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a b s t r a c t 

Classification of protein are crucial topics in biology. The number of protein sequences stored in databases 

increases sharply in the past decade. Traditionally, comparison of protein sequences is usually carried out 

through multiple sequence alignment methods. However, these methods may be unsuitable for clustering 

of protein sequences when gene rearrangements occur such as in viral genomes. The computation is also 

very time-consuming for large datasets with long genomes. In this paper, based on three important bio- 

chemical properties of amino acids: the hydropathy index, polar requirement and chemical composition 

of the side chain, we propose a 24 dimensional feature vector describing the composition of amino acids 

in protein sequences. Our method not only utilizes the chemical properties of amino acids but also counts 

on their numbers and positions. The results on beta-globin, mammals, and three virus datasets show that 

this new tool is fast and accurate for classifying proteins and inferring the phylogeny of organisms. 

Published by Elsevier Ltd. 

1

 

m  

t  

q  

(  

t  

a  

t  

a  

i  

A  

w  

i  

2  

m  

i  

m  

i

 

a  

2  

i  

i  

t  

t  

i  

t  

(  

w  

I  

b  

d  

s  

n

 

m  

v  

c  

u  

s  

w  

p  

a  

2  

c  

m  

h

0

. Introduction 

With the rapid increase of genetic data, a growing number of

ethods for sequence comparison have been proposed. Most of

hem are alignment-based. These methods may cluster gene se-

uence precisely and several algorithms have been accepted widely

 Edgar, 2004; Katoh et al., 2002 ). Nevertheless, these methods of-

en consume long run time and cause heavy burden of memory. In

ddition, these methods may become limited due to the high mu-

ation rate and recombination as in viral genomes. Alignment-free

pproaches have already sprung up and been successfully applied

n biological fields ( Deng et al., 2011; Li et al., 2017; Vinga and

lmeida, 2003; Yin et al., 2014 ). Specifically, K-mer cluster method

as proposed and used widely ( Blaisdell, 1989 ). The k-mer words

n a protein sequence are substrings with fixed length k. There are

0 k all possible kinds of k-mer words in protein sequences. The k-

er method assembles the frequencies of all possible k-mer words

nto a numerical vector whose dimension is 20 k . However, k-mer

ethod only considers the sequence context without using chem-

cal properties and positions of amino acids. 

Understanding protein similarity relationships is vital for the

nnotation of genome sequences ( Gan et al., 2002; Pearl et al.,

0 0 0 ). Proteins with high sequence identity tend to possess sim-

larity in functions and evolutionary relationships. Therefore, us-
∗ Corresponding author. 
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ng proteins to analyze the similarity of species makes more sense

han using DNA sequences ( Li et al., 2016; Xie et al., 2015 ). Al-

hough the classic k-mer model and their variants are widely used

n many biological studies, the dimension of the numerical vec-

or derived from a protein sequence is very high when k is large.

 Jun et al., 2010; Qi et al., 2004; Ulitsky et al., 2006 ). For instance,

hen k = 5 the dimension of the k-mer vector is 20 5 = 3 , 200 , 000 .

n this case, the computational complexity for counting the num-

er of k-mer strings becomes high. Furthermore, the choice of k is

ifficult and depends on divergence of protein sequences. The po-

ition information and the chemical properties of amino acids are

ot considered in k-mer methods as well. 

With the rapid growth of biological sequence, computational

ethods to analyze the data focus on development of suitable

ector models to characterize related biological sequences, be-

ause all existing operation algorithms or engines are unable to

se sequences directly ( Chou, 2015 ). To avoid complete loss of

equence pattern, the pseudo amino acid composition (PseAAC)

as proposed by Chou (2001) . Since then, this method was ap-

lied to identify nucleosomal sequences, interactions of proteins

nd protein-protein binding sites ( Chen et al., 2012; Jia et al., 2015;

016b; Wu et al., 2010 ).The approach also achieved much suc-

esses in drug development areas ( Zhong and Zhou, 2014 ) and

any computational proteomics ( Chou, 2009; Chou and Zhang,

995; Jiao and Du, 2017; Khan et al., 2017; Kumar et al., 2015;

in and Lapointe, 2013; Meher et al., 2017; Mondal and Pai, 2014 ).

ince the wide application of PseAAC, some open access soft-wares

ere developed. The ‘PseAAC-Builder’ ( Du et al., 2012 ), ‘propy’

http://dx.doi.org/10.1016/j.jtbi.2017.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.06.002&domain=pdf
mailto:yau@uic.edu
http://dx.doi.org/10.1016/j.jtbi.2017.06.002
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Table 1 

Three physicochemical properties of 20 amino acids. 

Amino acids Hydropathy index Polar requirement Chemical composition of the side chain 

A(Ala) 1.8 7.0 0 

C(Cys) 2.5 4.8 2.75 

D(Asp) −3.5 13.0 1.38 

E(Glu) −3.5 12.5 0.92 

F(Phe) 2.8 5.0 0 

G(Gly) −0.4 7.9 0.74 

H(His) −3.2 8.4 0.58 

I(Ile) 4.5 4.9 0 

K(Lys) −3.9 10.1 0.33 

L(Leu) 3.8 4.9 0 

M(Met) 1.9 5.3 0 

N(Asn) −3.5 10.0 1.33 

P(Pro) −1.6 6.6 0.39 

Q(Gln) −3.5 8.6 0.89 

R(Arg) −4.5 9.1 0.65 

S(Ser) −0.8 7.5 1.42 

T(Thr) −0.7 6.6 0.71 

V(Val) 4.2 5.6 0 

W(Trp) −0.9 5.2 0.13 

Y(Tyr) −1.3 5.4 0.20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Classification of the 20 amino acids. 

Amino acids Denote 

Hydropathy index 

> 0 A C F I L M V α

(−1 , 0) G S T W β

< −1 D E H K N P Q R Y γ

Polar requirement 

≥ 7 A D E G H K N Q R S δ

< 7 C F I L M P T V W Y φ

Chemical composition of the side chain 

0 A F I L M V ρ

(0, 1) E G H K P Q R T W Y θ

> 1 C D N S λ

2

 

{  

a  

i  

i  

(  

1  

1  

i  

t  

a  

p  

w  

s  

h  

t  

r  

s  

i  

H  

h  

h  

 

t  
( Cao et al., 2013 ) may generate various modes of Chou’s special

PseAAC. The ‘PseAAC-General’ ( Du et al., 2014 ) was aimed at pro-

ducing various modes of Chou’s general PseAAC which contains

higher level feature vectors such as ‘Functional Domain’ mode,

‘Gene Ontology’ mode, and ‘Sequential Evolution’ ( Chou, 2011 ).

Three web-servers were also established for generating various fea-

ture vectors for biological sequences ( Chen et al., 2014; 2015; Liu

et al., 2015a ). Recently a powerful web-server called Pse-in-One

( Liu et al., 2015b ) was designed to generate any desired feature

vectors for sequences. 

The physicochemical properties of amino acids are important

for protein sequence classification and evolution ( Salichos and

Rokas, 2013; Wimley and White, 1996 ). There are more than ten

kinds of properties well established ( Rackovsky, 2009 ). Among

them, the hydropathy index measures the hydrophilicity or hy-

drophobicity of amino acids. As the value of hydropathy index

increases, an amino acid becomes more hydrophobic ( Kyte and

Doolittle, 1982; Yau et al., 2008 ). This factor plays important rules

in prediction of protein structures and phylogenetic analysis. The

polar requirement property represents the polarity of an amino

acid, which is also crucial for protein studies ( Woese et al., 1966 ).

The third factor of an amino acid is the chemical composition of

the side chain , which affects some chemical properties globally

( Grantham, 1974 ). The three properties are commonly used and

have strong effects on protein structure and function. 

In this paper, we find that use of the three physicochemical

properties is helpful for the classification and evolution of protein

sequences. For each property, the 20 amino acids may be grouped

into several classes according to the value of this property. Then

we propose a set of numbers to describe distribution of amino

acids in each class in a protein sequence. Finally, we establish a

novel 24 dimensional numerical vector to characterize each pro-

tein sequence. This vector takes into account both the positions of

amino acids and the chemical properties of amino acids in pro-

tein sequences. Another advantage is that our vector method can

be used by most of clustering algorithms which can not deal with

sequences directly. To test the superiority of our novel method, we

analyze several data sets and further compare our method with the

popular alignment ClustalW algorithm. Our new tool is more ac-

curate to infer phylogenetic relationships of organisms and much

lower in computational complexity than ClustalW. 
T

 

a  
. Methods 

Let F be the set of 20 amino acids, i.e., F =
 A, C, D, E, F , G, H, I, K, L, M, N, P, Q, R, S, T , V, W, Y }
nd S = (s 1 , s 2 , · · · , s N ) be a protein sequence of length n , that

s, s i ∈ F , i = 1 , 2 , · · · , N. Here we consider 3 major physicochem-

cal properties of amino acids including the hydropathy index

 Kyte and Doolittle, 1982 ), the polar requirement ( Woese et al.,

966 ) and the chemical composition of the side chain ( Grantham,

974 ). The values of these properties for amino acids are listed

n Table 1 . For the hydropathy index factor, the more positive

he value is, the more hydrophobic an amino acid is. Amino

cids with close values tend to have similar hydrophobicity. The

ositive value of an amino acid means it has hydrophobicity,

hile the negative value means it has hydrophilicity. So we

plit the 20 amino acids into 7 hydrophobic amino acids and 13

ydrophilic amino acids. Among the 13 hydrophilic amino acids,

he hydropathy indexes of some are close to zero and others are

elatively large. Therefore, we group the 13 amino acids into two

ubgroups further. Finally, we classify the twenty amino acids

nto 3 groups: H 1 , H 2 , H 3 , where: H 1 = { A, C, F , I, L, M, V } ;
 2 = { G, S, T , W } ; H 3 = { D, E, H, K, N, P, Q, R, Y } . The

ydropathy values of amino acids in H 1 are greater than 0. The

ydropathy values of amino acids from H 2 are in the interval

(−1 , 0) . For amino acids from H 3 , their hydropathy values are less

han −1 . We denote the three groups by α, β and γ respectively

able 2 . 

For the polar requirement property, the values for the 20 amino

cids seem even. So we divide the amino acids into two cate-
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Fig. 1. Flow chart of the construction of our new 24 dimensional vector. The 20 

amino acids are divided into tree groups α, β and γ according to the hydropathy 

index, δ and φ according to the polar requirement, ρ , θ and λ according to the 

chemical composition of the side chain. For each group, three numerical features 

are proposed to describe count, center and variability of the group in the protein 

sequence. 
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ories with equal size : P 1 = { A, D, E, G, H, K, N, Q, R, S} and

 2 = { C, F , I, L, M, P, T , V, W, Y } . We denote the amino acids

n P 1 and P 2 by δ and φ respectively. The polar requirement val-

es for amino acids in P 1 are ≥ 7. The values for remaining 10

mino acids in P 2 are < 7 as shown in Table 2 . For the chem-

cal composition property, the values of 6 amino acids are zero.

e classify the 6 amino acids into a group. For the remaining 14

mino acids, a few of them seem different due to large value for

his property. Thus we cluster the 20 amino acids into three classes

y chemical composition of the side chain. The three classes are

 1 = { A, F , I, L, M, V } , C 2 = { E, G, H, K, P, Q, R, T , W, Y } ,
nd C 3 = { C, D, N, S} . We record the amino acids from the three

lasses as ρ , θ and λ respectively. The chemical composition of the

ide chain of amino acids in C 1 , C 2 and C 3 are 0 , (0, 1), and > 1

espectively in Table 2 . 

As shown in the flow chart ( Fig. 1 ), we first classify amino acids

nto three groups based on the hydropathy index. Then a protein

equence only contains three kinds of letters: α, β and γ . For α,

e define f α( · ): { α, β , γ } → {0, 1}, such that: 

f α(s i ) = 

{
1 , s i = α
0 , s i � = α

i = 1 , 2 , · · · , N. 

For α, we propose three features n α , μα and D 

α
2 

to describe the

umber of α, the average position of α and the variation of the po-

ition of α appearing in the sequence S. These features are defined

s follows: 

 α = 

N ∑ 

i =1 

f α(s i ) ; μα = 

N ∑ 

i =1 

i · f α(s i ) 

n α
; D 

α
2 = 

N ∑ 

i =1 

(i − μα) 2 f α(s i ) 

n α · N 

. 

For the other letters: β , γ , δ, φ, ρ , θ , λ, we defined

 β ( ·), f γ ( ·), f δ( ·), f φ( ·), f ρ ( ·), f θ ( ·), f λ( ·) in the same way. For every

etter we thus gain 3 features to describe its distribution in a

rotein sequence. These features form a 24 dimensional vector

efined as 

(n α, μα, D 

α
2 , n β, μβ, D 

β
2 
, n γ , μγ , D 

γ
2 
, n δ, μδ, D 

δ
2 , n φ, μφ,

D 

φ
2 
, n ρ, μρ, D 

ρ
2 
, n θ , μθ , D 

θ
2 , n λ, μλ, D 

λ
2 ) . 

Then the Euclidean distance is applied to calculate the pairwise

istance among the 24 dimensional vectors of protein sequences.

he phylogenetic tree of organisms can be built by using the UP-

MA algorithm based on MEGA 7.0 software ( Tamura et al., 2013 ). 
. Results 

.1. beta-globin 

In order to verify our method, firstly we apply our method

o classification of Beta-globin proteins which are the most com-

on haemoglobin in adult humans ( Yu et al., 2013 ). 50 beta-globin

equences picked from Swiss-Prot were analyzed using the pro-

ein map method by ( Yau et al., 2008 ). In this study, 88 beta-

lobin sequences from more diverse species were extracted from

wiss-Prot ( http://www.uniprot.org/) . Using our method, these 88

equences are clustered correctly into 19 groups: Primates, Pro-

oscidea, Carnivora, Hyracoidea, Insectivora, Columbiformes, Perisso- 

actyla, Testudines, Salmoniformes, Cypriniformes, Diprotodontia, Gal- 

iformes, Passeriformes, Anseriformes, Sirenia, Rodentia, Anura, Gad-

formes and Perciformes Fig. 2 . In contrast, the phylogenetic tree

f these proteins are constructed by ClustalW algorithm. However,

hree protein sequences (marked in red) are misplaced as shown

n Fig. 3 . 

.2. Human rhinovirus 

Human rhinovirus (HRV) belongs to genus Enterovirus and fam-

ly Picornaviridae . Past studies have classified HRV into three genet-

cally distinct groups, HRV-A, HRV-B, and HRV-C, within the genus

nterovirus ( Deng et al., 2011; Hoang et al., 2015 ). From ( Jacobs

t al., 2013; Palmenberg et al., 2009 ) HRV-A and HRV-C share a

ommon ancestor, which is a sister group to the HRV-B. Our re-

ults based on the new feature vector method are consistent with

heirs Fig. 4 . Note that these papers all use the complete genome

equences, but our paper use the concatenated protein sequences

hich are also polyproteins. In previous work ( Palmenberg et al.,

009 ), a dataset consisting of 113 HRV and 3 HEV-C complete

enomes was investigated. The 113 HRV genomes were clustered

nto three groups HRV-A, HRV-B, HRV-C and 3 HEV-C sequences

ormed an outgroup. While the genomes were well classified, the

unning time was quite high due to usage of multiple sequence

lignment for constructing the evolutionary tree. In this paper, 114

olyprotein sequences are studied since 2 genomes with problem-

tic polyproteins are excluded. The phylogenetic tree based on the

ew method is shown in Fig. 4 . The running only takes 0.77 s to

nish the conversion from sequences to numerical vectors in our

aptop. Moreover, a phylogenetic tree is also produced by ClustalW

nd it takes 37 min to complete the multiple sequence alignment.

he topology of the alignment-based tree is totally same as that by

ur new method. 

.3. Influenza A viruses 

Influenza spreads around the world in a yearly outbreak, re-

ulting in about three to five million cases of severe illness and

bout 250,0 0 0 to 50 0,0 0 0 deaths ( de Jong et al., 2005 ). Three

ypes of influenza viruses, Type A, Type B, and Type C, may cause

amage to human health. Influenza A virus causes influenza in

irds and some mammals. Influenza A viruses are negative-sense,

ingle-stranded, segmented RNA viruses. The several subtypes are

abeled according to an H number (for the type of hemagglutinin)

nd an N number (for the type of neuraminidase). There are 18

ifferent known H antigens (H1 to H18) and 11 different known

 antigens (N1 to N11). For example, H17 was isolated from

ruit bats and H18N11 was discovered in a Peruvian bat in Tong

t al. (2013) . Influenza A viruses have caused many pandemics

nd some of the most lethal subtypes are H1N1, H2N2, H5N1,

7N3, and H7N9. These subtypes are chosen to test the efficiency

f our method. Specifically, we examine 35 neuraminidase (NA)

equences encoded by the neuraminidase (NA) gene of Influenza

http://www.uniprot.org/)
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Fig. 2. UPGMA phylogenetic tree of beta-globin protein sequences of 88 species 

based on our new method. The dataset includes 20 groups: Primates (red), Car- 

nivora (blue), Proboscidea (cyan), Rodentia (maroon), Anseriformes (green), Insectivora 

(aqua), Perciformes (purplish red), Crocodylia (navy blue), Testudines (olive), Perisso- 

dactyla, Sirenia, Hyracoidea, Diprotodontia, Columbiformes, Passeriformes, Galliformes, 

Anura, Salmoniformes, Cypriniformes, Gadiformes . (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 3. UPGMA phylogenetic tree of beta-globin protein sequences of 88 species 

based on ClustalW. The dataset includes 20 groups: Primates (red), Carnivora (blue), 

Proboscidea (cyan), Rodentia (maroon), Anseriformes (green), Insectivora (aqua), Per- 

ciformes (purplish red), Crocodylia (navy blue), Testudines (olive), Perissodactyla, 

Sirenia, Hyracoidea, Diprotodontia, Columbiformes, Passeriformes, Galliformes, Anura, 

Salmoniformes, Cypriniformes, Gadiformes . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 4. UPGMA phylogenetic tree of 114 HRV serotypes using our method based on protein sequences. The HEV-C sequences (poliovirus 1M, coxsackievirus a13, and coxsack- 

ievirus a21) are used as outgroup. The dataset includes 4 groups: HRV-A (red), HRV-B (blue), HRV-C (maroon), HEV-C (green). (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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 virus ( Webster et al., 1992 ). This dataset was analyzed by

ourier power spectrum approach using DNA sequences ( Hoang

t al., 2015; Huang et al., 2014 ). Based on our new method,

he phylogenetic tree of 35 proteins are constructed. As illus-

rated in Fig. 5 , the Influenza A viruses are clustered correctly.

s comparison, the species are not clustered well in the tree

onstructed by ClustalW. As illustrated Fig. 6 , A/turkey/VA/505477-

8/20 07(H5N1)), A/turkey/Ontario/FAV110-4/20 09 (H1N1) and

/turkey/Virginial/4135/2014 (H1N1) are not correctly clustered.

his may be caused by gene rearrangements occurring in the

nfluenza A genomes. 

.4. Mammalian mitochondria 

The initial characterization of the mitochondrial proteome rep-

esents perhaps an even more important milestone for mitochon-

rial biology and medicine. Thus it is suitable to infer molecu-

ar evolution of mammals. In previous study ( Tobe et al., 2010 ),

he cytochrome b gene (cyt b) was shown to be very accurate

o reconstruct mammalian phylogeny at super order, order ,fam-
ly and generic levels. The protein of cyt b gene has about 380

mino acids. In our method, 79 mammalian cyte b protein se-

uences from the study are chosen. These sequences are clustered

orrectly into 10 groups: Carnivore, Chiroptera, Soricomorpha, Ro-

entia, Perissodactyla, Artiodactyla, Dipro- todontia, Monotremata,

etacea and Primates Fig. 7 . In contrast, evolutionary tree con-

tructed by ClustalW is built as well. As illustrated in Fig. 8 , several

ammals (in red) are placed in the wrong location. 

.5. Prediction accuracy rate of current method 

In order to test our new approach, we evaluate prediction ac-

uracy rates by cross validation using leave-one-out method and

rst nearest neighbor (1-NN) algorithm. The results for above four

atasets are shown in Table 3 . The prediction accuracy rates for the

atasets obtained by alignment algorithm ClustalW are also listed

n this table. As we can see in Table 3 , our method achieves higher

ccuracy rates than ClustalW for the Beta-globin data, 35 Influenza

 viruses data (Influenza dataset1). For the HRV dataset with 114

iruses, the two methods both achieve 100% accuracy rate. For the
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Fig. 5. Phylogenetic tree of 35 Influenza A viruses based on neuraminidase by our method. The dataset includes 5 groups: H1N1 (blue), H5N1 (red), H2N2 (purplish red), 

H7N3 (green), H7N9 (black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Prediction accuracy rates and running time for our method and ClustalW. The accuracy rates are 

evaluated by leave-one-out and first nearest neighbor methods. The number of subjects in each 

dataset is marked in a bracket in the first column. The third column represents the running time 

to get the numerical vectors using our method. The fifth column represents the time to complete 

multiple alignment based on ClustalW. 

Dataset Our method Running time ClustalW Running time 

Beta-globin (88) 94.3% 0.06 s 84.1% 5 s 

HRV (114) 100% 0.68 s 100% 21 min 

Influenza data1 (35) 100% 0.04 s 97.1% 7 s 

Mammalian mitochondria (79) 97.5% 0.06 s 97.5% 22 s 

Influenza data2 (1163) 100% 1.33 s 99.7% 175 min 
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i  
Mammalian mitochondria dataset including 79 proteins, the two

methods produce 97.5% accuracy rate. 

We further validate our method by an independent dataset (In-

fluenza data2) consisting of 1163 Influenza A viruses isolated in

China. The dataset was downloaded from Global Initiative on Shar-

ing Avian Influenza Data (GISAID) database ( http://platform.gisaid.

org/epi3/frontend#377f5) . The dataset includes 13 species: H5N6,

H5N1, H7N9, H1N1, H6N2, H3N8, H3N2, H4N6, H5N5, H10N3 and

H7N3. The summary for these sequences is listed in Table 4 . The

first column of the table presents the names of subtypes. The sec-
nd column presents the number of strains in each subtype. The

hird, fourth, and fifth columns are the minimum length, mean

ength and maximum length of NA proteins in each subtype group.

he neuraminidase protein encoded by the neuraminidase (NA)

ene is utilized to evaluate the predication accuracy and construct

he phylogenetic tree of these viruses. We also employ the 1-NN

ethod to compute the predication correctness rate. For an in-

uenza A virus for example H9N2, if its nearest neighbor is a virus

elonging to the same subtype, i.e. H9N2, we think the prediction

s correct. As shown in Table 3 , our prediction accuracy is 100% for

http://platform.gisaid.org/epi3/frontend#377f5)
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Fig. 6. Phylogenetic tree of 35 Influenza A viruses based on neuraminidase by ClustalW. The dataset includes 5 groups: H1N1 (blue), H5N1 (red), H2N2 (purplish red), H7N3 

(green), H7N9 (black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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his dataset, while the alignment approach generates 99.7% accu-

acy rate. 

As for the computational complexity shown in Table 3 , it takes

bout 1 s to compute our vectors for the 1163 neuraminidase se-

uences, while the popular multiple alignment algorithm ClustalW

pends about 3 h to complete the alignment. The UPGMA tree

or these viruses is also constructed by our method. As shown in

ig. 9 , the 13 subtypes are clearly separated from each other. Based

n ClustalW, our phylogenetic tree of the 1163 viruses are built.

s shown in Fig. 10 , most of the strains from a same species are

lustered together. However, A/duck/Guangdong/1/1996/EPI383286 

7N3 strain is positioned with H10N3, which seems unreliable.

o  
he strains from H1N1 are divided into two major clades. More-

ver, A/wildbird/Wuhan/WHHN58/2014/ EPI682990 H1N1 strain 

nd A/duck/FuJian/JF47/2014 EPI703429 H1N1 strain are placed

mong H5N1 strains. 

. Discussion and conclusion 

In this paper, we use three important biochemical properties of

mino acids and come up with a 24 dimensional vector to com-

are protein sequences. Among alignment-free method for com-

aring proteins, our feature vector is lower in dimension. Besides,

ur method both runs fast and clusters proteins precisely. Compar-
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Fig. 7. Phylogenetic tree of 79 mammals based on by our method. The dataset includes 10 groups: Carnivora (red), Chiroptera (green), Soricomorpha (black), Rodentia (purplish 

red), Perissodactyla (blue), Artiodactyla (maroon), Diprotodontia (gray), Monotremata (purple), Cetacea (navy blue), Primates (olive). (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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ing with ClustalW, our approach is not only able to handle large

data set such as mammalian mitochondria dataset, but also capa-

ble to analyze long protein sequences as in the Human rhinovirus

dataset. Although it is difficult to consider all chemical proper-

ties of amino acids, our new method based on three crucial prop-

erties performs very well on diverse datasets. In addition, vector

models can be directly used to predict various attributes of pro-

teins in many different areas. For example, the PseAAC or general

PseAAC approaches were applied to many fields such as subcellular

localization of proteins ( Chou and Shen, 2007b ), membrane pro-

tein types ( Chou and Shen, 2007a ), and enzyme family class ( Chou,

2005 ). Our vector method has the potential to classify various pro-
eins. Like the PseAAC method, our vectors can be imported into

ost of the current machine-learning algorithms which can only

andle vectors but not sequence samples as elucidated in a recent

eview ( Chou, 2015 ). 

For each group of amino acids, we define three features to de-

cribe it: the count, the average of its position and the variability of

ts position. The count of these amino acids is a common feature

o present composition of protein sequences. Moreover, the three

eatures are able to distinguish different clusters of proteins. For

xample, the three features of α in the four clades HEV-c, HRV-A,

RV-B, HRV-C of HRV dataset exhibit much difference. The num-

er of α, i.e. n α in proteins in the four clades are respectively
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Fig. 8. Phylogenetic tree of 79 mammals based on ClustalW. The dataset includes 10 groups: Carnivora (red), Chiroptera (green), Soricomorpha (black), Rodentia (purplish red), 

Perissodactyla (blue), Artiodactyla (maroon), Diprotodontia (gray), Monotremata (purple), Cetacea (navy blue), Primates (olive). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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bout 810, 770, 780 and 760 on average. The mean position of

, i.e. μα in proteins in the four clades are respectively about

120, 1100, 1110 and 1085 on average. The D 

α
2 

values in proteins

n the four clades are respectively about 179, 175, 177 and 176 on

verage. 

Our method is different from the classical k-mer method. The

-mer method computes the probabilities of occurrence of strings

ith k letters. However, our method contains the number of each

etter. In addition, our new vectors also include the average posi-

ion, variability of position of each letter and have much lower di-

ensions than k-mer method. We also employ the k-mer method

o build the phylogenetic trees of 88 Beta-globin proteins. The Eu-
lidian distance is utilized to measure the similarity between k-

er vectors. For the tree based on 2-mer method, the three pro-

eins from Anura are not clustered together (Figure S1 in support-

ng files). For the tree with 3-mer method, besides the three pro-

eins from Anura, the five proteins from Anseriformes are not po-

itioned together (Figure S2 in supporting files). 

Once the pairwise distances are obtained, distance based algo-

ithms such as neighbor-joining or Fitch-Margoliash also can be

sed to build phylogenetic trees. As comparison, we construct the

eighbor-joining tree of 35 Influenza A viruses. In this tree shown

n Figure S3, all strains from the same species are placed together,

hich is consistent with our UPGMA tree. 
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Table 4 

Summary of the neuraminidase (NA) proteins of 1163 influenza A viruses. 

Subtype Number Min length Mean length Max length (aa) 

H5N6 12 451 457.4167 460 

H5N1 321 427 446.9907 460 

H7N9 53 456 459.9623 465 

H1N1 171 467 469.0234 470 

H9N2 379 465 466.4512 469 

H6N2 82 469 469 469 

H3N8 10 469 469.9 470 

H3N2 83 466 468.9639 469 

H4N6 19 470 470 470 

H6N6 6 470 470 470 

H5N5 5 472 472 472 

H10N3 7 469 469 469 

H7N3 15 469 469 469 

Fig. 9. Phylogenetic tree of 1163 influenza A viruses based on our method. 

Fig. 10. Phylogenetic tree of 1163 influenza A viruses based on ClustalW. 
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The main limitation of our approach is the choice of certain

utoff classifying amino acids based on their values in biochemi-

al properties. For each of the three chemical properties, we chose

ifferent cutoff according to the values of this property for the

0 amino acids. These choices perhaps can be affected by diver-

ence of protein sequences. Further study may be implemented to

xplore the influence of more chemical properties and more var-

ed cutoff. The R source code in this paper is freely available to

he public upon request. User-friendly and open web-servers can

rovide more practical help for biologists as emphasized in two

eviews ( Chou, 2015; Chou and Shen, 2009 ). For example, some

eb-servers based on PseACC are useful to identify attributes of

equences ( Chen et al., 2016a; Cheng et al., 2016 ) and special sites

f sequences such as carbonylation sites ( Jia et al., 2016a ), RNA

seudouridine sites ( Chen et al., 2016b ), ysine succinylation sites
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 Jia et al., 2016c ), phosphorylation sites ( Qiu et al., 2016b ), origi-

al location of replication ( Zhang et al., 2016 ), hydroxyproline and

ydroxylysine in proteins ( Qiu et al., 2016a ) and the adenosine to

nosine editing sites ( Chen et al., 2017 ). We will make effort s to

rovide a web-server for our method in future work. 
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