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We construct a moduli space of stable pairs over a smooth projective variety,
parametrizing morphisms from a fixed coherent sheaf to a varying sheaf
of fixed topological type, subject to a stability condition. This generalizes
the notion used by Pandharipande and Thomas, following Le Potier, where
the fixed sheaf is the structure sheaf of the variety. We then describe the
relevant deformation and obstruction theories. We also show the existence
of the virtual fundamental class in special cases.
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1. Introduction

The past couple of decades of research have highlighted the importance of moduli
spaces of decorated sheaves, which are sheaves with additional structure, such as
one or more sections. Moduli spaces of rank two vector bundles with a section on
a Riemann surface X ,

E→ X and α : OX → E,

were used in [Thaddeus 1994] to deduce an important invariant of the moduli space
of sheaves, the Verlinde number. More recently, Pandharipande and Thomas [2009;
2010] studied stable pairs (E, α), where E is a sheaf with dimension 1 support,
on a Calabi–Yau threefold. They showed that invariants of this moduli space are
closely related to the Gromov–Witten invariants of the Calabi–Yau threefold.
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We would like to broaden our perspective and replace the structure sheaf by a
general coherent sheaf. Subject to a stability condition, we would like to parametrize
morphisms of coherent sheaves,

α : E0→ E,

where E0 is a fixed coherent sheaf. We will denote such a morphism as a pair

(E, α).

Let us set up the problem. We will work over an algebraically closed field k
of characteristic 0. We denote by X a smooth projective variety of dimension n,
with a fixed polarization OX (1). We fix a coherent sheaf E0 on X . Let P be a fixed
polynomial of degree d ≤ n. Let δ ∈ Q[m] be 0 or a polynomial with a positive
leading coefficient; this will play the role of parameter for stability conditions.

When δ is large, i.e., deg δ≥deg P, a pair (E, α), such that the Hilbert polynomial
of E equals P, is stable if E is pure and the support of cokerα has dimension
strictly smaller than d. This is the most significant case geometrically. In this
case, the moduli space of stable pairs is closely related to Grothendieck’s Quot
scheme. But intersection theory on the moduli space of stable pairs is expected to
be more tractable than that on the Quot scheme. This is because we impose the
purity condition on the sheaves underlying stable pairs, which allows us to avoid
some large dimensional components.

The moduli space of stable pairs in the large δ case is expected to have interesting
applications to the enumerative geometry of higher rank sheaves on a surface X .
In particular, a potential application is towards the strange duality conjecture. The
conjecture over curves was proved [Belkale 2008; Marian and Oprea 2007] by
studying intersection theory on related Grassmannians and Quot schemes. It is
reasonable to expect that a similar method using the moduli space of stable pairs
will work for the surface case.

The study of stable pairs by Pandharipande and Thomas was built on Le Potier’s
work [1993] on coherent systems. The moduli space of coherent systems was also
used to study the Donaldson numbers of the moduli space of sheaves [He 1998].
A coherent system on X is a pair (0, E), where E is a coherent sheaf and 0 ⊂
H 0(X, E) is a subspace of global sections. A pair (E, α :OX→ E) can be viewed as
a coherent system (k〈α〉, E). However, when OX is replaced by, for example, O⊕2

X ,
the pair can no longer be viewed as a coherent system, because the map

H 0(α) : k⊕2
→ H 0(E)

may not be injective. Aside from this issue, there is yet another difference between
pairs and coherent systems: while the morphism α is part of the data of the pair,
the coherent system only remembers the image of H 0(α). Consequently, when one
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tries to parametrize α : E0→ E for general E0, Le Potier’s construction does not
automatically apply. But the main ingredients of constructing the moduli space
remain the same: Grothendieck’s Quot scheme [1961b] and Mumford’s geometric
invariant theory [Mumford et al. 1994].

Theorem 1.1 (existence of moduli spaces). For the moduli functor SE0(P, δ) of
S-equivalence classes of δ-semistable pairs, there exists a projective coarse moduli
space SE0(P, δ). The moduli functor Ss

E0
(P, δ) of equivalence classes of δ-stable

pairs is represented by an open subscheme Ss
E0
(P, δ) of SE0(P, δ).

Deformation-obstruction theory of stable pairs is very similar to that of the Quot
scheme. For a quotient q : E0 � F, let G = ker q, then we have a short exact
sequence,

0→ G→ E0→ F→ 0.

The deformation space and the obstruction space are Hom(G, F) and Ext1(G, F).
Notice that G is quasi-isomorphic to the cochain complex J • = {E0→ F}, and
the deformation space and the obstruction space of this quotient are isomorphic to
Hom(J •, F) and Ext1(J •, F), respectively.

The deformation-obstruction problem of stable pairs has a similar answer. Let
Ar tk be the category of local Artinian k-algebras with residue field k. Let A, B ∈
ObAr tk and

0→ K → B σ
−→ A→ 0

be a small extension, i.e., mB K = 0. Suppose (E, α) is a stable pair. Let I • denote
the following cochain complex concentrating at degree 0 and 1:

I • = {E0
α
−→ E}.

Theorem 1.2 (deformation-obstruction). Suppose αA : E0⊗k A→ E A is a morphism
over X A = X ×Spec k Spec A extending α, where E A is a coherent sheaf flat over A.
There is a class,

ob(αA, σ ) ∈ Ext1(I •, E ⊗ K ),

such that there exists a flat extension of αA over X B if and only if ob(αA, σ )= 0. If
extensions exist, the space of extensions is a torsor under

Hom(I •, E ⊗ K ).

In some special cases, Exti (I •, E) 6= 0 only when i = 0, 1. In these cases, we
will demonstrate the existence of the virtual fundamental class, which is important
for the study of intersection theory on the moduli spaces.

Theorem 1.3 (virtual fundamental class). Suppose X is a surface, E0 is torsion-
free, deg P = 1, and deg δ ≥ 1. Then the moduli space SE0(P, δ) of stable pairs
admits a virtual fundamental class.
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The virtual fundamental class can be used to define invariants of the surface.
Kool and Thomas [2014a; 2014b] studied stable pairs invariants with E0 ∼= OX on
surfaces, using the reduced obstruction theory, which is necessary. We will address
the intersection theory of the moduli space of stable pairs on a surface in future work.

After this project was completed, we learned about the article [Wandel 2015]
where the stability condition for pairs had been defined. When deg δ < deg P,
Theorem 1.1 of this paper had been stated as the main theorem, Theorem 3.8, in
[Wandel 2015]. In the large δ case,

deg δ ≥ deg P,

the linearized ample line bundle needs to be chosen differently, as in (4-4), for
the GIT construction. In this paper, the construction of the moduli space focuses
on the large δ case, which is geometrically important but has not been treated in
[Wandel 2015]. The construction is carried out from a basic level. For example,
Lemma 3.5 is shown for characterizing stability in terms of global sections instead
of Hilbert polynomials. As preparation, Section 2 introduces the notion of stable
pair and states basic properties of pairs. Section 3 studies the boundedness of the
family of stable pairs. Proofs of statements that have been proved in [Wandel 2015]
are omitted. This paper also contains, in Section 5, the deformation-obstruction
theory, captured by Theorem 1.2, which holds for all δ’s, small or large. Section 6
shows the existence of the virtual fundamental class in special geometries (see
Theorem 1.3). Section 7 gives examples of smooth moduli spaces and calculates
their topological Euler characteristics.

We recently learned that the stable pair moduli space for deg δ ≥ deg P was
also previously studied in [Kollár 2008], where it appears as the moduli space of
quotient husks. The author constructed it as a bounded proper separated algebraic
space, and used it to study an analogue of the flattening decomposition theorem for
reflexive hulls. The current paper settles affirmatively the question raised in [Kollár
2008] regarding the projectivity of the space.

We finally note that once it is constructed for deg δ < deg P, the moduli space
is available in an indirect way for deg δ ≥ deg P as well. This follows from two
facts: the set of critical values1 is finite and the largest critical polynomial δmax has
degree < deg P. Let δ′ be of degree deg P − 1 and larger than δmax. Then, for any
δ with deg δ ≥ deg P, we have SE0(P, δ)∼= SE0(P, δ

′). Although this observation
is not made in [Wandel 2015], the author proves the set of critical δ’s is finite.

This indirect argument does not, however, yield the linearized ample line bundle
for SE0(P, δ) with deg δ ≥ deg P. For stability polynomials δ′ with deg δ′ < deg P,
the linearization depends directly on δ′; the highest critical polynomial δmax cannot

1A critical value is a value such that as δ crosses over it, the moduli space SE0(P, δ) changes.
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be determined explicitly, however, since the boundedness which underlies the
finiteness of the set of critical stability values is itself not explicit.

For some applications, it is nevertheless important to know the line bundle
explicitly. A natural problem to study next is that of wall-crossing formulas, using
Thaddeus’ master space [Thaddeus 1996; Mochizuki 2009]. The construction of
the master space requires the linearized ample line bundle. So, it is important to
construct the moduli space directly via GIT and obtain the ample line bundle. We
will address the problem of wall-crossing formulas in future work.

2. Basic properties of stable pairs

2A. Preliminaries on coherent sheaves. For a coherent sheaf E on (X,OX (1)),
we denote by PE its Hilbert polynomial . Recall that we can write the Hilbert
polynomial in the form

PE(m)=
d∑

i=0

ai (E)
mi

i !
,

where d is the dimension of the support of E , which we simply write as dim E , and
ai (E) ∈Q. We denote by

r(E)= ad(E)

the multiplicity of E . The reduced Hilbert polynomial is

pE =
PE

r(E)
.

The slope of E is

µ(E)=
ad−1(E)
ad(E)

.

A coherent sheaf E is pure if there is no subsheaf with lower dimensional support.
It is semistable (respectively, slope-semistable) if it is pure and there is no subsheaf
with larger reduced Hilbert polynomial (respectively, slope). For a pure sheaf, there
is a Harder–Narasimhan filtration with respect to the slope

0 $ E1 $ E2 $ · · ·$ El = E,

where Et+1/Et is slope semistable and µ(Et/Et−1)>µ(Et+1/Et), for t ∈ [1, l−1].
We shall denote µmax(E)= µ(E1) and µmin(E)= µ(El/El−1).

To construct the moduli space via GIT, the first step is to prove a boundedness
result. For our convenience, we group a sequence of boundedness results here.

Theorem 2.1 (Grothendieck). Suppose F is a pure coherent OX -module of dimen-
sion d. Then:

(i) The slopes of nonzero coherent subsheaves are bounded above.
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(ii) The family of subsheaves F ′ ⊂ F with slopes bounded below, such that the
quotient F/F ′ is pure and of dimension d, is bounded.

We can also make a statement similar to the second assertion about the bounded-
ness of quotients. For the proof of this basic theorem, see [Grothendieck 1961b,
Lemma 2.5].

Let Y be the scheme-theoretic support of a pure sheaf E of dimension d and
multiplicity r . We include the following results discussed in [Le Potier 1993].

Lemma 2.2. The degree of Y is no larger than r2.

Proof. This is clear from an equivalent definition of multiplicity [Le Potier 1993,
Definition 2.1]. �

Lemma 2.3. The minimum slope µmin(OY ) is bounded below by a constant deter-
mined by n, r , and d.

Proof. See [Le Potier 1993, Lemma 2.12]. �

The following statement is crucial to our proof of boundedness.

Theorem 2.4 [Simpson 1994, Theorem 1.1]. Let C be a rational constant. The
family of pure coherent sheaves E with Hilbert polynomial PE = P, such that
µmax(E)≤ C , is bounded.

Bounding µmax from above is equivalent to bounding µmin from below, because
the Hilbert polynomial is additive in a short exact sequence.

We will also need the following statement.

Lemma 2.5 [Simpson 1994, Corollary 1.7]. Suppose F is a slope semistable sheaf
of dimension d, multiplicity r and slope µ. There is a constant C depending on r
and d such that2

h0(F)
r
≤

1
d!

(
[µ+C]+

)d
.

2B. Stable pairs. Let E0 be a coherent sheaf on X. Let P be a polynomial of
degree d , and δ be 0 or a polynomial with a positive leading coefficient.

Definition 2.6. A pair (E, α) (of type P) on X consists of a coherent sheaf E with
Hilbert polynomial P and a morphism α : E0→ E . A subpair (E ′, α′) consists of
a coherent subsheaf E ′ ⊂ E and a morphism α′ : E0→ E ′, such that{

ι ◦α′ = α if E ′ ⊃ imα,

α′ = 0 otherwise.

Here, ι denotes the inclusion E ′ ↪→ E . A quotient pair (E ′′, α′′) consists of a
coherent quotient sheaf q : E→ E ′′ and a morphism α′′ = q ◦α : E0→ E ′′.

2
[x]+ =max{0, x}.
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We say a pair (E, α) has dimension d if dim E = d .
A morphism φ : (E, α)→ (F, β) of pairs is a morphism of sheaves φ : E→ F

such that there is a constant b ∈ k, where φ ◦α = bβ. By this definition, subpairs
and quotient pairs can be viewed as morphisms. For simplicity, we shall use the
notation φ for both the morphism of pairs and that of their underlying sheaves.

A short exact sequence of pairs,

0→ (E ′, α′) ι
−→ (E, α) q

−→ (E ′′, α′′)→ 0,

consists of a short exact sequence of sheaves, 0→ E ′→ E→ E ′′→ 0, such that
(E ′, α′) is a subpair and (E ′′, α′′) the corresponding quotient pair. More precisely,
α′′ = q ◦α if α′ = 0, and α′′ = 0 if ι ◦α′ = α.

The Hilbert polynomial of a pair (E, α) is

P(E,α) = PE + ε(α)δ

and the reduced Hilbert polynomial of the pair is

p(E,α) = pE +
ε(α)δ

r(E)
.

Here,

ε(α)=

{
1 if α 6= 0,
0 otherwise.

Clearly, the Hilbert polynomial is additive in a short exact sequence of pairs.

Definition 2.7. A pair (E, α) is δ-stable if

(i) E is pure;

(ii) p(E ′,α′) < p(E,α) for every proper subpair (E ′, α′).

Semistability is defined similarly, replacing the strong inequality by the correspond-
ing weak inequality.

Assuming purity, the second condition is equivalent to that for every proper
quotient pair (E ′′, α′′) of dimension d , p(E ′′,α′′) > p(E,α).

Convention. In the rest of this paper, if stability is characterized by a strong
inequality, semistability can be characterized by the corresponding weak inequality.
So, in such a case, we will only make the statement for stability.

When the context is clear, we will omit δ and only say a pair is stable or
semistable.

Clearly, a pair (E, 0) is (semi)stable if and only if E is (semi)stable as a coherent
sheaf. We will call a pair (E, α) nondegenerate if α 6= 0. We are primarily interested
in nondegenerate semistable pairs, which we are going to parametrize.
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A family of pairs parametrized by a scheme T is a morphism of sheaves

αT : π
∗

X E0→ E

over T × X, such that E is flat over T. Here, πX is the projection T × X → X.
Two families αT : π

∗

X E0→ E and βT : π
∗

X E0→ F are equivalent if there is an
isomorphism

ψ : E →F such that ψ ◦αT = βT .

In the large δ regime, semistable pairs have some special features.

Lemma 2.8. When deg δ ≥ deg P, there is no nondegenerate strictly semistable
pair, i.e., every nondegenerate semistable pair is stable.

Proof. Suppose (G, α′) is a subpair of a semistable (E, α), such that p(G,α′)= p(E,α),
that is,

pG +
ε(α′)δ

r(G)
= pE +

δ

r(E)
.

Consider the leading coefficients. Because deg δ ≥ d, we have ε(α′) = 1 and
r(G) = r(E). Thus, pE = pG . Therefore, PE = PG , which implies that G = E .
Hence, (G, α′)= (E, α). We have shown that (E, α) is not strictly semistable. �

We also have a reinterpretation of the stability condition.

Lemma 2.9. Suppose E is a pure coherent sheaf with Hilbert polynomial PE = P
and multiplicity r(E)= r . If deg δ ≥ d = deg P, then a pair (E, α) is stable if and
only if for every proper subpair (G, α′),

PG

2r(G)− ε(α′)
<

P
2r − ε(α)

.

Proof. When deg δ ≥ d, for any proper subpair (G, α′), the inequality

pG + ε(α
′)

δ

r(G)
< pE + ε(α)

δ

r

is equivalent to

(2-1)
ε(α′)

r(G)
≤
ε(α)

r
, and in case of equality, pG < pE .

The latter can be easily seen to be equivalent to

r(G)
2r(G)− ε(α′)

≤
r

2r − ε(α)
, and in case of equality, pG < pE .

This last condition is equivalent to the inequality in the statement. �

Moreover, there is a geometric characterization of stability.



MODULI SPACES OF STABLE PAIRS 131

Lemma 2.10. If deg δ ≥ deg P, then (E, α) is stable if and only if E is pure and
dim cokerα < deg P.

This is essentially [Wandel 2015, Proposition 1.12]. The author stated the result
for the case where deg δ ≥ dim X while his argument actually showed the same
result under a weaker assumption deg δ ≥ deg P.

Pairs share some similar properties of sheaves.

Lemma 2.11. Suppose φ : (E, α)→ (F, β) is a nonzero morphism of pairs.

(i) Suppose (E, α) and (F, β) are δ-semistable pairs of dimension d. Then
p(E,α) ≤ p(F,β).

(ii) If (E, α) and (F, β) are δ-stable with the same reduced Hilbert polynomial, φ
induces an isomorphism between E and F. In particular, End((E, α))∼= k for
a stable pair (E, α).

Proof. (i) Let α′′ be φ ◦ α : E0 → imφ. Then (imφ, α′′) is a quotient pair of
(E, α) and a subpair of (F, β). Thus,

(2-2) p(E,α) ≤ p(imφ,α′′) ≤ p(F,β).

(ii) Suppose not, then kerφ 6= 0 or imφ 6= F. We also have the inequalities (2-2).
But two equalities do not hold simultaneously, which contradicts the fact that the
two stable pairs have the same reduced Hilbert polynomial. Therefore, kerφ = 0
and imφ = F. Thus, φ is an isomorphism of coherent sheaves. Clearly, the inverse
also provides an inverse of pairs. In particular, End((E, α)) is a finite-dimensional
associative division algebra over the algebraically closed field k, and hence is k. �

The second part of the lemma is essentially [Wandel 2015, Lemma 1.6].

Proposition 2.12 (Harder–Narasimhan filtration). Let (E, α) be a pair where E is
pure of dimension d. Then there is a unique filtration by subpairs

0 $ (G1, α1)$ (G2, α2)$ · · ·$ (Gl, αl)= (E, α)

with gri = (Gi , αi )/(Gi−1, αi−1) such that

(i) gri is δ-semistable of dimension d for all i ;

(ii) pgri
> pgri+1

for all i .

We call this filtration the Harder–Narasimhan filtration of the pair.

The proof is similar to the proof of the existence and uniqueness of the Harder–
Narasimhan filtration of a pure sheaf [Shatz 1977, Theorem 1].

Evidently, in the filtration, there is only one nonzero αi . In the case where
deg δ ≥ d , only α1 is nonzero.
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Proposition 2.13 (Jordan–Hölder filtration). Let (E, α) be a semistable pair. There
is a filtration

0 $ (F1, α1)$ (F2, α2)$ · · ·$ (Fl, αl)= (E, α),

such that each factor gri = (Fi , αi )/(Fi−1, αi−1) is stable with reduced Hilbert
polynomial p(E,α). Moreover, gr(E, α)=⊕i gri does not depend on the filtration.

Proof. Since we have Lemma 2.11, the proof proceeds the same way as the argument
for Jordan–Hölder filtrations of a semistable sheaf, see, e.g., [Huybrechts and Lehn
1997, Proposition 1.5.2]. �

Two semistable pairs are S-equivalent, if they have isomorphic Jordan–Hölder
factors.

Let
SE0(P, δ) : Sch/k→ Set

denote the moduli functor of S-equivalent nondegenerate semistable pairs of type P.
Let

Ss
E0
(P, δ)

denote the moduli functor of equivalence classes of nondegenerate stable pairs.

3. Boundedness

In order to construct the moduli space via GIT, we first need to prove that the family
of semistable pairs is bounded. As mentioned in the introduction, the case where
deg δ < deg P has been treated in [Wandel 2015]. So, in this section and the next,
we will focus on the case

deg δ ≥ deg P.

We will show boundedness using Theorem 2.4, by studying the µmin’s of sheaves
underlying semistable pairs.

Lemma 3.1. Fix the Hilbert polynomial P. Assume deg δ ≥ deg P. Suppose (E, α)
is a pair, which is semistable for some δ, with PE = P. Then, µmin(E) is bounded
below by a constant depending on P and X.

Proof. Let (E, α) be a semistable pair. By Lemma 2.10,

(3-1) dim cokerα < d.

Choose an m large enough such that E0(−m) is generated by global sections. Let
Y be the scheme-theoretic support of E . The morphism α factors through E0|Y .
We have the sequence of morphisms

H 0(E0(m))⊗OY (−m)� E0|Y → E � grs E,
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where the last morphism is the surjection from E onto the last factor of the Harder–
Narasimhan filtration with respect to the slope. By (3-1), the composition is nonzero.
Therefore,

µmin(E)= µ(grs E)≥ µmin(H 0(E0(m))⊗OY (−m))

= µmin(OY (−m))= µmin(OY )−m,

where the last term is bounded below, by Lemma 2.3. Thus, µmin(E) is bounded
below by a constant, which depends on X and P. �

Remark 3.2. The lemma also holds for deg δ < deg P. Moreover, the constant can
be chosen to be independent of δ.

Combining Lemma 3.1 and Theorem 2.4, we obtain the following boundedness
result.

Proposition 3.3. Fix the Hilbert polynomial P. The family

{E |(E, α) is a semistable pair of type P with respect to some δ}

of coherent sheaves on X is bounded.

For a bounded family of pure pairs, the family of factors of their Harder–
Narasimhan filtrations is bounded:

Lemma 3.4. Suppose 8 : π∗X E0 → E over T × X is a flat family of pure pairs
over X parametrized by a finite type scheme T. For a closed point t ∈ T, let
E (t)= E |Spec k(t)×X and 8(t) be the corresponding morphism. Then, the family of
the Harder–Narasimhan factors of (E (t),8(t)), for all t ∈ T, is bounded.

The following proof is very similar to the proof of the corresponding statement
about the boundedness of Harder–Narasimhan factors of pure sheaves [Huybrechts
and Lehn 1997, Theorem 2.3.2]. We do not assume deg δ ≥ deg P in this proof.

Proof. We can assume T to be integral. Define A as the set of 2-tuples (P ′′, ε′′),
such that there is a point t ∈ T and a pure quotient q : E (t)� E ′′ with Hilbert
polynomial PE ′′ = P ′′ and ε′′ = ε(q ◦8(t)), which destabilizes (E (t),8(t)):

p′′+
ε′′δ

r ′′
< p+

ε(8(s))δ
r

.

Here, p and p′′ denote the corresponding reduced Hilbert polynomials, and r
and r ′′ denote the multiplicities. From this inequality, we know that µ(E ′′) is
bounded above by a constant determined by P and δ. Therefore, A is a finite set by
Theorem 2.1.

If this set is empty, then all pairs are semistable. Then, we are done. Otherwise,
we define a total order � on A as:

(P1, ε1)� (P2, ε2)
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if p1+ ε1δ/r1 ≤ p2+ ε2δ/r2, and in the case of equality, P1 ≥ P2. Let us consider
whether there is a (P−, ε−), which is minimal with respect to the total order �
and satisfies the condition that for a generic point t ∈ T, there is a pure quotient
q : E (t)→ F with

(3-2) PF = P− and ε(q ◦8(t))= ε−.

If there is no such (P−, ε−), then generically, say over the open subscheme
U ⊂ T, pairs are already semistable.

If there is such a (P−, ε−), let U ⊂ T be the open family having quotients
satisfying the condition (3-2). The minimal Harder–Narasimhan factors of pairs in
U are parametrized by a subscheme of QuotP−(E ). To parametrize all the Harder–
Narasimhan factors of pairs parametrized by U, we can iterate the above process
for the kernel, which is flat, of the universal quotient over QuotP−(E ). This process
will terminate due to multiplicity.

Then, we can run the same algorithm for pairs parametrized by irreducible
components of the complement T \U. Because T is noetherian, the process will
terminate.

We have thus parametrized the Harder–Narasimhan factors by a finite sequence
of Quot schemes. �

The following statement enables us to handle the semistability condition via
spaces of global sections, instead of Hilbert polynomials.

Lemma 3.5. Fix P and δ with deg δ ≥ deg P. Then there is an m0 ∈ Z>0, such that
for any integer m ≥ m0 and any pair (E, α), where E is pure with PE = P and
multiplicity r(E)= r , the following assertions are equivalent.

i) The pair (E, α) is stable.

ii) PE(m) ≤ h0(E(m)), and for any proper subpair (G, α′) where G is of
multiplicity r(G),

h0(G(m))
2r(G)− ε(α′)

<
h0(E(m))
2r − ε(α)

.

iii) For any proper quotient pair (F, α′′) where F is of dimension d and multi-
plicity r(F),

h0(F(m))
2r(F)− ε(α′′)

>
P(m)

2r − ε(α)
.

The proof is modified from that of a similar statement in [Le Potier 1993].

Proof. The proof will proceed as follows: i)⇒ ii)⇒ iii)⇒ i). The integer m0 will
be determined in the course of the proof, nonexplicitly.
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i)⇒ ii) The family of sheaves underlying semistable pairs with a fixed Hilbert
polynomial is bounded. Thus, there is m0 ∈ N such that for any integer m ≥ m0,
we have H i (E(m))= 0 for all i > 0. In particular, P(m)= h0(E(m)).

In the course of proving the boundedness, we also proved thatµmax(E) is bounded
above, say µmax(E)≤µ. For a proper subpair (G, α′) of multiplicity r(G), consider
the Harder–Narasimhan filtration of G with respect to the slope. Let us denote the
multiplicity and the slope of the i-th grading by r ′i and µ′i. Then, we have µ′i ≤ µ.
Notice that r ′i is positive and bounded above by r , which implies that there are only
finitely many possible r ′i ’s and µ′i ’s. Let ν = µmin(G). By Lemma 2.5 and an easy
calculation, we can find a constant B depending on r and d, such that3

h0(G(m))
r(G)

≤
1
d!

((
1− 1

r

)(
[µ+m+ B]+

)d
+

1
r
(
[ν+m+ B]+

)d
)
.(3-3)

Choose a constant A > 0, which is larger than all roots of P. Replace m0 by
max{m0, A}. Then

h0(E(m))= P(m)≥ r
d!
(m− A)d , for all m ≥ m0.

Suppose ν0 is an integer such that

B+µ
(

1− 1
r

)
+
ν0
r <−A.

Enlarging m0 if necessary, we have

(3-4) 1
d!

((
1−1

r

)(
[µ+m+B]+

)d
+

1
r
(
[ν0+m+B]+

)d)
<

P(m)
r
, for all m≥m0,

by considering the first and the second leading coefficients.
Thus, when m ≥ m0 and ν ≤ ν0, combining (3-3) and (3-4), we get

(3-5) h0(G(m)) <
r(G)

r
h0(E(m))≤

2r(G)− ε(α′)
2r − ε(α)

h0(E(m)).

The last weak inequality is a consequence of (2-1).
We are left to consider the case where ν > ν0. First, notice that we can assume

E/G to be pure. If not, consider the saturation of G in E , namely, the smallest
G ⊃ G, such that E/G is pure. If we can prove the inequality in ii) for G, then it’s
also true for G, since r(G)=r(G) and h0(G(m))≤h0(G(m)). Sinceµ(G)≥ν>ν0,
the family of such G is bounded, by Theorem 2.1. So, there are only finitely many
Hilbert polynomials of the form PG for such G. Moreover, we can enlarge m0

again, if necessary, such that for m ≥ m0, PG(m)= h0(G(m)) and

PG

2r(G)− ε(α′)
<

P
2r − ε(α)

⇐⇒
PG(m)

2r(G)− ε(α′)
<

P(m)
2r − ε(α)

.

3To obtain this inequality, one can also see [Huybrechts and Lehn 1997, Corollary 3.3.8].
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Therefore, by Lemma 2.9 and (3-5),

h0(G(m))
2r(G)− ε(α′)

<
h0(E(m))
2r − ε(α)

.

ii)⇒ iii) From a proper quotient pair (F, α′′), we can get a short exact sequence

0→ (G, α′)→ (E, α)→ (F, α′′)→ 0.

We thus obtain an exact sequence

(3-6) 0→ H 0(G(m))→ H 0(E(m))→ H 0(F(m)).

Therefore, h0(F(m)) ≥ h0(E(m))− h0(G(m)). Notice that r(E) = r(G)+ r(F)
and ε(α)= ε(α′)+ ε(α′′). Thus,

h0(F(m))
2r(F)− ε(α′′)

≥
h0(E(m))− h0(G(m))

(2r − ε(α))− (2r(G)− ε(α′))
>

h0(E(m))
2r − ε(α)

≥
P(m)

2r − ε(α)
.

iii) ⇒ i) Take the Harder–Narasimhan filtration of E with respect to the slope.
Suppose F is the last factor, then µ(F)=µmin(E), denoted as µ′′. By Lemma 2.5,

(3-7)
h0(F(m))

r(F)
≤

1
d!

(
[µ′′+m+C]+

)d
.

Let (F, α′′) be the induced quotient pair. If ε(α′′) 6= 0, then (E, α) is stable, since
in the Harder–Narasimhan filtration, only the first morphism is nonzero. So, assume
ε(α′′)= 0. Then

P(m)
r

<
2P(m)

2r − ε(α)
<

h0(F(m))
2r(F)

≤
1
d!

(
[µ′′+m+C]+

)d
.

If m ≥ m0, the preceding inequality with P(m)/r ≥ (m − A)d/d! implies that
m − A ≤ µ′′+m +C . Therefore, µmin(E) = µ′′ ≥ −A−C . Thus, the family of
coherent sheaves satisfying the third condition for some m ≥ m0 is bounded.

Let grs = (grs E, grs α) denote the last Harder–Narasimhan factor of the pair
(E, α). Then

h0(grs E(m))
2r(grs E)− ε(grs α)

>
P(m)
2r − 1

.

By Lemma 3.4, enlarging m0 if necessary, we can assume that, for all m ≥ m0,

(i) h0(grs E(m))= Pgrs E(m);

(ii)
Pgrs E(m)

2r(grs E)− ε(grs α)
>

P(m)
2r − 1

⇐⇒
Pgrs

2r(grs E)− ε(grs α)
>

P
2r − 1

.

Therefore, ε(gri α)/r(grs E) ≥ 1/r , which implies ε(grs α) = 1. Thus, s = 1,
which means (E, α) is semistable, and thus stable. �
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Replacing the strong inequalities by weak inequalities, we conclude that the
lemma is also true.

4. Construction of the moduli space

Fix the smooth projective variety (X,OX (1)), the coherent sheaf E0, the Hilbert
polynomial P, and the stability condition δ.

By the boundedness results proven in the last section, there is an N ∈ Z such
that for any integer m > N, the following conditions are satisfied:

(i) E0(m) is globally generated.

(ii) E(m) is globally generated and has no higher cohomology for every E ap-
pearing in a δ-semistable pair (Proposition 3.3). Similar results hold for their
Harder–Narasimhan factors (Lemma 3.4).

(iii) The three assertions in Lemma 3.5 are equivalent.

Fix such an m and let V be a vector space such that

dim V = P(m).

Suppose (E, α) is a semistable pair, then E can be viewed as a quotient

q : V ⊗OX (−m)� E .

Another datum of the pair is the morphism α. It gives rise to a linear map

σ : H 0(E0(m))→ H 0(E(m))∼= V .

Thus, a semistable pair gives rise to the following diagram:

K0 H 0(E0(m))⊗OX (−m) E0

V ⊗OX (−m) E

ι ev

σ α

q

Here, ι is the kernel of the evaluation map ev. Conversely, we can obtain a pair
from a quotient q and a linear map σ as long as q ◦σ ◦ ι= 0. Also notice that σ = 0
if and only if α = 0.

We will study the following spaces:

P= P(Hom(H 0(E0(m)), V ))= Proj(H 0(E0(m))⊗ V∨),

Q = QuotP
X (V ⊗OX (−m)).

The second space is Grothendieck’s Quot scheme, parametrizing quotients of
V⊗OX (−m)with Hilbert polynomial P. This is motivated by a similar construction
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in [Huybrechts and Lehn 1995a; 1995b]. Spaces P and Q are fine moduli spaces,
with the following universal families:

H 0(E0(m))⊗OP→ V ⊗OP(1),(4-1)

V ⊗OX (−m)→ E .(4-2)

Let
Z ⊂ P× Q

be the locally closed subscheme of points ξ = ([σ ], [q]) such that

(i) q ◦ σ ◦ ι= 0;

(ii) E is pure;

(iii) the quotient q induces an isomorphism of vector spaces V −→∼ H 0(E(m)).

There is a natural SL(V )-action on P× Q:(
[σ ], [q]

)
.g =

(
[g−1
◦ σ ], [q ◦ g]

)
,

for g ∈ SL(V ) and ([σ ], [q]) ∈ P× Q. It can be easily checked that this indeed
defines a right action. It is clear that Z is invariant under this action. The closure Z
of Z ⊂ P× Q is invariant as well.

For a very large l, there is an SL(V )-equivariant embedding,

Q = QuotP
X (V ⊗OX (−m)) ↪→ Grass(V ⊗ H 0(OX (l −m)), P(l)),

[q : V ⊗OX (−m)� E] 7→ [H 0(q(l)) : V ⊗ H 0(OX (l −m))� H 0(E(l))].

The standard very ample line bundle on the Grassmannian is SL(V )-linearized. Let
OQ(1) be its pullback to Q. The line bundle OP(1) is also SL(V )-linearized. Thus,
for positive integers n1 and n2, the following line bundle is SL(V )-linearized:

L = OP(n1)�OQ(n2).

We are going to construct the moduli space by taking the GIT quotient of Z ,
eliminating the extra information coming from identifying V and H 0(E(m)). A
key step is to relate the δ-stability condition to the GIT-stability condition with
respect to L , which will occupy a large part of this section.

An application of the Hilbert–Mumford criterion shows the following lemma. It
is very similar to [Wandel 2015, Proposition 4.3]. For the proof of the lemma, see
[Lin 2016, Lemma 12].

Lemma 4.1. For l very large, let ξ = ([σ ], [q]) ∈ Z be a point with associated
morphism α : E0→ E. Then the following two conditions are equivalent:

(i) ξ is GIT-stable with respect to L.
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(ii) For any nontrivial proper subspace W $ V, let G = q(W ⊗OX (−m)). Then

(4-3) PG(l) >
n1

n2

(
εW (σ )−

dim W
dim V

)
+ P(l)dim W

dim V
.

Here, εW (σ ) is either 1 or 0 depending on whether W contains im σ or not.

GIT-semistability can also be characterized by the corresponding weak inequality.
Now, let

(4-4)
n1

n2
=

P(l)
2r

.

We fix an l such that

(i) Lemma 4.1 holds;

(ii) (4-3) holds if and only if it holds as an inequality of polynomials in l:

(4-5) PG >
n1

n2

(
εW (σ )−

dim W
dim V

)
+ P dim W

dim V
.

We can ask for the second condition because the family of such G’s is bounded.
In defining Z , we required the quotient to be pure. When we take the closure,

we may include quotients which are not pure. But the following statement imposes
restrictions.

Corollary 4.2. If ([σ ], [q])∈ Z is GIT-semistable, then H 0(q(m)) :V→H 0(E(m))
is injective and for any coherent subsheaf G ⊂ E such that dim G ≤ d − 1,
H 0(G(m))= 0.

Proof. Let W be the kernel of H 0(q(m)) : V → H 0(E(m)), then for the image G
we have

G = q(W ⊗OX (−m))= 0.

The inequality (4-5) forces dim W to be zero, otherwise the right-hand side of the
inequality is a positive polynomial while the left-hand side is 0.

Suppose G ⊂ E such that dim G ≤ d − 1. If we let W = H 0(G(m)), then
q(W ⊗OX (−m))⊂ G. By the inequality (4-5), we have dim W = 0, otherwise the
right-hand side will be a positive polynomial of degree no less than d, while the
left hand side is of degree ≤ d − 1. �

We are ready to relate the δ-stability condition to the GIT-stability condition.

Proposition 4.3. Let ([σ ], [q]) be in Z and (E, α) be the corresponding pair. The
following two assertions are equivalent:

(i) ([σ ], [q]) is GIT-(semi)stable with respect to L.

(ii) (E, α) is (semi)stable and q induces an isomorphism V −→∼ H 0(E(m)).

Recall that when deg δ ≥ deg P, there are no strictly semistable pairs.
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Proof. First, assume that a point ([σ ], [q]) ∈ Z is GIT-semistable. Denote the
quotient by

q : V ⊗O(−m)→ E .

Then by Corollary 4.2, we know that the induced linear map V → H 0(E(m)) is in-
jective. The sheaf E can be deformed to a pure sheaf since ([σ ], [q]) is in the closure
of Z . By [Huybrechts and Lehn 1997, Proposition 4.4.2], there is an exact sequence,

0→ Td−1(E)→ E φ
−→ F,

where Td−1(E) is the maximal dimension d − 1 subsheaf of E and such that
PF = PE = P. According to Corollary 4.2, the exact sequence provides an injective
linear map,

H 0(E(m)) ↪→ H 0(F(m)).

For any dimension d quotient π : F � F ′′, let G be the kernel of π ◦φ,

0→ G→ E π◦φ
−−→ F ′′→ 0.

Let W = V ∩ H 0(G(m)). Then we have

(4-6) h0(F ′′(m))≥ h0(E(m))− h0(G(m))≥ dim V − dim W.

Let r ′′ = r(F ′′). Let’s consider the leading coefficients of the two sides of (4-3),
viewed as polynomials in l. (This is where the argument diverges, depending on
the degree of δ. Here, we focus on the case where deg δ ≥ d .) Then

(2r(G)− εW (σ )) dim V ≥ (2r − 1) dim W.(4-7)

Combining ((4-6), (4-7)), we have

h0(F ′′(m))
2r ′′− ε(π ◦φ ◦α)

≥
dim V
2r − 1

·
2r ′′− (1− εW (σ ))

2r ′′− ε(π ◦φ ◦α)
≥

P(m)
2r − 1

.

To prove the second inequality, notice that, when ε(π ◦ φ ◦ α) = 0, imα ⊂ G.
Therefore im σ ⊂ H 0(G(m)). Thus, im σ ⊂W.

According to Lemma 3.5, the pair (F, φ ◦ α) is semistable. Therefore, by our
choice of m, h0(F(m))= P(m). We have the following commutative diagram:

V ⊗OX (−m) H 0(E(m))⊗OX (−m) ev H 0(F(m))⊗OX (−m) ev

E F

∼

q

∼

φ

So, φ is surjective. Since they have the same Hilbert polynomial, it is an
isomorphism. Therefore, (E, α) is a semistable pair.
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Next, we assume that (E, α) is semistable, thus stable, and q(m) induces an
isomorphism between global sections. For any nontrivial proper subspace W $V, let

G = q(W ⊗O(−m))

and (G, α′) the corresponding subpair. If (G, α′) = (E, α), the inequality in
Lemma 4.1 holds. Assume that (G, α′) is a proper subpair. According to Lemma 3.5,
we have

h0(G(m))
2r(G)− ε(α′)

<
h0(E(m))

2r − 1
.

From the commutative diagram

W H 0(G(m))

V H 0(E(m))
∼=

we know that dim W ≤ h0(G(m)). Thus,

dim W
2r(G)− ε(α′)

<
h0(E(m))

2r − 1
.

Therefore,

r(G) > 1
2
ε(α′)−

1
2
·

dim W
dim V

+ r
dim W
dim V

,

which implies the inequality in Lemma 4.1, since ε(α′)≥ εW (σ ). Hence, ([σ ], [q])
is GIT-stable. �

We still need the following lemma, which will help us identify closed orbits. A
pair is polystable if it is isomorphic to a direct sum of stable pairs, degenerate or
not, with the same reduced Hilbert polynomial.

Lemma 4.4. The closures of orbits of two points, ([σ1], [R1]) and ([σ2], [R2]), in
Z ss intersect if and only if their associated semistable pairs (E1, α1) and (E2, α2)

have the same Jordan–Hölder factors. The orbit of a point ([σ ], [q]) is closed if
and only if the associated pair (E, α) is polystable.

The proof is similar to that of [Huybrechts and Lehn 1997, Theorem 4.3.3], using
the following lemma on semicontinuity.

Lemma 4.5 (semicontinuity). Suppose (F , α) and (G , β) over XT = T × X are
two flat families of pairs, with Hilbert polynomials PF and PG , parametrized by a
scheme T of finite type over k. Then, the following function is semicontinuous:

t 7→ dimk Hom{t}×X ((Ft , αt), (Gt , βt)).

The proof is modified from that of [Huybrechts and Lehn 1995a, Lemma 3.4].



142 YINBANG LIN

Proof. The space Hom((Ft , αt), (Gt , βt)) is related to the pullback in the diagram

Ct k

Hom(Ft ,Gt) Hom(E0,Gt)

·βt

◦αt

in the sense that it satisfies the equality

dim Hom((Ft , αt), (Gt , βt))= dim Ct − 1+ ε(βt).

By our flatness assumption, βt is either always zero or never zero. Thus, it is enough
to show that Ct is a fiber of a common coherent OT -module, as t varies. Since the
question is local on T, assume T = Spec A, where A is a k-algebra.

It is shown in the proof of [Huybrechts and Lehn 1995a, Lemma 3.4] that there
is a bounded-above complex M •

E0
of finite type free A-modules, such that for any

A-module M,

(4-8) hi (M •

E0
⊗A M)∼= ExtiXT

(π∗X E0,G ⊗A M).

Similarly, there is such an M •

F that

(4-9) hi (M •

F ⊗A M)∼= ExtiXT
(F ,G ⊗A M).

The morphism α induces a morphism of complexes, which is still denoted as
α : M •

F → M •

E0
. The morphism β induces a morphism β : A→ M •

E0
. Thus, there

is a morphism,
ψ = (α,−β) : M •

F ⊕ A→ M •

E0
.

Then the mapping cone C(ψ) fits in the distinguished triangle

C(ψ)[−1] → M •

F ⊕ A→ M •

E0
→ C(ψ).

Taking the long exact sequence, we have

0→ h−1(C(ψ))→ HomXT (F ,G )⊕ A→ HomXT (π
∗

X E0,G )→ · · · .

Thus, we have the following fiber diagram:

h−1(C(ψ)) A

HomXT (F ,G ) HomXT (π
∗

X E0,G )

β

α

Therefore, together with (4-8) and (4-9) and the isomorphism ExtiXT
(F ,G ⊗ k(t))∼=

ExtiX t
(Ft ,Gt), we know Ct ∼= h−1(C(ψ))⊗ k(t). �

We can now prove the existence of the moduli space.
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Proof of Theorem 1.1. Let

S = SE0(P, δ)= Z ss � SL(V )

be the GIT quotient. This is a projective scheme. We will show that this is the
coarse moduli space of S-equivalence classes of semistable pairs.

Suppose we are given a family of semistable pairs parametrized by T :

β : π∗X E0→F .

Let π be the projection from T × X onto T. Let m be chosen as before, then
π∗(F (m)) is locally free of rank P(m)=dim V and we obtain a morphism over T :

π∗(β(m)) : π∗(π∗X E0(m))→ π∗(F (m)).

Therefore, there is an open affine cover T =
⋃

Ti , such that π∗(F (m))|Ti is free of
rank P(m) over each Ti . Choose an isomorphism over Ti :

ωi : V ⊗OTi → π∗(F (m))|Ti .

Then ω−1
i ◦π∗(β(m)) induces a morphism Ti → P. Also, the quotient

ev ◦π∗(ωi ) : V ⊗OX (−m)
∼=
−→π∗π∗(F (m))⊗OX (−m)� F

over Ti × X induces a morphism Ti → Q. Thus, they induce a morphism fi :

Ti → P× Q. By the definition of Z and Proposition 4.3, fi factors through Z ss.
Therefore, we obtain unambiguously a morphism,

fβ : T → S.

Thus, we have a natural transformation,

S = SE0(P, δ)→Mor(−, S).

Suppose there is a natural transformation,

(4-10) S→Mor(−, N ).

Let T = Z ss. Universal families (4-1) and (4-2) induce

H 0(E0(m))⊗OX (−m)→ V ⊗OP(1)⊗OX (−m)� E ⊗OP(1).

Over T, the composition induces a family,

(4-11) π∗X E0→ E ⊗OP(1),

and thus an element in S(T ). This in turn produces a map T = Z ss
→ N. Because

(4-10) is a natural transformation, this map is SL(V )-equivariant, with the action
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on N being trivial. According to properties of a quotient, the map factors uniquely
through S. Therefore, we have the following commutative diagram of functors:

S Mor(−, S)

Mor(−, N )

Moreover, closed points in S are in bijection with S-equivalence classes of semistable
pairs, according to Lemma 4.4. Thus, S is the coarse moduli space.

Let us consider the open set Z s
⊂ Z ss of stable points. The geometric quotient

Z s
→ Z s/SL(V )= Ss

E0
(P, δ)= Ss

provides a quasiprojective scheme parametrizing equivalence classes of stable pairs.
We shall prove this quotient to be a principal PGL(V )-bundle. It is enough to show
that the stabilizers are products of the identity matrix and roots of unity.

Suppose a point ([σ ], [q]) ∈ Z s gives rise to a stable pair α : E0 → E and
([σ ], [q]) is fixed by g ∈ SL(V ), that is, [σ ] = [g−1

◦ σ ] [q] = [q ◦ g]. Then there
is a scalar a ∈ k×, such that g−1

◦σ = aσ , and there is an isomorphism φ : E→ E ,
such that φ ◦ q = q ◦ g. Therefore,

φ ◦α ◦ ev= aα ◦ ev : H 0(E0(m))⊗OX (−m)→ E .

So, φ ◦α = aα. Thus, φ is a multiplication by a nonzero scalar, by Lemma 2.11.
In the diagram

V
H0(q(m))
−−−−−→ H 0(E(m))

g
y yH0(φ(m))

V
H0(q(m))
−−−−−→ H 0(E(m))

the horizontal arrows are isomorphisms and the right vertical arrow is a multiplica-
tion by a nonzero scalar. Therefore, g is also a multiplication by a nonzero scalar.
Because g lies in SL(V ), it is the product of a root of unity and the identity matrix.

In the family (4-11), E ⊗OP(1) is SL(V )-equivariant. Although the actions of
the center of SL(V ) on OP(1) and E are not trivial, its action on E ⊗OP(1) is. Thus,
E ⊗OP(1) is PGL(V )-equivariant. Therefore, the restriction of (4-11) to Z s

× X
descends to Ss

× X to give a universal family of pairs. Hence, Ss represents the
functor Ss

E0
(P, δ). �

Remark 4.6. The construction above can be carried out in the relative case. By
[Grothendieck 1961b, Lemma 2.5], the boundedness result still holds. According to
[Seshadri 1977], the GIT construction works in the relative setting. More concretely,
let T be a k-scheme of finite type, X → T a flat projective morphism, and E0 a
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coherent OX -module flat over T. Then, there is a relative moduli space of δ-
semistable pairs SE0(P, δ) which is projective over T. There is an open subscheme
Ss

E0
(P, δ)⊂ SE0(P, δ) parametrizing stable pairs. Moreover, fibers SE0(P, δ)t over

closed points are moduli spaces of semistable pairs on X t .

5. Deformation and obstruction theories

This section is devoted to the proof of Theorem 1.2, following [Huybrechts and
Lehn 1997; Inaba 2002]. In Section 5A, we will outline the construction of the
obstruction class and identify the deformation space. In Section 5B, we will fill in
the proofs.

5A. Constructions. Suppose (E, α) is a stable pair and

0→ K → B σ
−→ A→ 0

is a short exact sequence, where A, B ∈ Ar tk are local Artinian k-algebras with
residue field k, such that mB K = 0. Suppose

αA : E0⊗ A→ E A

over
X A = X ×Spec A

is a (flat) extension of (E, α). Let

I •A = {E0⊗ A→ E A}

denote the complex positioned at 0 and 1. We would like to extend (E A, αA) to a
pair (EB, αB) over X B . This is similar to deforming a sheaf or a perfect complex.
But we need to fix E0.

We take two locally free resolutions P• −→∼ E0 and Q•A −→
∼ E A and lift αA

to a morphism of complexes α•A : P• ⊗ A→ Q•A. Then, we have the following
commutative diagram:

· · · P−1
⊗ A P0

⊗ A E0⊗ A 0

· · · Q−1
A Q0

A E A 0

d−2
P ⊗A d−1

P ⊗A

α−1
A α0

A αA

d−2
Q A

d−1
Q A

where

(5-1) P i
= V i

⊗OX (−mi ) and Qi
A =W i

⊗OX A(−ni ).

Here, V i and W i are vector spaces and mi , ni ∈ N. Then, Q• = Q•A ⊗A k is a
resolution of E , because E A is flat over A.
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We can view the morphism αA as a morphism between complexes concentrated at
degree 0, then I •A can be viewed as a mapping cone I •A ∼=C(αA)[−1] ∼=C(α•A)[−1].
For the sake of notation, we write down the mapping cone explicitly:

· · · → P−1
⊗ A⊕ Q−2

A
d−2

A
−→ P0

⊗ A⊕ Q−1
A

d−1
A
−→ Q0

A→ 0,

where

(5-2) d i
A =

(
−d i+1

P ⊗ A 0
αi+1

A d i
Q A

)
.

We lift d i
Q A

to d i
Q B

, getting a sequence (Qi
B, d i

Q B
)i≤0, where

Qi
B =W i

⊗OX B (−ni ).

We also lift αi
A : P

i
⊗ A→ Qi

A to αi
B : P

i
⊗ B→ Qi

B . We then obtain a sequence

(5-3) (P i+1
⊗ B⊕ Qi

B, d i
B)i≤0,

where d i
B is similar to d i

A in (5-2). This is not necessarily a complex:

(5-4) d i
B ◦ d i−1

B =

(
0 0

−αi+1
B ◦ (d

i
P ⊗ B)+ d i

Q B
◦αi

B d i
Q B
◦ d i−1

Q B

)
may not vanish. But when it is a complex, (Q•B, d•Q B

) forms a complex and
α•B : P

•
⊗ B→ Q•B is a morphism of complexes. Thus,

H 0(α•B) : E0⊗ B→ H 0(Q•B, d•Q B
)

provides a flat extension of αA, according to Lemma 5.1, which will be stated and
proved in the next subsection.

The lower row of (5-4) constitutes a map

(5-5) P•[1]⊗ B⊕ Q•B→ Q•B[2].

When restricted to X A, it becomes zero. Moreover, mB K = 0. The map above
induces a map4

(5-6) (ω•P , ω
•

Q) : C(α
•)→ Q•B[2]⊗B K ∼= Q•[2]⊗k K .

We claim that (ω•P , ω
•

Q) is a morphism of complexes, which will be proven, see
Lemma 5.3. This induces a class, which will be shown to be the obstruction class

(5-7) ob(αA, σ )= [(ω
•

P , ω
•

Q)] ∈ HomK (X)(C(α•), Q•[2]⊗k K ).

4The argument used to deduce (5-6) from (5-5) will be applied repeatedly.
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To identify HomK (X)(C(α•), Q•[2]⊗ K ) with Ext1(I •, E ⊗ K ) in the theorem,
we only need to take (5-1) to be very negative such that H i (X, E(m j )) = 0 and
H i (X, E(n j ))= 0, for all i > 0 and j ≤ 0. Then

Ext1(I •, E ⊗ K )∼= HomK (X)(C(α•), E[2]⊗ K )∼= HomK (X)(C(α•), Q•[2]⊗ K ).

Suppose we have two extensions αB : E0⊗ B→ EB and βB : E0⊗ B→ FB ,
which arise from the following liftings:

{d i
EB
: Qi

B→ Qi+1
B , αi

B : P
i
⊗ B→ Qi

B},

{d i
FB
: Qi

B→ Qi+1
B , β i

B : P
i
⊗ B→ Qi

B}.

The differences d i
EB
− d i

FB
and αi

B −β
i
B induce a morphism of complexes

(5-8) ( f •P , f •Q) : C(α
•)→ Q•[1]⊗ K .

This induces a class

v = [( f •P , f •Q)] ∈ HomK (X)(C(α•), Q•[1]⊗ K )∼= Ext1(I •, E ⊗ K ).

Conversely, given αB and ( f •P , f •Q), we can produce another extension βB .
Moreover, αB and βB are equivalent if and only if v = 0.

5B. Proofs. In this subsection, we fill in the proofs of several claims we made
in Section 5A. We will assume the independence of choices in 5B1 and provide
proofs of independence in 5B2. To simplify the notation, we will sometimes omit
the superscripts in maps between complexes, such as α• and αi.

5B1. Obstruction classes. We first show that ob(αA, σ ) defined in (5-7) is an
obstruction class.

Suppose an extension (EB, αB) exists. The definition of ob(αA, σ ) does not
depend on the choice of the resolution Q•A. We can assume (EB, αB) arises by
lifting d i

Q A
and αi

A, making Q•B into a complex and α•B a morphism of complexes.
Then, (ω•P , ω

•

Q)= 0. Thus, ob(αA, σ )= 0.
Conversely, suppose ob(αA, σ )= 0. It is enough to show that (ω•P , ω

•

Q)= 0, after
possible modifications of the liftings. The vanishing of ob(αA, σ ) is equivalent to
(ω•P , ω

•

Q) being homotopic to 0. Let (g•P , g•Q) be a homotopy. By abuse of notation,
let ι denote inclusions

ι : Qi
B ⊗ K ↪→ Qi

B .

Similarly, π denotes the corresponding quotients,

π : P i
⊗ B � P i and π : Qi

B � Qi .

We can replace αB and dQ B by

αB − ι ◦ gP ◦π and dQ B − ι ◦ gQ ◦π,

then the new (ω•P , ω
•

Q) is zero.
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The following well-known lemma is central to our argument. For completeness,
we give a proof here.

Lemma 5.1. Let (Q•A, d•Q A
) be a sequence of the form Qi

A
∼= W i

⊗ OX A(−ni ),
i ≤ 0, such that

(Q•A, d•Q)⊗A k ∼= (Q•, d•)

is a resolution of E. If (Q•A, d•Q A
) is a complex, then it is exact except at the 0-th

place and the cohomology H 0(Q•A, d•Q A
) is an extension of E flat over A.

Proof. There is a short exact sequence of complexes

0→ Q•A⊗A mA→ Q•A→ Q•→ 0.

First, let n be the least integer such that mn
A= 0. We shall show that for 0≤ i ≤ n,

Q•A⊗ A/mi
A is exact except at the 0-th place, by induction on i decreasingly. Tensor

Q•A over A with the short exact sequence

0→mn−1
A →mn−2

A →mn−2
A /mn−1

A → 0,

whose last term is a direct sum of copies of k. On the other hand, Q•A⊗mn−1
A
∼=

Q• ⊗k m
n−1
A . We deduce that the complexes Q•A ⊗mn−1

A and Q•A ⊗mn−2
A /mn−1

A
are exact except at the 0-th places. So, from the associated long exact sequence,
Q•A⊗mn−2

A is also exact except at the 0-th place. Inductively, we can prove this
for Q•A.

Next, let E A= H 0(Q•A, d•Q A
). We shall show that E A⊗A/mi

A is flat for 1≤ i ≤n,
by induction on i .

Of course E A ⊗A A/mA ∼= E is flat over A/mA ∼= k. Tensor the short exact
sequence

(5-9) 0→mA/m
2
A→ A/m2

A→ A/mA→ 0

by Q•A over A. Since the ideal mA/m
2
A is square-zero, we have the short exact

sequence of complexes

0→ Q•⊗k mA/m
2
A→ Q•A⊗A A/m2

A→ Q•→ 0.

The associated long exact sequence degenerates to

(5-10) 0→ E ⊗mA/m
2
A→ E A⊗ A/m2

A→ E→ 0.

Therefore, E A⊗A A/m2
A is flat over A/m2

A, according to Lemma 5.2. Replacing
(5-9) by

0→m2
A/m

3
A→ A/m3

A→ A/m2
A→ 0,

we can repeat this argument. Inductively, we can prove E A is flat over A.
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Similar to obtaining (5-10), we also have the short exact sequence

0→ E A⊗mA→ E A→ E→ 0.

So, E A is an extension of E flat over A. �

For the reader’s convenience, we include the following basic lemma about flatness.
For a proof, see [Hartshorne 2010, Proposition 2.2].

Lemma 5.2. Let B→ A be a surjective homomorphism of Noetherian rings whose
kernel K is square zero. Then a B-module M ′ is flat over B if and only if M =
M ′⊗B A is flat over A and the natural map M ⊗A K → M ′ is injective.

Lemma 5.3. The map (5-6) is a morphism of complexes.

Proof. We have two equalities

(5-11) −αB ◦ dP ⊗ B+ dQ B ◦αB = ι ◦ωP ◦π and dQ B ◦ dQ B = ι ◦ωQ ◦π.

The map (5-6) is indeed a morphism: one can show that

ι ◦

(
dQ ⊗ K ◦ (ωP , ωQ)− (ωP , ωQ)

(
−dP 0
α dQ

))
◦π = 0.

Because ι is injective and π is surjective, (ωP , ωQ) commutes with differentials.5 �

5B2. Obstructions: independence of choices. We now show that ob(αA, σ ) is
independent of various choices we have made: α•A, α•B , d•Q B

, and Q•A.
To start, if we choose a different lifting α•A of αA, then (ω•P , ω

•

Q) only differs by
a homotopy.

We next show that the morphism (ω•P , ω
•

Q) is independent of liftings αB and
dQ B , modulo homotopy.

Let α′B and d ′Q B
be different liftings, giving rise to (ω′•P , ω

′•

Q). The differences
αB −α

′

B and dQ B − d ′Q B
induce a map, which will be shown to be a homotopy,

(h•P , h•Q) : P
•
[1]⊕ Q•→ Q•[1]⊗k K .

We have the following equalities:

(5-12) ι ◦ h P ◦π = αB −α
′

B and ι ◦ hQ ◦π = dQ B − d ′Q B
.

Combining (5-11) and (5-12), we obtain

ωP −ω
′

P =−h P ◦ dP + dQ ⊗ K ◦ h P + hQ ◦α,

ωQ −ω
′

Q = dQ ⊗ K ◦ hQ + hQ ◦ dQ .

5The trick using ι and π will be applied repeatedly.
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Therefore,

(ωP , ωQ)− (ω
′

P , ω
′

Q)= dQ ⊗ K ◦ (h P , hQ)+ (h P , hQ)

(
−dP 0
α dQ

)
,

which means (ω•P , ω
•

Q) and (ω′•P , ω
′•

Q) are homotopic.
Finally, we show the independence of Q•A.
Let (R•A, d•RA

) be another very negative resolution of the form:

Ri
A =W i ′

⊗OX A(−n′i ).

Then, there is a lifting of the identity map q•A : Q
•

A→ R•A, unique up to homotopy.
Let

β•A = q•A ◦α
•

A : P
•
⊗ A→ R•A.

Moreover, there is a morphism

diag(id, q•A) : C(α
•

A)→ C(β•A).

Lift q•A and β•A to q•B : Q
•

B→ R•B and β•B : P
•
⊗ B→ R•B . Then, we have a map of

sequences
diag(id, q•B) : P

•
[1]⊗ B⊕ Q•B→ P•[1]⊗ B⊕ R•B .

This fits in the following square, which is not necessarily commutative,

(5-13)

P•[1]⊗ B⊕ Q•B Q•B[2]

P•[1]⊗ B⊕ R•B R•B[2]

diag(id,q•B) q•B

Here, the two horizontal maps are defined as in (5-5). The square above induces

P•[1]⊕ Q• Q•[2]⊗ K

P•[1]⊕ R• R•[2]⊗ K

(ω•P ,ω
•

Q)

diag(id,q•) q•

(ω•P ,ω
•

R)

To show that ob(αA, σ ) is independent of the resolution, it is enough to show
that the two compositions in the square above differ by a homotopy. This is because,
if they differ by a homotopy, two classes [(ω•P , ω

•

Q)] and [(ω•P , ω
•

R)] are identified
via the isomorphism

HomK (X)(C(α•), Q•[2]⊗ K )∼= HomK (X)(C(β•), R•[2]⊗ K ).

Indeed, the difference dRB ◦ qB − qB ◦ dQ B and βB − qB ◦αB induce maps

τ • : Q•→ R•[1]⊗ K and υ• : P•→ Q•⊗ K .
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There are the following equalities:

dRB ◦ qB − qB ◦ dQ B = ι ◦ τ ◦π and βB − qB ◦αB = ι ◦ υ ◦π.(5-14)

Combining (5-11) and (5-14), we know that the difference of two compositions
in (5-13) is

ι ◦
(
(ωP , ωR) ◦ diag(id, q)− q ◦ (ωP , ωQ)

)
◦π

= ι ◦

(
(υ, τ ) ◦

(
−dP 0
α dQ

)
+ dR ⊗ K ◦ (υ, τ )

)
◦π.

Thus, (υ•, τ •) is a homotopy.

5B3. Deformations. Assume that the obstruction class ob(αA, σ ) vanishes.
Suppose there are two extensions:

αB : E0⊗ B→ EB and βB : E0⊗ B→ FB .

Resolve EB and FB by two very negative complex with identical terms but different
differentials: (Q•B, d•EB

) and (Q•B, d•FB
). Then, lift αB and βB :

P•⊗ B E0⊗ B

(Q•B, d•EB
) EB

α•B

∼

αB

∼

and

P•⊗ B E0⊗ B

(Q•B, d•FB
) FB

β•B

∼

βB

∼

The differences d i
EB
− d i

FB
and αi

B −β
i
B induce maps

f i
Q : Q

i
→ Qi+1

⊗ K and f i
P : P

i
→ Qi

⊗ K .

One can show that these provide a morphism of complexes

(5-15) ( f •P , f •Q) : C(α
•)→ Q•[1]⊗ K .

Thus, they induce a class v defined by

v = [( f •P , f •Q)] ∈ Ext1(I •, E ⊗ K ).

Conversely, if we are given an extension (EB, αB) and a class v represented by
( fP , fQ), then

βB = αB − ι ◦ fP ◦π and dFB = dEB − ι ◦ fQ ◦π

produce a morphism of complexes P•⊗B→ (Q•B, d•FB
). This induces an extension

of (E A, αA):
(FB, βB)= (H 0(Q•B, d•FB

), H 0(β•B)).
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If we choose a different resolution R•B and define ( f •P , f •R) similarly as in (5-8),
then [( f •P , f •Q)] and [( f •P , f •R)] are identified under the isomorphism

HomK (X)(P•[1]⊕ Q•, Q•[1]⊗ K )∼= HomK (X)(P•[1]⊕ R•, R•[1]⊗ K ).

So, v is independent of the resolution Q•B .
We next show that the difference of two equivalent extensions gives a zero class v.

Indeed, suppose αB and βB are equivalent, then by Lemma 2.11, there is a constant
z ∈ B such that βB = zαB . Denote the image of z in k as z̄. We have proven that v
is independent of resolutions. So, for our convenience, we take the same resolution
Q•B for EB and FB , and take β• = zα•. Then f •Q = 0. Furthermore, f •P in (5-8) is
homotopic to zero via homotopy

(0, 1− z̄) : P i+1
⊕ Qi

→ Qi
⊗ K .

Thus, the associated v = 0.
It remains to prove that if (h•P , h•Q) is a homotopy between ( f •P , f •Q) and zero,

then αB and βB are equivalent. One can actually check:

(i) id−ι ◦ hQ ◦π : (Q•B, d•EB
)→ (Q•B, d•FB

) is a morphism of complexes.

(ii) (id−ι ◦ hQ ◦π) ◦αB = βB − dFB ◦ ι ◦ h P ◦π − ι ◦ h P ◦π ◦ dP ⊗ B.

Hence, there is a morphism φ commuting two families of stable pairs αB and βB .
Therefore, by Lemma 2.11, this is an isomorphism.

6. Stable pairs on surfaces

In this section, we assume that (X,OX (1)) is a smooth projective surface, E0 is
torsion-free, P and δ are of degree 1. We shall demonstrate that in these cases, the
moduli space of stable pairs admits a virtual fundamental class, proving Theorem 1.3.

To show the existence of the virtual fundamental class, it suffices to show that the
obstruction theory is perfect [Behrend and Fantechi 1997; Li and Tian 1998]. That
is, there is a two-term complex of locally free sheaves resolving the deformation
and obstruction sheaves. In order to do this, we essentially need to show that there
are no higher obstructions, which is guaranteed by the following lemma.

Lemma 6.1. Fix a stable pair (E, α). Let I • denote the complex {E0
α
−→ E}

positioned at 0 and 1. Then

Exti (I •, E)= 0, unless i = 0, 1.

Proof. The stable pair fits into an exact sequence

0→ K → E0→ E→ Q→ 0,

which can be written as a distinguished triangle

K → I •→ Q[−1] → K [1].
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Notice that K is torsion-free and Q is 0-dimensional. Apply the functor Hom(−, E)
to this triangle. The associated long exact sequence is

0→ Hom(Q, E)→ Ext−1(I •, E)→ 0→ · · ·
→ 0→ Ext2(I •, E)→ Ext2(K , E)→0.

Since Q is 0-dimensional and E is pure, Hom(Q, E)=0. Thus, Ext−1(I •, E)=0.
The kernel K is torsion-free, so Ext2(K , E)∼= Hom(E, K ⊗ωX )

∨
= 0. Therefore,

Ext2(I •, E)= 0. �

Using this lemma, the expected dimension of the moduli space can be easily
calculated via Hirzebruch–Riemann–Roch, knowing invariants of E0.

Now, let
I• = {π∗X E0

α̃
−→ E}

be the universal pair, according to Theorem 1.1. By Theorem 1.2, the deformation
sheaf and the obstruction sheaf are calculated by

Rπ∗RHom(I•, E).

Take a finite complex P• of locally free sheaves resolving E and a finite complex
Q• of very negative locally free sheaves resolving I•. Take a finite, very negative
locally free resolution A• of (Q•)∨⊗ P•. Then

(6-1) Rπ∗RHom(I•, E)∼= Rπ∗RHom(Q•, P•)∼= Rπ∗A•.

Denote this complex on the moduli space as B•. By Grothendieck–Verdier duality
[Hartshorne 1966; Conrad 2000],

B• = Rπ∗A• ∼= Rπ∗RHom(A•∨⊗ωX , ωX )

∼= RHom(Rπ∗(A•∨⊗ωX )[−2],O).

Moreover, notice that

Rπ∗(A•∨⊗ωX )= π∗(A•∨⊗ωX )

is a complex of locally free sheaves, due to the negativity of A j ’s. Thus, B• is a
complex of locally free sheaves as well. Denote the differentials as d i ’s.

Next, we show that B• can be truncated to degree 0 and 1. The cohomologies of
B• concentrate at degree 0 and 1, by Lemma 6.1. Suppose Bi for an i ≥ 2 is the last
term that is nonzero. Both Bi and Bi−1 are locally free, then ker d i−1 is also locally
free. Replace Bi by zero and Bi−1 by ker d i−1. We get a new complex of locally
free sheaves, which is quasi-isomorphic to B•. Inductively, we can trim B• down to
degree 1. On the other side, suppose B j for a j < 0 is the first term that is nonzero.
Then, d j is injective fiberwise. Therefore, coker d j is flat [Grothendieck 1961a,
(10.2.4), Chapter 0], thus locally free. Hence, we can replace B j−1 by zero and B j
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by coker d j to get a new complex of locally free sheaves. Inductively, B• becomes
a complex concentrated in degree 0 and 1, with cohomologies the deformation
sheaf and the obstruction sheaf. Namely, we have the following exact sequence on
SE0(P, δ):

0→ De f → B0
→ B1

→Obs→ 0,

where B0 and B1 are locally free.
Therefore, the moduli space admits a virtual fundamental class.

7. Examples

In this section, we study examples of moduli spaces of dimension 1 stable pairs over
K3 surfaces. Let (X,OX (1)) be a polarized K3 surface, P be a Hilbert polynomial
of degree 1, and δ be a positive polynomial of degree larger than 1. Let E0 be a
fixed coherent sheaf over X. Then a pair (E, α), such that PE = P, is stable if E is
pure and cokerα has dimension 0, by Lemma 2.10.

Let H = c1(O(1)) ∈ H2(X,Z). Suppose the schematic support of E , which is a
curve, has arithmetic genus h. There are two discrete invariants of E6:

(7-1) βh = c1(E) ∈ H2(X,Z) and χ(E)= 1− h+ d.

They are related to the Hilbert polynomial by

PE(m)= (βh .H)m+ 1− h+ d.

So, with the Hilbert polynomial fixed, there are only finitely many possible βh’s.
The moduli space decomposes as a disjoint union:

SE0(P, δ)=
∐
βh

SE0(βh, 1− h+ d),

where SE0(βh, 1− h+ d) denote the moduli space of stable pairs satisfying (7-1).
Let Ch be a representative in the class βh ; then the linear system |Ch| is isomor-

phic to Ph. Let
Ch ⊂ |Ch| × X

be the universal curve.
When E0 ∼= OX , by [Pandharipande and Thomas 2010, Proposition B.8],

SOX (βh, 1− h+ d)∼= C[d]h ,

where C[d]h is the relative Hilbert scheme of points. If there is an ample line bundle
H such that

(7-2) Ch .H =min{L .H | L ∈ Pic(X), L .H > 0},

6There is a slight abuse of notation concerning β and d , but this is unlikely to cause confusion.



MODULI SPACES OF STABLE PAIRS 155

then SOX (βh, 1− h+ d) is a smooth scheme of dimension h+ d, see [Kawai and
Yoshioka 2000, Lemmas 5.117 and 5.175] or [Pandharipande and Thomas 2010,
Proposition C.2].

The moduli space is not smooth in general for a higher rank E0. For example,
assume E0 ∼= O⊕2

X and the stable pair (E, α : O⊕2
X → E) maps a summand OX to 0.

Then, the deformation space of this stable pair is isomorphic to

Hom(OX → E, E)⊕ H 0(E).

The dimension of Hom(OX → E, E) is h+ d, while h0(E) may vary as E varies.
But when d is large, we do expect the moduli space to be smooth for higher rank E0.

Proposition 7.1. Suppose βh is irreducible, i.e., βh is not a sum of two curve classes,
and d > 2h−2. Then the moduli space SO⊕r

X
(βh, 1− h+d) is smooth of dimension

rd + (r − 2)(1− h)+ 1.

Proof. Apply the functor Hom(−, E) to

I •→ O⊕r
X → E→ I •[1].

According to Lemma 6.1, the associated long exact sequence is

0→ Hom(E, E)→ H 0(X, E)⊕r
→ Hom(I •, E)→

Ext1(E, E)→ H 1(X, E)⊕r
→ Ext1(I •, E)→ Ext2(E, E)→ 0.

Since βh is irreducible, E is stable. Therefore, ext2(E, E) = hom(E, E) = 1.
When d> 2h−2, by Serre duality, h1(X, E)= h1(C, E)= 0 where C is the support
of E . Thus, the tangent space Hom(I •, E) has constant dimension χ(I •, E)+ 1=
rd + (r − 2)(1− h)+ 1. �

For every h ≥ 0, there exists a K3 surface Xh and a curve class βh ∈ H2(Xh,Z),
such that βh .βh = 2h − 2 and (7-2) is satisfied, see [Kawai and Yoshioka 2000,
Remark 5.110]. For each h ≥ 0, we fix such Xh and βh .

Kawai and Yoshioka [2000, Corollary 5.85] calculated the generating series of
topological Euler characteristics of the moduli spaces.

Theorem 7.2 (Kawai–Yoshioka). For 0 < |q| < |y| < 1, the generating series of
topological Euler characteristics is

∞∑
h=0

∞∑
d=0

χtop
(
SOXh

(βh, 1− h+ d)
)
qh−1 y1−h+d

=

((
y−1/2

− y1/2)2q
∞∏

n=1

(
1− qn)20(1− qn y

)2(1− qn y−1)2
)−1

.
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Next, we consider stable pairs over Xh of the form

α : Lh→ E,

where Lh is a line bundle with the first Chern class c1(Lh)= lβh . Such a stable pair
is equivalent to OX → E⊗ L−1

h . Notice that c1(E⊗ L−1
h )= βh and χ(E⊗ L−1

h )=

1− h+ d − 2l(h− 1). Therefore,

SLh (βh, 1− h+ d)∼= SOX (βh, 1− h+ d − 2l(h− 1)).

If α 6= 0, then d ≥ 2l(h− 1). The generating series is

∞∑
h=0

∞∑
d=2l(h−1)

χtop
(
SLh (βh, 1− h+ d)

)
qh−1 yd+1−h

=

∞∑
h=0

∞∑
d=0

χtop
(
SOX (βh, 1− h+ d)

)
(qy2l)h−1 yd+1−h

=

((
y−

1
2 − y

1
2
)2qy2l

∞∏
n=1

(
1− qn y2nl)20(1− qn y2nl+1)2(1− qn y2nl−1)2

)−1

.

Now, we consider stable pairs over Xh of the form

α :
⊕

i

L i,h→ E,

where L i,h is a line bundle with c1(L i,h)= liβh . The proof of Proposition 7.1 can
also show that the moduli space is smooth when d is large compared to li and h. Let
Gm act on direct summands with distinct weights; then there is a natural Gm-action
on the moduli space S⊕L i,h

Xh
(βh, 1− h+ d). A morphism ⊕L i,h→ E is fixed under

the action if and only if exactly one summand L i,h is mapped to E nontrivially.
Thus, we have the following the fixed loci:

S⊕L i,h (βh, 1− h+ d)Gm ∼=

∐
i

SL i,h (βh, 1− h+ d).

When α 6= 0, d ≥min{2li (h− 1)}. To calculate the Euler characteristics, we can
use the localization formula, even when the moduli space is not smooth [Lawson
and Yau 1987]. Then,∑

h

∑
d

χtop
(
S⊕L i,h (βh, 1− h+ d)

)
qh−1 yd+1−h

=

∑
i

(
(y−

1
2 − y

1
2 )2qy2li

∞∏
n=1

(1− qn y2nli )20(1− qn y2nli+1)2(1− qn y2nli−1)2
)−1

.
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