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Effectively characterizing the behavior of deformable objects has wide ap-
plicability but remains challenging. We present a new rotation-invariant
deformation representation and a novel reconstruction algorithm to accu-
rately reconstruct the positions and local rotations simultaneously. Meshes
can be very efficiently reconstructed from our representation by matrix pre-
decomposition, while, at the same time, hard or soft constraints can be
flexibly specified with only positions of handles needed. Our approach is
thus particularly suitable for constrained deformations guided by examples,
providing significant benefits over state-of-the-art methods. Based on this,
we further propose novel data-driven approaches to mesh deformation and
non-rigid registration of deformable objects. Both problems are formulated
consistently as finding an optimized model in the shape space that satisfies
boundary constraints, either specified by the user, or according to the scan.
By effectively exploiting the knowledge in the shape space, our method pro-
duces realistic deformation results in real-time and produces high quality
registrations from a template model to a single noisy scan captured using a
low-quality depth camera, outperforming state-of-the-art methods.
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1. INTRODUCTION

Effectively characterizing the behavior of deformable objects such
as human bodies, animals, and so on, has wide applicability in com-
puter graphics, ranging from mesh editing to animation. Previous
research often considers this in the settings of mesh deformation.
For articulated models such as human bodies, skeletons have been
widely used to allow control by artists. Mesh-based deformation
is becoming popular due to its generality. Methods either work
directly on the mesh coordinates or utilize coordinates such as dif-
ferential coordinates that are insensitive to certain rigid transforma-
tions, hence better represent fundamental non-rigid deformations.
Rotation sensitive coordinates such as Laplacian coordinates or gra-
dient domain representation [Sorkine et al. 2004; Yu et al. 2004;
Au et al. 2006] do not propagate rotations directly and thus re-
quire sophisticated heuristics and optimizations to improve results.
To address this, existing works [Lipman et al. 2005; Kircher and
Garland 2008; Baran et al. 2009; Hasler et al. 2009] consider
rotation-invariant representations. However, two-stage reconstruc-
tions are needed by these methods where the local frames are con-
structed in the first stage followed by recovery of vertex positions
in the second stage. As a result, such methods require not only po-
sitions but also compatible rotations to be specified at handles for
rotations to be properly reconstructed.

In this work, we present a new rotation-invariant mesh repre-
sentation that also encodes local deformation differences, similarly
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to Baran et al. [2009]. Unlike Baran et al. [2009], we propose a
novel surface reconstruction method based on our representation to
solve for the vertex positions and local rotations at the same time.
The shape can be efficiently and accurately recovered, by solving
a non-linear yet efficient as-rigid-as-possible optimization [Sorkine
and Alexa 2007]. Our representation and reconstruction approaches
allow flexible positional constraints to be specified without the need
to specify rotations at handles. Moreover, the matrix involved in our
process is determined by the mesh connectivity, which can be pre-
decomposed. As a result, given our representation, reconstructing
the mesh is very efficient, with real-time performance achieved us-
ing multi-resolution optimization. These fundamental advantages
allow novel applications for surface modeling, and we will in par-
ticular investigate mesh deformation and non-rigid registration.

Geometry-based surface modeling methods are not aware of the
physical properties of the objects, thus the naturalness of manipu-
lation is limited. Efforts have been made to use physically based
approaches. However, such methods rely on careful modeling and
analysis of objects, which are only possible to some extent for
specific types of objects. Physically based modeling is also often
too expensive for interactive applications. With the proliferation of
models, data-driven methods have received a lot of attention. Natu-
ral manipulation results are learned from examples for both defor-
mation (e.g., Sumner et al. [2005] and Fröhlich and Botsch [2011])
and morphing (e.g., Gao et al. [2013]). We propose a data-driven
approach to mesh deformation. As we will show later, our method
benefits from the unique characteristics of the representation and
the reconstruction method and produces substantially better results
over state-of-the-art methods.

Shape registration aims to find appropriate transformations to
put multiple shapes (e.g., 3D scans) into alignment. Based purely
on the shapes to be registered, registration techniques typically re-
quire a good initialization to converge to the desired solutions and
may often get stuck at a poor local minimum for incomplete, noisy
data. This is more challenging for non-rigid registration due to the
substantially larger solution space. Previous work considers data-
driven approaches by using a deformable model (e.g. Schneider and
Eisert [2009]) and finding the optimal fitting of the deformable
model to the target scan. However, such techniques only work
for cases where deformation is relatively subtle and can be eas-
ily blended, for example, human faces or heads; these cases are also
easier to establish correspondence using closest points. We propose
a data-driven approach to more general non-rigid registration using
the deformation space as a prior.

In this article, based on our rotation-invariant deformation repre-
sentation and shape reconstruction method, we propose novel data-
driven deformation and non-rigid registration algorithms. We treat
these two problems in a uniform optimization framework as finding
a suitable model in the shape space following constraints, either
specified as handle positions by the user for deformation or as the
target scan for registration. Example models in our representation
are used to provide a useful prior to constrain deformation and reg-
istration. Some results are shown in Figure 1. By using a collection
of models as examples, our method produces realistic deformation
even with substantial movement of handles (Figures 1(a)–(c)). For
non-rigid registration, we first obtain a complete template of the
deforming object using KinectFusion (Figure 1(d)) and transfer the
geometry to a model collection. Given a new incomplete, single-
view, noisy, and distorted depth scan obtained using a Kinect v2
camera (Figure 1(e)), our method successfully registers the tem-
plate to the scan with the help of example models (Figure 1(f)). We
will demonstrate that such deformation and non-rigid registration
are challenging for existing methods.

The main contributions of this article are summarized as follows:

—We propose a novel shape reconstruction algorithm based on a
new rotation-invariant representation that solves for vertex posi-
tions and local rotations simultaneously. Plausible deformations
in this representation often form a near linear subspace, which al-
lows standard dimensionality reduction and linear combination to
be applied. Given our representation, the mesh can be efficiently
reconstructed, with flexible constraints.

—Based on this, we propose a novel data-driven mesh deformation
method, which produces substantially improved results over state
of the art.

—We further propose a novel data-driven non-rigid registration
technique that produces high quality registrations from a template
model to a single noisy scan captured using a low-quality depth
camera, by exploiting knowledge in a model database.

We first review relevant work in Section 2. The representation and
its properties are discussed in Section 3. We introduce two novel
data-driven surface modeling techniques, namely mesh deforma-
tion and non-rigid registration in Section 4. Experimental results
and discussions are provided in Section 5, and, finally, Section 6
concludes the article.

2. RELATED WORK

Surface representation and surface-based deformation. This is
an active research direction in recent decades. A large volume of
research work exists in the field. A complete survey is beyond the
scope of this article. Please refer to Botsch and Sorkine [2008] and
Gain and Bechmann [2008] for excellent surveys. We focus on the
techniques most relevant to our work.

Many surface-based deformation techniques benefit from some
suitable representations: Results that better preserve local details
are obtained with coordinates that are invariant to certain rigid
transformations. Local differential coordinates are used to encode
local details and recover them after deformation. These methods
include Laplacian coordinates [Sorkine et al. 2004], Poisson-based
gradient field reconstruction [Yu et al. 2004], and the iterative dual
Laplacian approach for improved results [Au et al. 2006]. While
differential (Laplacian) coordinates are translation invariant, they
are still sensitive to rotations. As a result, sophisticated heuristics
and optimizations are needed to cope with rotational deformations.
The volumetric graph Laplacian constructed in the adjacent space
of the surface is proposed to better preserve the volume under large
deformations [Zhou et al. 2005]. Huang et al. [2006] propose a
non-linear gradient domain approach that incorporates various con-
straints such as volume, skeleton, and projection. A subspace tech-
nique is used for efficiently optimizing the non-linear energy first
on the coarse mesh and then interpolated over the original mesh.
Rotation-invariant coefficients are employed in this work. Sumner
et al. [2005] use deformation gradients to represent shape defor-
mations. As deformation gradients are related to global orientation,
this approach cannot effectively blend multiple deformations when
they have different global orientations and may lead to artifacts.

Rotation-invariant coordinates handle rotations effectively, which
is a highly desirable property. Lipman et al. [2005] propose a lin-
ear rotation-invariant shape representation that defines connection
maps between adjacent frames. The connection maps are not explic-
itly stored, so need to be recovered first. Although the method only
requires solving two linear systems, to obtain good results an itera-
tive approach is often needed. Kircher and Garland [2008] propose
a second-order representation to represent and process free-form
motions. Their representation defines connection maps between
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Fig. 1. Data-driven deformation and non-rigid registration using our method. (a) Input model with handles highlighted, ((b) and (c)) results using our
data-driven deformation, (d) a template model of the target person obtained using KinectFusion, (e) a scanned point cloud of a single view captured using a
Kinect v2, and (f) our non-rigid registration result.

adjacent frames explicitly, although the frames are not orthogonal,
which may introduce global shear artifacts. To avoid this, Baran
et al. [2009] define connection maps between adjacent orthonormal
frames. A similar rotation-invariant representation is used in Hasler
et al. [2009] to encode human shapes and poses for regression of se-
mantic properties (e.g., height and weight). However, these methods
have similar limitations that require rotations to be reconstructed be-
fore vertex positions. To get good deformation results, compatible
rotations at handles need to be specified, in addition to positions,
which increases user effort substantially.

Our representation and reconstruction methods are rotation in-
variant, but do not have such restrictions. Vertex positions and rota-
tions are optimized together; there is no need to specify rotations at
handles. Furthermore, our approach can cope with large-scale de-
formations in a consistent manner and is therefore more suitable for
data-driven algorithms that may need to combine multiple shapes
with potentially large deformations.

Geometry-based mesh deformation is also formulated as an opti-
mization problem. Terzopoulos et al. [1987] formulate a shell energy
to measure the distortions between the input and the deformed mod-
els. Sorkine and Alexa [2007] estimate the rigid transformations of
local cells and collect the transformations to deform the whole
model. The principle of as-rigid-as-possible (ARAP) deformation
has also been applied to shape manipulation [Igarashi et al. 2005].
Such works based on the ARAP principle have a similar frame-
work. They all estimate local rigid transformations of geometric
elements (e.g., triangle faces) and then build a global energy formu-
lation based on the L2 norm. Zohar et al. [2015] propose a smooth
rotation (SR) enhanced ARAP-style method for shape deformation
and morphing. Freifield and Black [2012] define a low-dimensional
non-linear manifold with the Lie group of deformations, mainly
for human body shape representation. Their experiments were re-
stricted to human bodies with similar poses. Chao et al. [2010]
define a smooth deformation map minimizing the difference be-
tween the differential map and the rotation group. Its discretization
leads to an ARAP energy. For surface cases with one-ring edge sets,
it leads to a new continuous energy involving a parameter radius
r . However, the optimal choice of r is still an open problem. The
work also provides an interpolation method for linear blending of
shapes. However, the energy cannot be applied for extrapolation
because the minimization of the energy would become negative in-
finity. The method thus is not suitable for data-driven deformation
as extrapolation is essential.

Data-driven shape deformation. Purely geometry-based ap-
proaches are limited in identifying suitable deformation given user
constraints. This is because the physical properties of the objects

cannot be fully captured by the geometry alone. Instead of using
expensive physically based modeling, data-driven approaches ex-
ploit existing examples to improve the naturalness of deformation.
Skeleton-based methods (e.g., Feng et al. [2008]) learn the relation
between control points and different surface regions for improved
mesh skinning. Shi et al. [2008] propose a data-driven skinning
method for articulated models with volumetric effects learned from
example sequences. Such methods are restricted to articulated defor-
mation, mainly for human bodies. Mesh-based inverse kinematics
derived from example models are used to produce stylized surface
deformation [Sumner et al. 2005; Fröhlich and Botsch 2011]. Such
methods, however, are generally restricted to a small number of
examples due to the high computational costs and also produce
suboptimal results with large deformations. As pointed out in pre-
vious work [Botsch and Sorkine 2008; Winkler et al. 2010], the
gradient-based MeshIK method [Sumner et al. 2005] will lead to
problems that cannot blend rotations larger than 180◦. To address
this problem, Fröhlich and Botsch [2011] use edge length, dihe-
dral angles, and volumes that are rotation invariant to represent the
mesh. However, it is not suitable for extrapolation (i.e., deformation
beyond those in the examples), since this may need the edge length
to be negative, which is not possible. Extrapolation is essential to
address challenging cases when a data-driven approach is used. Our
method works effectively in both interpolation and extrapolation.

A relevant active research area is example-based simulation. Such
methods typically require volumetric tetrahedral meshes as input
and use a small number of examples. Material properties also need
to be specified. The pioneering work by Martin et al. [2011] pro-
poses an example-based simulation method for objects of complex
elastic material. The deformation manifold is defined by shape inter-
polation with a Finite Element Method (FEM) energy. The method
is physically realistic, although expensive to optimize. To speed
up the computation, Koyama et al. [2012] propose to define the
manifold by simple linear interpolation, which runs in real time, al-
though at the cost of losing some physical accuracy, especially when
the behavior cannot be fully captured by the examples. Schuma
et al. [2012] extend Martin et al. [2011] to improve efficiency and
provide flexible artistic control by combining incompatible linearly
interpolated shapes with a compatible configuration. An efficient
physical solver is proposed [Bouaziz et al. 2014] for real-time sim-
ulation with local/global optimization. Zhang et al. [2015] propose a
Green strain tensor-based potential energy for example-based elas-
tic material with real-time efficiency. Compared with these works,
our approach does not require tetrahedral meshes as input and is
able to cope with a large number of example models as well as
situations where physical properties are complex or unknown.

ACM Transactions on Graphics, Vol. 35, No. 5, Article 158, Publication date: July 2016.



158:4 • L. Gao et al.

Example-based deformation has also been used for dynamic
sprite animation [Jones et al. 2015], where a drawing and example
poses are specified by artists, and the dynamics are achieved
by navigating in the pose manifold following specified forces.
Tycowicz et al. [2015] consider the problem of non-linear inter-
polation of shapes and propose a very efficient real-time solution
by constructing the optimization problem in a low-dimensional
subspace. Our approach focuses on data-driven deformation and
non-rigid registration, which has different input and/or output,
compared with these works.

Non-Rigid Registration. Registration is a technique of finding
appropriate transforms to put two or more shapes into alignment.
Please refer to Tam et al. [2013] for a recent survey. Rigid regis-
tration assumes a global rigid-body transform and is largely based
on Iterative Closest Point (ICP) [Besl and McKay 1992] or its
variants [Pottmann et al. 2006]. However, a good initialization is
required as such methods only converge to local minima. Non-
rigid registration is more flexible and better copes with deforming
objects. Such techniques allow objects to be deformed as part of
the alignment. Li et al. [2008, 2009] non-rigidly register dynamic
depth scans using deforming templates. Such work depends on
high-quality depth scans as input. Bouaziz and Pauly [2013] survey
non-rigid registration work and provide a code implementation for
low-quality RGBD data (e.g., captured using a Kinect). Zollhöfer
et al. [2014] develop a combined software and hardware solution
to real-time non-rigid registration of a template to live RGBD data.
Such methods do not use additional data apart from the template
(i.e., a constructed static surface) for registration of general shapes.

Some works use data priors to help reconstruct shapes. For facial
reconstruction, works such as Weise et al. [2011] blend shape mod-
els to fit the scans. Schneider and Eisert [2009] use a deformable
model to fit human heads. However, linear blending models used
by such methods cannot handle shapes with substantial rotations.
Anguelov et al. [2005] parameterize the space of human body and
pose deformation and use marker-based motion-captured data to
reconstruct human bodies. The pose deformation of this work is
defined on the articulated skeleton, which is not suited for general
non-rigid registration or reconstruction. With this parameterized
model, Loper et al. [2014] capture the shape and motion of human
bodies from sparse markers. Alternative work uses a data-driven
approach to recover poses from a single depth camera [Wei et al.
2012]. Such techniques are only designed for human bodies and the
purpose is tracking rather than registration. Non-rigid registration
is the fundamental technique for both static [Li et al. 2013] and
dynamic [Zhang et al. 2014] human body reconstruction. Our work
focuses on non-rigid registration of general shapes, although the
advances would also be beneficial to human body reconstruction.

In this article, we propose a new rotation-invariant mesh differ-
ence representation and a novel surface reconstruction method to
effectively encode model deformations. Plausible deformations in
this representation often form a near linear subspace, which allows
standard dimensionality reduction and linear combination to be ap-
plied. Using this, we further propose novel data-driven approaches
to mesh deformation and non-rigid registration of a template model
to a single (often incomplete) scan of a deformed object captured
using a low-quality depth camera. Various examples demonstrate
that our method produces substantially improved results over state-
of-the-art methods.

3. DEFORMATION REPRESENTATION

Fundamental to this work is a new shape representation to encode
the rotation-invariant local mesh differences between deforming

surfaces, and a novel reconstruction algorithm to efficiently obtain
deformed shapes from the representation. In this section, we first in-
troduce this representation, which involves two parts, namely rigid
rotation differences and local scaling/shear. We then analyze the
characteristics of this representation, including efficient mesh recon-
struction by matrix pre-decomposition, incorporating constraints,
and near linear subspaces formed by typical deformations. These
provide the basis for novel algorithms for data-driven deformation
and non-rigid registration.

3.1 Representation Formulation

We assume that we have m models (m ≥ 2) consistently triangu-
lated, each with n vertices that are in one-to-one correspondence.
Without loss of generality we further assume that the first model
is the reference model and other models are deformed models. Let
us denote pi as the position of the ith vertex (denoted as vi) on the
reference model and p′

i as the position of vi on a deformed model.
The deformation gradient Ti in the one-ring neighborhood of vi

from the reference model to the deformed model can be calculated
by minimizing the following energy:

E(Ti) =
∑
j∈Ni

cij‖e′
ij − Tieij‖2, (1)

where Ni is the one-ring neighbors of vertex vi , e′
ij = p′

i − p′
j ,

and eij = pi − pj . cij is the cotangent weight cij = cot αij +
cot βij , which helps prevent mesh discretization bias [Sorkine and
Alexa 2007; Levi and Gotsman 2015], where αij and βij are angles
opposite to the edge connecting vi and vj . As we will show later
in Section 5.1, cotangent weights lead to reduced reconstruction
errors, in particular for meshes with poor triangulation. The affine
transformation matrix can be decomposed into a rotation part and a
scaling/shear part using polar decomposition Ti = RiSi .

We define the rotation difference dRij from vi to adjacent vertex
vj as follows:

dRij = Ri
T Rj . (2)

The energy E(Ti) can be rewritten using rotation differences as:

E(Ti) =
∑
j∈Ni

cij

∑
t∈Ni

c̃i‖e′
ij − Rt dRtiSieij‖2, (3)

where c̃i = 1/|Ni |, |Ni | is the number of neighboring vertices of vi .
The scaling/shear transformations are rotation invariant by nature
and can be interpolated directly. The rotation transformations in the
rotation matrix space SO(3) are usually interpolated by first mapping
them to 3 × 3 skew-symmetric space so(3) using the matrix loga-
rithm, linearly interpolating them in this space, and, finally, mapping
them back to SO(3) using the matrix exponential [Murray et al. 1994;
Alexa 2002]. Since ‖eX+Y − eX‖ ≤ ‖Y‖ · e‖X‖ · e‖Y‖(∀X, Y), the
exponential map is Lipschitz continuous [Horn and Johnson 1986].
This means that if two matrices are sufficiently close in so(3), they
are also close in SO(3). To be rotation invariant and allow effec-
tive linear combination, we combine the logarithm of the rotation
difference dRij of each edge (vi, vj ) and scaling/shear matrix Si of
each vertex vi to get the feature representation f of the deformed
model as follows:

f = {log dRij ; Si}(∀i, j ∈ Ni). (4)

As discussed, including log in this representation allows robust
linear interpolation and the rotation difference cancels out global
rotation and thus makes it rotation invariant. As we will show later
in Section 5.1, the representation is more effective than alternative
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representations, in particular for linear extrapolation. In this arti-
cle, we call this rotation-invariant mesh difference (abbreviated as
RIMD) representation.

3.2 Surface Reconstruction from RIMD
Representation

Given the initial pose p = {pj }, where pj is the position of vertex vj ,
and a RIMD representation f = {log dRij ; Si} of the deformation,
the reconstructed geometry can be obtained by finding new positions
p′ = {p′

j } that minimize the following energy function:

E(p′) =
∑
i∈V

E(Ti)

=
∑
i∈V

∑
j∈Ni

c̃j

∑
k∈Nj

cjk‖e′
jk − Ri dRij Sj ejk‖2

, (5)

where ejk = pj − pk , e′
jk = p′

j − p′
k , dRij = exp(log dRij )

as well as Sj is part of the RIMD representation, Ri is the (un-
known) rotation matrix at vertex vi , V is the set of the vertices, and
c̃j = 1/|Nj |. This is equivalent to Equation (1) with the order of
summation changed.

Given a reference shape and the RIMD feature, to obtain the new
positions p′ as well as the per-vertex rotation matrix Ri , we alternate
the following two steps:

Step 1 (global step): Given Ri for each vertex, find the optimal
positions p′. For each p′

j , a linear equation is obtained:

∂E(p′)
∂p′

j

= ∂

∂p′
j

∑
i∈Nj

c̃j

∑
k∈Nj

cjk‖e′
jk − Ri dRij Sj ejk‖2

+ ∂

∂p′
j

∑
k∈Nj

ckj

∑
s∈Nk

c̃k‖e′
kj − Rs dRsk Sk ekj‖2 = 0.

Using ckj = cjk , this can be simplified to∑
k∈Nj

cjke′
jk

= 1

2

∑
k∈Nj

cjk

⎛
⎝c̃k

∑
s∈Nk

Rs dRsk Sk + c̃j

∑
i∈Nj

Ri dRij Sj

⎞
⎠ ejk.

Those terms involving two-ring neighbors can be efficiently cal-
culated by accessing one-ring neighbors of each vertex twice.
In the first pass, one-ring neighbors are accessed to calculate∑

i∈Nj
Ri dRij Sj that are saved for use in the second pass. The

resulting linear system Ap′ = b has the matrix A fixed, irrespective
of varying Ri , so by using Cholesky factorization, the linear system
can be efficiently solved in each iteration.

Step 2 (local step): Given p′, find the optimal Ri . Let us denote
ejk = pj −pk and e′

jk = p′
j −p′

k . Ri is separate, so it can be individ-
ually optimized. Expand Equation (5) and ignore terms irrelevant
to Ri , so the optimal Ri can be obtained as:

arg max
Ri

∑
j∈Ni

c̃j

∑
k∈Nj

cjke
′T
jkRidRij Sj ejk

= T r

⎛
⎝∑

j∈Ni

c̃j

∑
k∈Nj

cjkRidRij Sj ejke
′T
jk

⎞
⎠

= T r

⎛
⎝Ri

∑
j∈Ni

c̃j dRij Sj

⎛
⎝∑

k∈Nj

cjkejke
′T
jk

⎞
⎠

⎞
⎠ .

Fig. 2. Reconstruction energy over iterations for the bar example in
Figure 14(top), with or without breadth-first search- (BFS) based initial-
ization.

Let us denote Qi = ∑
j∈Ni

c̃j dRij Sj (
∑

k∈Nj
cjkejke

′T
jk). This

step can also be done by one-ring neighbor transversal twice, with∑
k∈Nj

cjkejke
′T
jk calculated in the first pass. Using Singular Value

Decomposition (SVD), Qi = Ui�iVT
i . Then Ri can be explicitly

obtained as ViUi
T (choosing appropriate signs to make det Ri > 0).

The iterative optimization terminates on convergence (i.e., when
the energy change |�E| < ε, ε = 10−3 in our experiments). This
stopping criterion for iterations works well for all the examples in
our experiments. While more iterations can be applied, no visible
improvements can be seen in all these examples.

Initial values are needed for the optimization. A trivial initializa-
tion would set all the Ri to the identity matrix (so with no rotation).
Since we have rotation difference dRij between every pair of ad-
jacent vertices vi and vj , we can very efficiently obtain a good
initialization for Ri . We choose an arbitrary vertex and set the ini-
tial rotation matrix to the identity matrix. We then propagate the
rotation matrix from this vertex to neighboring vertices using a
bread-first search (BFS) strategy. Assume vertex vi is visited and
its adjacent vertex vj is about to be visited, then Rj is initialized as
RidRij . If the RIMD representation is derived directly from a de-
formed shape, then BFS initialization recovers the shape directly, so
no iteration is needed and the reconstructed geometry recovers the
geometry exactly (apart from numerical errors). In case the RIMD
representation does not correspond to a deformed shape (e.g., by
blending multiple RIMD representations), the BFS-based initializa-
tion helps to converge more quickly. For the example shapes with
large difference in Figure 13 and reconstruction of their blending
in Figure 14(top), as demonstrated in Figure 2, with the BFS ini-
tialization, the energy converges within four iterations. Algorithm 1
gives the pseudocode of major steps for surface reconstruction from
the RIMD representation.

Compared with traditional manipulation methods that rely on dif-
ferential coordinates over one-ring neighbors [Sorkine and Alexa
2007], our representation exploits second-order representations that
rely on two-ring neighbors. It is rotation invariant and can be effec-
tively combined by a linear combination. This not only provides a
useful tool for shape space analysis but also allows example defor-
mation information to be incorporated for data-driven deformation
and non-rigid registration, as will be demonstrated later.

Reconstruction with constraints. As we will show later, recon-
struction with constraints is essential for data-driven deformation
and registration.
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Fig. 3. Shape blending with interpolation and extrapolation. Panels (b) and (d) are the source (t = 0) and target (t = 1) models. Panels (a), (c), and (e) are
interpolated/extrapolated models with t = −0.5, 0.5, 1.5, respectively.

For hard constraints, certain vertices (known as handles) p′
i are

fixed to specified positions ti : p′
i = ti , i ∈ H , where H is the

handle set containing all the vertices with positional constraints.
The elements in the ith row of matrix A are set to zeros except for
the diagonal element which is 1, bi = ti . With these changes, the
remaining optimization is the same as described.

Given a soft constraint that the position at handle h should be close
to vh, we introduce a new energy term λ‖nT

h (p′
h−vh)‖2 to the energy

formulation where λ is a weight for the soft constraint (the bigger it
is the stronger the constraint will be), and nh is the normal direction
similar to point-to-plane distances such that only deviations off
the surface are penalized. The soft energy term does not have a
direct influence on the local rigid rotation optimization step (step 2
above). For the step of optimizing positions given rotations (step 1
above), ∂

∂p′
h
λ‖nT

h (p′
h − vh)‖2 = 2λ(nhnT

h p′
h − nhnT

h vh), so λnhnT
h

and λnhnT
h vh will be added to the corresponding entries of A and

b. The optimization can then proceed as before.

ALGORITHM 1: Surface Reconstruction from RIMD
Representation.
Require: Initial pose vertex positions p, RIMD feature f
Ensure: Deformed mesh vertex positions p′

Construction of matrix A and Cholesky pre-decomposition
Initialization of Ri using Breadth First Search
repeat

Global Step Optimization for p′

Local Step Optimization for Ri

until |�E| < ε

3.3 Shape Blending

By using polar decomposition and the matrix logarithm/
exponential, our RIMD representation allows intuitive shape blend-
ing by using linear weights:

f(w) =
∑

k

wk · fk, (6)

where fk = {log dRk,ij ; Sk,i} is the RIMD feature of the kth model
and wk is an arbitrary weight (not necessarily in the range of [0, 1]).
This is equivalent to blending rotation difference and scaling/shear
matrices as follows:

dRij (w) = exp

(∑
k

wk · log(dRk,ij )

)
, (7)

Fig. 4. A failure case of directly blending large rotations: self intersection
is caused by interpolation of substantially different poses. ((a) and (f)) Two
shapes to be blended, ((b)–(e)) blended shapes.

Sj (w) =
∑

k

wk · Sk,j . (8)

An example is shown in Figure 3. Take the source (Figure 3(b))
and target (Figure 3(d)) models that are spirals with three and five
cycles, respectively. Because of the extensive rotations, it is a chal-
lenging case for interpolation. Our approach can effectively inter-
polate (Figure 3(c)) as well as extrapolate (Figures 3(a) and (e))
them by changing the parameter t , and realistic results are obtained.
In this example, the weights used for the source and target models
are t and 1 − t , respectively. Extrapolation is essential for effective
data-driven surface modeling, as knowledge hidden in the given
examples can be better utilized.

In theory, the linear blending of the logarithm used here may
introduce errors when the rotations being blended are not coax-
ial [Bloom et al. 2004]. In practice, however, even for shapes with
very large rotations, the rotation differences between adjacent faces
are usually still small, and the error is often negligible, as shown in
examples throughout the article. When very large rotations are to
be blended directly, self-intersection in space may be produced (see
an example in Figure 4).

3.4 Deformation Space Analysis

Our feature vector gives an effective rotation-invariant represen-
tation of the deformations. To better understand the behavior of
this representation, given a set of deforming models, we use stan-
dard Principal Component Analysis (PCA) of the feature vectors
to reduce the dimensions to 2. An example is shown in Figure 5.
Given a collection of spheres (Figure 5(a)) from Rustamov et al.
[2013] with uniform deformation distribution, Figure 5(b) shows
the distribution of coefficients on the two most significant principal
axes. Results obtained are very similar to map-based exploration
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Fig. 5. PCA analysis of a collection of spheres with two modes of variation,
using RIMD features. (a) A collection of spheres; (b) the value distribution
over the two most significant principal coordinates.

Fig. 6. First three axis models for the “march2” dataset from Vlasic et al.
[2008]. ((a) and (b)) Models on first axis, ((c) and (d)) models on second
axis, and ((e) and (f)) models on third axis.

[Rustamov et al. 2013], although with a much simpler approach.
This example shows that, for typical deformations, the result-
ing feature vectors tend to form a low-dimensional near linear
subspace.

Compact representation of deforming models. For datasets
with a large number of models, the essential variations may form
a much lower dimensional space. Applying PCA to such datasets
allows us to use the mean shape as well as the first few principal
components to represent all the major modes of variations com-
pactly. A similar idea has been widely used but mainly for images
or shapes with limited amount of deformation (e.g., human faces).
Thanks to our RIMD representation, we show that this tool works ef-
fectively for general deformed shape datasets. An example is given
in Figure 6, using the “march2” dataset from Vlasic et al. [2008]
containing 250 captured human bodies of a marching sequence.
The first four principal components capture over 70% of the en-
ergy (variances) and the first 18 principal components capture over
90% of the energy. The first three modes are shown, with models
corresponding to maximum/minimum values. Instead of using the
whole dataset for data-driven deformation/registration, we instead
represent the unknown RIMD feature f(w) as a linear combination
of basis vectors:

f(w) = f̄0 +
∑

s

ws · f̄s , (9)

where f̄0 is the mean feature vector, f̄s corresponds to the sth prin-
cipal component, and w is the weight vector that determines the
reconstructed feature vector. Using this equation instead of Equa-
tion (6), due to the reduced dimension, the problem can be solved
much more efficiently as the running time scales almost linearly
with the number of unknown weights. As we will show later (see
Figure 19), using dimensionality reduction, the data-driven defor-
mation results with 4 and 18 basis vectors are visually very similar

yet tens of times faster than directly using the original example
model dataset. This shows that fewer basis vectors are often suffi-
cient for mesh manipulation than for traditional reconstruction.

In summary, our RIMD representation supports flexible posi-
tional constraints, allows meaningful linear blending (including in-
terpolation/extrapolation) and dimensionality reduction, and can
be very efficiently reconstructed using matrix pre-decomposition.
These unique characteristics make it particularly suitable for data-
driven surface modeling as we will demonstrate in the next section.

4. DATA-DRIVEN DEFORMABLE SURFACE
MODELING

In this section, we further exploit our representation for novel data-
driven surface modeling techniques, namely data-driven deforma-
tion and non-rigid registration.

ALGORITHM 2: Data Driven Deformation.
Require: Initial pose vertex positions p, RIMD features of example

models fk , Handle vertex set H and their target positions vh

Ensure: Deformed mesh vertex positions p′

Combination weight w is initialized based on previous deforma-
tion or initial pose.
repeat

Optimize w using gradient descent and line search
Optimize positions p′ given w using Algorithm 1

until line search step size r < ε̃

4.1 Data-Driven Deformation

Given a set of example models Mk , and their corresponding RIMD
features fk = {log dRk,ij , Sk,j }, we assume a RIMD feature con-
strained by the examples is defined as a linear combination of these
feature vectors fk , using weights w = {wk} satisfying

∑
wk = 1.

Our data-driven deformation is defined as finding the optimal
weights w such that the derived RIMD feature leads to a recon-
structed mesh with handles placed at the specified locations while
at the same time the overall deformation energy is minimized. Treat-
ing handles as hard constraints guarantee that the deformed surfaces
follow user constraints precisely. Let us denote H as the index set
of handle vertices, h ∈ H is a handle index, p′

h is the location of the
handle vertex, and vh is the user-specified location for the handle
h. Once the weights are determined, the RIMD feature f(w) can
be obtained by simple linear combination, and the deformed vertex
positions can be obtained by minimizing Equation (5).

Data-driven deformation is now formulated as minimizing

E(w, p′) =
∑
i∈V

∑
j∈Ni

c̃j

∑
k∈Nj

cjk‖e′
jk − Ri dRij (w) Sj (w) ejk‖2

,

(10)
where ejk = pj −pj , e′

jk = p′
j −p′

j , and for each h ∈ H , p′
h is set to

the user specified vh and not included in the optimization. Note that,
as described before, Ri also needs to be solved in the energy above.
We omit it from E(·) for simplicity since it is not the focus here. This
is a non-linear problem. We use gradient descent with line search to
find a suitable step size. The gradients are numerically calculated.
Assuming δ is the negative gradient direction, we find the step size
r through repeated halving, such that E(w + rδ) < E(w). w is then
updated to w + rδ. The above optimization is iterated until conver-
gence when r is less than ε̃ = 10−6 in our experiment. Algorithm 2
shows pseudocode of the data-driven deformation algorithm.
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Fig. 7. Deforming a cylinder model (top row) using various styles specified
by example models (middle row). Bottom row: The corresponding deformed
models with the handles highlighted.

Our method is very efficient. Given the fixed set of handle ver-
tices, the matrix pre-decomposition only needs to be performed once
and can be reused for both updated weights (iterations used to find
optimal weights) and updated handle positions (when the user drags
handles). With a good initialization from the initial shape/previous
deformation, the solution is efficient and real-time performance is
obtained for a medium-sized collection of example models. For a
large number of example models we first perform an analysis of
the shape space to reduce redundancy (see Section 3.4). A simple
example is shown in Figure 7. Given a reference model and one
of the example models, our method effectively produces deformed
models following the specified styles.

As a data-driven approach, our method effectively utilizes exam-
ple shapes to help guide the deformation. In practice, however, the
deformation specified by the handles may not be fully present in
the examples. As we will show later, even in such cases our method
still produces reasonable deformation with necessary distortions
uniformly distributed, which is desirable.

Multi-Resolution Optimization. To efficiently process dense
mesh models, inspired by Fröhlich and Botsch [2011], we apply the
data-driven deformation in simplified mesh models first, which is
then used to guide the deformation of the original mesh models. To
simplify the shapes, we adapt the quadric error metric-based mesh
decimation framework [Garland and Heckbert 1997] such that the
cost of contracting an edge (vi, vj ) is related to both the geometry
and deformation properties. The cost now includes three terms. The
first term is from the original definition v̄T (Qi + Qj )v̄, where v̄ is
the new vertex location, and Qi and Qj are quadric error matrices
at vi and vj , respectively. The second and the third terms are new,
which are the Frobenius norm of standard deviations of log(dRij )
and Si /Sj over all the shapes in the dataset. These new terms pe-
nalize contraction of edges with more variations across shapes. We
normalize each term by the standard deviations δQ, δR , and δS over
all the edges. Cij = (v̄T (Qi + Qj )v̄)/δQ + ‖std(log(dRij ))‖F /δR +
(‖std(Si)‖F + ‖std(Sj )‖F )/δS , where std(·) is the matrix corre-
sponding to the standard deviation of each entry, and ‖ · ‖F is the
Frobenius norm of the matrix.

We simplify the original mesh M to obtain M ′ and keep the
map from M to M ′. Then data-driven deformation is applied to
the simplified mesh. After the optimization we get the represen-
tation f̃ of the deformed mesh M̃ ′. This is equivalent to getting
the rigid rotation matrix R̃i and scaling matrix S̃i at each vertex
on the simplified mesh. According to the mapping, we obtain the
rigid rotation matrix Ri and scaling matrix Si of the original mesh
M , which can be converted to RIMD representation f. Based on

f, we reconstruct the deformed shape by optimizing Equation (5)
(typically within a few iterations). Fröhlich and Botsch [2011] use
deformation transfer [Sumner and Popović 2004] to obtain defor-
mation of the original mesh from the simplified mesh. When the
mesh is significantly simplified, direct deformation gradient trans-
fer of adjacent faces produces jagged results. Our multi-resolution
optimization, on the other hand, uses the transferred representa-
tion as the guidance and the rigid rotation of each vertex on the
original mesh is re-optimized and thus is free from such artifacts.
The Hausdorff distance between the multi-resolution optimization
and direct optimization on the original mesh is negligible—for the
SCAPE (Shape Completion and Animation of People) [Anguelov
et al. 2005] and elephant cases they are both less than 1% of the ra-
dius of the bounding sphere. As demonstrated in the supplementary
video, the data-driven deformation for the SCAPE dataset with 10
PCA axis models is very efficient: by simplifying the original mesh
with 25K triangles to 3K triangles, data-driven deformation takes
less than 50ms. Real-time performance with over 20fps is achieved.

4.2 Data-Driven Non-Rigid Registration

Using our representation, we further propose a novel data-driven
approach to non-rigid registration. For a dynamic object (such as a
human body), we first capture a complete template model of the ob-
ject which can be obtained using, for example, KinectFusion [Izadi
et al. 2011]. Then given a new scan of the deformed object from
a single view using a low-quality depth camera (Kinect v2 is used
in our experiments), we register the template to the noisy, often in-
complete, scan. This is challenging due to the missing information
and potentially substantial deformation between the template and
the scan. To address this, we use a data-driven approach to help
improve the non-rigid registration.

We make a reasonable assumption that a collection of deformed
objects of the same class is available. So, for instance, for hu-
man body registration, a collection of deformed human bodies (of
an arbitrary person) is sufficient. This allows us to use existing
public datasets for data-driven non-rigid registration. We assume
models in the collection have the same connectivity (which many
existing datasets satisfy). We establish correspondence between the
template model and the models in the collection by specifying a
few key correspondences. This is similar to Sumner and Popović
[2004], where the user selects vertices in correspondence between
the template model and the models in the collection. Deformation
transfer [Sumner and Popović 2004] is then used to deform the
models in the collection to produce models with geometry similar
to the template. The resulting models are used as examples.

Similar to the data-driven deformation, we assume that a linear
combination of feature vectors in the example space best repre-
sents the desired non-rigid deformation. w is the weight vector, and∑

wk = 1. We formulate non-rigid registration as an optimization
problem minimizing

E(w, p′) =
∑
i∈V

∑
j∈Ni

c̃j

∑
k∈Nj

cjk‖e′
jk − Ri dRij (w) Sj (w) ejk‖2

+ λpoint

∑
h∈H

‖vh − p′
h‖2 + λplane

∑
h∈H

‖nh(vh − p′
h)‖2,

(11)

where p contains the template vertex positions and p′ is the solu-
tion that corresponds to the deformed template vertex positions that
register well with the scan. H is the set of vertices whose current po-
sitions are sufficiently close to the scan. vh is the foot point position
when projecting vertex h to the scan, and nh is the normal direction
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Fig. 8. Non-rigid registration of a synthetic card paper model with two ex-
amples. ((a) and (b)) Example models (flat paper with 0◦ dihedral angle and
folded paper with 90◦ dihedral angle), (c) the target paper folded with 170◦
dihedral angle, (d) result of standard non-rigid registration, and (e) result of
our data-driven method.

at the foot point. The first term constraints the deformation to be
as rigid as possible, from some examples in the deformation space;
this gives a knowledge-based prior. The second and the third terms
ensure the deformation fits with the scan, where the second term is
point to point distance, and the third term is the point-to-plane dis-
tance. We choose λpoint and λplane as 0.2 and 0.8 in our experiments.
Note that in principle we should also optimize the rigid transform
between p′

h and vh, in addition to non-rigid deformation. We can
prove that our optimization handles this automatically without ex-
plicitly introducing the rigid transform; see the proof in the appendix
that shows that the energies with or without explicit optimization
of rigid transforms have the same global minimum, although, due
to the non-linear nature, they may lead to different local minima.

The energy formulation involves the weights w as well as the
closest point correspondence, in addition to the deformed positions
p′. We initialize the optimization by choosing one example model
that best fits the scan. Assuming this is the kth model, we initial-
ize w such that wk = 1 and wj = 0,∀j 	= k. We then solve the
problem by using an algorithm similar to non-rigid ICP: We alter-
nate between two steps, namely finding the correspondence H and
finding the improved positions p′ and weights w minimizing the
energy. The former step is similar to ICP as described above. Given
fixed correspondence, we solve the latter step by using a gradient
descent algorithm to optimize w with line search for a suitable step
size, similar to the data-driven deformation. For a given w, we use
constrained reconstruction with soft constraints to recover vertex
positions p′ and local rotations (see Section 3.2). Algorithm 3 shows
pseudocode of the data-driven non-rigid registration algorithm. For
a large number of example models, we similarly perform an analysis
of the shape space first to reduce redundancy (see Section 3.4). A
simple synthetic example is shown in Figure 8. Given only two ex-
amples with card papers forming dihedral angles of 0◦ (Figure 8(a))
and 90◦ (Figure 8(b)), the aim is to find a non-rigid registration
from Figure 8(b) to Figure 8(c) with a dihedral angle of 170◦. The
existing non-rigid registration method [Bouaziz and Pauly 2013]
does not converge to the correct position (Figure 8(d)), whereas the
additional examples help to show the potential deformation which
leads to the correct result (Figure 8(e)).

5. RESULTS

Our experiments were carried out on a computer with an Intel i7-
4790K CPU and 16GB RAM. Depending on the size of the mesh

Table I. Statistics of the Data-Driven Non-Rigid
Registration Running Times

Dataset # Vertices # Models # iteration. (s) total (s)
card 2500 2 0.02 0.11

SCAPE 12500 71 1.37 14.3
hand 10825 56 1.24 12.9

ALGORITHM 3: Data-Driven Non-Rigid Registration.
Require: Initial pose vertex positions p, RIMD features of example

models fk , scanned point cloud data
Ensure: Deformed mesh vertex positions p′

Combination weight w is initialized based on the nearest shape
in the example set.
repeat

Find nearest points in the point cloud for each vertex
Optimize w using gradient descent and line search
Optimize positions p′ given w (with position and normal soft
constraints) using Algorithm 1

until |�E| < ε

and the number of example models (or the number of reserved basis
vectors if PCA is used), our data-driven deformation takes from a
few milliseconds up to about 50ms, which gives real-time feedback.
The detailed running times of our non-rigid registration algorithms
are shown in Table I. Our data-driven non-rigid registration takes
under 15s for these examples. We used various datasets from the
existing research, including those of Anguelov et al. [2005], Zhang
et al. [2004], Sumner and Popović [2004], and Vlasic et al. [2008].
When compared with existing non-rigid registration methods, we
use the code from Bouaziz and Pauly [2013] and adapt it to register
3D meshes to scans. Throughout the article we have shown some
examples to demonstrate the ideas of our method. In this section,
we will show more results and compare them with state-of-the-art
methods.

5.1 Deformation Representation

Comparison of rotation difference representations. Our tech-
nique benefits greatly from linear analysis of features for both
shape space construction and PCA dimensionality reduction. We
compare the log-exp-based rotation difference representation we
used with alternative rotation difference representations, namely
rotation matrix and quaternion. As the slerp interpolation of quater-
nions is non-linear, it cannot be applied to our problem. We thus use
an alternative approach of linear interpolation of rotation matrices
and quaternions, followed by normalization. For the blended rota-
tion matrices, the Procrustes projection is used to map them back
to optimal orthonormal matrices, and for quaternions, the blended
quaternions are simply normalized to be of unit length.

We compare the results by blending two shapes shown in
Figures 8(a) and (b). By using a synthetic example, the ground truth
can be easily obtained for fair comparison. As shown in Figure 9,
the log-exp representation we used produces very similar results
to the ground truth in both interpolation (first row) and extrapola-
tion (second and third rows), whereas both the linear interpolations
of the rotation difference matrices and quaternions lead to incorrect
extrapolation results. Extrapolation appears frequently and is essen-
tial to effectively exploit the hidden knowledge in data-driven shape
deformation and PCA analysis. The log-exp representation allows
linear blending and obtains robust results in both interpolation and
extrapolation and thus is more suitable for our technique.
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Fig. 9. Comparison of rotation difference representations for shape blend-
ing using the synthetic example in Figure 8. The first row is the interpolation
results when t = 0.5, and the second and third rows are the extrapolation
results with t = 1.5 and t = 2, respectively. (a) The ground truth with
45 degrees, 135 degrees and 180 degrees dihedral angles, (b) the log-exp
results, (c) the Procrustes projection of linear blending of rotation difference
matrices, and (d) the linear interpolation of quaternions.

Fig. 10. Shape reconstruction for the deformed bar (top row) and cylin-
der (bottom row) shapes. (a) Source mesh, (b) deformed mesh, (c) re-
constructed mesh using cotangent weights (with error color coding), and
(d) reconstructed mesh using uniform weights (with error color coding).

Table II. Mean and Maximum Reconstruction Errors (cf.
Figure 10) with Different Edge Weighting (Cotangent vs. Uniform)

mean errors maximum errors
Case cotangent uniform cotangent uniform
Bar 1.41 × 10−4 1.95 × 10−4 1.97 × 10−3 2.95 × 10−3

Cylinder 1.05 × 10−4 1.35 × 10−4 5.97 × 10−4 1.15 × 10−3

Comparison of different edge weighting ci j . We compare the
cotangent weights cij used in Equation (1) with alternative uniform
weights for shape reconstruction (see Figure 10). We use shapes
from Levi and Gotsman [2015] and simplify certain regions to
demonstrate the behavior of poor triangulation. The reconstruction
errors measured as Euclidean distances from the ground truth are
illustrated using color coding. The mean and maximum errors are
summarized in Table II. While errors are fairly small for both cases
with little visual difference, the reconstructed errors (especially
maximum errors) are substantially smaller with cotangent weights.

Comparison with ARAP. Similar to Sorkine and Alexa [2007],
our optimization approach involves both global and local steps.
For the global step, both our method and ARAP [Sorkine and Alexa
2007] solve a linear system involving a Laplacian matrix with cotan-
gent weights. For the local step, both methods use SVD decomposi-
tion. These dominant steps take identical time. The only difference
in running times is that ARAP needs to access one-ring neighbors
of each vertex, whereas our method needs to access two-ring neigh-
bors when the matrices are built. By using precomputation, our
optimization can be implemented by accessing one-ring neighbors
of each vertex twice. Although our method needs to access more

Fig. 11. Deforming of a thin bar with large scale rotations. (a) Fröhlich
and Botsch [2011], (b) Sumner et al. [2007], (c) Sorkine and Alexa [2007],
and (d) our reconstruction results with constraints.

Fig. 12. Shape blending results of MeshIK and our method using a syn-
thetic example. The first row is the result of MeshIK [Sumner et al. 2005],
The second row is the result of our method. ((b) and (f)) Two simple sur-
faces indicating the start and end shapes for blending, ((c)–(e)) intermediate
surfaces, and (a) illustration of the rotations of both triangles.

neighboring vertices, the runtime difference is very little. For each
iteration of the bar example in Figure 13 with 12K triangles, our
method takes 44ms, whereas ARAP takes 40ms.

In Figure 11 we show non-data-driven deformation results (with-
out examples). The handle is rotated by 180◦, and our method
distributes the deformation distortions much more uniformly than
state-of-the-art methods [Fröhlich and Botsch 2011; Sumner et al.
2007; Sorkine and Alexa 2007]. Note that although the focus of our
method is data-driven deformation, high-quality non-data-driven
deformation is also essential and is particularly useful when the
user moves handles beyond the scope of example deformations.

Comparison with MeshIK. Data-driven approaches rely on ex-
amples, and the capability of blending shapes is essential. Figure 12
shows a comparison with MeshIK [Sumner et al. 2005] on a simple
synthetic dataset containing only two triangles. MeshIK finds paths
with minimal rotation of triangles individually, which causes self in-
tersections from Figures 12(e) to (f). This shows that MeshIK cannot
blend large-scale rotations well. Our method produces artifact-free
blending.

Shape blending and constrained reconstruction. Existing re-
search most relevant to our representation involves data-driven
approaches [Sumner et al. 2005; Fröhlich and Botsch 2011] and
rotation-invariant coordinates [Lipman et al. 2005; Kircher and
Garland 2008; Baran et al. 2009]. The latter are not designed for
data-driven deformation so do not exploit examples. To make a
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Fig. 13. The original bar model and with one end rotated by 360◦.

Fig. 14. Blended shapes and deformation. First column: MeshIK [Sumner
et al. 2005], second column: Fröhlich and Botsch [2011], third column:
Baran et al. [2009], fourth column: our results. First row: 1:1 blending of
two shapes in Figure 13, second and third rows: blended shapes deformed
with constraints.

fair comparison, we apply these methods to a blended shape (1:1
blending from examples in Figure 13).

Rotation-invariant coordinates are not designed for data-driven
deformation. For example, Baran et al. [2009] use a technique for
semantic deformation transfer. To use such representations for de-
formation, the user needs to specify both the positions and rotations
at handles. The handle rotations are used as constraints for the first
linear system and the handle positions for the second linear sys-
tem. As demonstrated in Lipman et al. [2005], both the rotation and
position handles need to be assigned compatibly to avoid unnat-
ural deformation. This increases the workload and difficulties for
the user. Our approach, as well as existing data-driven deformation
techniques [Sumner et al. 2005; Fröhlich and Botsch 2011], only
requires handle positions to be specified.

As shown in Figure 14, the original bar and the bar rotated by
360◦ are blended (see top row). MeshIK does not handle large rota-
tions well. Fröhlich and Botsch [2011], Baran et al. [2009], and our
approach all produce reasonable results. When significant deforma-
tions are applied, existing methods exhibit significant artifacts (with
Baran et al. [2009] producing overall better results) and our method
handles all these cases effectively.

Reconstruction running time comparison. We compare the
running times with state-of-the-art deformation methods using the
example in Figure 14 with 12K triangles, with the following im-
plementation setup: solving linear systems using MATLAB, SVD
decomposition using Eigen, and parallelization using OpenMP.

Existing rotation-invariant coordinates [Lipman et al. 2005;
Kircher and Garland 2008; Baran et al. 2009] have a similar recon-
struction framework that involves solving two linear systems. The
first linear system solves local frames and the second global posi-
tions. Given a new shape representation, the coefficients of the first
linear system will differ, so it is necessary to decompose the matrix
every time. When [Baran et al. 2009] is used without segmenting
the shapes into patches (i.e., treating each face as a patch), it needs
520ms to solve the first linear system for frames and a further 20ms
for SVD decomposition to calculate the local rigid rotations. For
comparison, without using multi-resolution optimization, after a
one-off matrix pre-decomposition, each iteration of our algorithm
involves two steps: 14ms for the global step and 30ms for the local
step. A total of 44ms is needed for each iteration, and four iterations

are needed to converge in this case. Our method is thus about 3
times faster than that of Baran et al. [2009]. Fröhlich and Botsch
[2011] use the Gauss-Newton method to solve the formulated
optimization. In each iteration, the Jacobian matrix is calculated
and used for solving the linear equations. However, the Jacobian
matrix is changed in each iteration, leading to a total running time
of 24, 600ms. While being slow, this method applies to data-driven
deformation, unlike existing linear rotation-invariant coordinates.

To reduce the size of the linear system for frames, Baran et al.
[2009] partition the shapes consistently into patches. While being ef-
fective, this technique needs a large dataset with various poses such
that face clusters well capture rigid components of the deforming
shape, and the approximation error is minimized. This is not the case
for this example where only two examples with uniform distortions
are provided, and thus the patch-based technique is not appropriate.
As we have shown, our method can also use multi-resolution op-
timization for speedup, which achieves real-time performance for
data-driven deformation. Note also that it is not obvious how exist-
ing rotation-invariant coordinates [Lipman et al. 2005; Kircher and
Garland 2008; Baran et al. 2009] can be generalized to data-driven
deformation.

5.2 Data-Driven Mesh Deformation

We compare our deformation method with various state-of-the-art
deformation methods, with or without using examples.

Figure 15 is an example of deforming an elephant model
with a small number (12) of examples. Since the handles move
substantially it is challenging for non-data-driven methods, which
produce results with visible distortion artifacts. State-of-the-art
non-data-driven methods [Sorkine and Alexa 2007; Sumner et al.
2007] (Figures 15(b) and (c)) produce overall deformations that
look quite rigid, as the deformations are purely driven by the
movement of handles, and, hence, do not look realistic. Data-driven
methods (Figures 15(d)–(f)) produce much more vivid results, since
the dataset provides the elephant galloping sequences which give
the information of the leg and head movements. The data-driven
methods deform the front and rear legs much more realistically, giv-
ing a running effect. The non-data-driven methods simply rotate the
front legs, which is too rigid. Existing data-driven methods [Sumner
et al. 2005; Fröhlich and Botsch 2011], however, are not able to
cope with such large-scale deformation well and thus have visible
artifacts. Our method produces realistic deformation without
artifacts. For example, the trunk is deformed with no examples in
the dataset having similar trunk deformation. In such cases, our ap-
proach turns to as-rigid-as-possible reconstruction with constraints
defined on two-ring neighborhoods, which produces smoother and
more realistic results than existing data-driven methods.

Figure 16 shows an example of using the SCAPE dataset
[Anguelov et al. 2005]. Due to the large movement of handles (hence
significant change of pose), existing methods, including data-driven
methods [Sumner et al. 2005; Fröhlich and Botsch 2011], produce
results with significant distortions and/or self-intersections. This
is because existing non-data-driven methods do not distribute dis-
tortions well due to lack of information, and existing data-driven
methods do not handle large deformations well. A natural result is
obtained using our data-driven method.

Figure 17 shows a challenging case where the example models in
the dataset differ substantially. The head is rotated more than 180◦,
and the tip of the tail is rotated nearly 360◦ between Figure 17(a)
and Figures 17(b) and (c). These three models give the information
of the rotation of the tail and the neck as well as the joint movement
of the legs. As shown in Figures 12 and 14, MeshIK [Sumner et al.
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Fig. 15. Deformation of an elephant using the dataset from Sumner and Popović [2004]. (a) Input model with handles highlighted, (b) ARAP [Sorkine and
Alexa 2007], (c) [Sumner et al. 2007], (d) MeshIK [Sumner et al. 2005], (e) [Fröhlich and Botsch 2011], and (f) our data-driven deformation method.

Fig. 16. Comparison of deformation results using the SCAPE dataset [Anguelov et al. 2005]. (a) Input model, (b) ARAP [Sorkine and Alexa 2007], (c) [Sumner
et al. 2007], (d) MeshIK [Sumner et al. 2005], (e) [Fröhlich and Botsch 2011], and (f) our data-driven deformation method.

Fig. 17. Data-driven deformation results with two example models. (a) Input model with handles highlighted, ((b) and (c)) two additional example models,
(d) result of MeshIK [Sumner et al. 2005], (e) result of Fröhlich and Botsch [2011], and (f) result of our data-driven deformation.

Fig. 18. Comparison of our multi-resolution optimization and direct deformation transfer. (a) The original lion mesh model with 5,000 vertices, (b) simplified
model with 10% of the original size, (c) deformed model of the simplified model, (d) direct deformation gradient transfer to the original resolution with handle
constraints, (e) our multi-resolution optimization result using (b), (f) our multi-resolution optimization result using a simplified model with 3K triangles, and
(g) deformation result on the original mesh.

2005] fails to blend example models with more than 180◦ rotation,
so it is not surprising that MeshIK also fails in this example. The
three example models give the information about the head turning
from left to right. However in this example, the user drags the head
down, which is out of the knowledge from the dataset. As shown
in Figure 11, the approach of Fröhlich and Botsch [2011] does not
handle such cases well and over-blends the neck. Our method works
well by delivering realistic deformation learned from the examples

(both interpolation and extrapolation) or smooth deformation when
such information is not available.

Figure 18 compares our multi-resolution optimization with direct
deformation transfer. We substantially simplify the lion model to
only 10% of the original size. Our multi-resolution optimization
produces a visually reasonable deformation result, whereas direct
deformation transfer produces a deformed result that is not smooth.
In practice, we simplify the original shapes to 3K triangles for better
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Fig. 19. Data-driven deformation using the “march2” dataset from (a) an
input model with handles highlighted, (b) data-driven deformation with
4 basis vectors, and (c) data-driven deformation with 18 basis vectors.

balance of quality and speed, and the obtained result is visually
very close to deformation on the original mesh. For the examples
in the article, the Hausdorff distance between the multi-resolution
optimization result and the direct deformation result of the original
mesh is below 1% of the radius of the bounding sphere.

Figure 19 is an example of data-driven deformation using PCA
for dimensionality reduction. This dataset contains shapes of a man
walking. The differences between deformation results with 4 and
18 basis vectors are almost unnoticeable. This shows that for defor-
mation, a fewer number of basis vectors than for reconstruction is
often sufficient.

5.3 Data-Driven Non-Rigid Registration

We compare our method with general surface-based non-rigid reg-
istration. Such methods [Bouaziz and Pauly 2013] are generally not
data driven. To make a fairer comparison, we choose the example
model that is closest to the scan as the initialization for both our and
alternative methods. The method used in Bouaziz and Pauly [2013]
has a variation that is data driven and uses PCA. However, it is only
used for faces where the deformation is relatively subtle. We will
demonstrate that such a technique performs worse than not using
data for large-scale deformations. Thus by default we compare our
method with the non-data-driven version of their method.

Figure 20 shows two examples of non-rigid registration, using
the SCAPE dataset [Anguelov et al. 2005] as the model collection.
A complete reconstruction of the person treated as a template is
obtained using KinectFusion (b) and transferred to all the models
in the SCAPE database (see supplementary material for the trans-
ferred shapes). A single depth scan is then taken using a Kinect
v2 camera (a) and our aim is to find a non-rigid registration that
aligns the template to the scan. As the template can substantially
differ from the scan, we choose the transferred model closest to the
scan as initialization (c). This model, however, still has a signifi-
cant difference from the scan. Standard non-rigid registration using
an ICP-type optimization tends to find wrong correspondences. As
a result, with 30 iterations, the result is distorted and differs con-
siderably from the scan (d). With more iterations (40), however,
the result becomes worse, with even more distortions (e). Our result
nicely registers the template to the scan, thanks to the prior provided
by the example models (f). Kinect scans are noisy, which can be
better seen when our result is overlaid with the scan (g). Figure 21
shows the registration results of our data-driven method and that of
Bouaziz and Pauly [2013] without and with PCA (for the latter the

same number of principal axes are used as our method for a fair
comparison). It can be clearly seen that both the non-rigid regis-
tration and its PCA variant introduce visible artifacts. In particular,
the registration results using PCA have shrinking artifacts and look
worse. This is because simple PCA linear analysis based on vertex
coordinates cannot handle datasets with large rotations.

Figure 22 gives two examples of non-rigid registration to de-
formed hands (see supplementary material for the transferred ex-
ample shapes). The captured scans are noisy and incomplete due to
occlusions. The standard non-rigid registration converges to some
local minima that are still quite far from the target scans. Our
data-driven approach properly constrains the deformation space
and allows us to find suitable transformations to align the scans.
For the example in the bottom row, we also show the registration
error distribution as a histogram in Figure 23(a). Our method has
more points with low errors than standard non-rigid registration.
Figure 23(b) shows how the registration error reduces and con-
verges using our method. Note that since the energy reduces mono-
tonically, our method always converges to some local minimum. As
demonstrated by these examples, the use of example models helps
to produce well-registered results.

We show an example to demonstrate how our method performs
with increasing numbers of examples. We perform experiments us-
ing the “march2” dataset from Vlasic et al. [2008]. We select one
shape (shown in Figure 24(b)) from the dataset as the target shape
and remove it from the dataset. The standing shape (as shown in
Figure 24(a)) is chosen as the source shape and registered to the
target. To avoid bias due to the order of models in the dataset, we
randomly order the dataset and run the experiments 20 times and
report the average results. For each run, we start from an empty
example dataset and incrementally add models in a random order
into the dataset one at a time and run our data-driven non-rigid
registration algorithm. As discussed in the article, 18 PCA modes
capture over 90% of variance in the whole dataset. When the exam-
ple dataset for data-driven registration contains 18 or fewer models,
we do not apply PCA analysis and use all the shapes. When the ex-
ample dataset contains more than 18 shapes, we obtain PCA-based
non-rigid registration results by applying PCA analysis and only
keeping the 18 dominant modes. This is then compared with the
results obtained without PCA by using all the shapes in the exam-
ple dataset. We calculate the average Euclidean distance between
the registered shape and the ground-truth shape to measure the ac-
curacy. As shown in Figure 24(c), when the number of models for
data-driven registration increases, for registrations with and without
PCA, the mean Euclidean distances decrease. This is understand-
able as with more example shapes involved, the information of the
deformation space is better covered. The data-driven registration
with PCA produces slightly more accurate results than without us-
ing PCA, as it is less sensitive to inclusion of dissimilar examples to
the example dataset (see Figure 24(c)) while reducing the running
times dramatically (see Figure 24(d)).

We perform further quantitative analysis of non-rigid registra-
tion. We take each model from the SCAPE dataset [Anguelov et al.
2005] in turn as the target model and use the remaining models as
example models. Figure 25 shows such an example. Figure 25(a) is
the chosen target model, and Figure 25(b) is the closest model in the
remaining example set. Distortions of standard non-rigid registra-
tion (Figure 25(c)) and our data-driven registration (Figure 25(d))
results are shown using color coding. The registration error distribu-
tion of all the vertices is summarized in Figure 26, which indicates
the percentage of vertices (Y -axis) within different fitting errors (X-
axis). This shows that for our method substantially more vertices
have smaller errors.
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Fig. 20. Data-driven registration of human bodies. (a) A Kinect scan, (b) the template model obtained using KinectFusion, (c) the closest model in the
transferred dataset, (d) standard non-rigid registration with 30 iterations, (e) standard non-rigid registration with 40 iterations, (f) our data-driven registration
results, and (g) our results with the scans overlaid.

Fig. 21. Data-driven registration comparison. (a) Point cloud captured by a
Kinect V2, (b) the registration result of our data-driven registration method,
(c) non-rigid registration result of Bouaziz and Pauly [2013] without PCA,
and (d) non-rigid registration result of Bouaziz and Pauly [2013] with PCA.

Fig. 22. Data-driven registration of hand. (a) Kinect scans, (b) closest
models in the transferred dataset, (c) standard non-rigid registration results,
and (d) our data-driven registration results.

Fig. 23. Quantitative analysis of Figure 22(bottom). (a) Histogram show-
ing vertex registration error distribution and (b) registration energy over
iterations.

Please refer to the accompanying video for real-time screen
recording and a dynamic presentation of deformation and regis-
tration results.

6. CONCLUSION

In this article, we introduce a new rotation-invariant mesh differ-
ence representation to encode mesh deformations and a novel recon-
struction algorithm that efficiently solves for the vertex positions
and local rotations simultaneously. The representation allows us to
combine multiple deformations by a linear combination. We pro-
pose a data-driven approach by exploiting knowledge in the exam-
ple models. Significantly better results than state-of-the-art methods
are obtained for shape deformation as well as non-rigid registration.
The representation also allows analysis of a set of deforming mod-
els and extraction of a compact set of bases to represent essential
deformation modes in the dataset. Using this approach, mesh ma-
nipulation becomes more efficient, especially when a large number
of examples are provided.

ACM Transactions on Graphics, Vol. 35, No. 5, Article 158, Publication date: July 2016.



Efficient and Flexible Deformation Representation for Data-Driven Surface Modeling • 158:15

Fig. 24. Registration accuracy and running time comparison without and with PCA. (a) Initial shape for data-driven registration, (b) target shape to be
registered that is removed from the example dataset, (c) mean Euclidean error, and (d) running time. Results are averaged over 20 runs.

Fig. 25. Leave-one-out non-rigid registration test using the SCAPE
dataset [Anguelov et al. 2005]. (a) Chosen target model, (b) the closest
example model, (c) standard non-rigid registration result with error visual-
ization, and (d) our result with error visualization.

Fig. 26. Leave-one-out evaluation of non-rigid registrations using SCAPE.
Vertex fitting error distribution using standard non-rigid registration and our
data-driven method.

As demonstrated, our data-driven algorithms effectively exploit
knowledge in the example model collection. Our representation
allows both interpolation as well as extrapolation and effectively
blends multiple deformations. A limitation of our data-driven
method is that it may not perform realistically if the dataset is
not large enough to cover the target deformation or scan. However,
we have demonstrated that in such challenging cases, our method
still produces better results than existing data-driven methods. An-
other limitation is that we currently use gradient descent to solve our

problem, which has scope to improve the efficiency. Although this
is sufficiently efficient for many interactive applications, and real-
time data-driven deformation is achieved with various optimization
(matrix pre-decomposition, and optionally multi-resolution opti-
mization and PCA dimensionality reduction), the performance may
still be further improved for registration. We will investigate using
a GPU-based Gauss-Newton optimizer [Zollhöfer et al. 2014].
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