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Summary. Discovering patterns from a set of text or, more generally, categorical data is an
important problem in many disciplines such as biomedical research, linguistics, artificial intel-
ligence and sociology. We consider here the well-known ‘market basket’ problem that is often
discussed in the data mining community, and is also quite ubiquitous in biomedical research.
The data under consideration are a set of ‘baskets’, where each basket contains a list of ‘items’.
Our goal is to discover ‘themes’, which are defined as subsets of items that tend to co-occur in
a basket. We describe a generative model, i.e. the theme dictionary model, for such data struc-
tures and describe two likelihood-based methods to infer themes that are hidden in a collection
of baskets.We also propose a novel sequential Monte Carlo method to overcome computational
challenges. Using both simulation studies and real applications, we demonstrate that the new
approach proposed is significantly more powerful than existing methods, such as association
rule mining and topic modelling, in detecting weak and subtle interactions in the data.

Keywords: Association rule mining; Co-occurrence pattern recognition; Market basket
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1. Introduction

In many research areas ranging from data mining to bioinformatics, a key task is to identify
associations between various ‘items’. To be concrete, we let X = .X1, : : : , Xp/ denote a vector
of binary variables, where Xj = 1 or Xj = 0 indicates the presence or absence of item j. Given
a set of observations on X, we are interested in discovering ‘patterns’ among the items, defined
as subsets of the items that tend to co-occur more frequently than expected by chance. These
patterns can be more generally interpreted as interactions between the binary variables. A well-
known example of the problem is the market basket analysis (MBA) that was proposed by
Piatetsky-Shapiro (1991). Table 1 shows a list of transaction records in a supermarket, a typical
data set in MBA, where each row records a ‘basket’ containing several items. The data can be
presented as a binary matrix with rows for different transactions or baskets and columns for
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Table 1. Typical subset of the data in MBA

Customer Basket

C1 Chips, salsa, cookies, crackers, Coke, beer
C2 Lettuce, spinach, oranges, celery, apples, grapes
C3 Chips, salsa, frozen pizza, frozen cake
C4 Lettuce, spinach, milk, butter

the presence or absence of different items. The goal of MBA is to find whether some items tend
to be sold together, which may reveal consumers’ behaviours and help the managers to improve
their advertising and promotion strategies.

An intuitive first analysis of the MBA data appears trivial: for any pair of items (such as
Coke and frozen pizza), one only needs to count their respective times of occurrences, both
individually and as pairs. Then, one can compute the time-honoured χ2-statistic to test whether
they have co-occurred more frequently than expected by chance. In the literature, computer
scientists have developed a highly efficient algorithm called association rule mining (ARM)
(Piatetsky-Shapiro, 1991; Agrawal et al., 1993; Agrawal and Srikant, 1994), which not only
finds co-occurring pairs on the basis of χ2-statistics (though ARM does not use any formal
statistical test) but also searches recursively for multi-item associations. In ARM, all frequent
item sets are enumerated and association rules are generated from these frequent item sets.
However, this strategy may encounter difficulties when we try to analyse item sets with weak
pairwise but significant multi-item associations. Although much effort (Zaki, 2000; Han et al.,
2004; Webb, 2007) has been made to improve the sensitivity and specificity of ARM, this method
still tends to produce many redundant or false association patterns.

Some off-the-shelf statistical tools such as hierarchical clustering and k-means clustering can
also be applied to the MBA-type data. But it is generally difficult to obtain satisfactory results
by using these approaches when the data under consideration have the following characteris-
tics:

(a) the potential patterns can heavily overlap;
(b) the potential patterns involve many items;
(c) some of the multi-item patterns are marginally weak, which manifests in very low pairwise

correlations.

In these cases, most of the aforementioned methods fail because they lack the ability to handle
more than two items at a time, usually resulting in very high false positive and false negative
rates.

To consider multiple items simultaneously, we introduce a probabilistic generative model
named the theme dictionary model (TDM), which is inspired by the dictionary model of Busse-
maker et al. (2000), and propose a few novel methods for discovering co-occurrence patterns
and conducting parameter estimations. In TDM, we treat each item as a basic unit and potential
patterns as themes. Each transaction, which is generally termed a collection, is constructed by
mixing a small number of themes selected from the dictionary. A probabilistic model can be
prescribed to govern the theme selection process. What we can observe, however, is only the
aggregation of all items in each collection instead of the actual themes that make up the collec-
tion. Under this framework, the pattern identification problem is converted to a model selection
problem with missing data, which can be solved by either Bayesian model selection or a stepwise
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strategy that employs the expectation–maximization (EM) algorithm (Dempster et al., 1977) to
estimate the parameters and a testing procedure to identify new themes.

The TDM is closely related to topic models, such as latent Dirichlet allocation (Blei et al.,
2003), the dynamic topic model (Blei and Lafferty, 2006) and the correlated topic model (Blei
and Lafferty, 2007). The themes in the TDM and the topics in topic models share many simi-
larities, both containing a group of items, aiming to discover item associations, and being basic
building blocks to generate the observed data under a probabilistic missing data framework.
The key difference between the TDM and topic models is that they focus on different types
of relationships. In a TDM, each theme usually contains only a few items, but the number of
themes can be very large. When a theme is chosen, all items in it are chosen, i.e. the items in one
theme must act together. In topic models, however, the number of topics is usually small, but
each topic contains a large number of items. When a topic is chosen, its associated items appear
independently with given probabilities so the items in a topic do not need to occur altogether. As
a consequence, the TDM focuses on tight association patterns of items, whereas topic models
focus on loose correlations on a global scale.

Another important difference is that the TDM and topic models favour different types of
data. Because of the computational bottleneck, a TDM is efficient only when the number of
items in the baskets is relatively small, e.g. a few dozens. Large baskets containing too many
items may significantly slow down the learning process of TDMs. In contrast, topic models
work well only for large baskets. To recognize topics, a large number of repeated samples
from each relevant topic of a basket are needed, which is feasible only when the baskets con-
tain a large number of items. If most of the baskets are small, topic models usually fail to
detect any useful pattern from the data. Thus, generally speaking, we recommend topic models
if the baskets or documents concerned contain a large number of items or words, and the main
interest is to do basket or document clustering or classification based on a small number of fea-
tures. In contrast, we recommend TDMs for association discovery in a group of small baskets
or documents, where we emphasize detecting tight co-occurrence patterns of items or words.

The remainder of the paper is organized as follows. In Section 2, we define the TDM formally
and prove the identifiability of the model. In Section 3, we describe both a Bayesian model
selection procedure and a stepwise method for discovering the unknown theme dictionary, with
the latter method being useful for large data sets. In Section 4, we discuss how to solve the
computation problems in TDM estimation via sequential Monte Carlo (SMC) approaches. A
novel SMC approach, called sequential rejection control sampling (SRCS), is proposed, and
its performance is evaluated and compared with existing methods. In Section 5 we present a
simulation study to illustrate the general performance of our method and to compare with
other methods. In Section 6, we apply the TDM to several real data sets. At the end, we discuss
potential extensions of the proposed method in Section 7.

The data that are analysed in the paper can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Theme dictionary model

Let L= {L1, : : : , Lp} denote the set of all basic units called items. A theme α is defined as a
multiset on L, which can be represented by a vector α= .nα1 , : : : , nαp/, where nαj is the number
of occurrences of item Lj in theme α. An alternative representation of a theme is to list all its
items directly. For example, suppose that L = {A, B, C, D}. Theme αAB = .1, 1, 0, 0/ can also
be represented as {A.1/, B.1/}, or more conveniently AB; and theme αAA = .2, 0, 0, 0/ can be
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represented by {A.2/} or AA. In this paper, we shall use these different theme representations
interchangeably without further notice. If two themes α and β satisfy nαj �n

β
j for all 1� j �p,

we say that α is covered by β, which is denoted by α⊆β; furthermore, if nαj <n
β
j for some j, we

say that α is strictly covered by β, which is denoted by α⊂β.
A theme dictionary D = {α1,α2, : : : ,αN} is a set of themes. A collection S is the sum of all

items contained in a number of themes selected from D. The binary TDM , which is denoted as
MB, postulates the following probability model for producing a collection S:

P.S|D, θ/=
( ∏
α∈S

θα

) ∏
α=∈S

.1−θα/, .1/

where θ={θα}α∈D, and 0�θα�1 for all α∈D. In words, model MB assumes that a collection
is generated by selecting each theme α independently from the dictionary D with probability
θα. A collection can also be represented by a vector of binary indicators {Iα}α∈D, where Iα=1
if theme α is present in the collection and Iα = 0 otherwise. To illustrate, Table 2 shows the
generating process of the collection S ={A, B, CD} from dictionary D ={A, B, C, D, AB, CD}
under MB. The binary vector of S under MB is .1, 1, 0, 0, 0, 1/; thus the probability of S is

P.S|D, θ/=θAθB.1−θC/.1−θD/.1−θAB/θCD:

For collection S, we assume that we can only observe its scrambled version, which can be
expressed as the mapping of the scramble function

T .S/= ∑
α∈S

α, .2/

where the summation of two themes α and β is defined as

α+β= .nα1 +n
β
1 , : : : , nαp +nβp/:

We call O=T .S/ the observation of a collection S. Considering that O is also a multiset on L,
we can present it by a vector as well, i.e. O= .nO

1 , : : : , nO
p /. If a theme α and an observation O

satisfy nαj �nO
j for all 1� j �p, we say that α is covered by O, which is denoted by α⊆O.

In many applications, such as the MBA problem, we do not observe the theme partition of
a collection and it is our main goal to infer the themes and likely partitions of an observation.
For example, our observation of S in Table 2 is O=T .S/= {A, B, C, D}, which can in fact be
derived from any of the following four possible collections:

S1 ={A, B, C, D},

S2 ={A, B, CD},

Table 2. Collection generating
process of S D{A, B, CD} in MB

Theme α θα A collection

A θA 1
B θB 1
C θC 0
D θD 0
AB θAB 0
CD θCD 1
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S3 ={C, D, AB},

S4 ={AB, CD}:

Thus, the probability of observing O={A, B, C, D} is

P.O|D, θ/=
4∑

k=1
P.Sk|D, θ/:

We denote the TMD with the collection generating process MB and the scramble function T
as TDM(MB, T /. Given a group of observations O={O1, : : : , On} generated from the model,
our goal is to discover the underlying dictionary .D, θ/. Theorem 1 guarantees the identifiability
of TDM(MB, T /. The proof can be found in Appendix A.

Theorem 1. Let OD be the set of all possible observations generated by TDM.MB, T / based
on the dictionary .D, θ/, and Pθ be the corresponding probability distribution on OD. If
two dictionaries .D1, θ1/ and .D2, θ2/ lead to the same distribution on observations, i.e.
OD1 =OD2 and Pθ1 =Pθ2 , we have D1 =D2 and θ1 =θ2.

3. Statistical inference of the theme dictionary

3.1. Full Bayesian approach for theme discovery
Since the number of possible themes (which is of the order of 2p) is much larger than the number
of observations in practice, we constrain our interests only to proper themes, which satisfy the
following conditions:

(a) the number of items in the theme is bounded above,

L.α/�
p∑

j=1
nαj � τL;

(b) the support of the theme is bounded below,

φ.α/� 1
n

n∑
i=1

I.α⊆Oi/� τF :

In practice, the two thresholds τL and τF can be specified on the basis of both one’s prior
knowledge and computational concerns. We note that a too large τL or a too small τF may
greatly increase the search space and significantly slow down the computation.

Let Dc ={α1,α2, : : : ,αN} be the dictionary of all proper themes, called the complete diction-
ary, and let θ={θα}α∈Dc be the corresponding parameters (θα∈ [0, 1] for ∀α∈Dc). In practice,
Dc can be efficiently generated by ARM. Since usually only a small portion of the themes in Dc
are needed to explain the set of observations O under the model TDM(MB, T /, our goal is to
discover this small set of themes, the actual dictionary.

Since the complete dictionary has a majority of the θα= 0, we give θ a mixture prior distri-
bution:

π.θ/= ∏
α∈Dc

{.1−q/δ0.θα/+qh.θα/}, .3/

where δ0.x/ is a point mass at 0, h.x/ is a given probability density on .0, 1] and q∈ .0, 1/ is the
expected fraction of non-zero θs a priori. (In most cases, a natural choice for h is the uniform
distribution, i.e. h.x/≡1.) The problem of theme discovery is equivalent to finding which θα is
non-zero. The posterior distribution of θ is
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f.θ|O/∝
n∏

i=1
P.Oi|Dc, θ/π.θ/=

n∏
i=1

∑
S∈�i

P.S|Dc, θ/π.θ/, .4/

where �i denotes the set of collections that are compatible with observation Oi. The size of
�i is dependent on the dictionary size and can be astronomically large when the dictionary is
complex and the number of items in Oi is large.

It is possible to use Gibbs sampling (Geman and Geman, 1984) to draw samples from the
above posterior distribution, although it can be inefficient when N is large. Because

f.θα|O, θ[−α]/∝
n∏

i=1

∑
S∈�i

P.S|Dc, θ/{.1−q/δ0.θα/+qh.θα/}, .5/

we have the following mixture density for the conditional distribution

f.θα|O, θ[−α]/= .1−pα/δ0.θα/+pα g.θα|O, θ[−α]/, .6/

where constant pα and density g.x|O, θ[−α]/ are of the form

pα=1−
.1−q/

n∏
i=1

rα,i

.1−q/
n∏

i=1
rα,i +q

∫ 1

0

n∏
i=1

{rα,i + .1−2rα,i/x}h.x/dx

, .7/

g.x|O, θ[−α]/∝
n∏

i=1
{rα,i + .1−2rα,i/x}h.x/, .8/

with rα,i =Aα,i=.Aα,i +Bα,i/ and

Aα,i = 1
1−θα

∑
S∈�i

P.S|Oi, D, θ/I.α =∈S/,

Bα,i = 1
θα

∑
S∈�i

P.S|Oi, D, θ/I.α∈S/:

.9/

The pα defined in equation (7), which is called the activity rate of α, is a natural measurement
of the importance of a theme: a higher pα means that α has a higher posterior probability
to be included in the dictionary and thus is more important. Given q, {rα,i}n

i=1 and h.x/, the
integration in equation (7) can be approximated numerically. Monte Carlo techniques such as
rejection sampling can be used to draw samples from distribution (8). However, considering
that the calculation of {rα,i}n

i=1 involves computing expression (9), which can be very expensive
even to approximate, this full Bayesian method is realistic only when the size of Dc is small. In
the next subsection, we propose an approximation strategy for large data sets.

3.2. Top-down stepwise method for inferring the theme dictionary
Although it is desirable to employ the full Bayesian approach as described previously, in many
real applications the required computation is too costly to be practical. Each systematic scan step
of the Markov chain Monte Carlo procedure can be very time consuming when Dc contains
a large number of themes, and the Markov chain Monte Carlo algorithm may need many
iterations to converge. To cope with the difficulty, we propose the following top-down stepwise
procedure to discover the dictionary.
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Step 1: start with the complete dictionary Dc.
Step 2: for the current dictionary D, find the maximum likelihood estimator of the theme
usage probabilities θ̂={θ̂α}α∈D from the observations O by using the EM algorithm.
Step 3: calculate the significance score ψ.α/ for each theme α∈ D, which is the logarithm
of the likelihood ratio statistic between the current model .D, θ̂/ and the alternative model
.D, θ̂[α=0]/:

ψ.α/=
n∑

i=1
[log{P.Oi|D, θ̂/}− log{P.Oi|D, θ̂[α=0]/], .10/

where θ̂[α=0] ={θ̂β I.β �=α/}β∈D. If ψ.α/� τS , we call α an insignificant theme.
Step 4: prune the theme dictionary D by removing the insignificant themes from it.
Step 5: iterate steps 2–4 until no themes can be removed from D. Rank the themes in D by
the significance score decreasingly at the end.

In practice, the threshold τS can be determined empirically or based on model selection princi-
ples. For example, τS = 1

2 log.n/ on the basis of the Bayesian information criterion. In this paper,
however, we set τS = 3

2 log.n/, as a large range of simulations suggest that this higher penalty
leads to a better overall performance. It is also feasible to do a ‘bottom-up’ strategy, but it is
computationally more demanding.

The EM algorithm for finding the maximum likelihood estimator θ̂ for dictionary D proceeds
as follows. Let �i denote the set of all possible partitions of observation Oi under dictionary D.
The conditional probability for a partition S ∈�i given observation Oi and the current estimate
θ.r/ is

P.S|Oi, D, θ.r//= P.S|D, θ.r//

P.Oi|D, θ.r//
= P.S|D, θ.r//∑

S′∈�i

P.S′|D, θ.r//
: .11/

Then, the Q-function of the EM algorithm, which is defined as the expectation of the complete-
data log-likelihood given the observations O ={O1, : : : , On} and the current estimate θ.r/, is

Q.θ|θ.r//=E[l.θ/|O, D, θ.r/]=
n∑

i=1

∑
S∈�i

P.S|Oi, D, θ.r// log{P.S|D, θ/}:

At the M-step, by maximizing Q.θ|θ.r// we obtain the updated estimate

θ.r+1/
α =Mα.θ.r//= 1

n

n∑
i=1

f.α|Oi, D, θ.r// ∀α∈D, .12/

where

f.α|Oi, D, θ.r//�
∑

S∈�i

I.α∈S/P.S|Oi, D, θ.r//=E[I.α∈S/|Oi, D, θ.r/]

represents the contribution of observation Oi to theme α. The summation in the denominator
of equation (11) can be expensive to compute for a large sized Oi with many items. In Section
4, we describe an efficient Monte Carlo approximate method.

The above algorithm can be further accelerated by standard EM acceleration techniques
based on Newton or quasi-Newton methods (see Jamshidian and Jennrich (1993, 1997) for a
comprehensive review), which make usage of the exact or approximated Jacobian matrix J of
the parameter updating function (12). Note that the Jacobian matrix J can be organized into
the form
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Jαβ � @Mα.θ/

@θβ
=

n∑
i=1

{f.α,β|Oi, D, θ/−f.α|Oi, D, θ/f.β|Oi, D, θ/}

nθβ.1−θβ/
, .13/

where

f.α,β|Oi, D, θ/�
∑

S∈�i

I.α,β ∈S/P.S|Oi, D, θ/=E[I.α,β ∈S/|Oi, D, θ] ∀α,β ∈D:

3.3. Inferring the construction of each ‘basket’
Given the dictionary D with the probability vector θ, the conditional probability P.S|Oj, D, θ/

gives us information on likely ways to parse an observed basket, revealing how it was con-
structed. The partition with the highest posterior probability, or the smallest partition set with
certain coverage (i.e. the optimal confidence interval), can be obtained. This kind of theme level
information allows us to understand the observations better and to make decisions accord-
ingly.

The following toy example shows the difference between our understanding of the obser-
vations at the item level versus that at the theme level. Suppose that we have two pairs of
observations: pair A,

Oa1 =ABCDEF ,

Oa2 =BCDEF ,

and pair B,

Ob1 =DEFG,

Ob2 =ABDEF ,

which were generated from the dictionary D

themeα ABC CDE DEF BF A B C D E F G

θα 0:005 0:005 0:005 0:01 0:015 0:015 0:015 0:015 0:015 0:015 0:015

The best partitions of the four observations are respectively

Sa1 ={ABC, DEF} P.Sa1|Oa1, D, θ/≈0:969,

Sa2 ={BF , CDE} P.Sa2|Oa2, D, θ/≈0:956,

Sb1 ={DEF , G} P.Sb1|Ob1, D, θ/≈0:993,

Sb2 ={A, B, DEF} P.Sb2|Ob2, D, θ/≈0:993:

The two observations in pair A are very similar at the item level but are quite different at the
theme level. In contrast, the two observations in pair B look quite different at the item level but
their sharing of a common theme DEF makes them highly related. In Section 6.1, we display a
few most likely parses of several sentences in a Chinese novel, demonstrating that these parses
are indeed grammatically sensible.

4. Approximation with a sequential rejection control sampler

4.1. Sequential Monte Carlo sampling in the inference of the theme dictionary model
A brute force calculation of either the quantity (9) in the Bayesian method or values of f.α|Oi, D,
θ/ and f.α,β|Oi, D, θ/ in the stepwise method needs to enumerate exhaustively all possible par-
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titions of observation Oi under a given dictionary .D, θ/. It is computationally infeasible when
Oi contains many items and D is moderately large. However, considering that both f.α|Oi, D, θ/

and f.α,β|Oi, D, θ/ are conditional expectations, and that rα,i can be reorganized as

rα,i = 1
1+Bα,i=Aα,i

,
Bα,i

Aα,i
= 1−θα

θα

E[I.α∈S/|Oi, D, θ]
1−E[I.α∈S/|Oi, D, θ]

,

we can approximate these terms via Monte Carlo methods. To achieve this, we need to draw
partition S from a distribution that should be reasonably close to the conditional distribution
P.S|Oi, D, θ/. SMC sampling appears suitable for this task.

In a standard SMC framework (Liu and Chen, 1998), of which the particle filter is a special
case, we need a set of ‘growing’ random vectors, x0, x1, : : : , xT , so that xt+1 = .xt , xt+1/, and
a sequence of auxiliary distributions πt.xt/ with the properties that xT ≡ x, where x is the
final random vector of interest, and πT .x/ =π.x/, the target distribution. One should choose
πt.xt/ as close to the marginal distribution π.xt/ as possible. Then, given {w.j/

t , x.j/
t }m

j=1, a set
of weighted ‘particles’ (i.e. Monte Carlo samples) at step t, a main goal of SMC procedures
is to evolve to a set of weighted particles at time t + 1, {w.j/

t+1, x.j/
t+1}m

j=1. For example, we can
let x.j/

t+1 = .x.j/
t , x

.j/
t+1/ with x

.j/
t+1 drawn from a trial distribution q.xt+1|x.j/

t /, and update the

weight as w.j/
t+1 =w.j/

t πt+1.x
.j/
t+1|x.j/

t /=q.xt+1|x.j/
t / for j =1, : : : , m.

We can reformulate the SMC procedure under the framework of a filtration of σ-fields:
F0 ⊂F1 ⊂: : :⊂FT , of which the standard ‘growing’ random-vector setting is a special case. An
intuitive analogue of the sequence of increasing σ-fields is a sequence of ‘pictures’ on the same
object with increasingly higher resolutions. Suppose that we have a sequence of auxiliary prob-
ability measures (distributions) defined on the corresponding σ-fields: π0.x/,π1.x/, : : : ,πT .x/.
Although we use a common x to denote the random variable that is involved in different σ-fields,
the variable takes values at different ‘resolutions’, and our goal is finally to generate samples
from the highest resolution distribution πT .x/. The particle filter (or general SMC method) can
be applied to this framework, but there are two distinctive features that need special attention:

(a) one often cannot reach all possible configurations at level Ft+1 from a particle at level Ft

and
(b) a configuration at level Ft+1 can be generated from different particles at level Ft .

Thus, the weight updating rule for traditional SMC sampling needs to be modified to make the
sampler proper and efficient.

To apply the generalized SMC method to our problem, we consider a sequence of diction-
aries that can lead to the current dictionary D. If a theme in dictionary D cannot be further
decomposed into a combination of other themes in D, we call it a basic theme of D. Let D0
be the set of all basic themes of D. In many cases, it is a natural choice to let D0 = L, i.e.
the collection of single-item sets. We can always construct a sequence of bridging dictionaries
D0 ⊂D1 ⊂: : : ⊂DT =D, such that Dt+1 =Dt ∪ {αt+1}, and T = #D − #D0, i.e. we can fill the
gap between D0 and D by adding one theme at each step.

Without loss of generality, we consider one observation O. The filtration Ft can then be
defined as all the partitions of the observation O that are allowable by the current dictionary Dt .
Let θt ={θα}α∈Dt

be the constrained version of θ on Dt ; then, for any partition St measurable
in Ft , we let

πt.St/=P.St|O, Dt , θt/,

which defines a probability measure on Ft . The target distribution π can be formally written
as π.S/ = P.S|O, DT , θT / =πT .S/. The expansion from Ft to Ft+1 can be constructed via the
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Fig. 1. Illustration of the evolution from F0 to F4: we call this process a particle division process

set (or particle in general) division process shown in Fig. 1. For example, because a new theme
{ABC} is added to D3 to form D4, a new partition {ABC, D}, which is not allowable in F3, is
allowed in F4. An arrow is drawn from partition St ∈Ft to partition St+1 ∈Ft+1, indicating a
parent–child relationship, if and only if either St+1 =St or St+1 includes the new theme αt+1 in
the new dictionary Dt+1 and αt+1 happens to be the summation of a few themes in partition
St . This particle division can be easily proven to generate all possible partitions in Ft+1 starting
from all partitions in Ft .

4.2. Sequential Monte Carlo sampler
The sequential Monte Carlo sampler (SMCS) that was proposed by Del Moral et al. (2006) fits
our goal perfectly. Given the evolutionary structure from Ft−1 to Ft , many Markov transition
kernels Kt.xt−1, xt/ can be employed for moving from Ft−1 to Ft . A natural choice in this case
is

Kt.xt−1, xt/= πt.xt/∑
x′

t∈B.xt−1/

πt.x
′
t/

I{xt ∈B.xt−1/}, ∀.xt−1, xt/∈Ft−1 ×Ft :

For a sequence of Markov transition kernels {Kt}1�t�T , we can introduce a sequence of back-
ward Markov kernels {Lt}0�t�T−1, from which a sequence of auxiliary distributions {π̃t.x0:t/}
can be constructed, where

π̃t.x0:t/=πt.xt/
t−1∏
k=0

Lk.xk+1, xk/:

Since the dimension of π̃t increases over time, the ‘standard’ SMC framework, which was pro-
posed in Liu and Chen (1998), can be used to draw weighted samples of π̃T . Considering that
π̃T .x0:T / admits πT .xT / as a marginal distribution, weighted samples of πT can be obtained
by marginalizing the weighted samples of π̃T . The algorithm of Del Moral et al. (2006) is as
follows.
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(a) Assume that a group of m particles {x
.j/
1:t−1,ω.j/

1:t−1}1�j�m have been obtained at step t −1.
(b) If the effective sample size is smaller than a threshold, resample the particles and set

ω
.j/
1:t−1 =1=m.

(c) For j = 1, : : : , m, draw x
.j/
t ∼ Kt.x

.j/
t−1, ·/, and assign to the new generated particle x

.j/
1:t =

.x
.j/
1:t−1, x

.j/
t / the weight

ω
.j/
1:t =ω

.j/
1:t−1 ω̃t.x

.j/
t−1, x

.j/
t /, ω̃t.xt−1, xt/= πt.xt/Lt−1.xt , xt−1/

πt−1.xt−1/Kt.xt−1, xt/
:

(d) After obtaining m particles {x
.j/
1:T ,ω.j/

1:T }1�j�m with respect to π̃T .x0:T /, {x
.j/
T ,ω.j/

1:T }1�j�m

form a group of properly weighted samples of πT .

The choice of backward Markov kernels {Lt}0�t�T−1 has a great effect on the efficiency of
the algorithm, and the optimal backward Markov kernels {L

opt
t }0�t�T−1, which minimizes the

variance of the unnormalized importance weight ωn.x1:n/, is given by

L
opt
t−1.xt , xt−1/= ηt−1.xt−1/Kt.xt−1, xt/

ηt.xt/
,

where η0 =π0 in this case, and

ηt.xt/=η0 K1:t.xt/�
∫
η0.x0/

t∏
k=1

Kk.xk−1, xk/dx1:t :

Considering that the computation that is involved in the optimal backward Markov kernels
is usually prohibitive in practice, a few suboptimal backward kernels were also recommended
in Del Moral et al. (2006), e.g.

Lt−1.xt , xt−1/= πt−1.xt−1/Kt.xt−1, xt/

πt−1Kt.xt/
, .14/

or

Lt−1.xt , xt−1/= πt.xt−1/Kt.xt−1, xt/

πt.xt/
: .15/

However, they cannot be used here directly because the support of πt increases exponentially
with t. We use the following approximated version of kernel (14) in this paper:

Lt−1.xt , xt−1/= πt−1.xt−1/Kt.xt−1, xt/

π̂t−1Kt.xt/
, .16/

where π̂t−1 Kt.xt/=Σm
j=1ω

.j/
t−1 Kt.x

.j/
t−1, xt/, and {x

.j/
t−1,ω.j/

t−1}1�j�m are the m weighted samples
of πt−1 obtained in the sampling process. This kernel leads to the incremental weight

ω̃t.xt−1, xt/= πt.xt/Lt−1.xt , xt−1/

πt−1.xt−1/Kt.xt−1, xt/
= πt.xt/

π̂t−1 Kt.xt/
:

More details on related SMC methods can be found in Liu (2001), Doucet et al. (2001) and
Del Moral (2004).

4.3. Sequential rejection control sampler
Since the system that is studied here is discrete, it is preferable not to do independent sampling
directly, but to explore all possibilities of the next step (i.e. expansion) and then to perform
rejection control to reduce the sample size (i.e. shrinkage), as suggested in Fearnhead and Clifford
(2003). Because a particle at level Ft+1 can be generated from different particles at level Ft ,
however, the Fearnhead–Clifford algorithm must be modified to make the sampler proper.
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4.3.1. Rejection control sampling
Before we proceed to the sequential sampling set-up, we first review the rejection control sam-
pling (RCS) procedure that was proposed in Liu et al. (1998). Let π be defined on a discrete
domain F , and let c> 0 be a constant chosen in advance. Then

(a) ∀x∈F , we define its surviving probability as px =min{1,π.x/=c} and compute its impor-
tance weight as ωx =π.x/=px =max{π.x/, c};

(b) for each x∈F , draw a binary variable Zx ∼Bernoulli.px/, and denote Z ={Zx}x∈F ;
(c) weighted samples {x,ωxZx}x∈F are called rejection control samples, on the basis of which

the following estimator of μ=Eπ[h.X/] can be constructed,

μ̂Z = ∑
x∈F

h.x/ωxZx

/ ∑
x∈F

ωxZx:

In practice, the constant c can be determined to maintain a fixed mean sample size (MSS) given
a priori. For example, if we want the MSS to be nc, we can solve c via linear programming so
that

nc �
∑

x∈F
px = ∑

x∈F
min{1,π.x/=c}: .17/

Fearnhead and Clifford (2003) provided a fast algorithm for this computation. We note the
following simple facts:

(a) nc is a monotonously non-increasing function of c and
(b) cnc �1.

Fearnhead and Clifford (2003) showed that the discrete distribution that is represented by
the nc Monte Carlo samples resulting from the RCS procedure is the ‘optimal’ representation
of the original distribution π under the total variation distance. The following theorem shows
that the weighted samples generated by RCS enjoy a better statistical efficiency in estimation
than independent identically distributed samples. (The proof can be found in Appendix B.)

Theorem 2. The estimator μ̂t based on RCS is asymptotically unbiased, and statistically more
efficient than the sample mean of nc independent identically distributed samples from π,
i.e.

EZ[μ̂Z]=μ+O.c/,

MSE.μ̂Z/�varπ{h.X/}=nc:

The numerical experiment shown in Fig. 2 illustrates the relative efficiency of RSC samples and
independent identically distributed samples under different mean sample sizes.

4.3.2. Sequential rejection control sampling
In our current SMC setting, we assume that at step t − 1 we have already obtained a good
particle approximation of πt−1, which is denoted π̃t−1. Then, we can proceed with the following
recursive RC procedure, which is similar in spirit to that proposed in Fearnhead and Clifford
(2003) for standard SMC sampling with a discrete state space.

(a) Run RCS for π̃t−1 with MSS nc to generate a vector of surviving indicators Z.t−1/ =
{Z.t−1/

x }x∈Ft−1 , where the probability for Z.t−1/
x =1 is r.t−1/

x =min{1, π̃t−1.x/=ct−1}, with
Σx∈Ft−1 r.t−1/

x =nc.
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Fig. 2. Comparison of the statistical efficiency of RCS ( ) with independent identically distributed
sampling (�—�): F D {�5, �4:9,. . . ,4.9, 5}; π.x/ / dnorm.0, 1, x/, h.x/ D 2x2 � x; the mean-square error
MSE is calculated from 1000 independent runs

(b) For each x∈Ft , we consider all its ancestors and define its induced surviving indicator as
Z̃

.t/

x =∨x′∈Pt−1.x/Z
.t−1/
x′ : Thus, the probability for Z̃x

.t/ =1 is

p̃.t/
x =1− ∏

x′∈Pt−1.x/

.1− r
.t−1/
x′ /, .18/

and the surviving child’s importance weight is ω̃.t/
x =πt.x/=p̃.t/

x : From ω̃.t/ and Z̃
.t/

, we
have the following particle approximation of πt :

π̃t.x/� ω̃.t/
x Z̃

.t/

x

/∑
x′
ω̃

.t/
x′ Z̃

.t/

x′ , ∀x∈Ft :

This completes the recursion.

Considering that the support of π̃t is typically much larger than the prescribed MSS nc, step
(a) in the next recursion is necessary to control the Monte Carlo sample size. Compared with
the procedure of Fearnhead and Clifford (2003), our SRCS gives additional consideration to
those rejected particles. Theorem 3 below (which is a direct corollary of theorem 2) shows that
SRCS enjoys a high statistical efficiency when the MSS nc is reasonably large.

Theorem 3. For a proper function h.x/ defined on Ft , let

μ̂Z.t/ = ∑
x∈Ft

h.x/ω.t/
x Z.t/

x

/ ∑
x∈Ft

ω.t/
x Z.t/

x :

If π̃t−1 =πt−1, we have E[μ̂Z.t/ ]=Eπt [h.X/]+O.n−1
c /, and

lim
nc→∞P

[
MSE.μ̂Z.t/ /� varπt {h.X/}

nc

]
=1:

4.4. Evaluation of the sequential Monte Carlo methods
To evaluate the performances of the SMC sampler of Del Moral et al. (2006) and the new SRCS
method, we design the following numerical experiment. The filtration of σ-fields, F0 ⊂F1 ⊂: : :⊂
F100, is shown in Fig. 3. A uniform distribution πt is defined in each σ-field Ft , and the goal is
to draw samples of the target uniform distribution π=π100. Standard SIS without adjusting the
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Fig. 3. T -layer lattice illustrating the evolution from F0 to F1,. . . ,FT : a uniform distribution πt.atj /D1=.t C1/
is assigned on Ft, the σ-field on finite set {at0, at1,. . . ,att}; the goal is to draw samples from the target
distribution πDπT via SMC sampling
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Fig. 4. Comparison of performance between various SMC methods (the histograms illustrate the estima-
tions of target distribution π100 based on the weighted samples from SMC methods; standard SIS leads to
a serious bias, even when 5000 particles are used; SRCS and the SMCS can remove the bias significantly
with much smaller Monte Carlo sample sizes, and SRCS is more efficient than SMCS): (a) standard SIS
(m D 5000); (b) SMCS (m D 50); (c) SRCS (m D 20); (d) SMCS (m D 100); (e) SRCS (m D 50); (f) SMCS
(mD500)

multipath effect, the SMCS, and SRCS were applied to this example. For each method with the
given sample size, we generated 100 groups of weighted samples in 100 independent runs, based
on which the average weight for each element in the support of π was calculated. The results
are summarized in Fig. 4. It shows that a direct use of standard SIS resulted in a serious bias in
estimation, and SRCS performed the best among the three. In Section 5, we further demonstrate
the superior performance of SRCS for computations with the TDM.
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5. Simulation study

In this study, the item set consists of 26 English letters, i.e. L = {A,B,C, : : : , Z}. We create a
theme dictionary Dtrue as shown in Fig. 5, which contains 50 themes. The 16 letters in italics
were not included in the theme dictionary although they appear in observations as parts of other
themes. Observations were generated from model TDM(MB, T ) with probabilities indicated
above each theme in Fig. 5. A typical set of the simulated data is illustrated in Fig. 6(a), and the
size distribution of the observations that was generated by the model is displayed in Fig. 6(b).

5.1. Evaluation of sequential Monte Carlo approximation
We applied both SRCS and the SMCS to approximate the sufficient statistics

f.α|O, Dtrue/= ∑
S∈�

I.α∈S/P.S|O, Dtrue/ ∀α∈D,

under the dictionary Dtrue for observation O={A,B, : : : , Z}, which contains 26 items and has
about 260000 partitions under Dtrue.

We conducted 100 independent replications of SRCS and the SMCS with Monte Carlo sample
size m = 200. From each replication of each method, we obtained an approximation of the

Fig. 5. True theme dictionary Dtrue underlying the simulation study: (theme type size, number of themes,
probability) = (1,10,0.5), (2,16,0.03), (3,10,0.03), (4,10,0.04), (6,4,0.05)

(a) (b)

Fig. 6. Illustration of the data simulated from Dtrue: (a) typical part of the simulated data; (b) length distribution
of the simulated data
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Fig. 7. Performances of (a) SRCS and (b) the SMCS with Monte Carlo sample size mD200: each boxplot
corresponds to the 100 replicated estimates for one theme in Dtrue ( , true values of the sufficient
statistics)

sufficient statistics f.α|O, Dtrue/ for each of the 50 themes in Dtrue. These results are summarized
in the boxplots in Fig. 7. The grey curves show the true values of these sufficient statistics, which
were obtained by brute force enumeration. SRCS gave very accurate approximations and clearly
outperformed the SMCS in this case. In the TDM analysis, our general strategy is to use Monte
Carlo approximations by SRCS when the number of allowable partitions is beyond 1000, and
to do brute force enumeration otherwise.

5.2. Evaluation of the full Bayesian method
We first generated a data set of 300 baskets according to the theme dictionary Dtrue that is
depicted in Fig. 5. Applying ARM to this data set, we obtained a complete dictionary Dc with
806 candidate themes with thresholds τF =0:03 and τL =8.

From this data set, we found 806 theme candidates with thresholds τF =0:03 and τL =8. We
constructed the complete dictionary with these theme candidates, i.e. Dc = .α1, : : : ,αN/ where
N =806, and used the systematic scan Gibbs sampler to update the value of θ= .pα1 , : : : , pαN /.

We used the non-informative prior h ∼ unif.0, 1], and the following initial value for
parameter θ:

θα=φ.α/I{L.α/=1}, α∈Dc:

The hyperparameter q in the prior distribution (3) is the prior expected fraction of ‘active’
themes (i.e. those with non-zero frequencies), and Nq the expected number of active themes.
We tried the following three values for Nq: 25, 50 and 100. In each case, the Markov chain
converges after just a few iterations, with posterior number of active themes hovering between
50 and 60, which are very close to the true number of active themes. Fig. 8 displays Markov
chain Monte Carlo trace plots for the number of active themes in 100 Gibbs steps under different
hyperparameters. Using the posterior probability of 0.5 as the cut-off for declaring a theme
active, the Bayesian method committed only one false negative error and zero false positive
errors in all the prior settings that we tested. We conducted 10 independent replications of the
Bayesian method under the same setting. At each time, we observed a similar pattern for an
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Fig. 8. Number of active themes in each of the 100 Gibbs steps: , NqD100; , NqD50; ,
NqD25

independently generated data set. On average, the Bayesian method took 22 min and achieved
99.3% sensitivity and 2% false positive rate.

5.3. Evaluation of the stepwise method
We simulated 100 independent data sets of sample size 100, 200, 300 and 500 and applied the
stepwise method to these simulated data sets. Thresholds τL = 8 and τF = 0:03 were the same
as in the Bayesian approach. For a given sample size, the sensitivity and the false positive
rate of the stepwise method were calculated from the 100 independent runs. The results are
summarized in Table 3 and Fig. 9, from which we can see that the performance of the stepwise
method improved substantially with increasing sample sizes. Compared with the full Bayesian

Table 3. Performance of the stepwise
method for simulated data from Dtrue

Sample Average Average false
size sensitivity positive rate

(%) (%)

100 68.8 14.6
200 93.3 1.0
300 98.4 0.6
500 99.8 0.4
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Fig. 9. Boxplots of the estimates from the 100 parallel runs when the sample size nD500



336 K. Deng, Z. Geng and J. S. Liu

method, the stepwise method appeared to have achieved a similar performance, but with a much
shorter run time. For example, when the sample size was 300, the average running time for the
stepwise method was 27 s, achieving 98.4% sensitivity and 0.6% false positive rate on average.
The computational advantage of the stepwise method over the Bayesian method becomes even
more significant as the size of the complete dictionary Dc becomes larger.

We also applied ARM to the simulated data to find frequent item sets under different minimal
support thresholds. No matter which threshold was used, either the sensitivity or the false
positive rate or both were much larger than for the TDM approach. The performance of ARM
also was not improved when we increased the sample size.

6. Real data applications

6.1. Chinese text data mining
The famous Chinese classic novel Dream of the Red Chamber ( ) has had many millions
of readers and inspired many Chinese literature researchers. It contains 4502 distinct Chinese
characters and 108296 sentences (i.e. observations). The average number of Chinese characters
contained in each sentence is 6.72. Fig. 10 illustrates more details about the data. It is somewhat
surprising that the number of distinct Chinese characters is so much smaller than the total
number of distinctive English words that Shakespeare wrote in all his work (31534 distinct word
types of 884647 total words published; see Efron and Thisted (1976)).

In this application, we treat each sentence in the novel as a basket and the Chinese characters in
the sentence as items. Thus, we deliberately discard all the information regarding the ordering
of the Chinese characters in each sentence, making it just an unordered basket of Chinese
characters. We are interested in testing whether, by inferring co-occurrence of the Chinese
characters, the TDM approach can recover some key names and phrases contained in these
sentences as discovered ‘themes’. We also hope that the TDM can even give us combinations of
names of people (such as two lovers) and/or places that may reveal useful relationships.

We first applied ARM to the data set to generate the complete theme dictionary of all candidate
themes. With thresholds τF = 0:0001 and τL = 8, ARM discovered 116870 candidate themes,
the majority of which cannot be transformed to any grammatically correct expressions, and
often correspond to fragments of some frequently used Chinese phrases or sentences.

We then applied the stepwise method to fit the TDM for the data set starting from the
complete theme dictionary obtained, which took about 4 h and came up with about 7315

(a) (b)

Fig. 10. Illustration of the text data from the Chinese novel Dream of the Red Chamber : (a) typical part of
the Chinese text data; (b) length distribution of the Chinese text data
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Table 5. Subset of meaningful themes found by the TDM

non-trivial themes (themes with more than one item). More than 90% of these themes have clear
grammatical meanings, including about 400 names, 32 combinations of names and thousands
of Chinese phrases. Table 4 lists the top 100 themes discovered by the TDM, which are composed
of either people’s names or well-known Chinese phrases. Another selected subset of meaningful
themes that was discovered by the TDM are listed in Table 5. Since we estimated that the full
Bayesian method will have to take more than 100 h to finish because of the large number of
candidate themes, we did not apply it to this data set.

Since the ‘truth’ is difficult to define in this real data analysis, the false positive and false
negative rates of the TDM and ARM are not easily determined and compared. To overcome
this difficulty, we decided first to create a ‘surrogate truth’ by using a modified version of the
word dictionary model (WDM) that was proposed by Bussemaker et al. (2000), which takes
advantage of the ordering information of the Chinese characters in each sentence, to infer a list
of common phrases (which are called ‘words’). We then use this surrogate truth to evaluate the
performance of the TDM and ARM.

Like the TDM, the WDM assumes the existence of a word dictionary, i.e. the phrase diction-
ary in the Chinese language, which also needs to be discovered from the analysis. But, unlike the
TDM, the WDM assumes that each sentence is generated by an ordered concatenation of a se-
quence of words and phrases randomly selected from the dictionary. In Bussemaker et al. (2000),
a stepwise method was suggested to learn the dictionary. Here we take a top-down approach:

(a) enumerate all existing strings in the text that satisfy the length and support constraints,
L.α/� τL =10 and φ.α/� τF =0:0001, and use them as word candidates;

(b) estimate the usage frequencies of the words, via the EM algorithm;
(c) rank the words on the basis of the importance score calculated in a way similar to that

described in expression (10), and remove unimportant words.

A total of 7089 words were discovered by the WDM. By ignoring the order of Chinese
characters in a word, we can convert a word into a theme. The 7089 words that were discovered
by the WDM correspond to 6906 distinct themes, of which 4649 were also discovered by the
TDM (the discovery rate is 67.3%). There are about 2700 themes that were reported by the TDM
but not discovered by the WDM. Most of them are combinations of names or Chinese phrases
with gaps and/or varying ordering, which cannot be captured by the WDM. To illustrate the
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Table 6. Three most probable parses for three sentences in the novel†

†The second and third columns display the probabilities and cumulated probabilities of parses respectively. The
English letters in parentheses highlight the type of corresponding themes: ‘N’ for names, ‘M’ for movements, ‘A’
for addresses, ‘P’ for phrases, ‘NN’ for name–name combinations and ‘NM’ for name–movement combinations.

superiority of the TDM over ARM better, we calculated the discovery rate of the top K list from
the TDM as well as ARM for 1 � K � 7315. (To obtain the top K list from ARM, the theme
candidates discovered by ARM were ranked by support decreasingly.) The results are displayed
in Fig. 11, from which we can see that the discovery rate of the TDM is uniformly larger than
ARM.

We also applied linear discriminant analysis (LDA), which is the fundamental method for
topic modelling, to the data set. We downloaded the R-package for LDA from http://www.
cs.princeton.edu/blei/topicmodeling.html, and ran the program under the de-
fault setting for 5000 iterations with different choices of topic number. In all cases, the topics
reported do not have a clear meaning. The detailed results from ARM, the TDM, WDM and
topic modelling can be found at http://wileyonlinelibrary.com/journal/rss-
datasets, file ‘Supplementary A’.

As discussed in Section 3.3, the inferred dictionary also helps us to parse the sentences into
themes, which provide higher level information to the user. Table 6 shows the three most probable
parses for each of the three sentences in the novel. These parses all correctly identify the basic
sentence structures (main characters, verbs and places), even though no orderings of the words
were provided to the algorithm.



340 K. Deng, Z. Geng and J. S. Liu

(a)

(b)

(c)

Fig. 12. Illustration of the Proceedings of the National Academy of Sciences of the USA paper title data
set: (a) typical subset of the paper titles; (b) number of papers in each year; (c) average length of title in each
year

6.2. Discover themes in journal paper title database
We next applied the TDM to a data set containing titles of about 80000 papers published in
the Proceedings of the National Academy of Sciences of the USA from 1915 to 2005 (the data
can be freely downloaded from http://cs.nyu.edu/∼roweis/data/pnas all.tar).
Fig. 12 shows the number of papers published in the journal and the average title length in each
year. The data for the last period are not complete, which is why the number of publications
in 2004 shows a dip. A typical subset of these titles is illustrated in Fig. 12. To parse these
title sentences ‘intelligently’, the first task is to recognize what the key scientific phrases are.
We thus treat the English words in these title sentences as items, and each paper title as an
observed basket. Our goal is to find association patterns between the English words used in
these titles, which may reveal hot topics and possible research trends. Because research topics
change over time, we are interested in knowing how different hot topics arose and faded over
the years. We partitioned the title database into several groups according to time and inferred
a theme dictionary for each data group. More specifically, we divided the database into nine
groups according to nine time periods: 1915–1949; 1950–1969; 1970–1974; 1975–1979; 1980–
1984; 1985–1989; 1990–1994; 1995–1999; 2000–2004. The number of papers in each group varies
from 4000 to 14000.

Note that the motivation of this attempt is very similar to that of Blei and Lafferty (2006),
whose goal was to capture the changes of topics over time. However, differently from their
dynamic topic model, which chains the parameters of different time spots in a state space model
that evolves with Gaussian noise, we simply treat them as independent parameters and deal
with the data sets from different time periods separately. It is feasible to adapt their dynamic
framework to our theme model.

With the theme thresholds τL = 8 and τF = 0:003, we fitted the TDM for each of the nine
data groups. The Bayesian method took 10–200 min for each of these data sets. In contrast, the
stepwise method took only 4–400 s for the same data sets and gave similar results. Table 7 lists
the top 10 two-item themes and top five multi-item themes discovered by the stepwise method
for each period. Themes are sorted by the estimated parameter θ̂α decreasingly. From Table
7, we observe how the research topics in the Proceedings of the National Academy of Sciences
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Table 7. Hot terms in the Proceedings of the National Academy of Sciences of the USA from 1915 to 2004

Results for the following years:

1915–1949 1959–1969 1970–1974

1 X-ray Escherichia coli Escherichia coli
2 Subgroup group e coli RNA messenger
3 Drosophila melanogaster Protein synthesis RNA polymerase
4 Ultra violet Ribonucleic acid RNA transfer
5 Differential equation Amino acid DNA polymerase
6 House mouse Nucleic acid Simian virus
7 Crossing over Drosophila melanogaster DNA replication
8 Effect upon Deoxyribonucleic acid Amino acid
9 Quantum theory X-ray Protein binding

10 Star magnitude Neurospora crassa DNA synthesis
1 Extragalactic galactic study Tobacco mosaic virus Cyclic adenosine monophosphate
2 Induced X-ray Free cell system DNA dependent RNA polymerase
3 National Academy Science Amino acid sequence Amino acid sequence
4 Linear differential equation Nuclear magnetic resonance RNA tumor viruses
5 X-ray effect Escherichia coli mutant Messenger RNA translation

1975–1979 1980–1984 1985–1989

1 Escherichia coli Escherichia coli Escherichia coli
2 Virus simian Gene expression Gene expression
3 Adenylate cyclase DNA sequence Protein binding
4 Messenger RNA t cell t cell
5 Cyclic amp Monoclonal antibodies Cell line
6 Rat liver Nucleotide sequence DNA sequence
7 Cell surface Simian virus Monoclonal antibody
8 t cell Rat liver Binding site
9 Protein binding Protein binding Amino acid

10 Acetylcholine receptor Cell line Nucleotide sequence
1 Amino acid sequence Epstein Barr virus Human immunodeficiency virus
2 Rous sarcoma virus t cell antigen Protein kinase c
3 Nerve growth factor Escherichia coli protein Amino acid sequence
4 Chinese hamster cell Low density lipoprotein Platelet derived growth factor
5 Nuclear magnetic Protein dependent kinase Protein dependent kinase

resonance study

1990–1994 1995–1999 2000–2004

1 Escherichia coli Escherichia coli Gene expression
2 Gene expression Gene expression Escherichia coli
3 Protein binding Protein binding Protein binding
4 Transcription factor t cell Crystal structure
5 Amino acid Transcription factor Inaugural article
6 t cell Transgenic mice Nitric oxide
7 Saccharomyces cerevisiae Growth factor Stem cell
8 Transgenic mice Not but Transcription factor
9 Molecular cloning Deficient mice t cell

10 Binding site Saccharomyces cerevisiae Growth factor
1 Human immunodeficiency cd t cell cd t cell

virus type
2 Human immunodeficiency Mitogen activated protein Supramolecular chemistry

virus kinase self-assembly special feature
3 Protein kinase c Nitric oxide synthase nf kappa b
4 Tumor necrosis factor Tumor necrosis factor Asymmetric catalysis special

feature part
5 Transforming growth Major histocompatibility Bioinorganic chemistry special

factor szlig complex class feature
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of the USA were gradually dominated by biological sciences. In the first period (1915–1949),
top themes included drosophila melanogaster, crossing over and house mouse (biology), X-ray,
quantum theory and ultra violet (physics and chemistry), group theory and differential equation
(mathematics), and star magnitude and galactic extragalactic study (astronomy). These reflect a
balanced representation of science and mathematics. During 1950–1969, the dominating themes
were mainly biological research topics and models, with only the exception of the theme nuclear
magnetic resonance, which is also closely related to biomedical research. In biology, studies on
proteins (its synthesis and composition) and nucleic acids (deoxyribonucleic acid (DNA) and
ribonucleic acid (RNA)) appear to be balanced. Note that the first correct double-helix model
of DNA was only proposed by James Watson and Francis Crick in 1953 on the basis of the
single X-ray diffraction image data taken by Rosalind Franklin and Raymond Gosling. This
important discovery establishes DNA as the key information unit and inheritance material of
living beings.

Starting from the 1950s, bacteria Escherichia coli was solidly established as an important
model organism for biological studies, and we can see that this theme persists in all the fol-
lowing periods. In contrast, the theme nuclear magnetic resonance quickly faded after the
mid-1970s, indicating its maturity as a scientific topic in the 20-year period. The studies of
gene expression, protein (dependent) kinase, growth factor and t cell (antigens, receptors) started
to pick up the pace in the early 1980s and have lasted till nowadays. Complementary DNA
cloning and other cloning techniques were hotly studied in late 1980s, paving the way for the
development of complementary DNA microarray technologies in the 1990s. The studies of pro-
tein binding and transcription factors became very active since late 1980s and have lasted till
now, partly because of the development of high throughput technologies for investigating gene
expressions.

The study of human immunodeficiency virus clearly began in the late 1980s and remained on
the hot topic list till 2000. Researches on stem cells started to show up in the last period, in the
years from 2000 to 2004, indicating that it is a rising and exciting new direction in biological
research. It is indeed true that, since the early 2000s, much effort and private funding have been
directed to stem cell researches and much progress has been made.

To have a better understanding about the history of one particular research topic α, we can
plot its ‘life curve’ on the basis of its usage frequency at different periods of time. Fig. 13 shows
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Fig. 13. ‘Life curves’ of a few research topics: (a) X-rays; (b) messenger RNA; (c) Escherichia coli ; (d) gene
expression; (e) human immunodeficiency virus; (f) stem cells
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the life curves of a few hot research topics in different time periods. We also applied LDA to
these data sets. For periods before 1980, LDA reported topics corresponding to mathematics,
physics and chemistry as well as biology. For later periods, however, all topics reported are
composed of biological terminologies. Compared with the results from the TDM, LDA’s top-
ics are made up of more, but loosely connected, terminologies. It also requires a prior spec-
ification of the topic number. The detailed results from the TDM and LDA can be found at
http://wileyonlinelibrary.com/journal/rss-datasets,file ‘SupplementaryB’.

6.3. Analysis of the Netflix data
The last example is based on the well-known ‘Netflix prize’ data set provided by Netflix Inc.,
which is an American company providing an on-line movie rental service. The Netflix prize was
an open competition for the best prediction of unobserved customer ratings for films, based only
on a training set of previous movie ratings from a small random subset of movie renters. We
focus on the training data set in this study, which contains 100480507 ratings for 17770 movies
(and television series) provided by 480189 customers. This can be viewed as a huge matrix with
its .i, j/th entry taking values in {?, 1, 2, : : : , 5} representing the ith customer’s rating for the
jth movie, where ‘?’ indicates that the rating of the movie is not available from the customer.
Different from the original goal of the Netflix competition, we are interested in discovering sets
of movies (modules in our TDM) from the data, which may provide a better framework for
recommending movies. For example, each movie module may reveal some common features
among the movies in the module so that a particular set of customers may wish to watch them
all.

Table 8. Top themes found by the TDM before and after movies in one movie series are collapsed

Identifier Top themes before collapse Top themes after collapse

1 Kill Bill: 1–2 Friends; The Best of Friends
2 American Pie: 1–2 Snatch; Lock, Stock and Two Smoking Barrels
3 Men in Black: 1–2 Indiana Jones and the Last Crusade; Raiders of the Lost Ark
4 Shrek: 1–2 The Godfather; GoodFellas
5 Spider-Man: 1–2 Bowling for Columbine; Fahrenheit 9/11
6 Happy Gilmore; Billy Madison Sex and the City; Friends; The Best of Friends
7 Before Sunrise; Before Sunset Lord of the Rings; The Matrix; Star Wars
8 Star Wars: 4–6 The Royal Tenenbaums; Rushmore; The Big Lebowski
9 24: 1–3 The Sixth Sense; The Shawshank Redemption; The Green Mile

10 Lord of the Rings: 1–3 Amelie; Lost in Translation; Being John Malkovich
11 Harry Potter: 1–3 The Green Mile; The Negotiator; A Few Good Men; A Time to Kill
12 Alias: 1–3 The Fugitive; Air Force One; Clear and Present Danger; Patriot

Games
13 The Matrix: 1–3 Reservoir Dogs; The Godfather; Pulp Fiction; GoodFellas
14 Six Feet Under: 1–3 Forrest Gump; The Green Mile; Saving Private Ryan; Gladiator
15 Lethal Weapon: 1–4 Monsters, Inc.; Finding Nemo; Toy Story; Aladdin; The Lion King
16 CSI : 1–4 The Rock; Gone in 60 Seconds; Entrapment; Swordfish; Con Air
17 The Best of Friends: 1–4 The Bone Collector; High Crimes; Kiss the Girls; Along Came a

Spider; Double Jeopardy
18 The Sopranos: 1–5 The Green Mile; The Fugitive; Air Force One; Clear and Present

Danger; Patriot Games; Ransom
19 Lord of the Rings: 1–3 and Monsters, Inc.; Finding Nemo; Lord of the Rings; The Incredibles;

1–3 extended version Star Wars; Toy Story
20 Sex and the City: 1–7 Maid in Manhattan; Pretty Woman; Sweet Home Alabama;

Runaway Bride; How to Lose a Guy in 10 Days; Two Weeks Notice
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We first filtered out non-popular movies that have been rated by fewer than 2% of the cus-
tomers. Then, we dichotomize the observed ratings so that each movie will only be ‘liked’ or
‘disliked or unrated’ by each customer. More precisely, we constructed a sparse binary matrix
with 480189 rows or customers and 2042 columns or movies, where the .i, j/th entry equals 1 if
customer i rated movie j as 4 or 5, and 0 if customer i rated j lower or never rated it.

Considering that it is computationally expensive to include all the 480189 customers in our
analysis, we randomly sampled 10000 customers who have rated no more than 30 movies. With
threshold τL = 8 and τF = 0:001, we fitted a TDM for this data set by the stepwise method,
resulting in a theme dictionary with about 1400 non-trivial themes of movies. Most of the
themes discovered have quite appealing meanings, such as those belonging to a movie series
(e.g. the Harry Potter series and Star Wars series), movies of a similar type (e.g. action or love
stories) and movies by the same actor, actress or director.

Since sets of movies belonging to a movie series are too obvious and thus less interest-
ing, we collapsed the movies in a movie series into one single item with the following rule:
if a customer likes any one movie from a movie series, we say that the customer likes the
movie series. We refitted a TDM for the collapsed data set with the same setting and discov-
ered more than 1400 non-trivial themes of movies and movie series. A subset of top themes
discovered from the two data sets is listed in Table 8; the full theme lists can be found at
http://wileyonlinelibrary.com/journal/rss-datasets, file ‘Supplementary C’.

On the basis of the module results from our fitted TDM, we can formulate a new movie
recommendation system for each user. Given customer c, for example, who has watched the
set of movies Oc, we list all the modules that overlap with Oc, i.e. Dc = {α∈D :α∩ Oc �= ∅}.
Then, the union of all the movies in Dc excluding those that have already been watched form the
recommendation list for the customer, i.e. Rc ={∪α∈Dc

α}\Oc. The ranking of each movie M in
the recommendation list Rc can be constructed either as the cumulative sum of frequencies (i.e.
θα) of the modules in Dc that include M, or simply the number of modules in Dc that include M.

Another application of the TDM in discovering herbal functional groups of traditional Chi-
nese medicine can be found in He et al. (2012).

7. Discussion

We propose a novel stochastic model, the TDM, to aid in the discovery of association patterns,
named themes, among a large set of binary variables (indicating the presence or absence of an
item) with sparse observations. A typical example of this kind of analysis is MBA, in which one
wishes to infer item associations by analysing transactions of items purchased by the customers.
Compared with other methods in the literatures such as ARM, the new approaches based on
the TDM allow the association patterns to be composed of many variables, of which each has
a very weak signal. It also allows the association pattern to overlap. Our simulation studies as
well as real data applications show that the new methods are much more sensitive and specific
than ARM, albeit at the cost of a much higher computational need. A practical and attractive
strategy as demonstrated in our studies is first to use an ARM-type approach to obtain a set of
candidate themes and then to use the TDM to thin down fragmental and redundant themes.

Another attractive feature of the TDM approach is its ease of incorporating the knowledge
of field experts. If some patterns are known by field experts, we can simply include them in the
dictionary a priori; however, if some patterns are known to be impossible or meaningless, we
can put them in a blacklist for avoidance.

The new approach can be applied to a wide range of applications. It is particularly interesting
as a text mining tool as it can provide a ‘high level’ understanding of sentences or paragraphs,
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revealing relationships between different entities. By discovering themes and parsing each ob-
servation into the most likely combination of themes, it can provide a basis for understanding
similarities and differences between observations, thus enabling us to do observation cluster-
ing and feature selection for statistical learning at the theme level. Since the existence of a
theme automatically implies interactions between the items that are included in the theme,
we can also use a TDM to help to identify interactive variables to build better predictive
models.

Model MB shown in equation (1) and studied in the previous sections is not the only choice
for generating the sets of observations. The following random-selection model, denoted MR,
can be a good alternative:

P.S|D, θ/=
( ∏
α∈S

θα

)
θτ , θα, θτ ∈ .0, 1/, θτ + ∑

α∈D
θα=1: .19/

In words, MR postulates that the items in a collection S are generated by an imaginary monkey
who draws the themes independently (with replacement) from an imaginary box containing all
the themes until a special stopping symbol τ is drawn. The probability of obtaining theme α at
each draw is θα. The theme discovery under model TDM(MR, T / is almost the same as that
under TDM(MB, T /. The identifiability of model TDM(MR, T / can be proved in a similar
way to theorem 1. The theme discovery methods that were proposed in Section 3 for model
TDM(MB, T / can be applied directly to model TDM(MR, T /.

It is possible to explore more complex and ‘intelligent’ models based on the TDM framework.
For example, it may be desirable to capture some aspects of the grammatical rules of the natural
language for selecting the themes to build up a collection. We may assume that the themes fall
into a few large clusters (e.g. clusters of names, addresses and phases for movements). These
clusters may need to be learned separately on the basis of other information such as experts’
inputs. Then, the generation of a ‘collection’ may prefer a certain order of the theme clusters
(e.g. a person’s name followed by a movement phase and then by a place name), which can be
modelled as a hidden Markov chain. We may also be able to consider models such as context-free
grammar or some hierarchical structure between the themes.
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Appendix A

A.1. Proof of theorem 1
Let O∅ =∅ be the empty observation which contains no items. For i=1 or i=2, define

λi �Pθi
.O∅/= ∏

α∈Di

.1−θi,α/:

For eachα∈Di, let ξi,α=θi,α=.1−θi,α/, and Oα=T .{α}/=α be the observation of single-theme collection
{α}. Let D.0/

i ={α∈Di : �β ∈Di, subject to β⊂α}; we have

Pθi
.Oα/= ξi,αλi, ∀α∈D.0/

i :

If two dictionaries .D1, θ1/ and .D2, θ2/ satisfy OD1 =OD2 and Pθ1 =Pθ2 , we have

(a) λ1 =λ2 �λ, and D.0/
1 =D.0/

2 �D.0/.
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(b) For any α∈D.0/, ξ1,αλ1 =Pθ1.Oα/=Pθ2 .Oα/= ξ2,αλ2; thus,

ξ1,α = ξ2,α � ξα and θ1,α =θ2,α �θα, ∀α∈D.0/:

(c) Define

D̃.t/

i =
⋃
k�t

D.k/
i ,

and

D.t+1/
i ={α∈Di : �β ∈Di − D̃.t/

i , subject to β⊂α}:

If D̃.t/

1 = D̃.t/

2 = D̃.t/
, and θ1,α =θ2,α =θα for all α∈ D̃.t/

, we have

(i) D.t+1/
1 =D.t+1/

2 =Δ D.t+1/

(ii) Pθ1 .Oα/=g.{ξβ :β∈ D̃.t/}, ξ1,α/λ1 =g.{ξβ :β∈ D̃.t/}, ξ2,α/λ2 =Pθ2 .Oα/ for ∀α∈D.t+1/, where g is a
strictly monotone function of ξi,α and

(iii) since λ1 =λ2, we also have θ1,α =θ2,α =Δ θα, ∀α∈D.t+1/:

Because D̃.t/
i ↑Di when t increases, these facts give a recursive way to prove D1 =D2 and θ1 =θ2 given

Pθ1 =Pθ2 , i.e. TDM(MB, T / is identifiable.

A.2. Proof of theorem 2
Let HZ =Σx∈E h.x/ωxZx and WZ =Σx∈EωxZx; we have

EZ.HZ/=μ,

EZ.WZ/=1,

varZ.HZ/= ∑
x∈E

h2.x/π2.x/.1−px/=px = ∑
π.x/<c

h2.x/π.x/{c−π.x/},

varZ.WZ/= ∑
x∈E

π2.x/.1−px/=px = ∑
π.x/<c

π.x/{c−π.x/},

covZ.HZ, WZ/= ∑
x∈E

h.x/π2.x/.1−px/=px = ∑
π.x/<c

h.x/π.x/{c−π.x/}:

By the delta method, we see that

EZ.μ̂Z/≈EZ[HZ{1− .WZ −1/+ .WZ −1/2 +: : :}]
≈μ− covZ.HZ, WZ/+μvarZ.WZ/:

Considering that

|covZ.HZ, WZ/−μvarZ.WZ/|� ∑
π.x/<c

|h.x/−μ|π.x/{c−π.x/}� cEπ|h.X/−μ|→0,

when c→0 (or, equivalently, nc →#.E/), we have

EZ[μ̂Z]=μ+O.c/,

i.e. μ̂Z is asymptotically unbiased. The variance of μ̂Z can be explored by using the standard delta method
for ratio statistics:

varZ.μ̂Z/=varZ

(
HZ

WZ

)
≈μ2 varZ.WZ/+varZ.HZ/−2μcovZ.HZ, WZ/:

Hence, the mean-squared error of μ̂Z is
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MSE.μ̂Z/=.EZ[μ̂Z]−μ/2 +varZ.μ̂Z/

=μ2 varZ.WZ/+varZ.HZ/−2μcovZ.HZ, WZ/+O.c2/

= ∑
π.x/<c

{h.x/−μ}2 π.x/{c−π.x/}+O.c2/:

Considering that ∑
π.x/<c

{h.x/−μ}2 π.x/{c−π.x/}< varπ{h.X/}c,

and c �1=nc, we have MSE.μ̂Z/�varπ{h.X/}=nc, i.e. the rejection control samples are statistically more
efficient than independent, identically distributed samples with the same sample size.
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