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EFFECTIVITY OF IITAKA FIBRATIONS AND
PLURICANONICAL SYSTEMS OF POLARIZED PAIRS

by CAUCHER BIRKAR and DE-QI ZHANG

ABSTRACT

For every smooth complex projective variety W of dimension d and nonnegative Kodaira dimension, we show
the existence of a universal constant m depending only on d and two natural invariants of the very general fibres of an
Iitaka fibration of W such that the pluricanonical system |mKW| defines an Iitaka fibration. This is a consequence of a
more general result on polarized adjoint divisors. In order to prove these results we develop a generalized theory of pairs,
singularities, log canonical thresholds, adjunction, etc.
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1. Introduction

We work over the complex number field C. However, our results hold over any
algebraically closed field of characteristic zero.

Effectivity of Iitaka fibrations. — Let W be a smooth projective variety of Kodaira
dimension κ(W) ≥ 0. Then by a well-known construction of Iitaka, there is a birational
morphism V → W from a smooth projective variety V, and a contraction V → X onto a
projective variety X such that a (very) general fibre F of V → X is smooth with Kodaira
dimension zero, and dim X is equal to the Kodaira dimension κ(W). The map W ��� X
is referred to as an Iitaka fibration of W, which is unique up to birational equivalence. For
any sufficiently divisible natural number m, the pluricanonical system |mKW| defines an
Iitaka fibration.

When dim W = 2, in 1970, Iitaka [12] proved that if m is any natural number
divisible by 12 and m ≥ 86, then |mKW| defines an Iitaka fibration (Fabrizio Catanese
informed us that Iitaka proved this result for compact complex surfaces but the algebraic
case goes back to Enriques). It has since been a question whether something similar holds
in higher dimension. More precisely (cf. [8]):
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Conjecture 1.1 (Effective Iitaka fibration). — Let W be a smooth projective variety of dimension

d and Kodaira dimension κ(W) ≥ 0. Then there is a natural number md depending only on d such that

the pluricanonical system |mKW| defines an Iitaka fibration for any natural number m divisible by md .

In this paper, we show a version of the conjecture as formulated in [24, Ques-
tion 0.1] holds, that is, by assuming that some invariants of the very general fibres of
the Iitaka fibration are bounded. Without these extra assumptions the above conjecture
seems out of reach at the moment because most likely one needs the abundance conjec-
ture to deal with the very general fibres. For example, when κ(W) = 0, the conjecture
is equivalent to the effective nonvanishing h0(W,mdKW) �= 0 which is obviously related
to the abundance conjecture. Note that there is also a log version of the conjecture for
pairs: see [11, Conjecture 1.2, Theorem 1.4] and the references therein, where the au-
thors confirmed this log version when the boundary divisor is big over the generic point
of the base of the log Iitaka fibration.

We recall some definitions before stating our result. Using the notation above, let
W be a smooth projective variety of Kodaira dimension κ(W) ≥ 0 and V → X an Iitaka
fibration from a resolution V of W. For a very general fibre F of V → X, let

bF := min{u ∈ N | |uKF| �= ∅}.
Let ˜F be a smooth model of the Z/(bF)-cover of F ramified over the unique divisor in
|bFKF|. Then ˜F still has Kodaira dimension zero, but with |K

˜F| �= ∅. Note that

dim˜F = dim F = dim W − dim X = dim W − κ(W)

and we denote this number by dF. We call the Betti number

βF̃ := dim HdF(F̃,C)

the middle Betti number of ˜F.

Theorem 1.2. — Let W be a smooth projective variety of dimension d and Kodaira dimension

κ(W) ≥ 0. Then there is a natural number m(d, bF, β˜F) depending only on d, bF and β
˜F such that the

pluricanonical system |mKW| defines an Iitaka fibration whenever the natural number m is divisible by

m(d, bF, β˜F).

The theorem is an almost immediate consequence of 1.3 below. The proof is given
at the end of Section 8. When X is of general type, the numbers bF, β˜F do not play any
role so m(d, bF, β˜F) depends only on d .

Here is a brief history of partial cases of Theorem 1.2:
• when dim W = 2 [12],
• when κ(W) = 1 [7],
• when W is of general type [8, 21] (see also [23]),
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EFFECTIVITY OF IITAKA FIBRATIONS

• when κ(W) = 2 [24] (see also [22]),
• when dim W = 3 [7, 8, 14, 21, 24] (see also [6]),
• when X is non-uniruled, V → X has maximal variation and its general fibres

have good minimal models [19] (see also [5]),
• when V → X has zero variation and its general fibres have good minimal models

[13].
Note that the above references show that Conjecture 1.1 holds when dim W ≤ 3.

Effective birationality for polarized pairs of general type. — Let W be a smooth projective
variety of nonegative Kodaira dimension. After replacing W birationally we can assume
the Iitaka fibration W → X is a morphism. Applying the canonical bundle formula of
[7] (which is based on [16]), perhaps after replacing W and X birationally, there is a Q-
boundary B and a nef Q-divisor M on X such that for any natural number m divisible by
bF we have a natural isomorphism between H0(W,mKW) and H0(X,m(KX + B + M)).
In particular, if |m(KX + B + M)| defines a birational map, then |mKW| defines an Iitaka
fibration. Moreover, the coefficients of B belong to a DCC set and the Cartier index of
M is bounded in terms of bF and β

˜F. Therefore we can derive Theorem 1.2 from the next
result.

Theorem 1.3. — Let � be a DCC set of nonnegative real numbers, and d, r natural numbers.

Then there is a natural number m(�, d, r) depending only on �, d, r such that if:

(i) (X,B) is a projective lc pair of dimension d,

(ii) the coefficients of B are in �,

(iii) rM is a nef Cartier divisor, and

(iv) KX + B + M is big,

then the linear system |m(KX + B + M)| defines a birational map if m ∈ N is divisible by m(�, d, r).

We call (X,B+M) a polarized pair. When M = 0, the theorem is [10, Theorem 1.3].
Note that for an R-divisor D, by |D| and H0(X,D) we mean |	D
| and H0(X, 	D
).

Generalized polarized pairs. — In order to prove Theorem 1.3 we need to generalize
the definitions of pairs, singularities, lc thresholds, adjunction, etc. We develop this theory,
which is of independent interest, in some detail in Section 4 but for now we only give the
definition of generalized polarized pairs.

Definition 1.4. — A generalized polarized pair consists of a normal variety X′ equipped

with projective morphisms X
f→ X′ → Z where f is birational and X is normal, an R-boundary B′,

and an R-Cartier divisor M on X which is nef /Z such that KX′ + B′ + M′ is R-Cartier, where

M′ := f∗M. We call B′ the boundary part and M the nef part.
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Note that the definition is flexible with respect to X,M. To be more precise, if
g : Y → X is a projective birational morphism from a normal variety, then there is no
harm in replacing X with Y and replacing M with g∗M.

For us the most interesting case is when M = ∑

μjMj where μj ≥ 0 and Mj are
nef /Z Cartier divisors. In many ways B′ +M′ behaves like a boundary, that is, it is as if the
M′

j were components of the boundary with coefficient μj . Although the coefficients of B′
i

belong to the real interval [0,1] the coefficients μj are only assumed to be nonnegative.
Moreover, the Mj are not necessarily distinct. See Section 4 for more details.

When X → X′ is the identity morphism, we recover the definition of polarized
pairs which was formally introduced in [4] but appeared earlier in the subadjunction
formula of [16]. If moreover M = 0, then (X′,B′) is just a pair in the traditional sense.

ACC for generalized lc thresholds. — The next result shows that the generalized lc
thresholds satisfy ACC under suitable assumptions. We suggest the reader looks at Defi-
nitions 4.1 and 4.3 before continuing.

Theorem 1.5. — Let � be a DCC set of nonnegative real numbers and d a natural number.

Then there is an ACC set � depending only on �, d such that if (X′,B′ + M′), M, N, and D′ are

as in Definition 4.3 satisfying

(i) (X′,B′ + M′) is generalized lc of dimension d,

(ii) M = ∑

μjMj where Mj are nef /Z Cartier divisors and μj ∈ �,

(iii) N = ∑

νkNk where Nk are nef /Z Cartier divisors and νk ∈ �, and

(iv) the coefficients of B′ and D′ belong to �,

then the generalized lc threshold of D′ + N′ with respect to (X′,B′ + M′) belongs to �.

Note that the theorem is a local statement over X′, so Z does not play any role and
we could simply assume X′ → Z is the identity map.

When X → X′ is the identity map, M = 0, and N = 0, the theorem is the usual
ACC for lc thresholds [10, Theorem 1.1].

Global ACC. — The proof of the previous result requires the following global ACC.
We will also use this to bound pseudo-effective thresholds (Theorem 8.1) which is in turn
used in the proof of Theorem 1.3.

Theorem 1.6. — Let � be a DCC set of nonnegative real numbers and d a natural number. Then

there is a finite subset �0 ⊆ � depending only on �, d such that if (X′,B′ + M′), X → X′ → Z
and M are as in Definition 1.4 satisfying

(i) (X′,B′ + M′) is generalized lc of dimension d,

(ii) Z is a point,
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(iii) M = ∑

μjMj where Mj are nef Cartier divisors and μj ∈ �,

(iv) μj = 0 if Mj ≡ 0,

(v) the coefficients of B′ belong to �, and

(vi) KX′ + B′ + M′ ≡ 0,

then the coefficients of B′ and the μj belong to �0.

When X → X′ is the identity map and M = 0, the theorem is [10, Theorem 1.5].

About this paper. — It is not hard to reduce Theorems 1.3 and 1.5 to Theorem 1.6.
So most of the difficulties we face have to do with 1.6. Since the statement of Theo-
rems 1.3, 1.5, and 1.6 involve nef divisors which may not be semi-ample (or effectively
semi-ample), there does not seem to be any easy way to reduce them to the traditional
versions (i.e. without nef divisors) proved in [10] or to mimic the arguments in [10]. In-
stead we need to develop new ideas and arguments and this occupies much of this paper.

We briefly explain the organization of the paper. In Section 3, we prove a special
case of Theorem 1.3 (Proposition 3.4) by closely following [10]. In Section 4, we introduce
generalized singularities and generalized lc thresholds, discuss the log minimal model pro-
gram for generalized polarized pairs, and treat generalized adjunction. In Section 5, we
give bounds, both in the local and global situations, on the numbers of components in
the boundary and nef parts of generalized polarized pairs, under appropriate assump-
tions. These bounds will be used in the proof of Proposition 7.2 which serves as the key
inductive step toward the proof of Theorem 1.6. In Section 6, we reduce Theorem 1.5
to Theorem 1.6 in lower dimension by adapting a standard argument. In Section 7, we
treat Theorem 1.6 inductively where we apply Proposition 3.4; a sketch of the main ideas
is included below in this introduction. In Section 8, we give the proofs of our main results.
Theorems 1.5 and 1.6 follow immediately from Sections 6 and 7. To prove Theorem 1.3,
we use Theorem 1.6 to bound certain pseudo-effective thresholds (Theorem 8.1) and use
the concept of potential birationality [10] to reduce to the special case of Proposition 3.4.
Finally, we extend Theorem 1.3 to allow more general coefficients in the nef part of the
pair (see Theorem 8.2), and deduce Theorem 1.2 from Theorem 1.3 as in [7, 24].

A few words about the proof of Theorem 1.6. — We try to explain, briefly, some of the
ideas used in the proof of 1.6. By [10, 1.5] we can assume M �≡ 0. The basic strategy is to
modify (X′,B′ +M′) so that the nef part has one less coefficient μj and then repeat this to
reach the case M = 0. Running appropriate LMMP’s we can reduce the problem to the
case when X′ is a Q-factorial klt Fano variety with Picard number one. Moreover, some
lengthy arguments show that the number of the μj is bounded (Section 5). If (X′,B′ +M′)
is not generalized klt, one can do induction: for example if 	B′
 �= 0, then we let S′ be the
normalization of a component of 	B′
 and use generalized adjunction (see Definition 4.7)
to write

KS′ + BS′ + MS′ = (

KX′ + B′ + M′)∣
∣

S′
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and apply induction to the generalized lc polarized pair (S′,BS′ +MS′). So we can assume
(X′,B′ + M′) is generalized klt.

Although we cannot use the arguments of [10] to prove Theorem 1.6 but there
is an exception: if we take n ∈ N to be sufficiently large, then following [10] closely one
can show that there is m ∈ N depending only on �, d such that |m(KX + B + ∑

nMj|)|
defines a birational map (Proposition 3.4) where B is the sum of the birational transform
of B′ and the reduced exceptional divisor of X → X′. One can then show that there is an
R-divisor D such that

0 ≤ D ∼R KX + B +
∑

nMj

where the coefficients of D belong to some DCC set depending only on �, d . Then the
pushdown D′ of D satisfies

D′ ∼R KX′ + B′ +
∑

nM′
j ≡

∑

(n − μj)M′
j ≡ ρM′

1

for some number ρ. Changing the indexes one can assume that ρ belongs to some ACC
set depending only on �, d . Let N = M − μ1M1. Now the idea is to take s, t, with s

maximal, so that

KX′ + B′ + sD′ + N′ + tM′
1 ≡ KX′ + B′ + M′

and that (X′,B′ + sD′ + N′ + tM′
1) is generalized lc. If it happens to have t = 0, then s

would belong to some DCC set and we can replace B′ with B′ + sD′ and replace M with
N which has one less summand, and repeat the process. But if t > 0, then (X′,B′ + sD′ +
N′ + tM′

1) is generalized lc but not generalized klt. We cannot simply apply induction
because the s, t may not belong to a DCC set. For simplicity assume 	B′ + sD′
 �= 0 and
let S′ be one of its components and assume S′ is normal. The idea is to keep S′ but to
remove the other components of D′ and increase t instead so that we get

KX′ + B′ + s̃S′ + N′ + t̃M′
1 ≡ KX′ + B′ + M′

for some s̃ and t̃ ≥ t where S′ is a component of 	B′ + s̃S′
. Now it turns out t̃ belongs to
some DCC set and we can apply induction by restricting to S′.

2. Preliminaries

Notation and terminology. — All the varieties in this paper are quasi-projective over C
unless stated otherwise. For definitions and basic properties of singularities of pairs such
as log canonical (lc), Kawamata log terminal (klt), divisorially log terminal (dlt), purely log
terminal (plt), and the log minimal model program (LMMP) we refer to [18]. We recall
some notation:
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EFFECTIVITY OF IITAKA FIBRATIONS

• The sets of natural, integer, rational, and real numbers are respectively denoted
as N,Z,Q,R.

• Divisors on normal varieties are always Weil R-divisors unless otherwise stated.
• Let X → Z be a projective morphism from a normal variety. Linear equivalence, Q-

linear equivalence, R-linear equivalence, and numerical equivalence over Z, between two
R-divisors D1,D2 on X are respectively denoted as D1 ∼ D2/Z, D1 ∼Q D2/Z,
D1 ∼R D2/Z, and D1 ≡ D2/Z. If Z is a point, we usually drop the Z.

• If φ : X ��� X′ is a birational morphism whose inverse does not contract divi-
sors, and D is an R-divisor on X, we usually write D′ for φ∗D. If X′ is replaced
by X′′ (resp. Y) we usually write D′′ (resp. DY) for φ∗D.

• Let X,Y be normal varieties projective over some base Z, and φ : X ��� Y a
birational map/Z whose inverse does not contract any divisor. Let D be an R-
Cartier divisor on X such that DY is also R-Cartier. We say φ is D-negative if there
is a common resolution g : W → X and h : W → Y such that E := g∗D− h∗DY is
effective and exceptional/Y, and Supp g∗E contains all the exceptional divisors
of φ.

ACC and DCC sets. — A sequence {ai} of numbers is increasing (resp. strictly increasing)
if ai ≤ ai+1 (resp. ai < ai+1) for all i. The definition of a decreasing or strictly decreasing
sequence is similar. A set � of real numbers satisfies DCC (descending chain condition)
if it does not contain a strictly decreasing infinite sequence. A set 	 of real numbers
satisfies ACC (ascending chain condition) if it does not contain a strictly increasing infinite
sequence.

Lemma 2.1. — Let � and 	 be sets of nonnegative real numbers. Define

� + 	 = {a + b | a ∈ �, b ∈ 	}
and

� · 	 = {ab | a ∈ �, b ∈ 	}.
Then the following hold:

(1) If � and 	 are both ACC sets (resp. DCC sets), then �+	 and � ·	 are also ACC sets

(resp. DCC sets).

(2) Let {ai} ⊆ � and {bi} ⊆ 	 be sequences of numbers. Assume that both sequences are

increasing and that one of them is strictly increasing. Then the sequences {ai + bi} and {aibi} are strictly

increasing.

(3) A statement similar to (2) holds if we replace ‘increasing’ by ‘decreasing’.

(4) Let m, l ∈ N. Assume that � is a DCC set and that a ≤ l for every a ∈ �. Then the set

{〈ma〉 | a ∈ �} also satisfies DCC, where 〈ma〉 := ma − 	ma
, that is, the fractional part of ma.

Proof. — The proof is left to the reader. �
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Lemma 2.2. — Let d, r be natural numbers. Let Xi be a sequence of normal projective varieties

of dimension d and Picard number one. Assume that D1,i, . . . ,Dr,i are nonzero R-Cartier divisors on

Xi . Let λj,i be the numbers such that Dj,i ≡ λj,iD1,i . Then possibly after replacing the sequence with an

infinite subsequence and rearranging the indexes, the sequence λj,i is a decreasing sequence for each j.

Proof. — Let ρj,k,i be the numbers such that Dj,i ≡ ρj,k,iDk,i . Replacing the sequence
we may assume that for each j, k the sequence ρj,k,i is increasing or decreasing. If ρj,k,i is
decreasing we write j � k. This relation is associative, that is, if j � k and k � l, then
j � l because ρj,l,i = ρj,k,iρk,l,i . So we can order the sequences of divisors according to
this relation. Changing the indexes we may assume that r � · · · � 1 which in particular
means that the λj,i = ρj,1,i form a decreasing sequence for each j. �

Minimal models and Mori fibre spaces. — Let X → Z be a projective morphism of
normal varieties and D an R-Cartier divisor on X. A normal variety Y projective over
Z together with a birational map φ : X ��� Y/Z whose inverse does not contract any
divisor is called a minimal model of D over Z if:

(1) Y is Q-factorial,
(2) DY = φ∗D is nef /Z, and
(3) φ is D-negative.
If one can run an LMMP on D over Z which terminates with a Q-factorial model

Y on which DY is nef /Z, then Y is a minimal model of D over Z.
On the other hand, we call Y a Mori fibre space of D over Z if Y satisfies the above

conditions with condition (2) replaced by:
(2)′ there is an extremal contraction Y → T/Z such that −DY is ample/T.
In practice, we consider minimal models and Mori fibre space for KX′ + B′ + M′

where (X′,B′ + M′) is a generalized polarized pair.

Some notions and results of [10]. — For convenience we recall some technical notions
and results of [10] which will be used in Section 3.

Let X be a normal projective variety, and let D be a big Q-Cartier Q-divisor
on X. We say that D is potentially birational [10, Definition 3.5.3] if for any pair x and y of
general points of X, possibly switching x and y, we can find 0 ≤ � ∼Q (1 − ε)D for some
0 < ε < 1 such that (X,�) is not klt at y but (X,�) is lc at x and {x} is a non-klt centre.

Theorem 2.3 [10, Theorem 3.5.4]. — Let (X,B) be a klt pair, where X is projective of

dimension d, and let H be an ample Q-divisor. Suppose there exist a constant γ ≥ 1 and a family

V → C of subvarieties of X with the following property: if x and y are two general points of X then,

possibly switching x and y, we can find c ∈ C and 0 ≤ �c ∼Q (1 − δ)H, for some δ > 0, such

that (X,B + �c) is not klt at y and there is a unique non-klt place of (X,B + �c) whose centre Vc

contains x. Further assume there is a divisor D on W, the normalization of Vc, such that the linear system

|D| defines a birational map and γ H|W − D is pseudo-effective. Then mH is potentially birational,

where m = 2p2γ + 1 and p = dim Vc.
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Theorem 2.4 [10, Theorem 4.2]. — Let � be a subset of [0,1] which contains 1. Let X be a

projective variety of dimension d, and let V be a subvariety, with normalization W. Suppose we are given

an R-boundary B and an R-Cartier divisor G ≥ 0, with the following properties:

(1) the coefficients of B belong to �;

(2) (X,B) is klt; and

(3) there is a unique non-klt place ν for (X,B + G), with centre V.

Then there is an R-boundary BW on W whose coefficients belong to

{

a |1 − a ∈ LCTd−1

(

D(�)
)} ∪ {1}

such that the difference

(KX + B + G)|W − (KW + BW)

is pseudo-effective.

Now suppose that V is the general member of a covering family of subvarieties of X. Let ψ :
U → W be a log resolution of (W,BW), and let BU be the sum of the birational transform of BW and

the reduced exceptional divisor of ψ . Then

KU + BU ≥ (KX + B)|U.

The notation |W and |U mean pullback to W and U respectively.

Remark 2.5. — Assume that the � in 2.4 satisfies DCC. Then the hyperstandard
set D(�) also satisfies DCC, hence the set of lc thresholds LCTd−1(D(�)) satisfies ACC
by the ACC for usual lc thresholds [10, Theorem 1.1]. Therefore, the set

{

a |1 − a ∈ LCTd−1

(

D(�)
)} ∪ {1}

to which the coefficients of BU belong, also satisfies DCC.

3. Effective birationality of K + B + nM

In this section, following [10] closely, we prove a special case of Theorem 1.3
(see 3.4) which will be used in Sections 7 and 8 in proving Theorems 1.6 and 1.3. This
special case concerns effective birationality for big divisors of the form KX + B + nM
where (X,B) is projective lc, rM is nef and Cartier, and n/r is large enough. Running an
LMMP on KX + B + nM preserves the nef and Cartier properties of rM by boundedness
of length of extremal rays [15] which allows one to apply the methods of [10]. In contrast
if one runs an LMMP on KX + B + M, the nef and Cartier properties of rM may be lost,
hence one needs to consider generalized polarized pairs which will be discussed in later
sections.

First we prove a few lemmas.
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Lemma 3.1. — Let X be a normal projective variety, D a big Q-Cartier Q-divisor, and G a

nef Q-Cartier Q-divisor on X. If D is potentially birational, then D + G is also potentially birational.

In particular, |KX + �D + G�| defines a birational map.

Proof. — Write D ∼Q A + B with B effective and A ample. By definition, for any
pair x, y ∈ X of general points, possibly after switching x, y, there exist ε ∈ (0,1) and a
Q-divisor 0 ≤ � ∼Q (1 − ε)D such that (X,�) is not klt at y but it is lc at x and {x} is a
non-klt centre. Now if ε ′ ∈ (0, ε) is rational, then we can find

0 ≤ �′ ∼Q � + (

ε − ε ′)B + (

ε − ε ′)A + (

1 − ε ′)G ∼Q

(

1 − ε ′)(D + G)

so that (X,�′) satisfies the same above properties as (X,�) at x, y. So D+G is potentially
birational. To get the last claim, just apply [9, Lemma 2.3.4 (1)]. �

Lemma 3.2. — Let � be a DCC set of nonnegative real numbers, and d, r natural numbers.

Then there is a real number t ∈ (0,1) depending only on �, d, r such that if:

• (X,B) is projective lc of dimension d,

• the coefficients of B are in �,

• rM is a nef Cartier divisor, and

• KX + B + M is a big divisor,

then KX + tB + nM is a big divisor for any natural number n > 2rd.

Proof. — Since M is nef, it is enough to treat the case n = 2rd + 1. We can assume
1 ∈ �. Let (X,B) and M be as in the statement of the lemma. Let f : W → X be a
log resolution and let BW be the sum of the birational transform of B and the reduced
exceptional divisor of f , and let MW be the pullback of M. Then we can replace (X,B)

with (W,BW) and replace MW with M hence it is enough to only consider log smooth
pairs.

We want to argue that, after extending � if necessary, it is enough to only consider
the case when (X,B) is klt. If the lemma does not hold, then there is a sequence (Xi,Bi),
Mi of log smooth lc pairs and nef Q-divisors satisfying the assumptions of the lemma but
such that the pseudo-effective thresholds

bi = min{a ≥ 0 | KXi
+ aBi + nMi is pseudo-effective}

is a strictly increasing sequence of numbers approaching 1. Now by extending � and
decreasing the coefficients in Bi which are equal to 1, we can assume that (Xi,Bi) are
klt. To get a contradiction it is obviously enough to only consider this sequence hence we
only need to consider the klt case.

Now let (X,B) and M be as in the statement of the lemma where we assume
(X,B) is log smooth klt. Let b be the pseudo-effective threshold as defined above. We
may assume b > 0. By Lemma 4.4(2) below, we can run an LMMP on KX + bB + nM
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which ends with a minimal model X′ on which KX′ + bB′ + nM′ is semi-ample defining a
contraction X′ → T′. Since b > 0, a general fibre of X′ → T′ is positive-dimensional and
the restriction of B′ to it is big, by the bigness of KX′ + B′ + nM′ and the definition of b.
So relying on Lemma 4.4(2) once more, we can also run an LMMP/T′ on KX′ + nM′

with scaling of bB′ which terminates with a Mori fibre space. Denote the end result again
by X′ and the Mori fibre space structure by X′ → S′. By Lemma 4.4(3), both LMMP’s
are M-trivial and hence the Cartier and nefness of rM is preserved in the process. Now
since KX′ + bB′ + nM′ ≡ 0/S′ and since n > 2rd , M′ ≡ 0/S′ by boundedness of length of
extremal rays [15]. In particular, if F′ is a general fibre of X′ → S′, then

KF′ + �′ := (

KX′ + bB′)∣
∣

F′ ≡
(

KX′ + bB′ + nM′)∣
∣

F′ ∼R 0.

By construction, (KX′ + B′ + M′)|F′ is big and M′|F′ ≡ 0, so B′|F′ is not zero and its coeffi-
cients belong to �. Therefore, b is bounded away from 1 otherwise we get a contradiction
with the ACC property of [10, Theorem 1.5]. Thus there is t0 ∈ (0,1) depending only
on �, d, r such that KX + t0B + nM is pseudo-effective. Now take t = t0+1

2 . �

We should point out that although we have used (and continue to use) Lemma 4.4
but its proof does not rely on any of the results of this section.

Lemma 3.3. — Let X be a normal projective variety, L a big R-divisor, and M a nef Q-divisor

which is not numerically trivial. Then vol(L + nM) goes to ∞ as n goes to ∞.

Proof. — We may write L ∼R A + D where A is ample Q-Cartier and D ≥ 0. Thus

vol(L + nM) ≥ vol(A + nM) ≥ nνAd−ν · Mν

where d = dim X and ν is the numerical dimension of M. Since A is ample and ν > 0,
Ad−ν · Mν > 0. Hence the above volume goes to infinity as n goes to infinity. �

Proposition 3.4. — Let � ⊂ [0,1] be a DCC set of nonnegative real numbers and let d, r be

natural numbers. Then there exists a natural number m depending only on �, d, r such that if:

• n is a natural number satisfying n > 2rd and r|n,

• (X,B) is projective lc of dimension d,

• the coefficients of B are in �,

• rM is a nef Cartier divisor, and

• KX + B + M is a big divisor,

then |m(KX + B + nM)| defines a birational map.

Proof. — Step 1. We prove the proposition by induction on d . In particular, we may
assume that the proposition holds in dimension < d .
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Fix β > 0. Pick (X,B), M, and n as in the proposition. Assume that vol(KX + B +
nM) > β . We first prove the result for such (X,B), M, and n. At the end, in Steps 6 and
7, we treat the general case.

As in the proof of Lemma 3.2, by extending �, by taking a log resolution of (X,B),
and by decreasing the coefficients of B, we can assume that (X,B) is klt.

Step 2. By Lemma 3.2, KX + bB + nM is big for some b ∈ (0,1) depending only on
�, d, r. Thus

vol
(

KX + 1
2
(b + 1)B + nM

)

= vol
(

1
2
(KX + bB + nM + KX + B + nM)

)

> vol
(

1
2
(KX + B + nM)

)

>
1
2d

β.

Replacing b by 1
2(b + 1) we may assume that

vol(KX + bB + nM) > β ′ := 1
2d

β.

Moreover, there exists a natural number p depending only on � and b (and hence only
on �, d, r) and there exists a boundary B′ such that pB′ is an integral divisor and bB ≤
B′ ≤ B: this follows from the fact that we can find p so that λ − bλ > 1

p
for every nonzero

λ ∈ � which in turn implies that for each λ we can find an integer 0 ≤ i ≤ p such that
bλ ≤ i

p
≤ λ. By the calculation above, vol(KX + B′ + nM) > β ′. Replacing B with B′, and

β with β ′, we can assume � = {i/p | 0 ≤ i ≤ p} and that pB is integral.

Step 3. Applying Lemma 4.4(2) below, we can replace X with the lc model (= ample
model) of KX + B + nM so that we can assume that KX + B + nM is ample keeping rM
nef and Cartier. Since vol(KX +B+nM) > β , there is a natural number k > 0 depending
only on d, β , such that

vol
(

k(KX + B + nM)
)

> (2d)d .

Applying [10, Lemma 7.1] to the log pair (X,B) and the big divisor k(KX + B + nM),
we get a covering family V → C of subvarieties of X such that if x and y are two general
points of X, then we may find c ∈ C and

0 ≤ �c ∼R k(KX + B + nM)

such that (X,B + �c) is not klt at y but it is lc at x and there is a unique non-klt place of
(X,B + �c) whose centre is equal to Vc which contains x.
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Step 4. Let H := 2k(KX +B+nM). In this step we make the necessary preparations
in order to apply [10, Theorem 3.5.4] (= Theorem 2.3 above). To do this we need to find
a natural number γ , depending only on �, d, r, and find a divisor D on the normalization
W of Vc such that γ H|W − D is pseudo-effective and |D| defines a birational map.

If dim W = dim Vc = 0, then γ,D exist trivially (and H is potentially birational).
So assume that dim W ≥ 1. Now applying the adjunction formula of [10, Theorem 4.2]
(= Theorem 2.4 above) to the klt pair (X,B) and the divisor �c, and taking into account
Remark 2.5, we can find a boundary BW on W whose coefficients belong to a DCC set
�′ uniquely determined by �, d , such that the difference

(∗) (KX + B + �c)|W − (KW + BW)

is a pseudo-effective divisor. Further, let ψ : U → W be a log resolution of (W,BW) and
let BU be the sum of the strict transform of BW and the reduced exceptional divisor of ψ .
Then

KU + BU ≥ (KX + B)|U.

Denote by MU := M|U, the pullback of M to U, by the composition

U → W → Vc ↪→ X

which is birational onto its image. Then

KU + BU + MU ≥ (KX + B + M)|U.

Hence KU + BU + MU is big because (KX + B + M)|U is big being the pullback of the
big divisor KX + B + M to a smooth model of the general subvariety Vc.

Since the coefficients of BU belong to the DCC set �′, since rMU is a nef Cartier
divisor, and since n > 2rd , the induction hypothesis implies that |m(KU + BU + nMU)|
defines a birational map for some m > 0 depending only on �′ (and hence on �) and
d, r. Thus |m(KW + BW + nMW)| also defines a birational map since it contains the direct
image of |m(KU + BU + nMU)| where MW denotes the pullback of M to W.

Note that the difference

(KX + B + nM + �c)|W − (KW + BW + nMW)

∼R (k + 1)(KX + B + nM)|W − (KW + BW + nMW)

is a pseudo-effective divisor by (∗) above. Now let D := m(KW + BW + nMW) and let γ

be the smallest natural number satisfying γ ≥ m(k + 1)/2k. Then γ H|W − D is a pseudo-
effective divisor and |D| defines a birational map as required.

Step 5. By Step 4 and Theorem 2.3,

m′H = 2m′k(KX + B + nM)
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is potentially birational for some

m′ ≤ 2(d − 1)2γ + 1.

Thus by Lemma 3.1,

2m′kp(KX + B + nM) + nM

is also potentially birational and
∣

∣KX + ⌈

2m′kp(KX + B + nM) + nM
⌉∣

∣

defines a birational map where p is as in Step 2 (recall that pB is an integral divisor). Since

KX + ⌈

2m′kp(KX + B + nM) + nM
⌉ ≤ ⌊(

2m′kp + 1
)

(KX + B + nM)
⌋

the linear system
∣

∣

⌊(

2m′kp + 1
)

(KX + B + nM)
⌋∣

∣

also defines a birational map. Now the number m′′ := 2m′kp+1 only depends on the data
�, d, r, β .

Step 6. Now we go back to Step 1. We will show that there exist a natural number q

and a real number α > 0 depending only on �, d, r, such that if (X,B), M, n are as in the
statement of the proposition and if n ≥ q, then vol(KX + B + nM) > α. If this is not true,
then we can find a sequence (Xi,Bi), Mi , ni satisfying the assumptions of the proposition
such that the ni form a strictly increasing sequence approaching ∞ and the vol(KXi

+
Bi +niMi) approach 0. By replacing Xi with a minimal model of KXi

+Bi +niMi , we may
assume that KXi

+ Bi + niMi is nef. We can also assume that ν, the numerical dimension
of Mi , is independent of i. We may assume ν > 0 otherwise we can get a contradiction
using [10, Theorem 1.3].

By Lemma 3.3, for each i, there is n′
i the largest natural number divisible by r such

that vol(KXi
+ Bi + n′

iMi) < 1. We show that the volume vol(KXi
+ Bi + (2n′

i − 1)Mi) is
bounded from above. This follows from

2d > vol
(

2
(

KXi
+ Bi + n′

iMi

))

= vol
(

KXi
+ Bi +

(

2n′
i − 1

)

Mi + KXi
+ Bi + Mi

)

> vol
(

KXi
+ Bi +

(

2n′
i − 1

)

Mi

)

where we use the assumption that KXi
+ Bi + Mi is big.

On the other hand, since

vol
((

KXi
+ Bi +

(

n′
i + r

)

Mi

)) ≥ 1,
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by Steps 2–5 above, we may assume that there is an m′′ depending only on �, d, r such
that

∣

∣m′′(KXi
+ Bi +

(

n′
i + r

)

Mi

)∣

∣

defines a birational map for every i. In particular, there exist resolutions fi : Yi → Xi such
that

Pi := f ∗
i m′′(KXi

+ Bi +
(

n′
i + r

)

Mi

) ∼ Hi + Gi

where Hi is big and base point free and Gi is effective. So we can calculate

2d
(

m′′)d
> vol

(

m′′(KXi
+ Bi +

(

2n′
i − 1

)

Mi

))

= (

Pi + m′′(n′
i − r − 1

)

f ∗
i Mi

)d ≥ (

m′′(n′
i − r − 1

))ν
Hd−ν

i · f ∗
i Mν

i

which gives a contradiction as lim(n′
i − r − 1) = ∞ and Hd−ν

i · f ∗
i Mν

i ≥ 1
rν

.

Step 7. Let q, α be as in Step 6. In this step we show that there is β > 0 depending
only on �, d, r such that vol(KX + B + nM) > β for any (X,B), M, n as in the statement
of the proposition. We may assume q > n otherwise we can use Step 6. Let s = n−1

q−1 . Then

vol(KX + B + nM) = vol
(

(1 − s)(KX + B + M) + s(KX + B + qM)
)

≥ sd vol(KX + B + qM) > sdα ≥ α

(q − 1)d
=: β.

This completes the proof of the proposition. �

4. Generalized polarized pairs

In this section, we define generalized lc and klt singularities, discuss some of their
basic properties, and then define generalized lc thresholds for generalized polarized pairs.
Next we consider running the log minimal model program for these pairs, and use it to
extract divisors with generalized log discrepancy <1. Then we define generalized adjunc-
tion and discuss DCC and ACC properties of coefficients in the boundary and nef parts
of generalized polarized pairs under this adjunction.

Generalized singularities. — We already defined generalized polarized pairs in the in-
troduction. Now we define their singularities.

Definition 4.1. — Let (X′,B′ + M′) be a generalized polarized pair as in 1.4 which comes

with the data X
f→ X′ → Z and M. Let E be a prime divisor on some birational model of X′. We
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define the generalized log discrepancy of E with respect to the above generalized polarized pair as

follows. After replacing X, we may assume E is a prime divisor on X. We can write

KX + B + M = f ∗(KX′ + B′ + M′)

for some R-divisor B. The generalized log discrepancy of E is defined to be 1− b where b is the coefficient

of E in B.

We say that (X′,B′ + M′) is generalized lc (resp. generalized klt) if the generalized log

discrepancy of any prime divisor is ≥ 0 (resp. > 0). If f is a log resolution of (X′,B′), then generalized

lc (resp. generalized klt) is equivalent to the coefficients of B being ≤ 1 (resp. < 1). If the generalized log

discrepancy of E is ≤ 0, we call the image of E in X′ a generalized non-klt centre. If (X′,B′+M′)
is generalized lc, a non-klt centre is also referred to as a generalized lc centre.

Remark 4.2. — We use the notation of 4.1.
(1) Note that Z does not play any role in the definition of singularities. That is

because singularities are local in nature over X′, so one can simply assume X′ → Z is the
identity map. The same applies to generalized lc thresholds defined below (4.3) and in
general to notions and statements that are local.

(2) Assume that (X′,B′ + M′) is generalized klt. Let D′ be an effective R-Cartier
divisor. Then from the definitions we can easily see that (X′,B′ +εD′ +M′) is generalized
klt with boundary part B′ + εD′ and nef part M, for any small ε > 0.

Now assume that D′ is ample/Z. Then for any a > 0 we can find a boundary

�′ ∼R B′ + aD′ + M′/Z

such that (X′,�′) is klt.
(3) Assume that KX′ + B′ is R-Cartier and write KX + B̃ = f ∗(KX′ + B′) and

f ∗M′ = M + E. By the negativity lemma [20, Lemma 1.1], E ≥ 0. Thus B = B̃ + E ≥ B̃.
Therefore, if (X′,B′ + M′) is generalized lc (resp. generalized klt), then (X′,B′) is lc (resp.
klt).

(4) Assume that M ∼R 0/X′. Then (X′,B′ +M′) is generalized lc (resp. generalized
klt) iff (X′,B′) is generalized lc (resp. generalized klt). Indeed in this case M = f ∗M′ hence
KX + B = f ∗(KX′ + B′) which implies the claim. In this situation M′ does not contribute
to the singularities even if its coefficients are large. In contrast, the larger the coefficients
of B, the worse the singularities.

(5) In general, M does contribute to singularities. For example, assume X′ = P2

and that f is the blowup of a point x′. Let E be the exceptional divisor, L′ a line passing
through x′ and L the birational transform of L′.

If B′ = 0 and M = 2L, then we can calculate B = E hence (X′,B′ + M′) is gener-
alized lc but not generalized klt. However, if B′ = L′ and M = 2L, then (X′,B′ + M′) is
not generalized lc because in this case B = L + 2E.
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(6) Assume we are given a contraction X′ → Y/Z. We may assume f is a log resolu-
tion of (X′,B′). Let F be a general fibre of X → Y, F′ the corresponding fibre of X′ → Y,
and g : F → F′ the induced morphism. Let

BF = B|F, MF = M|F, BF′ = g∗BF, MF′ = g∗MF.

Then (F′,BF′ + MF′) is a generalized polarized pair with the data F → F′ → Z and MF.
Moreover,

KF′ + BF′ + MF′ = (

KX′ + B′ + M′)∣
∣

F′ .

In addition, BF′ = B′|F′ and MF′ = M′|F′ : note that since F′ is a general fibre, B′ and M′ are
R-Cartier along any codimension one point of F′ hence we can define these restrictions.

(7) Let φ : X′′ → X′ be a birational contraction from a normal variety. We can
assume X ��� X′′ is a morphism. Let B′′,M′′ be the pushdowns of B,M. Then

KX′′ + B′′ + M′′ = φ∗(KX′ + B′ + M′).

Now assume that B′′ is a boundary. Then we can naturally consider (X′′,B′′ + M′′) as
a generalized polarized pair with boundary part B′′ and nef part M. One may think of
(X′′,B′′ + M′′) as a crepant model of (X′,B′ + M′).

Definition 4.3. — Let (X′,B′ + M′) be a generalized polarized pair as in 1.4 which comes

with the data X
f→ X′ → Z and M. Assume that D′ on X′ is an effective R-divisor and that N on

X is an R-divisor which is nef /Z and that D′ + N′ is R-Cartier. The generalized lc threshold of

D′ + N′ with respect to (X′,B′ + M′) (more precisely, with respect to the above data) is defined as

sup
{

s | (X′,B′ + sD′ + M′ + sN′) is generalized lc
}

where the pair in the definition has boundary part B′ + sD′ and nef part M + sN.

By the negativity lemma, G := f ∗(D′ + N′) − N ≥ 0. Thus we can write

KX + B + M = f ∗(KX′ + B′ + M′)

and

KX + B + sG + M + sN = f ∗(KX′ + B′ + sD′ + M′ + sN′).

In particular, if (X′,B′ + M′) is generalized lc, then the just defined generalized lc thresh-
old is nonnegative. However, the threshold might be +∞: this happens when D′ = 0 and
N ∼R 0/X′.

As pointed earlier, the generalized lc threshold is local over X′, so we can usually
assume X′ → Z is the identity map. When M = N = 0, we recover the usual lc threshold
of D′ with respect to (X′,B′).
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LMMP for generalized polarized pairs. — Let (X′,B′ +M′) be a Q-factorial generalized

lc polarized pair with data X
f→ X′ → Z and M. One can ask whether one can run an

LMMP/Z on KX′ + B′ + M′ and whether it terminates. We cannot answer this question
in such generality but we will put some extra assumptions under which the answer would
be yes.

Assume that KX′ + B′ + M′ + A′ is nef /Z for some R-Cartier divisor A′ ≥ 0 which
is big/Z. Moreover, assume

(∗) for any s ∈ (0,1) there is a boundary �′ ∼R B′ + sA′ + M′/Z such that
(X′,�′ + (1 − s)A′) is klt.

Condition (∗) is automatically satisfied if A′ is general ample/Z and either

(i) (X′,B′ + M′) is generalized klt, or
(ii) (X′,B′ + M′) is generalized lc and (X′,0) is klt.

We will show that we can run the LMMP/Z on KX′ + B′ + M′ with scaling of A′

(However, we do not know whether it terminates). Let

λ = min
{

t ≥ 0 | KX′ + B′ + M′ + tA′ is nef /Z
}

.

We may assume λ > 0. Replacing A′ with λA′ we may assume λ = 1. By assumption
we can find a number 0 < s < 1 and a boundary �′ ∼R B′ + sA′ + M′/Z such that
(X′,�′ + (1 − s)A′) is klt. Now by [1, Lemma 3.1], there is an extremal ray R′/Z such
that (KX′ + �′) · R′ < 0 and

(

KX′ + �′ + (1 − s)A′) · R′ = 0.

In particular, (KX′ + B′ + M′) · R′ < 0 and
(

KX′ + B′ + M′ + A′) · R′ = 0.

Moreover, R′ can be contracted and its flip exists if it is of flipping type. If R′ defines a
Mori fibre space we stop. Otherwise let X′ ��� X′′ be the divisorial contraction or the flip
of R′.

Replacing X we may assume X ��� X′′ is a morphism. Then (X′′,B′′ + M′′) is
naturally a generalized lc polarized pair with boundary part B′′ and nef part M. More-
over, KX′′ + B′′ + M′′ + A′′ is nef /Z and (∗) is preserved. Repeating the process gives the
LMMP.

Now we show the LMMP terminates under suitable assumptions.

Lemma 4.4. — Let (X′,B′ + M′) be a Q-factorial generalized lc polarized pair of dimension

d with data X
f→ X′ → Z and M. Assume that (X′,B′ + M′) satisfies (i) or (ii) above. Run an

LMMP/Z on KX′ + B′ + M′ with scaling of some general ample/Z R-Cartier divisor A′ ≥ 0. Then

the following hold:

Author's personal copy



EFFECTIVITY OF IITAKA FIBRATIONS

(1) Assume that KX′ + B′ + M′ is not pseudo-effective/Z. Then the LMMP terminates with

a Mori fibre space.

(2) Assume that

• KX′ + B′ + M′ is pseudo-effective/Z,

• (X′,B′ + M′) is generalized klt, and that

• KX′ + (1 + α)B′ + (1 + β)M′ is R-Cartier and big/Z for some α,β ≥ 0.

Then the LMMP terminates with a minimal model X′′ and KX′′ + B′′ + M′′ is semi-

ample/Z, hence it defines a contraction φ : X′′ → T′′/Z. If moreover a general fibre of

φ is positive-dimensional and if the restriction of B′′ to it is nonzero, then we can run the

LMMP/T′′ on KX′′ + M′′ with scaling of B′′ which terminates with a Mori fibre space of

KX′′ + M′′ over both T′′ and Z.

(3) Assume X → X′ is the identity morphism and that M = ∑

μjMj where μj ≥ 0 and Mj

are Cartier nef /Z divisors. Pick j and assume μj > 2d. Then the above LMMP’s are M′
j -

trivial. In particular, the LMMP’s preserve the Cartier and the nefness/Z of M′
j . Moreover,

under the assumptions of (2) and assuming φ is birational, M′′
j ≡ 0/T′′ and M′′

j is the

pullback of some Cartier divisor on T′′.

Proof. — (1) Since KX′ + B′ + M′ is not pseudo-effective/Z, the LMMP is also an
LMMP on KX′ + B′ + εA′ + M′ with scaling of (1 − ε)A′ for some ε > 0. Now we can
find a boundary

�′ ∼R B′ + εA′ + M′/Z

such that (X′,�′ + (1 − ε)A′) is klt. The claim then follows from [3] as the LMMP is an
LMMP/Z on KX′ + �′ with scaling of (1 − ε)A′.

(2) As

KX′ + (1 + α)B′ + (1 + β)M′

is big/Z, it is R-linearly equivalent to some P′ + G′ over Z where P′ is ample and G′ ≥ 0.
Now if ε > 0 is small, then

(1 + ε)
(

KX′ + B′ + M′) ∼R KX′ + (1 − εα)B′ + (1 − εβ)M′ + εP′ + εG′

∼R KX′ + �′/Z

for some �′ such that (X′,�′) is klt and �′ is big/Z. The LMMP is also an LMMP/Z
on KX′ + �′ with scaling of (1 + ε)A′ which terminates on some model X′′ by [3]. By
the base point free theorem for klt pairs with big boundary divisor [3, Corollary 3.9.2],
KX′′ + �′′ is semi-ample/Z hence KX′′ + B′′ + M′′ is semi-ample/Z and so it defines a
contraction φ : X′′ → T′′.

Now assume a general fibre of φ : X′′ → T′′ is positive-dimensional and the restric-
tion of B′′ to it is nonzero. In particular, this implies that KX′′ +M′′ is not pseudo-effective
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over T′′. Since

1
1 + ε

(

KX′′ + �′′) ≡ KX′′ + B′′ + M′′ ≡ 0/T′′,

running the LMMP/T′′ on KX′′ + M′′ with scaling of B′′ is the same as running the
LMMP/T′′ on KX′′ + �′′ − τB′′ with scaling of τB′′ for some small τ > 0 and this termi-
nates with a Mori fibre space over T′′ and also over Z, by [3]. Note that, �′′ − τB′′ ≥ 0
by construction.

(3) Each step of those LMMP’s is M′
j -trivial and preserves the Cartier and the

nefness/Z of M′
j by boundedness of the length of extremal rays and the cone theorem

[15], [18, Theorem 3.7 (1) and (4)]. Under the assumptions of (2) and assuming φ is
birational, to show that M′

j is the pullback of some Cartier divisor on T′′, it is enough
to show that X′′ → T′′ decomposes into a sequence of extremal contractions which are
negative with respect to certain klt pairs. We write this more precisely.

Since �′ in the proof of (2) is big/Z, we can assume �′′ ≥ C′′ for some ample
Q-divisor C′′. Since KX′′ + �′′ ≡ 0/T′′, if X′′ → T′′ is not an isomorphism, then there
is a (KX′′ + �′′ − C′′)-negative extremal ray which gives a contraction X′′ → X′′

2/T′′.
In particular M′′

j is the pullback of a Cartier divisor on X′′
2 [18, Theorem 3.7 (4)]. Now

repeat the process with X′′
2 and so on. Since φ is birational by assumption, the process

ends with T′′ hence we can indeed decompose X′′ → T′′ into a sequence of extremal
contractions as required. �

We will apply the LMMP to birationally extract certain divisors for a generalized
polarized pair.

Lemma 4.5. — Let (X′,B′ +M′) be a generalized lc polarized pair with data X
f→ X′ → Z

and M. Let S1, . . . ,Sr be prime divisors on birational models of X′ which are exceptional/X′ and whose

generalized log discrepancies with respect to (X′,B′ + M′) are at most 1. Then perhaps after replacing

f with a high resolution, there exist a Q-factorial generalized lc polarized pair (X′′,B′′ + M′′) with

data X
g→ X′′ → Z and M, and a projective birational morphism φ : X′′ → X′ such that

• S1, . . . ,Sr appear as divisors on X′′,
• each exceptional divisor of φ is one of the Si or is a component of 	B′′
, and

• KX′′ + B′′ + M′′ = φ∗(KX′ + B′ + M′).

In particular, the exceptional divisors of φ are exactly the Si if (X′,B′ + M′) is generalized klt.

Proof. — Replacing X we may assume the Si are divisors on X and that f is a
log resolution of (X′,B′). Let E1,E2, . . . be the exceptional divisors of f where we can
assume Ei = Si for i ≤ r. Write

KX + B + M = f ∗(KX′ + B′ + M′)
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and let � = B+E where E := ∑

i>r aiEi and ai is the generalized log discrepancy of Ei (by
definition ai is equal to 1 − bi where bi is the coefficient of Ei in B). Then � is a boundary
and

KX + � + M = f ∗(KX′ + B′ + M′) + E ≡ E/X′

with E ≥ 0 exceptional/X′. By construction, none of the Si are components of E.
Now run an LMMP/X′ on KX + � + M with scaling of some ample divisor. This

is also an LMMP/X′ on E. In the course of the LMMP we arrive at a model X′′ on which
KX′′ + �′′ + M′′ is a limit of movable/X′ divisors hence it is nef on the general curves/X′

of any exceptional divisor of X′′ → X′ where �′′,M′′ are the pushdowns of �,M. But
since E′′ is effective and exceptional/X′, E′′ = 0 by the general negativity lemma (cf. [2,
Lemma 3.3 and the proof of Theorem 3.4]).

Note that since the LMMP contracts E, we have �′′ = B′′. So we can write

KX′′ + B′′ + M′′ = φ∗(KX′ + B′ + M′)

where φ is the morphism X′′ → X′. By construction, none of the Si is contracted by the
LMMP. Moreover, any exceptional divisor of φ is one of the Si or is a component of 	B′′
.
In particular, the exceptional divisors of φ are exactly the Si if (X′,B′ +M′) is generalized
klt. Note that X′′ is Q-factorial by construction. �

Lemma 4.6. — Under the notation and assumptions of Lemma 4.5, further assume that

(X′,C′) is klt for some C′, and that the generalized log discrepancies of the Si with respect to

(X′,B′ + M′) are < 1. Then we can construct φ so that in addition it satisfies:

• its exceptional divisors are exactly S1, . . . ,Sr , and

• if r = 1 and X′ is Q-factorial, then φ is an extremal contraction.

Proof. — Since (X′,C′) is klt and (X′,B′ + M′) is generalized lc,
(

X′, (1 − ε)B′ + εC′ + (1 − ε)M′)

is generalized klt for any small ε > 0 with boundary part �′ := (1 − ε)B′ + εC′ and
nef part (1 − ε)M. Moreover, the generalized log discrepancies of the Si with respect to
(X′,�′ + (1 − ε)M′) are still less than 1. So by Lemma 4.5, there is φ : X′′ → X′ which
extracts exactly the Si .

Now further assume that r = 1 and that X′ is Q-factorial. By construction, we can
write

KX′′ + �′′ + (1 − ε)M′′ = φ∗(KX′ + �′ + (1 − ε)M′)

where �′′ is the sum of the birational transform of �′ and sS′′
1 for some s ∈ (0,1). Now

run an LMMP/X′ on KX′′ + �′′ + δS′′
1 + (1 − ε)M′′ for some small δ > 0 which is also
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an LMMP on S′′
1. Since X′ is Q-factorial, the last step of the LMMP is an extremal

contraction X′′′ → X′ which contracts S′′′
1 , the pushdown of S′′

1, and X′′ ��� X′′′ is an
isomorphism in codimension one. Thus replacing X′′ with X′′′ we can assume φ is ex-
tremal. �

Generalized adjunction. — We define an adjunction formula for generalized polarized
pairs similar to the traditional one.

Definition 4.7. — Let (X′,B′ +M′) be a generalized polarized pair with data X
f→ X′ → Z

and M. Assume that S′ is the normalization of a component of 	B′
 and S is its birational transform

on X. Replacing X we may assume f is a log resolution of (X′,B′). Write

KX + B + M = f ∗(KX′ + B′ + M′)

and let

KS + BS + MS := (KX + B + M)|S
where BS = (B − S)|S and MS = M|S. Let g be the induced morphism S → S′ and let BS′ = g∗BS

and MS′ = g∗MS. Then we get the equality

KS′ + BS′ + MS′ = (

KX′ + B′ + M′)∣
∣

S′

which we refer to as generalized adjunction. It is obvious that BS′ depends on both B′ and M.

Now assume that (X′,B′ + M′) is generalized lc. By Remark 4.8 below BS′ is a boundary

divisor on S′, i.e. its coefficients belong to [0,1]. We consider (S′,BS′ +MS′) as a generalized polarized

pair which is determined by the boundary part BS′ , the morphisms S → S′ → Z, and the nef part MS.

It is also clear that (S′,BS′ + MS′) is generalized lc if (X′,B′ + M′) is so because then

KS + BS + MS = g∗(KS′ + BS′ + MS′)

and the coefficients of BS are at most 1.

Remark 4.8. — We will argue that the BS′ defined in 4.7 is indeed a boundary
divisor on S′, if (X′,B′ + M′) is generalized lc. The lc property immediately implies that
the coefficients of BS′ do not exceed 1, hence we only have to show that BS′ ≥ 0. Moreover,
if KX′ + B′ is R-Cartier, then BS′ ≥ 0 follows from the usual divisorial adjunction: indeed
in this case if B̃S′ is the divisor given by the adjunction

KS′ + B̃S′ = (

KX′ + B′)∣
∣

S′

then it is well-known that B̃S′ is a boundary divisor, and it is also clear from our definitions
that B̃S′ ≤ BS′ .
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In practice when we apply generalized adjunction, X′ will be Q-factorial, hence
KX′ + B′ will be R-Cartier. But for the sake of completeness we treat the general case, i.e.
the non-R-Cartier KX′ +B′ case. We will reduce the statement to the situation dim X′ = 2
in which case KX′ + B′ turns out to be R-Cartier automatically. Assume dim X′ > 2. Let
H′ be a general hypersurface section and G′ its pullback to S′. Adding H′ to B′ we may
assume H′ is a component of 	B′
. Both H′ and G′ are normal varieties. Let BH′ be given
by the generalized adjunction

KH′ + BH′ + MH′ = (

KX′ + B′ + M′)∣
∣

H′ .

Since H′ is a general hypersurface section, BH′ is simply the intersection of B′ − H′ with
H′, that is, each component of BH′ is a component of the intersection of some component
of B′ − H′ with H′ inheriting the same coefficient. In particular, BH′ is a boundary divisor
and G′ is a component of 	BH′
.

A further generalized adjunction and induction on dimension gives

KG′ + BG′ + MG′ = (KH′ + BH′ + MH′)|G′

where BG′ is a boundary. But BG′ is equal to the intersection of BS′ − G′ with the ample
divisor G′ on S′ which implies that BS′ is a boundary divisor too.

Now we can assume dim X′ = 2. Since

KX + B + M = f ∗(KX′ + B′ + M′) ≡ 0/X′

and since M is nef /X′, there is a divisor B̃ ≤ B such that KX + B̃ ≡ 0/X′ and f∗B̃ = B′.
Since each coefficient of B is at most 1, each coefficient of B̃ is also at most 1. Therefore
(X′,B′) is numerically lc (see [18, Section 4.1]; note however that [18] only considers B′

with rational coefficients but all the definitions and results that we need make sense and
hold true for real coefficients as well). Now by [18, Section 4.1], (X′,B′) is lc. In particular,
KX′ + B′ is R-Cartier. So we are done by the above arguments.

Proposition 4.9. — Let d be a natural number and � a DCC set of nonnegative real numbers.

Then there is a DCC set 	 of nonnegative real numbers depending only on d and � such that if

(X′,B′ + M′) is a generalized lc polarized pair of dimension d with data X
f→ X′ → Z and M, and

S′ is the normalization of a component of 	B′
 satisfying

• M = ∑

μjMj where Mj are nef /Z Cartier divisors and μj ∈ �,

• the coefficients of B′ belong to �, and

• BS′ is given by the following generalized adjunction (as in 4.7)

KS′ + BS′ + MS′ = (

KX′ + B′ + M′)∣
∣

S′,

then the coefficients of BS′ belong to 	.
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Proof. — If the statement does not hold, then there exist a sequence of generalized

lc polarized pairs (X′
i,B′

i + M′
i) and S′

i , with data Xi

fi→ X′
i → Zi and Mi = ∑

μj,iMj,i ,
satisfying the assumptions of the proposition but such that the set of the coefficients of all
the BS′

i
put together does not satisfy DCC. Note that since the problem is local, we may

assume X′
i → Zi is the identity map for each i. We may also assume fi is a log resolution

of (X′,B′).
Let Si ⊂ Xi be the birational transform of S′

i . We can assume that each BS′
i

has
a component Vi with coefficient ai such that {ai} is a strictly decreasing sequence. Let
a = lim ai .

We may assume that the KX′
i
+ B′

i are R-Cartier otherwise as in Remark 4.8, by
taking hypersurface sections, we reduce the problem to dimension 2 in which case this
R-Cartier property holds automatically. Let B̃S′

i
be the divisor given by the adjunction

KS′
i
+ B̃S′

i
= (

KX′
i
+ B′

i

)∣

∣

S′
i

.

It is clear from our definitions that B̃S′
i
≤ BS′

i
. If ci is the coefficient of Vi in B̃S′

i
, then we

may assume ci ≤ ai ≤ a + ε for some fixed ε > 0 so that a + ε < 1. Therefore, (X′
i,B′

i) is
plt near the generic point of (the image of) Vi (this follows from inversion of adjunction
on surfaces [20, Corollary 3.12]) and there is a natural number l depending only on a + ε

such that for each i there is li ≤ l so that for any Weil divisor D′
i on X′

i the divisor liD′
i

is Cartier near the (image of the) generic point of Vi [20, Proposition 3.9]. Moreover, by
[20, Corollary 3.10] we can write

ci = li − 1
li

+
∑

bk,i

dk,i

li

for some nonnegative integers dk,i where bk,i are the coefficients of the components of B′
i

other than (the image of) S′
i passing through Vi .

On the other hand, shrinking X′
i if necessary we can assume M′

j,i is Q-Cartier for
each j, i so we can write

f ∗
i M′

j,i = Mj,i + Ej,i

where the exceptional divisor Ej,i is effective by the negativity lemma. Since liM′
j,i is

Cartier near the (image of the) generic point of Vi , the multiplicity of the birational trans-
form of Vi in Ej,i|Si

is equal to ej,i

li
for some nonnegative integer ej,i . Therefore,

ai = li − 1
li

+
∑

bk,i

dk,i

li
+

∑

μj,i

ej,i

li
.

This is a contradiction because the above expression and Lemma 2.1 show that the set
{ai} satisfies DCC, while the ai form a strictly decreasing sequence. �

We will need the next technical lemma in the proof of Proposition 7.1 to treat
Theorem 1.6 inductively.
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Lemma 4.10. — Let d be a natural number and � be a DCC set of nonnegative real numbers.

Let (X′
i,B′

i + M′
i) be a sequence of generalized lc polarized pairs of dimension d with data Xi →

X′
i → Zi and Mi . Let S′

i be the normalization of a component of 	B′
i
 and consider the generalized

adjunction formula

KS′
i
+ BS′

i
+ MS′

i
= (

KX′
i
+ B′

i + M′
i

)∣

∣

S′
i

.

Assume further that

(1) X′
i is Q-factorial and Zi is a point,

(2) B′
i =

∑

bk,iB′
k,i where B′

k,i are distinct prime divisors and bk,i ∈ �,

(3) Mi = ∑

μj,iMj,i where Mj,i are nef Cartier divisors and μj,i ∈ �,

(4) and one of the following holds:

(i) {b1,i} is not finite, and B′
1,i|S′

i
�≡ 0 for each i, or

(ii) {μ1,i} is not finite, and M′
1,i|S′

i
�≡ 0 for each i.

Then the set of the coefficients of all the BS′
i
union the set {μj,i | Mj,i|Si

�≡ 0} is not finite.

Proof. — Let Vi be a prime divisor on S′
i . As in the proof of Proposition 4.9, the

coefficient of Vi in BS′
i
is of the form

ai = li − 1
li

+
∑

bk,i

dk,i

li
+

∑

μj,i

ej,i

li

where li is a natural number and dk,i, ej,i are nonnegative integers which are contributed
by the B′

k,i and M′
j,i respectively.

Now assume (i) of (4) holds. Since {b1,i} is not finite, we can assume b1,i < 1 for
each i which in particular means B′

1,i is not equal to the image of S′
i . Thus B′

1,i|S′
i

is a
nonzero effective divisor for each i. Choose Vi to be a component of B′

1,i|S′
i
. Then the set

{ai} cannot be finite by Lemma 2.1 because {b1,i} is not finite and d1,i is positive.
Next assume (ii) of (4) holds. Although M′

1,i|S′
i
is not numerically trivial by assump-

tion but M1,i|Si
may be numerically trivial for some i. If M1,i|Si

is not numerically trivial
for infinitely many i, then obviously the set {μj,i | Mj,i|Si

�≡ 0} is not finite and we are
done. So we may assume M1,i|Si

is numerically trivial for every i. Recall from the proof
of Proposition 4.9 that we can assume f ∗

i M′
j,i = Mj,i + Ej,i with Ej,i ≥ 0. Now we can

choose Vi so that e1,i �= 0 for each i: indeed since M′
1,i|S′

i
�≡ 0 but M1,i|Si

≡ 0, we deduce
that E1,i|Si

�= 0 and that its pushdown to S′
i is also not zero; thus the components of the

pushdown of E1,i|Si
are components of BS′

i
, hence we can choose Vi to be one of these

components. Again this shows that {ai} cannot be finite because {μ1,i} is not finite and
e1,i > 0. �
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5. Bounds on the number of coefficients of B′
i and M′

i

A well-known fact says that if (X,B) is a lc pair, then near each point x ∈ X the
number of components of B with coefficient ≥ b > 0 is bounded in terms of b and di-
mension of X. There is also a global version of this fact. In this section, we prove similar
local and global statements bounding the number of the coefficients of B′

i and the μj in
M = ∑

μjMj of a generalized lc polarized pair (X′,B′ + M′) under certain assumptions.
These bounds will be used in the proof of Proposition 7.2.

We start with a global statement for pairs which can also be applied to generalized
polarized pairs.

Proposition 5.1. — Let d be a natural number and b a positive real number. Let (X,B) be a

projective lc pair of dimension d such that

(i) B ≥ ∑r

1 Bk where Bk ≥ 0 are big R-Cartier divisors,

(ii) Bk = ∑

bj,kBj,k is the irreducible decomposition and bj,k ≥ b for every j, k, and

(iii) KX + B + P ≡ 0 for some pseudo-effective R-Cartier divisor P.

Then the number of the Bk is at most (d + 1)/b, that is, r ≤ (d + 1)/b.

Proof. — Let (Y,�) be a Q-factorial dlt model of (X,B − ∑r

1 Bk) and f : Y → X
the corresponding morphism. By definition, � is the sum of the reduced exceptional
divisor of f and the birational transform of B − ∑r

1 Bk . Moreover, since (X,B) is lc,
Supp(

∑r

1 Bk) does not contain the image of any exceptional divisor of f , hence f ∗Bk is
equal to the birational transform of Bk . In particular, f ∗Bk is big and it inherits the same
coefficients as Bk . Moreover, by letting BY := � + ∑r

1 f ∗Bk we get

KY + BY + f ∗P = KY + � +
r

∑

1

f ∗Bk + f ∗P = f ∗(KX + B + P) ≡ 0.

Now by replacing (X,B) with (Y,BY) and replacing P with f ∗P we can assume that
(X,0) is Q-factorial klt. Moreover, by adding B − ∑r

1 Bk to P we can assume B = ∑r

1 Bk .
If P �≡ 0, then KX + B is not pseudo-effective so we can run an LMMP on KX + B

which terminates with a Mori fibre space, by Lemma 4.4(1). But if P ≡ 0, then KX is
not pseudo-effective as B is big, and we can run an LMMP on KX which terminates
with a Mori fibre space [3]. Note that in both cases the LMMP preserves the lc property
of (X,B) and the Q-factorial klt property of (X,0): in the first case the klt property of
(X,0) is preserved since the LMMP is also an LMMP on KX + B̃ for some klt (X, B̃);
in the second case the lc property of (X,B) is preserved as KX + B ≡ 0. Also note that
in either case the LMMP does not contract any Bk because Bk is big (although some of
its components may be contracted). So in either case replacing X with the Mori fibre
space obtained we may assume that we already have a KX-negative Mori fibre structure
X → T.
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Let F be a general fibre of X → T. Since Bk is big, Bk|F is big too. Restricting to F
and applying induction on dimension we can reduce the problem to the case dim T = 0,
that is, when X is a Q-factorial klt Fano variety of Picard number one. Pick a small
number ε > 0. For each j, k take a rational number b′

j,k ≤ bj,k such that b′
j,k ≥ b − ε. Let

B′ = ∑

k

∑

j b
′
j,kBj,k . Then there is P′ ≥ 0 such that KX + B′ + P′ ≡ 0 and (X,B′ + P′) is

lc. Now by [17, Corollary 18.24],

r(b − ε) ≤
∑

k

∑

j

b′
j,k ≤ d + 1.

Therefore taking the limit when ε approaches 0 we get rb ≤ d + 1 hence r ≤ (d + 1)/b. �

Next we prove a result similar to Proposition 5.1, though not as sharp, for the nef
part of generalized polarized pairs.

Proposition 5.2. — Let d be a natural number and b a positive real number. Assume that the

ACC for generalized lc thresholds (Theorem 1.5) holds in dimension d. Then there is a natural number

p depending only on d, b such that if (X′,B′ + M′) is a generalized lc polarized pair of dimension d

with data X
f→ X′ → Z and M satisfying

(i) Z is a point,

(ii) M = ∑r

1 μjMj where Mj are nef Cartier divisors and μj ≥ b,

(iii) M′
j is a big Q-Cartier divisor for every j, and

(iv) KX′ + B′ + M′ + P′ ≡ 0 for some pseudo-effective R-Cartier divisor P′,

then the number of the μj is at most p, that is, r ≤ p.

Before giving the proof we prove a related local statement.

Proposition 5.3. — Let d be a natural number and b a positive real number. Assume that

Theorem 1.5 and Proposition 5.2 hold in dimension < d. Then there is a natural number q depending

only on d, b such that if (X′,B′ + M′) is a Q-factorial generalized lc polarized pair of dimension d

with data X
f→ X′ → Z and M, and if

(i) x′ ∈ X′ is a (not necessarily closed) point,

(ii) M = ∑r

1 μjMj where Mj are nef /Z Cartier divisors and μj ≥ b,

(iii) Mj is not relatively numerically zero over any neighborhood of x′, for every j, and

(iv) (X′,0) is klt,

then the number of the μj is at most q, that is, r ≤ q.

Proof. — Step 1. Let C′ be the closure of x′. By (iii), the codimension of C′ in X′

is at least two. By adding appropriate divisors to B′ and shrinking X′ we can assume C′

is a generalized lc centre of (X′,B′ + M′): to be more precise, let W be the blowup of
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X′ along C′; we can assume X → X′ factors through W; now take a general sufficiently
ample divisor on W and let A be its pullback to X; if α is the generalized lc threshold
of A′ near x′ with respect to (X′,B′ + M′), then (X′,B′ + αA′ + M′) is generalized lc
near x′ with boundary part B′ + αA′ and nef part M, and C′ is a generalized lc centre
of (X′,B′ + αA′ + M′); the point is that after shrinking X′ we can assume f ∗A′ = A + E
where E �= 0 is effective with large coefficients, and that every component of E maps onto
C′ so adding αA′ creates deeper singularities only along C′. Now we may replace B′ with
B′ + αA′.

Step 2. By Step 1, we can assume that there is a prime divisor S on X mapping onto
C′ whose generalized log discrepancy with respect to (X′,B′ + M′) is 0. Since (X′,0) is
Q-factorial klt, by Lemma 4.6, there is an extremal birational contraction φ : X′′ → X′

which extracts S′′, the birational transform of S, and X′′ is Q-factorial. We can write

KX′′ + B′′ + M′′ = φ∗(KX′ + B′ + M′)

where B′′ is the sum of S′′ and the birational transform of B′, and M′′ is the pushdown
of M. Writing

KX + B + M = f ∗(KX′ + B′ + M′)

we can see that B′′ is just the pushdown of B.
We claim that M′′

j is not numerically trivial over any neighborhood of x′ for any j

which in turn implies that M′′
j is ample/X′. If this is not true for some j, then we can write

f ∗M′
j = Mj + Ẽj where Ẽj ≥ 0 and S is not a component of Ẽj . But then for any general

closed point y′ ∈ C′, the fibre f −1{y′} is not inside Supp Ẽj , so the fibre does not intersect
Supp Ẽj , by [18, Lemma 3.39(2)]. Therefore, Ẽj = 0 over the generic point of C′, that is
over x′, hence Mj is numerically trivial over some neighborhood of x′, a contradiction.

Step 3. We can assume the induced map g : X ��� X′′ is a morphism. To ease
notation we replace S′′ with its normalization and denote the induced morphism S → S′′

by h. By generalized adjunction and usual adjunction, we can write

KS′′ + BS′′ + MS′′ = (

KX′′ + B′′ + M′′)∣
∣

S′′ ≡ 0/C′

and

KS′′ + �S′′ = (

KX′′ + B′′)∣
∣

S′′ .

Write g∗M′′
j = Mj + Ej where Ej ≥ 0 is exceptional/X′′. Then

M′′
j

∣

∣

S′′ = h∗
(

Mj|S
) + h∗

(

Ej|S
)

and

M′′∣
∣

S′′ =
∑

μjh∗
(

Mj|S
) +

∑

μjh∗
(

Ej|S
) = MS′′ +

∑

μjh∗
(

Ej|S
)
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and

BS′′ = �S′′ +
∑

μjh∗(Ej|S).
Let V be a prime divisor on S′′ and bV be its coefficient in BS′′ . Then, by the proof

of Proposition 4.9,

bV ≥ 1 − 1
l

+
∑ μjnj

l

for some natural number l and integers nj ≥ 0. Moreover, nj > 0 if V is a component of
h∗(Ej|S). This in particular shows that there is a natural number s depending only on b

such that V is a component of h∗(Ej|S) for at most s of the j because
∑

μjnj ≤ 1.

Step 4. Let F′′ be a general fibre of the induced map S′′ → C′ and F the correspond-
ing fibre of S → C′. Restricting to F′′ as in Remark 4.2(6), we get

KF′′ + BF′′ + MF′′ = (KS′′ + BS′′ + MS′′)|F′′ ≡ 0.

Also we get

KF′′ + �F′′ := (KS′′ + �S′′)|F′′ .

Denote the morphism F → F′′ by e. Since F′′ is a general fibre, restricting Weil divisors
on S′′ to F′′ makes sense, and if P is a Weil divisor on S, then we have (h∗P)|F′′ = e∗(P|F).
Therefore,

M′′
j

∣

∣

F′′ = e∗(Ej|F) + e∗(Mj|F), MF′′ =
∑

μj e∗(Mj|F),
and

BF′′ = BS′′ |F′′ =
(

�S′′ +
∑

μjh∗(Ej|S)
)∣

∣

∣

∣

F′′
= �F′′ +

∑

μj e∗(Ej|F).

Since F′′ may not be Q-factorial, we need to make some further constructions. Let
(H′′,�H′′) be a Q-factorial dlt model of (F′′,�F′′) and ψ : H′′ → F′′ the corresponding
morphism. By definition

KH′′ + �H′′ = ψ∗(KF′′ + �F′′)

and the exceptional divisors of ψ all appear with coefficient 1 in �H′′ . Moreover, we can
write

KH′′ + BH′′ + MH′′ = ψ∗(KF′′ + BF′′ + MF′′) ≡ 0

where BH′′ is the sum of the birational transform of BF′′ and the reduced exceptional
divisor of ψ .
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We can assume c : F ��� H′′ is a morphism. By construction,

ψ∗(M′′
j |F′′

) = c∗(Ej|F) + c∗(Mj|F)
which is big, and

MH′′ =
∑

μj c∗(Mj|F) and BH′′ = �H′′ +
∑

μj c∗(Ej|F).
Moreover, since the exceptional divisors of ψ are components of 	�H′′
, the divisor
∑

μj c∗(Ej|F) has no exceptional component, so it is just the birational transform of
∑

μj e∗(Ej|F).
Step 5. Run an LMMP on KH′′ . It terminates with a Mori fibre space H

′′ → T
′′

and the generalized lc property of (H′′,BH′′ + MH′′) is preserved by the LMMP. Since
c∗(Ej|F) + c∗(Mj|F) is big, its pushdown to H

′′
is also big, hence ample over T

′′
. Let G

′′
be

a general fibre of the above Mori fibre space. Then restriction to G
′′

gives

KG
′′ + BG

′′ + MG
′′ = (KH

′′ + BH
′′ + MH

′′)|G′′ ≡ 0.

By construction, MG
′′ = ∑

μj a∗(Mj|F)|G′′ where we can assume a : F ��� H
′′

is a mor-
phism. Applying Proposition 5.2 and rearranging the indexes, we can assume that there
is a natural number t depending only on d, b such that a∗(Mj|F)|G′′ ≡ 0 for every j > t.
But then a∗(Ej|F)|G′′ is big for each j > t.

For each j > t choose a component Wj of a∗(Ej|F) which is ample over T
′′
. By

construction, Wj is the birational transform of a component Uj of e∗(Ej|F) = (h∗(Ej|S))|F′′

and Uj in turn is a component of Vj ∩ F′′ for some component Vj of h∗(Ej|S). Moreover,
Wk = Wj if and only if Uk = Uj if and only if Vk = Vj . By Step 3, for each k, Vk = Vj

for at most s of the j. Thus for each k, Wk = Wj for at most s of the j. On the other
hand, by Steps 3 and 4, the Vj appear as components of BS′′ with coefficient ≥ min{b, 1

2},
and there exist at least r−t

s
such components. Similarly the Wj appear as components

of BH
′′ with coefficient ≥ min{b, 1

2}, and there exist at least r−t

s
such components. Now

apply Proposition 5.1 to (G
′′
,BG

′′) to deduce that r−t

s
is bounded hence r is bounded by

some q. �

Proof of Proposition 5.2. — We argue by induction on the dimension d . The case
d = 1 is clear. Suppose that the proposition holds in dimension < d .

Step 1. Since (X′,B′ + M′) is generalized lc and KX′ + B′ is R-Cartier, (X′,B′) is lc.
Let (X′′,B′′) be a Q-factorial dlt model of (X′,B′) and φ : X′′ → X′ the corresponding
morphism. We may assume X ��� X′′ is a morphism. For each j, we have φ∗M′

j = M′′
j +

E′′
j where E′′

j ≥ 0 is exceptional/X′ and M′′
j is the pushdown of Mj . So

KX′′ + B′′ +
∑

μjE′′
j + M′′ = φ∗(KX′ + B′ + M′)
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where M′′ is the pushdown of M. Since the exceptional divisors of φ are components
of 	B′′
 and since (X′,B′ + M′) is generalized lc, we deduce E′′

j = 0 for every j, hence
M′′

j = φ∗M′
j for every j and M′′ = φ∗M′. Thus we may replace X′ with X′′, hence assume

that (X′,B′) is Q-factorial dlt.

Step 2. If P′ �≡ 0, then KX′ + B′ + M′ is not pseudo-effective and so we can run an
LMMP on KX′ + B′ + M′ which terminates with a Mori fibre space, by Lemma 4.4(1).
But if P′ ≡ 0, then KX′ + B′ is not pseudo-effective as M′ is big and so we can run an
LMMP on KX′ + B′ which terminates with a Mori fibre space. Note that in both cases
the generalized lc property of (X′,B′ + M′) is preserved: in the second case we use the
fact KX′ + B′ + M′ ≡ 0. Also note that in both cases none of the M′

j is contracted by the
LMMP since M′

j is big. In either case we can replace X′ with the Mori fibre space hence
we may assume we already have a Mori fibre structure X′ → T′. Let F′ be a general
fibre of this fibre space. Since M′

j is big, M′
j|F′ is big too. Restricting to F′ and applying

induction on dimension we can reduce the problem to the case dim T′ = 0, that is, when
X′ is a Fano variety of Picard number one.

Step 3. Perhaps after changing the indexes we may write M′
j ≡ λjM′

1 such that
λj ≥ 1 for every j. Now we define μ̃j as follows: initially let μ̃j = μj ; next decrease μ̃2 and
instead increase μ̃1 as much as possible so that

(

X′,B′ +
∑

j �=2

μ̃jM′
j

)

is generalized lc and

KX′ + B′ +
∑

μ̃jM′
j + P′ ≡ 0.

Either we hit a generalized lc threshold, i.e. (X′,B′ + ∑

j �=2 μ̃jM′
j) is generalized lc but

not generalized klt, or that we reach μ̃2 = 0. If the first case happens, we stop. But if the
second case happens we repeat the process by decreasing μ̃3 and increasing μ̃1, and so
on.

We show that the above process involves only a bounded number of the μj . Let l be
the smallest number such that μ̃j = μj for every j > l. We want to show that l is bounded
depending only on d, b. We can assume l > 1. By construction,

μ̃1 ≥
∑

j≤l−1

μjλj ≥
∑

j≤l−1

μj ≥ (l − 1)b

so it is enough to show that μ̃1 is bounded depending only on d, b. If M1 is not numerically
trivial over X′, then the generalized lc threshold of M′

1 with respect to (X′,B′) is finite and
bounded from above by Theorem 1.5, and this in turn implies boundedness of μ̃1. But if
M1 is numerically trivial over X′, then again μ̃1 is bounded from above but for a different
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reason: by the cone theorem X′ can be covered by curves �′ such that −(KX′ + B′) ·�′ ≤
2d which in turn implies that μ̃1M′

1 · �′ ≤ 2d hence μ̃1M1 · � ≤ 2d where � ⊂ X is the
birational transform of �′. This is possible only if μ̃1 is bounded from above since M1 is
big and Cartier and hence M1 · � ≥ 1.

If at the end of the process μ̃j = 0 for every j ≥ 2, then the above arguments show
that r is indeed bounded by some number p. But if μ̃j > 0 for some j ≥ 2, then we replace
M with

∑

j �=l μ̃jMj and replace P′ with P′ + μ̃lM′
l where l is as above, and rearrange the

indexes. We can then assume that (X′,B′ + M′) is generalized lc but not generalized klt.

Step 4. The arguments of Step 3 show that, after replacing X, we can assume that
there is a prime divisor S on X exceptional over X′ whose generalized log discrepancy
with respect to (X′,B′ + M′) is 0. Since (X′,0) is Q-factorial klt, by Lemma 4.6, there
is an extremal contraction φ : X′′ → X′ which extracts S′′, the birational transform of S.
We can write

KX′′ + B′′ + M′′ = φ∗(KX′ + B′ + M′)

where B′′ is the sum of S′′ and the birational transform of B′ and M′′ is the pushdown
of M.

Since ρ(X′) = 1 and φ is extremal, ρ(X′′) = 2. Moreover,

KX′′ + B′′ + M′′ + P′′ ≡ 0

where P′′ is the pullback of P′ on X′. Since ρ(X′) = 1, P′ and so P′′ is semi-ample, hence
we may assume that (X′′,B′′ + P′′ + M′′) is generalized lc with boundary part B′′ + P′′

and nef part M.
Since S′′ is a component of 	B′′
, (X′′,B′′ − δS′′ +P′′ +M′′) is generalized lc where

δ > 0 is small, and

−δS′′ ≡ KX′′ + B′′ − δS′′ + P′′ + M′′.

So by Lemma 4.4(1), we can run an LMMP on −S′′ which ends up with a Mori fibre
space X′′′ → T′′′. Note that by construction X′′′ has Picard number one or two: in any
case one of the extremal rays of X′′′ corresponds to the Fano contraction X′′′ → T′′′ and
S′′′ is positive on this ray.

We may assume that both g : X ��� X′′ and h : X ��� X′′′ are morphisms.

Step 5. Consider the case dim T′′′ > 0. Then the Picard number ρ(X′′′) = 2, hence
X′′ ��� X′′′ is an isomorphism in codimension one. Moreover, by restricting to the general
fibres of X′′′ → T′′′ and applying induction we may assume M′′′

j ≡ 0/T′′′ for all but a
bounded number of j. For any such j, M′′′

j is not big, hence M′′
j is not big too. Thus M′′

j

is ample/X′ otherwise M′′
j would be the pullback of M′

j which is big, a contradiction.
Let C′ := φ(S′′) and let x′ be the generic point of C′. Then M′′′

j ≡ 0/T′′′ implies that
Mj is not numerically trivial over any neighborhood of x′. Now apply Proposition 5.3 to
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(X′,B′ + P′ + M′) at x′ to bound the number of such j. Therefore r is indeed bounded by
some number p depending only on d, b.

Step 6. We can now assume dim T′′′ = 0. Let X̃′′ → X′′′ be the last step of the
LMMP which contracts some divisor R̃′′. Let x′′′ be the generic point of the image of R̃′′.
For each j, either M′′

j is ample over X′ or M̃′′
j is ample over X′′′ where M̃′′

j is the push-
down of Mj via X ��� X̃′′ which we can assume to be a morphism. So either Mj is
not numerically trivial over any neighborhood of x′ or that it is not numerically triv-
ial over any neighborhood of x′′′. Now apply Proposition 5.3 to (X′,B′ + P′ + M′) and
(X′′′,B′′′ + P′′′ + M′′′) at x′ and x′′′ to bound r by some number p depending only on
d, b. �

6. ACC for generalized lc thresholds

In this section, we reduce the ACC for generalized lc thresholds (Theorem 1.5) to
the Global ACC (Theorem 1.6) in lower dimension by adapting a standard argument
due to Shokurov. We create an appropriate generalized lc centre of codimension one and
restrict to it to do induction.

Proposition 6.1. — Assume that Theorem 1.6 holds in dimension ≤ d −1. Then Theorem 1.5

holds in dimension d.

Proof. — Applying induction we may assume that Theorem 1.5 holds in dimension
≤ d − 1. If Theorem 1.5 does not hold in dimension d , then there exist a sequence of

generalized lc polarized pairs (X′
i,B′

i + M′
i) of dimension d with data Xi

fi→ X′
i → Zi

and Mi = ∑

μj,iMj,i , and divisors D′
i and Ni = ∑

νk,iNk,i satisfying the assumptions of
the theorem but such that the generalized lc thresholds ti of D′

i + N′
i with respect to

(X′
i,B′

i + M′
i) form a strictly increasing sequence of numbers. We may assume that 0 <

ti < ∞ for every i. Since the problem is local over X′
i , we can assume X′

i → Zi is the
identity morphism. Moreover, we can discard any μj,i and νk,i if they are zero.

By definition,
(

X′
i,B′

i + tiD′
i + M′

i + tiN′
i

)

is generalized lc with boundary part B′
i + tiD′

i and nef part Mi + tiNi but
(

X′
i,B′

i + aiD′
i + M′

i + aiN′
i

)

is not generalized lc for any ai > ti .
If 	B′

i
 �= 	B′
i + tiD′

i
 for infinitely many i, then we can easily get a contradiction
as the ti can be calculated in terms of the coefficients of B′

i and D′
i . Thus we may assume
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that 	B′
i
 = 	B′

i + tiD′
i
 for every i. In particular, this means that there is a generalized lc

centre of
(

X′
i,B′

i + tiD′
i + M′

i + tiN′
i

)

of codimension ≥ 2 which is not a generalized lc centre of (X′
i,B′

i + M′
i).

We may assume that the given morphism fi : Xi → X′
i is a log resolution of

(X′
i,B′

i + tiD′
i). Let �′

i := B′
i + tiD′

i and let Ri := Mi + tiNi . We can write

KXi
+ �i + Ri = f ∗

i

(

KX′
i
+ �′

i + R′
i

) + Ei

where �i is the sum of the birational transform of �′
i and the reduced exceptional divisor

of fi , and Ei ≥ 0 is exceptional/X′
i. Then the pair (Xi,�i) is lc but not klt; more precisely

there is a component of 	�i
 which is not a component of Ei ; moreover, there is such
a component which is exceptional/X′

i by the last paragraph. In addition, the set of the
coefficients of all the �i union with {μj,i, tiνk,i} satisfies the DCC by Lemma 2.1.

Run an LMMP/X′
i on KXi

+ �i + Ri with scaling of some ample divisor which is
also an LMMP/X′

i on Ei . Since Ei is effective and exceptional/X′
i, the LMMP ends on a

model X′′
i on which E′′

i = 0 (as in the proof of Lemma 4.5). In particular,

KX′′
i
+ �′′

i + R′′
i ≡ 0/X′

i.

Let Si be a component of 	�i
 exceptional/X′
i but not a component of Ei. Since

the LMMP only contracts components of Ei, this Si is not contracted/X′′
i . Define �S′′

i
by

the generalized adjunction

KS′′
i
+ �S′′

i
+ RS′′

i
= (

KX′′
i
+ �′′

i + R′′
i

)∣

∣

S′′
i

.

Then the set of the coefficients of all the �S′′
i

satisfies DCC by Proposition 4.9. By con-
struction

KS′′
i
+ �S′′

i
+ RS′′

i
≡ 0/X′

i.

Let S′′
i → V′

i be the contraction given by the Stein factorization of S′′
i → X′

i and let F′′
i be

a general fibre of S′′
i → V′

i . We can write

KF′′
i
+ �F′′

i
+ RF′′

i
= (KS′′

i
+ �S′′

i
+ RS′′

i
)|F′′

i
≡ 0

as in Remark 4.2 (6): here �F′′
i
= �S′′

i
|F′′

i
and RF′′

i
= RS′′

i
|F′′

i
is the pushdown of Ri|Fi

=
(Mi + tiNi)|Fi

where Fi is the fibre of Si → V′
i corresponding to F′′

i .
Suppose that we can choose the Si such that

(∗) the set of the coefficients of all the �F′′
i

together with {μj,i | Mj,i|Fi
�≡ 0} ∪

{tiνk,i | Nk,i|Fi
�≡ 0} does not satisfy ACC.
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But then (∗) contradicts Theorem 1.6. So it is enough to find the Si so that (∗)

holds. We will show that (∗) holds if for each i we can find Si satisfying:

(∗∗) (D′′
i + N′′

i )|F′′
i

is not numerically trivial

where Di on Xi is the birational transform of D′
i and D′′

i is the pushdown of Di ; here
we can assume gi : Xi ��� X′′

i is a morphism. Indeed, let Bi be the sum of the birational
transform of B′

i plus the reduced exceptional divisor of fi , and B′′
i its pushdown on X′′

i . By
generalized adjunction we can write

KS′′
i
+ BS′′

i
+ MS′′

i
= (

KX′′
i
+ B′′

i + M′′
i

)∣

∣

S′′
i

.

Write g∗
i (N

′′
i ) = Ni + Qi. Then N′′

i |F′′
i
= NF′′

i
+ QF′′

i
where NF′′

i
is the pushdown of Ni|Fi

and QF′′
i

is the pushdown of Qi|Fi
. If Ni|Fi

�≡ 0 for every i, then (∗) is satisfied. So we can
assume Ni|Fi

≡ 0 for every i, hence by (∗∗) we have
(

D′′
i + N′′

i

)∣

∣

F′′
i

≡ DF′′
i
+ QF′′

i
�= 0

for every i where DF′′
i
:= D′′

i |F′′
i
. But now �′′

i = B′′
i + tiD′′

i and �S′′
i
= BS′′

i
+ ti(DS′′

i
+ QS′′

i
)

where DS′′
i
:= D′′

i |S′′
i

and QS′′
i

is the pushdown of Qi|Si
. Moreover, since DS′′

i
+ QS′′

i
�= 0

near F′′
i , Proposition 4.9 and its proof show that the set of the coefficients of all the �S′′

i

near F′′
i does not satisfy ACC. Thus the set of the coefficients of all the �F′′

i
does not

satisfies ACC, hence (∗) holds.
Finally we show that (∗∗) holds. By the negativity lemma, we can write

f ∗
i

(

D′
i + N′

i

) = Di + Ni + Pi

where Pi ≥ 0 is exceptional/X′
i. By the definition of ti and the assumption 	B′

i
 =
	B′

i + tiD′
i
, there is a component of Pi which is a component of 	�i
 but not a compo-

nent of Ei. In fact any component of Pi not contracted/X′′
i , is of this kind. Since P′′

i �= 0
is exceptional/X′

i, by the negativity lemma [3, Lemma 3.6.2], there is a component S′′
i

of P′′
i with a covering family of curves C (contracted over X′

i ) such that P′′
i · C < 0. So

(D′′
i + N′′

i ) · C > 0 for such curves C, hence (D′′
i + N′′

i )|S′′
i

is not numerically trivial over
general points of V′

i which implies that we can choose the Si so that (∗∗) holds. �

7. Global ACC

In this section, we show that Global ACC (Theorem 1.6) in dimension < d and
ACC for generalized lc thresholds (Theorem 1.5 ) in dimension d together imply Global
ACC in dimension d . We first deal with the pairs which are generalized lc but not gen-
eralized klt. For the general case, we will use Proposition 3.4 and do induction on the
number of summands in the nef part of the pair, as illustrated in the introduction. The
starting point of the induction is the important result [10, Theorem 1.5] which proves the
statement when the nef part is zero.
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Proposition 7.1. — Assume Theorem 1.6 holds in dimension ≤ d − 1. Then Theorem 1.6

holds in dimension d for those (X′,B′ + M′) which are not generalized klt.

Proof. — Step 1. Extending � we can assume 1 ∈ �. If the proposition does not
hold, then there is a sequence of generalized lc but not klt polarized pairs (X′

i,B′
i + M′

i)

with data Xi

fi→ X′
i → Zi and Mi = ∑

μj,iMj,i satisfying the assumptions of 1.6 but such
that the set of the coefficients of all the B′

i together with the μj,i does not satisfy ACC.
We may assume that fi : Xi → X′

i is a log resolution of (X′
i,B′

i). Let Bi be the sum
of the birational transform of B′

i and the reduced exceptional divisor of fi. We can write

KXi
+ Bi + Mi = f ∗

i

(

KX′
i
+ B′

i + M′
i

) + Ei

where Ei ≥ 0 is exceptional/X′
i. We can run an LMMP/X′

i on KXi
+Bi +Mi with scaling

of some ample divisor which contracts Ei and terminates with some model (as in the proof
of Lemma 4.5). Moreover, by the generalized non-klt assumption, we can choose fi so that
there is a prime divisor Si on Xi which is a component of 	Bi
 but not a component of
Ei, hence it is not contracted by the LMMP. Replacing X′

i with the model given by the
LMMP allows us to assume that (X′

i,B′
i) is Q-factorial dlt and that we have a component

S′
i of 	B′

i
.

Step 2. Write B′
i = ∑

bk,iB′
k,i where B′

k,i are the distinct irreducible components of
B′

i . If the set of all the coefficients bk,i is not finite, then we may assume that the b1,i form
a strictly increasing sequence in which case we let P′

i := B′
1,i . On the other hand, if the

set of all the coefficients bk,i is finite, then the set of all the μj,i is not finite hence we could
assume that the μ1,i form a strictly increasing sequence in which case we let P′

i := M′
1,i .

In either case we can run an LMMP on

KX′
i
+ B′

i + M′
i − εP′

i ≡ −εP′
i

for some small ε > 0 which ends with a Mori fibre space, by Lemma 4.4(1). The gen-
eralized lc (and non-klt) property of (X′

i,B′
i + M′

i) is preserved by the LMMP because
KX′

i
+ B′

i + M′
i ≡ 0.

Step 3. We first consider the case when S′
i is not contracted by the LMMP in Step 2,

for infinitely many i. Replacing the sequence we can assume this holds for every i. In this
case, we replace X′

i with the Mori fibre space constructed, hence we can assume we
already have a Mori fibre structure X′

i → T′
i and that P′

i is ample/T′
i . Let F′

i be a general
fibre of X′

i → T′
i. Then we can write

KF′
i
+ BF′

i
+ MF′

i
= (

KX′
i
+ B′

i + M′
i

)∣

∣

F′
i

where BF′
i
= B′

i|F′
i

and MF′
i
= M′

i|F′
i
. Moreover, since P′

i|F′
i

is ample, the set of the coeffi-
cients of all the BF′

i
together with the set {μj,i | Mj,i|Fi

�≡ 0} is not finite where Fi is the
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fibre of Xi → T′
i corresponding to F′

i . So applying induction we can assume dim T′
i = 0.

In particular, P′
i|S′

i
is not numerically trivial.

Now assume the LMMP of Step 2 contracts S′
i at some step, for infinitely many i.

Replacing the sequence we can assume this holds for every i. Replacing X′
i we can assume

S′
i is contracted by the first step of the LMMP, say X′

i → X′′
i . Then P′

i is ample over X′′
i ,

hence P′
i|S′

i
is not numerically trivial.

From now on we assume that P′
i|S′

i
is not numerically trivial.

Step 4. Apply generalized adjunction to get

KS′
i
+ BS′

i
+ MS′

i
= (

KX′
i
+ B′

i + M′
i

)∣

∣

S′
i

≡ 0.

By Proposition 4.9, the coefficients of BS′
i
belong to a DCC set depending only on d and

�. Moreover, MS′
i

is the pushdown of M|Si
= ∑

μj,iMj,i|Si
. Thus by induction the set

of the coefficients of all the BS′
i

together with the set {μj,i | Mj,i|Si
�≡ 0} is finite. But this

contradicts Lemma 4.10. �

Proposition 7.2. — Assume that Theorem 1.6 holds in dimension ≤ d − 1 and that Theorem

1.5 holds in dimension d. Then Theorem 1.6 holds in dimension d.

Proof. — Step 1. If the statement is not true, then there is a sequence of generalized

lc polarized pairs (X′
i,B′

i + M′
i) with data Xi

fi→ X′
i → Zi and Mi = ∑

μj,iMj,i satisfying
the assumptions of 1.6 but such that the set of the coefficients of all the B′

i and all the μj,i

put together satisfies DCC but not ACC. Write B′
i =

∑

bk,iB′
k,i where B′

k,i are the distinct
irreducible components of B′

i .
As in Steps 1 and 2 of the proof of Proposition 7.1, we can reduce the problem

to the situation in which X′
i is a Q-factorial klt variety with a Mori fibre space structure.

Restricting to the general fibres of the fibration and applying induction we can in addition
assume X′

i is Fano of Picard number one.
For each i, let σ(Mi) be the number of the μj,i . Then, by Propositions 5.1 and 5.2,

we can assume that the number of the components of B′
i plus σ(Mi) is bounded. Thus we

can assume that the number of the components of B′
i and σ(Mi) are both independent

of i. We just write σ instead of σ(Mi).
We will do induction on the number σ . By [10, Theorem 1.5], the proposition

holds when σ = 0, i.e. when Mi = 0 for every i. So we can assume σ > 0. We may also
assume that σ is minimal with respect to all sequences as above, even if � is extended to
a larger set.

Replacing the sequence we may assume that the numbers bk,i and μj,i form a (not
necessarily strict) increasing sequence for each k and each j, because they all belong to the
DCC set �. By definition, bk,i ≤ 1. We show that the μj,i are also bounded from above,
i.e. limi μj,i < +∞ for every j: this follows from the same arguments as in Step 3 of the
proof of Proposition 5.2 by considering the generalized lc threshold of M′

j,i with respect to
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(X′
i,B′

i + M′
i − μj,iM′

j,i) if Mj,i �≡ 0/X′
i for infinitely many i, or by applying boundedness

of the length of extremal rays otherwise.

Step 2. By Proposition 7.1, we may assume that (X′
i,B′

i + M′
i) is generalized klt for

every i. In particular, (X′
i,B′

i + (1+ εi)M′
i) is generalized klt, and KX′

i
+B′

i + (1+ εi)M′
i is

ample for some small εi > 0, noting that the Picard number ρ(X′
i) = 1. We may assume

that fi : Xi → X′
i is a log resolution of (X′

i,B′
i) and can write

KXi
+ Bi + (1 + εi)Mi = f ∗

i

(

KX′
i
+ B′

i + (1 + εi)M′
i

) + Ei

where Bi is the sum of the birational transform of B′
i and the reduced exceptional divisor

of fi, and Ei ≥ 0 is exceptional/X′
i. So KXi

+ Bi + (1 + εi)Mi is big, and since the μj,i

are bounded from above, we deduce that KXi
+ Bi + ∑

nMj,i is also big for some fixed
natural number n � 1 independent of i.

Now by Proposition 3.4, there exists a natural number m, independent of i, such
that |m(KXi

+ Bi + ∑

nMj,i)| defines a birational map for every i. In particular,

H0

(

Xi,

⌊

m

(

KXi
+ Bi +

∑

nMj,i

)⌋)

�= 0

so
⌊

m

(

KXi
+ Bi +

∑

nMj,i

)⌋

∼ mDi

for some integral divisor mDi ≥ 0. The coefficients of mDi belong to N, a DCC set. Now
let Di be the R-divisor so that mDi is the sum of mDi and the fractional part 〈m(KXi

+
Bi + ∑

nMj,i)〉. Since KXi
+ ∑

nMj,i is Cartier, mDi = mDi + 〈mBi〉. On the other hand,
since the coefficients of Bi belong to the DCC set � ∩ [0,1], the coefficients of 〈mBi〉
belong to a DCC set as well by Lemma 2.1. Therefore, the coefficients of mDi and hence
of Di belong to a DCC set, depending only on �. By extending � we can assume that
the coefficients of Di belong to �.

By construction,

0 ≤ Di ∼R KXi
+ Bi +

∑

nMj,i

which in turn implies that

0 ≤ D′
i ∼R KX′

i
+ B′

i +
∑

nM′
j,i

= KX′
i
+ B′

i + M′
i +

∑

(n − μj,i)M′
j,i ≡

∑

(n − μj,i)M′
j,i.

Note that we can assume n − μj,i > 0 for every j, i.
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Step 3. By Lemma 2.2, replacing the sequence X′
i and reordering the indexes j,

we may assume that M′
j,i ≡ λj,iM′

1,i so that for each j the numbers λj,i form a decreasing
sequence. By Step 2, we get

D′
i ≡

∑

(n − μj,i)M′
j,i ≡

∑

(n − μj,i)λj,iM′
1,i =: ρiM′

1,i

where we have defined

ρi :=
∑

(n − μj,i)λj,i.

For each j, the numbers n−μj,i and λj,i form decreasing sequences hence the ρi also form
a decreasing sequence by Lemma 2.1.

Now let Ni := ∑

j≥2 μj,iMj,i and let ui be the generalized lc threshold of D′
i with

respect to (X′
i,B′

i + N′
i). Since D′

i ≡ ρiM′
1,i we get

KX′
i
+ B′

i + N′
i + uiD′

i ≡ KX′
i
+ B′

i + N′
i + uiρiM′

1,i.

Assume that uiρi ≥ μ1,i for every i. Let vi ≤ ui be the number so that

KX′
i
+ B′

i + N′
i + viD′

i ≡ KX′
i
+ B′

i + M′
i ≡ 0

that is, vi = μ1,i

ρi
. As the μ1,i form an increasing sequence and the ρi form a decreasing

sequence, the vi form an increasing sequence. Moreover, if the μ1,i form a strictly in-
creasing sequence, then the vi also form a strictly increasing sequence. Thus the set of
the coefficients of all the B′

i + viD′
i together with the {μj,i | j ≥ 2} is a DCC set but not

ACC. Now (X′
i,B′

i + viD′
i + N′

i) is generalized lc with boundary part B′
i + viD′

i and nef
part Ni, and σ(Ni) < σ which contradicts the minimality assumption on σ in Step 1.
Therefore, from now on we may assume that uiρi < μ1,i for every i.

Step 4. Fix i. Let �i be the set of those elements (α,β) ∈ [0,
μ1,i

ρi
] × [0,μ1,i] such

that

KX′
i
+ B′

i + N′
i + αD′

i + βM′
1,i ≡ KX′

i
+ B′

i + M′
i

which is equivalent to αρi + β = μ1,i . Note that (0,μ1,i) ∈ �i hence �i �= ∅. Now let

si = sup
{

α | (α,β) ∈ �i,
(

X′
i,B′

i + αD′
i + N′

i + βM′
1,i

)

is generalized lc
}

where the pair in the definition has boundary part B′
i + αD′

i and nef part Ni + βM1,i .
Letting ti = μ1,i − siρi we get (si, ti) ∈ �i .

We show that si is actually a maximum hence in particular
(

X′
i,B′

i + siD′
i + N′

i + tiM′
1,i

)
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is generalized lc. If not, then there is a sequence (αl, β l) ∈ �i such that the αl form a
strictly increasing sequence approaching si and the β l form a strictly decreasing sequence
approaching ti . Since

(

X′
i,B′

i + αlD′
i + N′

i + tiM′
1,i

)

is generalized lc, the generalized lc threshold of D′
i with respect to (X′

i,B′
i + N′

i + tiM′
1,i)

is at least limαl = si by Theorem 1.5. So
(

X′
i,B′

i + siD′
i + N′

i + tiM′
1,i

)

is also generalized lc. Hence si is indeed a maximum. Note that si ≤ ui.

Step 5. Since the coefficients of D′
i belong to � and since ui is the generalized lc

threshold of D′
i with respect to (X′

i,B′
i + N′

i), ui is bounded from above by Theorem 1.5.
Thus si is also bounded from above. So we may assume the si and the ti each form an
increasing or a decreasing sequence hence s = lim si and t = lim ti exist. Since the μ1,i

form an increasing sequence and the ρi form a decreasing sequence, the si or the ti form
an increasing sequence. We will show that in fact the ti form an increasing sequence.

Assume otherwise, that is, assume the ti form a decreasing sequence. We can as-
sume it is strictly decreasing. Then the si form a strictly increasing sequence. Since

(

X′
i,B′

i + siD′
i + N′

i + tM′
1,i

)

is generalized lc, we may assume that
(

X′
i,B′

i + sD′
i + N′

i + tM′
1,i

)

is generalized lc too, by Theorem 1.5. Now we can find s̃i > si such that (s̃i, t) ∈ �i , that
is, s̃iρi + t = μ1,i . Since the μ1,i form an increasing sequence and the ρi form a decreasing
sequence, the s̃i form an increasing sequence. Moreover, since

t < ti ≤ μ1,i ≤ limμ1,i and s(limρi) + t = lim(siρi + ti) = limμ1,i

we deduce limρi > 0. Thus as

lim(s̃iρi + t) = limμ1,i,

we get lim s̃i = lim si = s. In particular this means s ≥ s̃i > si , hence
(

X′
i,B′

i + s̃iD′
i + N′

i + tM′
1,i

)

is generalized lc which contradicts the maximality assumption of si in Step 4.
So we have proved that the ti form an increasing sequence. Now by definition si is

the generalized lc threshold of D′
i with respect to

(

X′
i,B′

i + N′
i + tiM′

1,i

)

.
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So they form a decreasing sequence by Theorem 1.5.

Step 6. The purpose of this step is to modify B′
i so that we can assume s = lim si = 0.

Let t̃i be the number so that sρi + t̃i = μ1,i . As si ≥ s, t̃i ≥ ti ≥ 0, hence (s, t̃i) ∈ �i . Since
the μ1,i (resp. ρi ) form an increasing (resp. decreasing) sequence, the t̃i form an increasing
sequence. Moreover,

lim t̃i = lim(μ1,i − sρi) = lim(μ1,i − siρi) = lim ti = t

which implies t̃i ≤ t.
We claim that

(∗)
(

X′
i,B′

i + sD′
i + N′

i + t̃iM′
1,i

)

is generalized lc. Indeed, let ci be the generalized lc threshold of M′
1,i with respect to

(X′
i,B′

i + sD′
i + N′

i). Then ci ≥ ti and by Theorem 1.5, we may assume that the ci form a
decreasing sequence. Thus

ci ≥ lim ci ≥ lim ti = t ≥ t̃i

and the claim follows.
Now we define the boundary Ci := Bi + sD̃′

i on Xi where Bi , as in Step 2, is the
sum of the birational transform of B′

i and the reduced exceptional divisor of Xi → X′
i ,

and D̃′
i is the birational transform of D′

i . Then C′
i = B′

i + sD′
i and

(

X′
i,C′

i + N′
i + t̃iM′

1,i

)

is generalized lc by (∗), and

KX′
i
+ C′

i + N′
i + t̃iM′

1,i ≡ 0.

Moreover, the set of the coefficients of all the C′
i union the set {μj,i | j ≥ 2} ∪ {t̃i} satisfies

DCC but not ACC (note that if the μ1,i form a strictly increasing sequence, then so do
the t̃i ).

On the other hand, let Gi := Di + sD̃′
i and let ri := si−s

1+s
. Then

0 ≤ Gi ∼R KXi
+ Ci +

∑

nMj,i

and G′
i = (1 + s)D′

i, and

KX′
i
+ C′

i + riG′
i + N′

i + tiM′
1,i = KX′

i
+ B′

i + siD′
i + N′

i + tiM′
1,i ≡ 0.

The equality also shows
(

X′
i,C′

i + riG′
i + N′

i + tiM′
1,i

)
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is generalized lc and that ri is the generalized lc threshold of G′
i with respect to (X′

i,C′
i +

N′
i + tiM′

1,i). Therefore extending �, replacing Bi with Ci , replacing μ1,i with t̃i , replacing
Di with Gi , and replacing si with ri allow us to assume that s = lim si = 0.

Step 7. After replacing Xi we may assume that there is a prime divisor Si on Xi

whose generalized log discrepancy with respect to the generalized lc polarized pair
(

X′
i,B′

i + siD′
i + N′

i + tiM′
1,i

)

is 0: this follows from our choice of si, ti .
First assume that Si is not contracted over X′

i for every i which means that S′
i is

a component of 	B′
i + siD′

i
. Let di be the coefficient of S′
i in D′

i and let pi be the real
number such that

KX′
i
+ B′

i + sidiS′
i + N′

i + piM′
1,i ≡ 0.

Obviously pi ≤ μ1,i , and equality holds if and only if sidiS′ ≡ 0, i.e., sidi = 0. Since sidiS′
i ≤

siD′
i and

KX′
i
+ B′

i + siD′
i + N′

i + tiM′
1,i ≡ 0

we have ti ≤ pi. Then from lim si = 0 and μ1 := limμ1,i = lim ti we arrive at lim pi = μ1.
So we may assume that the pi form an increasing sequence approaching μ1.

Let wi be the generalized lc threshold of M′
1,i with respect to

(

X′
i,B′

i + sidiS′
i + N′

i

)

.

Then wi ≥ ti . Applying Theorem 1.5, we can assume that the wi form a decreasing
sequence. Then

wi ≥ limwi ≥ lim ti = μ1 = lim pi ≥ pi

which implies that
(

X′
i,B′

i + sidiS′
i + N′

i + piM′
1,i

)

is generalized lc with boundary part �′
i := B′

i + sidiS′
i and nef part Ri := Ni + piM1,i .

The set of the coefficients of all the �′
i union the set {μj,i | j ≥ 2} ∪ {pi} satisfies DCC.

Therefore, by Proposition 7.1, we may assume that pi is a constant independent of i.
Now

μ1 = lim pi = pi ≤ μ1,i ≤ limμ1,i = μ1

Thus pi = μ1,i , hence sidi = 0, �′
i = B′

i , and Ri = Mi . In other words, (X′
i,B′

i + M′
i) is not

generalized klt. This contradicts Proposition 7.1.
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So after replacing the sequence we may assume that Si is exceptional over X′
i for

every i.

Step 8. By Lemma 4.6, there is an extremal contraction gi : X′′
i → X′

i extracting S′′
i

with X′′
i being Q-factorial. We can assume Xi ��� X′′

i is a morphism. We can write

KX′′
i
+ B′′

i + siD̃′′
i + N′′

i + tiM′′
1,i = g∗

i

(

KX′
i
+ B′

i + siD′
i + N′

i + tiM′
1,i

) ≡ 0

where B′′
i is the pushdown of Bi , D̃′′

i is the birational transform of D′
i , M′′

1,i is the pushdown
of M1,i , and N′′

i is the pushdown of Ni . Now S′′
i is a component of 	B′′

i 
. By Lemma 4.4(1)
we can run the −S′′

i -LMMP which terminates on some Mori fibre space X′′′
i → T′′′

i . We
may assume that dim T′′′

i = 0 for every i, or dim T′′′
i > 0 for every i. Replacing Xi we may

assume Xi ��� X′′′
i is a log resolution of (X′′′

i ,B′′′
i + siD̃′′′

i ).
Since (X′

i,B′
i +M′

i) is generalized lc and KX′
i
+B′

i +M′
i ≡ 0, we deduce that KXi

+
Bi + Mi is pseudo-effective. Thus KX′′′

i
+ B′′′

i + M′′′
i is pseudo-effective too. Moreover, by

construction

KX′′′
i

+ B′′′
i + siD̃′′′

i + N′′′
i + tiM′′′

1,i ≡ 0.

So there is the largest number qi ∈ [ti,μ1,i] such that

KX′′′
i

+ B′′′
i + N′′′

i + qiM′′′
1,i ≡ 0/T′′′

i .

From s = lim si = 0 we get lim ti = limμ1,i = μ1 from which we derive lim qi = μ1. So we
may assume that the qi form an increasing sequence approaching μ1. Let wi be the gener-
alized lc threshold of M′′′

1,i with respect to the generalized lc polarized pair (X′′′
i ,B′′′

i +N′′′
i ).

Then wi ≥ ti as
(

X′′′
i ,B′′′

i + siD̃′′′
i + N′′′

i + tiM′′′
1,i

)

is generalized lc. Moreover, by Theorem 1.5 we can assume the wi form a decreasing
sequence, hence

qi ≤ μ1,i ≤ μ1 = lim ti ≤ limwi ≤ wi.

So the pair (X′′′
i ,B′′′

i + N′′′
i + qiM′′′

1,i) is generalized lc. But the pair is not generalized klt
because S′′′

i is a component of 	B′′′
i 
.

Step 9. Assume that dim T′′′
i = 0 for every i. Applying Proposition 7.1, we can

assume that the set of the coefficients of all the B′′′
i union the set {μj,i|j ≥ 2} ∪ {qi} is finite.

In particular, this means we can assume qi = μ1,i = μ1 for every i, and that μj,i = μj for
every j, i where μj := limi μj,i . On the other hand, assume that dim T′′′

i > 0 for every i.
If M′′′

1,i ≡ 0/T′′′
i , then qi = μ1,i . But if M′′′

1,i �≡ 0/T′′′
i , then by restricting to the general

fibres of X′′′
i → T′′′

i and applying induction, we deduce that {qi} is finite, hence qi = μ1

for i � 1; so we can assume qi = μ1,i = μ1. Moreover, by restricting to the general fibres
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of X′′′
i → T′′′

i and applying induction once more, we may assume that the set of the
horizontal/T′′′

i coefficients of all the B′′′
i together with the set {μj,i | M′′′

j,i �≡ 0/T′′′
i } is finite.

The last paragraph shows that in either case dim T′′′
i = 0 or dim T′′′

i > 0, we can
assume

(∗∗) KX′′′
i

+ B′′′
i + M′′′

i ≡ 0/T′′′
i .

Let Bi be obtained from Bi by replacing the coefficient bk,i with bk := limi bk,i . Let Mi be
obtained from Mi by replacing μj,i with μj = limi μj,i . Then KX′

i
+ B

′
i + M

′
i is ample be-

cause ρ(X′
i) = 1 and because either bk,i < bk for some k or μj,i < μj for some j. Moreover,

by Theorem 1.5, we can assume (X′
i,B

′
i + M

′
i) is generalized lc. Thus

KXi
+ Bi + Mi ≥ f ∗

i

(

KX′
i
+ B

′
i + M

′
i

)

is big. This in turn implies that KX′′′
i

+ B
′′′
i + M

′′′
i is big too. On the other hand, by the

last paragraph, we may assume that on the general fibres F′′′
i of X′′′

i → T′′′
i we have:

B
′′′
i |F′′′

i
= B′′′

i |F′′′
i

and M
′′′
i |F′′′

i
≡ M′′′

i |F′′′
i

. This contradicts (∗∗). �

8. Proof of main results

In this section, we prove our main results stated in the introduction.

Proof of Theorem 1.5 and Theorem 1.6. — By Proposition 6.1, Theorem 1.6 in dimen-
sion < d implies Theorem 1.5 in dimension d . On the other hand, by Proposition 7.2,
Theorem 1.6 in dimension < d and Theorem 1.5 in dimension d imply Theorem 1.6 in
dimension d . So both theorems follow inductively the case d = 1 being trivial. �

Next we prove a result bounding pseudo-effective thresholds which will be needed
for the proof of Theorem 1.3.

Theorem 8.1. — Let d be a natural number and � a DCC set of nonnegative real numbers.

Then there is a real number e ∈ (0,1) depending only on �, d such that if:

• (X,B) is projective lc of dimension d,

• M = ∑

μjMj where Mj are nef Cartier divisors,

• the coefficients of B and the μj are in �, and

• KX + B + M is a big divisor,

then KX + eB + eM is a big divisor.

Proof. — It suffices to show the assertion: there is an e ∈ (0,1) depending only on
�, d such that KX + eB + eM is pseudo-effective; because then

vol
(

KX + 1
2
(e + 1)(B + M)

)

= vol
(

1
2
(KX + B + M + KX + eB + eM)

)
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≥ vol
(

1
2
(KX + B + M)

)

> 0

and hence KX + e′B + e′M is big for e′ := 1
2(1 + e) ∈ (0,1).

If there is no e as in the last paragraph, then there is a sequence of pairs (Xi,Bi)

and divisors Mi = ∑

μj,iMj,i satisfying the assumptions of the theorem but such that the
pseudo-effective thresholds ei of Bi + Mi form a strictly increasing sequence approach-
ing 1: by definition KXi

+ eiBi + eiMi is pseudo-effective but KXi
+ ciBi + ciMi is not

pseudo-effective for any ci < ei .
We can extend � and replace the Xi,Bi so that we may assume (Xi,Bi) is log

smooth klt. By Lemma 4.4(2), we can run an LMMP on KXi
+ eiBi + eiMi which ends

with a minimal model X′
i on which KX′

i
+ eiB′

i + eiM′
i is semi-ample defining a contraction

X′
i → T′

i . Since KX′
i
+B′

i +M′
i is big and KX′

i
+ eiB′

i + eiM′
i ≡ 0/T′

i , we deduce that B′
i +M′

i

is big over T′
i .

Replacing Xi we may assume that Xi ��� X′
i is a log resolution of (X′

i,B′
i). Let F′

i

be a general fibre of X′
i → T′

i and Fi the corresponding fibre of Xi → T′
i . By restricting

to F′
i we get

KF′
i
+ eiBF′

i
+ eiMF′

i
:= (

KX′
i
+ eiB′

i + eiM′
i

)|F′
i
≡ 0.

This contradicts Theorem 1.6 because eiBF′
i
+ eiMF′

i
is big hence nonzero for every i,

so the set of the coefficients of all the eiBF′
i

union with the set {eiμj,i | Mj,i|Fi
�≡ 0} is not

finite. �

Proof of Theorem 1.3. — As usual by taking a log resolution we may assume (X,B)

is log smooth. By Theorem 8.1, there exist a rational number e ∈ (0,1) depending only
on �, d, r such that KX + eB + eM is big, so KX + eB + M is also big. As in Step 2 of
the proof of Proposition 3.4, there is p ∈ N depending only on e,�, r such that r|p and
for any nonzero λ ∈ � we can find γ ∈ [eλ,λ) such that pγ is an integer. In particular,
we can find a boundary � such that eB ≤ � ≤ B, p� is Cartier, KX + � + M is big, and
(X,�) is klt. Replacing B with � we can then assume � = { i

p
| 0 ≤ i ≤ p − 1} and that

(X,B) is klt.
By Proposition 3.4, there exist l, n ∈ N depending only on �, d, r such that r|n and

that |l(KX + B + nM)| defines a birational map. By replacing l with pl we can assume p|l.
There is a resolution φ : W → X such that

φ∗l(KX + B + nM) ∼ H + G

where H is big and base point free and G ≥ 0. Perhaps after replacing l with (2d + 1)l,
we can also assume that H is potentially birational [9, Lemma 2.3.4].

Applying Theorem 8.1 once more, there exist rational numbers s, u ∈ (0,1) de-
pending only on �, d, r such that KX + sB + uM is big. Perhaps after replacing s, u, we

Author's personal copy



CAUCHER BIRKAR, DE-QI ZHANG

can choose a sufficiently large natural number q so that qs is integral and divisible by p,
qu is integral and divisible by r,

s′ := qs + l

q + l + 1
< 1, and

qu + ln

q + l + 1
= 1.

Let X′ be a minimal model of KX + sB + uM, which exists by Lemma 4.4(2). We
can assume that the induced map ψ : W ��� X′ is a morphism. Since X′ is a minimal
model,

φ∗(KX + sB + uM) = ψ∗(KX′ + sB′ + uM′) + E

where E is effective. Let

D = ψ∗(KX′ + sB′ + uM′).

Since H is potentially birational, by Lemma 3.1, qD + H is potentially birational and
|KW + �qD + H�| defines a birational map. Thus

∣

∣KW + ⌈

φ∗q(KX + sB + uM)
⌉ + φ∗l(KX + B + nM)

∣

∣

also defines a birational map which in turn implies that
∣

∣KX + ⌈

q(KX + sB + uM)
⌉ + l(KX + B + nM)

∣

∣

defines a birational map. Hence the linear system
∣

∣(q + l + 1)
(

KX + s′B + M
)∣

∣

defines a birational map. Therefore
∣

∣(q + l + 1)(KX + B + M)
∣

∣

also defines a birational map.
By construction r|qu and r|ln, so r|(q + l + 1 = qu + ln). Now put a := m(�, d, r) :=

q + l + 1. Then aM is Cartier, and for any b ∈ N, the linear system |b	a(KX + B + M)
|
defines a birational map. But since aM is Cartier and B is effective,

b
⌊

a(KX + B + M)
⌋ ≤ ⌊

ba(KX + B + M)
⌋

which means |m(KX + B + M)| also defines a birational map where m = ba. �

Next we prove a result similar to 1.3 but we allow a more general nef part M. This
result is not used elsewhere in this paper.

Theorem 8.2. — Let d be a natural number and � a DCC set of nonnegative real numbers.

Then there is a natural number m depending only on �, d such that if:
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• (X,B) is projective lc of dimension d,

• M = ∑

μjMj where Mj are nef Cartier divisors,

• the coefficients of B and the μj are in �, and

• KX + B + M is big,

then the linear system |	m(KX + B)
 + ∑	mμj
Mj| defines a birational map.

Proof. — As usual we may assume (X,B) is log smooth. By Theorem 8.1, there
exists a rational number e ∈ (0,1) depending only on �, d such that KX + eB + eM is
pseudo-effective. As in the proof of 1.3, there is p ∈ N depending only on e,� such that
we can find a boundary � ≤ B and numbers νj ∈ [eμj,μj] such that p� and pN are
Cartier divisors and KX + � + N is big where N = ∑

νjMj .
Applying Theorem 1.3, there is l ∈ N depending only on p, d (hence only on �, d )

such that |l(KX +�+ N)| defines a birational map and p|l. Replacing l by a multiple we
can in addition assume that l(KX +�+N) is potentially birational. Then by Lemma 3.1,

l(KX + � + N) +
∑

αjMj

is potentially birational for any 0 ≤ αj ∈ Z, and
∣

∣

∣

∣

KX + l(KX + � + N) +
∑

αjMj

∣

∣

∣

∣

defines a birational map. Since νj ≤ μj , we can take αj so that lνj + αj = 	(l + 1)μj
.
Therefore

∣

∣

∣

∣

(l + 1)KX + l� +
∑

⌊

(l + 1)μj

⌋

Mj

∣

∣

∣

∣

defines a birational map which in turn implies that
∣

∣

∣

∣

⌊

(l + 1)(KX + B)
⌋ +

∑
⌊

(l + 1)μj

⌋

Mj

∣

∣

∣

∣

defines a birational map because l� ≤ 	(l + 1)B
. Now put m = l + 1. �

Proof of Theorem 1.2. — Replacing W we can assume the Iitaka fibration I : W ��� X
is a morphism, i.e. can assume V = W using the notation before Theorem 1.2. Also we
can assume κ(W) ≥ 1 otherwise there is nothing to prove.

Let b := bF and β := β
˜F. Let

N = N(β) = lcm
{

m ∈ N |ϕ(m) ≤ β
}

where ϕ denotes Euler’s ϕ-function. Let

A(b,N) :=
{

bNu − v

bNu

∣

∣

∣ u, v ∈ N, v ≤ bN
}
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which is a DCC subset of the interval [0,1).
By the results of [7] (which is summarized in [24, Lemma 1.2]), replacing W and

X by high enough resolutions, we may assume that X is smooth and that there exist a
boundary B on X (the discriminant part of I : W → X) and a nef Q-divisor M (the moduli
part of I : W → X) such that

– NbM is Cartier,
– B has simple normal crossing support with coefficients in A(b,N),
– KX + B + M is big,
– we have isomorphisms

H0(W,mbKW) ∼= H0
(

X,mb(KX + B + M)
)

for every m ∈ N, and
– the rational map defined by |mbKW| is birational to the Iitaka fibration I : W →

X if and only if |mb(KX + B + M)| gives rise to a birational map.

By letting � = A(b,N) and r = Nb, and applying Theorem 1.3, there is a con-
stant m(�, d, r) depending only on �, d, r, (hence depending only on d, b, β ) such that
|m(KX + B + M)| defines a birational map for any m ∈ N divisible by m(�, d, r). Now
simply let m(d, bF, β˜F) = bm(�, d, r). �
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