
∂P∩(B1\Bε )

sin2
(

π
logρ∞

logε

)
ρ

3−n
∞

)
dt.
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We calculate
(5.33)∫

∂P∩(B1\Bε )
sin2

(
π

logρ∞

logε

)
ρ

1−n
∞ =Hn−2(∂P∩∂B1)

∫ 1

ε

sin2
(

π
logs
logε

)
1
s

ds

=

(
log

1
ε

)
Hn−2(∂P∩∂B1)

∫ 1

0
sin2(πt)dt.

Hence we have
(5.34)

κ− (κ + c′)ε2

1+ ε2

((
2
ε
−2
)(

log
1
ε

)
Hn−2(∂P∩∂B1)

∫ 1

0
sin2(πt)dt−2(1− ε)

)
≤2

ε

∫
∂P∩(B1\Bε )

(
3−n

2
sin
(

π
logρ∞

logε

)
+

π

logε
cos
(

π
logρ∞

logε

))2

ρ
1−n
∞

+2
∫

∂P∩(B1\Bε )
sin2

(
π

logρ∞

logε

)
ρ

3−n
∞

≤2
ε

Hn−2(∂P∩∂B1)
∫ 1

ε

(
3−n

2
sin
(

π
logs
logε

)
+

π

logε
cos
(

π
logs
logε

))2 1
s

ds

+2Hn−2(∂P∩∂B1)
∫ 1

ε

sin2
(

π
logs
logε

)
sds

≤2
(

log
1
ε

)
Hn−2(∂P∩∂B1)

∫ 1

0

(
1
ε

(
3−n

2
sin(πt)+

π

logε
cos(πt)

)2

+ sin2(πt)

)
dt

=2
(

log
1
ε

)
Hn−2(∂P∩∂B1)

(
1
ε

(
(n−3)2

4
+

π2

(logε)2

)
+1
)∫ 1

0
sin2(πt)dt.

Together with (5.20) the above inequality implies

κ ≤ (n−3)2

4
+o(ε),

where limε→∞ o(ε) = 0. Therefore we complete the proof. �

Finally, combining Theorem 4.8 we obtain a Liouville theorem for minimal
graphic functions without growth condition.

Theorem 5.5. Let (Σ,σ) be a complete n−dimensional Riemannian manifold sat-
isfying conditions C1), C2), C3) and with its non-radial Ricci curvature satisfying
inf∂Bρ

RicΣ

(
ξ T ,ξ T

)
≥ κρ−2 for some constant κ for sufficiently large ρ > 0, where

ξ is a local vector field on Σ with |ξ T | = 1 defined in (5.26). If κ > (n−3)2

4 , then
any entire solution to (2.1) on Σ must be a constant.

The number (n−3)2

4 in Theorem 5.5 is sharp, and we will construct examples to
show this in the following section.
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6 Nontrivial entire minimal graphs in product manifolds

Let Σ be an Euclidean space Rn+1 with a conformally flat metric

ds2
φ = eφ(r)

n+1

∑
i=1

dx2
i ,

where r = |x| =
√

x2
1 + · · ·+dx2

n+1 and φ(|x|) is smooth in Rn+1. Hence Σ is a

smooth manifold. Set φ̃(r) =
∫ r

0 e
φ(r)

2 dr. Let us define ρ = φ̃(r) and λ (ρ) = rφ̃ ′(r),
then the Riemannian metric in Σ can be written in polar coordinates as

ds2 = dρ
2 +λ

2(ρ)dθ
2,

where dθ 2 is the standard metric on Sn(1). We assume 0 < λ ′ ≤ 1, λ ′′ ≤ 0,
(6.1)

lim
ρ→∞

λ (ρ)

ρ
= κ, lim

ρ→∞

(
ρ

2 1− (λ ′(ρ))2

λ 2(ρ)

)
=

1−κ2

κ2 , lim
ρ→∞

(
ρ

2 λ ′′(ρ)

λ (ρ)

)
= 0.

From [21], there are examples satisfying the above conditions for every κ ∈ (0,1].
Clearly, limr→∞

1
r Σ=CSκ in the Gromov-Hausdorff measure, where Sκ is an n−sphere

in Rn+1 with radius 0 < κ ≤ 1, namely,

Sκ = {(x1, · · · ,xn+1) ∈ Rn+1| x2
1 + · · ·+ x2

n+1 = κ
2}.

Moreover, let {eα}n
α=1

⋃
{ ∂

∂ρ
} be an orthonormal basis at the considered point of

Σ. we calculate the sectional curvature and Ricci curvature of Σ as follows (see
Appendix A in [33] for instance).

(6.2)

KΣ

(
∂

∂ρ
,eα

)
=−λ ′′

λ
, KΣ(eα ,eβ ) =

1− (λ ′)2

λ 2 ,

RicΣ

(
∂

∂ρ
,eα

)
= 0, RicΣ

(
∂

∂ρ
,

∂

∂ρ

)
=−n

λ ′′

λ
,

RicΣ(eα ,eβ ) =

(
(n−1)

1− (λ ′)2

λ 2 − λ ′′

λ

)
δαβ .

In particular, RicΣ ≥ 0 and limρ→∞

(
ρ2RicΣ(eα ,eβ )

)
= (n−2)2

4 δαβ if κ = 2
n

√
n−1.

In theorem 3.4 of [21], we have showed that if n≥ 3 and

2
n

√
n−1≤ κ < 1,

then any hyperplane through the origin in Σ is area-minimizing. Now we denote
T = {(x1, · · · ,xn+1) ∈ Rn+1| xn+1 = 0} in CSκ or 1

r Σ for r > 0, and their induced
metrics are determined by the ambient spaces. We will construct an entire minimal
graph with non-constant graphic function in Σ×R for every κ ∈ [2

n

√
n−1,1),

which obviously implies that the number (n−3)2

4 in Theorem 5.5 is sharp.
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Let D be the Levi-Civita connection of Σ. Let {Ei}n+1
i=1 be the dual vectors of

{dxi}n+1
i=1 . Let Γk

i j be the Christoffel symbols of Σ with respect to the frame Ei,
i.e., DEiE j = ∑k Γk

i jEk. Set ui = σ i ju j, |Du|2 = σ i juiu j, DiD ju = ui j−Γk
i juk and

v =
√

1+ |Du|2. We introduce an operator L on a domain Ω⊂ Σ by

(6.3) LF =
(
1+ |DF |2

) 3
2 divΣ

(
DF√

1+ |DF |2

)
=
(
1+ |DF |2

)
∆ΣF−Fi, jF iF j,

where F i = σ ikFk, and Fi, j = Fi j−Γk
i jFk is the covariant derivative.

Let p = n
2 κ −

√
n2κ2

4 − (n−1) ≥ 1
κ
, then by Theorem 1.5 in [42] there is a

solution u j ∈C∞(B j) to the Dirichlet problem

(6.4)

{
Lu j = 0 in B j

u j = c jxn+1rp−1 on ∂B j

,

where c j is a positive constant and r =
√

x2
1 + · · ·+ x2

n+1. By symmetry, u j(x′,xn+1)+

u j(x′,−xn+1) = 0 on B j with x′ = (x1, · · · ,xn). By [21] and maximum principle,
we have

(6.5) |u j| ≥ c j|xn+1|rp−1 in B j.

If w j is a solution of (6.4) with boundary d jxn+1rp−1 and 0 < d j < c j, we have
|u j|> |w j| on B j ∩{xn+1 6= 0}. By the uniqueness of the solution of (6.4) there is
a c j > 0 such that supB1

|Du j|= 1.
Let Γ j(s)= {x∈B j| u j(x)= s}. We claim u j(x′, t)≥ u j(x′,s) for all (x′, t),(x′,s)∈

B j and t > s. If not, without loss of generality there are t1 < t2 < t3 so that
u j(x′, t1)= u j(x′, t2)= τ j < u j(x′, t3). It is not hard to see that there is a closed curve
ϑτ j ⊂ Γ j(τ j) in the half plane {(s,xn+1) ∈ R2| s = |x′| ≥ 0} such that u j(z) > τ j

for every z ∈ U j and U j is a domain in {(s,xn+1) ∈ R2| s = |x′| ≥ 0}, which is
enclosed by ϑτ j . By the symmetry of u j, rotating ϑτ j on x′ = (x1, · · · ,xn) generates
an n-dimensional set Γ̃ j(τ j) ⊂ Γ j(τ j), which encloses a domain Ũ j ⊂ B j. Then
u j(x) > τ j for every x ∈ Ũ j. But this is impossible as graphu j

is area-minimizing.

Hence ∂u j
∂xn+1

≥ 0.
There is a subsequence { j′} of { j} such that u j′ converges to a function u de-

fined on Ω⊂ Σ by varifold convergence, where graphu is also area-minimizing. By
the symmetry of u, we deduce that Ω is symmetric with respect to x1,x2, · · · ,xn, and
Ω is symmetric with respect to xn+1. Clearly, u is smooth, Lu= 0 and limx→∂Ω±\T u(x)=
±∞, where Ω± = Ω∩{±xn=1 > 0}. In particular, Ω− = {(x′,−xn+1)| (x′,xn+1) ∈
Ω+}, u(x′,xn+1) + u(x′,−xn+1) = 0, Du(0) = 0 and supB1

|Du| = 1. Moreover,
u(x′, t)≥ u(x′,s) for all (x′, t),(x′,s) ∈Ω and t > s.

We want to show Ω = Σ. If not, ∂Ω 6= /0 and both of ∂Ω± are area-minimizing
hypersurfaces in Σ. Since also ∂Ω+ is symmetric with respect to x1,x2, · · · ,xn,
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then ∂Ω+ must be a graph on a domain of the half sphere, or else we cannot have
an area-minimizing hypersurface ∂Ω+. If w is the graphic function of ∂Ω+ on
a closed half of unit sphere Sn, and ϕ =

∫ w
1

1
λ (s)ds, then ϕ satisfies the following

elliptic equation (see formula (2.9) in [20] for instance)

(6.6) ∆Sϕ− 1
1+ |∇Sϕ|2

HessSϕ(∇Sϕ,∇Sϕ)−nλ
′(w) = 0,

where ∆S, HessS and ∇S are Laplacian, Hessian and Levi-Civita connection of Sn,
respectively. By the definition of λ and regularity of elliptic equations, ∂Ω+ is a
smooth hypersurface in Σ. 1

r ∂Ω+ is also an area-minimizing hypersurface in 1
r Σ,

then limr→∞
1
r ∂Ω+ will converge to an area-minimizing cone CX over X in CSκ ,

where X is contained in a closed half sphere. Hence X must be an equator and CX
is just a hyperplane T .

Let S = ∂Ω+. The second variation formula implies that there is a Jacobi field
operator LS given by

(6.7) LSh = ∆Sh+
(
|B|2 +RicΣ(ν ,ν)

)
h,

where ∆S, B are the Laplacian and second fundamental form for S relative to the
metric σ , and RicΣ is the Ricci curvature of Σ relative to σ . Let Sn−1 be an (n−1)-
dimensional unit sphere in Rn. Since 1

t S converges to T = R+×κρ Sn−1 as t→ ∞,
in terms of the coordinates (ρ,α) ∈ (0,∞)×Sn−1 we consider

(6.8)

LT h =∆T h+
n−1

ρ2

(
1

κ2 −1
)

h

=
1

ρn−1
∂

∂ρ

(
ρ

n−1 ∂h
∂ρ

)
+

1
κ2ρ2 ∆Sn−1h+

n−1
ρ2

(
1

κ2 −1
)

h

=
1

ρ2

(
ρ

2 ∂ 2

∂ρ2 +(n−1)ρ
∂

∂ρ
+

1
κ2 ∆Sn−1 +(n−1)

(
1

κ2 −1
))

h.

The only positive solutions of LT h = 0 on T are

(6.9) h = c̄1ρ
−λ−+ c̄2ρ

−λ+ ,

where c̄1, c̄2 are constants and λ± =
n−2

2 ±
√

n2

4 −
n−1
κ2 > 0. By [6, 29], the equation

LT w = f0 with | f0| ≤ cρ−2−λ−−δ , δ > 0 has a nonnegative solution

(6.10) w = (c̄3 + c̄4 logρ)ρ−λ−+O(ρ−λ−−δ ′)(δ ′ > 0) as ρ → ∞,

where c̄3, c̄4 are constants, and c̄4 = 0 in case λ+ > λ−, namely, κ > 2
n

√
n−1.

Now we see S as a graph {(x′, f (x′))| x′ ∈ T \K} outside some bounded domain
in (Rn+1,ds2

φ
), where x′ = (x1, · · · ,xn), and

f (x′) =
∫ h(x′)

0
e−

1
2 φ(
√
|x′|2+s2)ds
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with |x′|2 = x2
1+ · · ·+x2

n. Let γρα be a unit normal smooth line in the upper plane of
Σ which corresponds to {(x′,xn+1) ∈Rn+1| xn+1 ≥ 0, x′ = xα} ⊂ (Rn+1,ds2

φ
) with

xα being ρα in the polar coordinate and γρα(0)∈ T . Now S = {γρα(w(ρα))| ρα ∈
T \K}, where w(ρα) = h(x′) if x′ is ρα in the polar coordinate. We can embed iso-
metrically Σ into (n+2)-dimensional Euclidean space, then S is an n-dimensional
submanifold in Rn+2 with mean curvature decaying as O(1

r ). Hence by the Allard
regularity theorem (see [1] or [40]), for any ε > 0 there is a ρ0 > 0 such that

ρ
−1|w(ρα)|+ |∇T w(ρα)| ≤ ε for every ρ ≥ ρ0, α ∈ Sn−1,

where ∇T is the Levi-Civita connection of T with induced metric in CSκ . Since S is
a graph with graphic function f outside a compact set in (Rn+1,ds2

φ
), then the mean

curvature is H = n
2

φ ′(r f )
r f

XN with r f =
√
|x′|2 + f 2(x′), and (· · ·)N is the projection

onto the normal bundle NS, namely, f satisfies (after a simple computation)

(6.11)
n

∑
i, j=1

gi j fi j =
n
2

φ ′

r f

(
−

n

∑
i=1

xi fi + f

)
,

where gi j = δi j + fi f j and (gi j) is the inverse matrix of (gi j). Then by the estimates
(6.10) and the Schauder estimates we obtain

(6.12) r̃−1| f (x′)|+ |∇R f (x′)|+ r̃|∇2
R f (x′)| ≤Cr̃−ε

with r̃ =
√

x2
1 + · · ·+ x2

n and some ε,C > 0, where ∇R is the standard Levi-Civita
connection of Euclidean space. By the definition of w and applying a coordinate
transformation, we deduce

(6.13) ρ
−1|w(ρα)|+ |∇T w(ρα)|+ρ|∇2

T w(ρα)| ≤C′ρ−ε ′

for some ε ′,C′ > 0. In particular, w satisfies (6.10).
The graphu has a unique tangent cone at infinity: a cylinder T ×R. Let Γy =

Γy(u) = {x ∈ Σ| u(x) = y} for any y ∈ R. Since limx→∂Ω±\T u(x) = ±∞ and
u(x′, t) ≥ u(x′,s) for each (x′, t),(x′,s) ∈ Ω and t > s, we deduce dist(Γy2 ,0) ≥
dist(Γy1 ,0) > 0 for |y2| ≥ |y1| and sufficiently large |y1|. Moreover, for any ε > 0
there is y0 = y0(ε) such that Γy is within ε of S for any y≥ y0. Now we use ρω to
represent the element of Σ with metric σ = dρ2 +λ 2(ρ)dθ 2, and claim that
(6.14)
|Du(ρω)| → ∞ as |u(ρω)|+ρ → ∞, (ρ,ω) ∈ ((0,∞)×λ Sn)∩Ω.

If we embed Σ into Rn+2 isometrically, then graphu is an (n+1)-dimensional sub-
manifold in Rn+3 with codimension 2. We check that the Allard regularity the-
orem still works in our case. Invoking elliptic regularity theory, if the minimal
hypersurfaces Mk converge to a cone C in varifold sense, then the convergence
is C2 near regular points of C. For any µk,λk → ∞ it is clear that graphu−µk

=

{(x,u(x)− µk)| x ∈ Σ} converges to S×R ⊂ Σ×R in the varifold sense and
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1
λk

(
graphu−µk

)
converges to T ×R ⊂ CSκ ×R in the varifold sense. So we can

show the above claim by C2 convergence (see also the proof of Theorem 4 in [41]).
Denote T̃ = T ×R. In terms of the coordinates (ρ,α,y) ∈ (0,∞)×Sn−1×R

we can write the operator LT̃ as

(6.15)
LT̃ h =∆T h+

∂ 2h
∂y2 +

n−1
ρ2

(
1

κ2 −1
)

h

=
1

ρn−1
∂

∂ρ

(
ρ

n−1 ∂h
∂ρ

)
+

∂ 2h
∂y2 +

1
κ2ρ2 ∆Sn−1h+

n−1
ρ2

(
1

κ2 −1
)

h.

Let

v(ρ,y) = ρ
λ−

∫
Sn−1

h(ρα,y)dα and f (ρ,y) = ρ
λ−

∫
Sn−1

f̃ (ρα,y)dα

with λ− = n−2
2 −

√
n2

4 −
n−1
κ2 > 0, then LT̃ = f̃ implies that

(6.16) ρ
−1−β ∂

∂ρ

(
ρ

1+β ∂v
∂ρ

)
+

∂ 2v
∂y2 = f

with β = 2
√

n2

4 −
n−1
κ2 . The left of the above equation is a uniform elliptic operator

for ρ ≥ c with any positive constant c.
By the Allard regularity theorem, there are a constant ρ1 > 0 and a domain

G = {(ρα,y)| ρ ≥ ρ1, y ∈ R, ρα ∈ T} ⊂ T ×R= T̃

such that graphu can be written as a graph in G with graphical function W outside
some compact set K̃ in Σ×R. Namely, graphu\K̃ = graphW = {(γρα(W (ρα,y)),y)| ρα ∈
T, ρ ≥ ρ1, y ∈ R} and γρα is defined as before. Similar to (6.13) we have

(6.17) ρ
−1|W (ρα)|+ |∇T̃W (ρα)|+ρ|∇2

T̃W (ρα)| ≤Cρ
−δ

for some δ ,C > 0, where ∇T̃ is the Levi-Civita connection of T̃ with induced metric
in CSκ ×R. Then by Theorem 1 in [41], we obtain for any ε ∈ (0,1)

(6.18) |y|ερ
λ− ∂W

∂y
(ρα,y)≥C2 for all y ∈ R, α ∈ Sn−1, y≥ ρ ≥C1,

where C1,C2 are constants independent of y and ρ . It is clear that

(6.19)
∂W
∂y

(ρα,y) =
1

|Du(ξ )|
where (ρα,y) ∈ G, y = u(ξ ) and ξ = γρα(W (ρα,y)). Fix ρ , we have |Du(ξ )| ≤
C3|u(ξ )|ε with constant C3 depending on ρ . Hence |D(u(ξ ))1−ε)| is bounded when
ξ approaches S in γρα , which contradicts limx→∂Ω±\T u(x) = ±∞. Therefore, we
deduce Ω = Σ, namely, we get a smooth entire minimal graph {(x,u(x))| x ∈ Σ} on
Σ.
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Theorem 6.1. Let Σ be an (n+1)-dimensional Riemannian manifold described in
the front of this section. If n≥ 3 and 2

n

√
n−1≤ κ < 1, then there exists a smooth

entire minimal graph {(x,u(x))| x ∈ Σ} in Σ×R, where u is not a constant.
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