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Abstract

We introduce a novel approach for computing high quality point-to-
point maps among a collection of related shapes. The proposed ap-
proach takes as input a sparse set of imperfect initial maps between
pairs of shapes and builds a compact data structure which implicitly
encodes an improved set of maps between all pairs of shapes. These
maps align well with point correspondences selected from initial
maps; they map neighboring points to neighboring points; and they
provide cycle-consistency, so that map compositions along cycles
approximate the identity map.

The proposed approach is motivated by the fact that a complete set
of maps between all pairs of shapes that admits nearly perfect cycle-
consistency are highly redundant and can be represented by com-
positions of maps through a single base shape. In general, multiple
base shapes are needed to adequately cover a diverse collection.
Our algorithm sequentially extracts such a small collection of base
shapes and creates correspondences from each of these base shapes
to all other shapes. These correspondences are found by global
optimization on candidate correspondences obtained by diffusing
initial maps. These are then used to create a compact graphical data
structure from which globally optimal cycle-consistent maps can be
extracted using simple graph algorithms.

Experimental results on benchmark datasets show that the pro-
posed approach yields significantly better results than state-of-the-
art data-driven shape matching methods.
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1 Introduction

With an increasing amount of data describing 3D shapes becoming
available, research focus is shifting from processing a single shape
to simultaneously processing a collection of shapes, aiming at com-
bining information from multiple sources to improve the processing
of each individual shape. In this direction, researchers have stud-
ied data-driven shape analysis [Golovinskiy and Funkhouser 2009;
Kalogerakis et al. 2010; Huang et al. 2011; Nguyen et al. 2011; Sidi
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Figure 1: Given a set of input shapes, the proposed approach si-
multaneously selects a representative subset (the base shapes) and
optimizes a set of point-to-point correspondences between each of
the base shapes and the entire collection. The final pairwise maps
are derived by following shortest paths in the graph specified by
these correspondences. (Top) Input shapes and the base shapes
selected. (Bottom) Induced maps between example pairs of shapes.
For clarity, we only show a subset of correspondences. We see a
diversity of paths between the source and target shapes, passing
through different intermediate base shapes.

et al. 2011; van Kaick et al. 2011; Kim et al. 2012] and data-driven
shape modeling [Chaudhuri et al. 2011; Fisher et al. 2011].

In this paper, we study the shape analysis problem of finding
point-to-point maps between shapes belonging to a collection of
loosely related shapes. High quality point-to-point maps are crucial
to a variety of applications, including information transfer across
shapes [Sumner and Popović 2004], shape modeling by assem-
bly [Funkhouser et al. 2004] and detecting the shared structure
among a shape collection [James and Twigg 2005]. So far most
existing approaches have focused on matching pairs of shapes in
isolation. These methods typically find mappings that optimally
preserve some invariant property across shapes. One common
example is the preservation of geodesic distances amongst near-
isometrically deformed shapes, and there are several excellent con-
tributions in this direction [Lipman and Funkhouser 2009; Kim
et al. 2011; Ovsjanikov et al. 2012]. These methods work well if
the invariant property is at least approximately satisfied but tend to
fail when the differences between the input shapes are large. In this
case, the search procedure may be trapped in local minima, or the
global minimum may be far from the semantic ground truth.

In contrast, considering a collection of shapes together provides
additional regularization constraints that help to detect and miti-
gate these issues. To explain this, we introduce the concept of a
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model graph proposed by Huber et al. [Huber 2002], whose ver-
tices represent shapes and whose edges represent maps between
pairs of shapes weighted by their “quality.” An important regular-
izer on such map collections, reflecting semantic consistency in our
understanding of the correspondences between the shapes, is cycle-
consistency — the property that compositions of maps along cycles
in the model graph approximate the identity map; or equivalently,
that compositions of maps along different paths between two shapes
are approximately equal. For instance, it can happen that the di-
rect map between two significantly different shapes, computed via
a pair-wise optimization procedure, is further from the ground truth
than a composition of such maps through a series of interpolating
shapes. Even though the ground truth may be unknown, this failure
can still be detected as a break-down in cycle consistency.

In this paper, we develop an optimization framework that takes
as input a collection of initial maps between a sparse set of pairs
of shapes (so that the model graph is connected), and outputs a
new model graph and a new discrete set of correspondences which
jointly represent a set of improved maps between all pairs of shapes.
The improved maps we produce are optimized to be (1) well-
aligned with the initial maps, (2) continuous or neighbor-preserving
(i.e., in the sense that neighboring points are mapped to neighboring
points), and (3) cycle-consistent. In other words, our optimization
framework exploits global reasoning and regularization constraints
enabling us to disentangle the correct correspondence information
contained within the initial maps and to produce an improved set.

Directly optimizing the original maps to satisfy the three proper-
ties described above is infeasible because the number of constraints
involved is very large — the cycle-consistency constraint alone in-
volves an exponential number of loops. Thus the proposed frame-
work favors an indirect solution by combing two key ideas. The
first idea is that a complete set of cycle-consistent maps is highly
redundant, because each map can be factorized as the composition
of maps through a single base shape. This allows the complete set
of maps to be represented as a star tree rooted at the base shape.
Therefore we formulate the optimization problem so that the op-
timization variables are point-to-point maps from the base shape
to other shapes and the objective function encourages neighbor-
preservation and alignment with the initial maps. We show how to
effectively solve this problem in two steps. First we generate multi-
ple candidate correspondences through a diffusion-and-sharpening
procedure on the initial maps — diffusion aggregates correspon-
dence information from map compositions through intermediate
shapes while sharpening controls the size of the correspondence set.
We then extract point-to-point maps by selecting correspondences
from these candidates through a joint optimization.

The point-to-point maps from one base shape to all other shapes
induce maps between any pair of shapes by composition. How-
ever, these maps are not of sufficiently high quality when the input
shapes exhibit significant geometric variation. This is because the
chosen base shape may not provide sufficient sampling density to
“transport” correct correspondences between two non-base shapes
without information loss (e.g., in cases where a base shape with a
thin part having few samples is used to transport correspondences
between shapes having fat corresponding parts with a much larger
number of samples; or where the base shape has missing parts).

This brings us to the second key idea: the sequential selection of a
modest number of base shapes which jointly cover the given shapes,
in the sense that the optimized maps from the base shapes to all
other shapes provide a spanning network of maps that contains a
sufficiently rich set of correspondences to better approximate all
pair-wise maps. In our experiments, we found that a small number
of base shapes is sufficient even for shape collections with substan-

tial variation. The selection of the base shapes as “representatives”
of the collection is itself an interesting output of our algorithm

Cycle-consistency is an essential ingredient used at this stage to
prune spurious correspondences. Only 2-cycles and 3-cycles are
considered, but this is sufficient for our purposes. The resulting
compact set of weighted correspondences through the base shapes
provides a compact hub-and-spoke correspondence network1 from
which the final improved maps can be extracted through simple
graph algorithms. An important feature of our approach is that
the final set of correspondences that represents the improved map
between two given shapes may be realized by a collection of corre-
spondence paths that follow different routes in the network in terms
of the intermediate shapes visited, depending on the part of a shape
being mapped. This path diversity or “mix-and-match” solution
naturally exploits partial similarities between the input shapes and
is able to use the best parts of each of the initially given maps —
without being wholly committed to selecting any one.

We evaluate the performance of the proposed approach on bench-
mark datasets [Kim et al. 2011; Kim et al. 2012] containing both
organic shapes and man-made shapes. Experimental results show
that our approach yields significantly better results than state-of-
the-art data-driven shape matching approaches [Nguyen et al. 2011;
Kim et al. 2012]. We also evaluate different components of our
approach and show their advantages over standard alternatives.

In summary, this paper makes the following contributions.

• We present an optimization framework that computes a com-
plete set of new maps which are well-aligned with a sparse-set
of initial maps, neighbor-preserving, and cycle-consistent.

• In the process, we introduce a novel correspondence selection
algorithm, based on a combined map diffusion-and-sharpening
stage, followed by a global combinatorial optimization step.

• We encode our final improved maps through a compact hub-
and-spoke network of correspondences, factorizing all pair-wise
maps through a small set of sequentially selected base shapes,
thereby summarizing the collection.

In the final analysis, we believe that our approach works well be-
cause it builds the improved maps indirectly, focusing on first gen-
erating and selecting good correspondences. All correspondences
originate directly or indirectly from the initially provided maps,
but the correspondences that remain in our final hub-and-spoke
network have been thoroughly vetted in a wide context of many
other correspondences, using both continuity and cycle-consistency
criteria involving all the shapes. They are thus well supported by
the data (the initial maps) and are known to “play well” with each
other. The final maps are computed using simple graph-theoretic
criteria from this carefully selected correspondence network, taking
advantage of the flexible routing opportunities it provides.

1.1 Background

The problem of multiple matching, i.e., finding consistent rela-
tions among a collection of objects, is connected with a wide range
of scientific problems, including fusing partially overlapped range
scans [Huber 2002], re-assembling fractured objects [Huang et al.
2006], solving jigsaw puzzles [Goldberg et al. 2004; Cho et al.
2010], and DNA/RNA sequencing and modeling [Marande and
Burger 2007]. It is beyond the scope of this paper to review all the
related literature. In the following, we focus on the contributions
most related to 3D shapes.

1
http://en.wikipedia.org/wiki/Spoke-hub_distribution_paradigm
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Figure 2: The pipeline of our approach is shown. We iteratively select base shapes, from each of which we compute soft maps to other shapes
through a sharpening-and-diffusion process. These soft maps are then converted into point-to-point maps through a global optimization step.
The optimized point-to-point correspondences from the selected base shapes we have created encode a correspondence graph from which we
generate the improved pair-wise point-to-point maps. This procedure is iterated until convergence according to certain criteria.

Most approaches to multiple shape matching take as input an initial
model graph derived from matching pairs of shapes, and outputs
an optimized model sub-graph whose maps are consistent along
loops. Existing approaches fall into two categories. The first cat-
egory of methods aims at finding a spanning tree in the model
graph. In [Goldberg et al. 2004; Huang et al. 2006], the authors
propose to use the maximum spanning tree (MST) of the model
graph. However, this strategy can easily fail since a single incor-
rect edge in the MST may break the entire matching result. In
the seminal work [Huber 2002], Huber showed that finding the
best spanning tree maximizing the number of consistent edges is
NP-hard. Although finding the best spanning tree is not tractable,
Huber introduced several local operations for improving the score
of spanning trees. However, the performance of all these methods
relies heavily on the correctness of the edge weights.

The second category of approaches [Zach et al. 2010; Roberts
et al. 2011; Nguyen et al. 2011] applies global optimization to se-
lect cycle-consistent maps. These approaches are typically formu-
lated as solving constrained optimization problems, where objective
functions encode the scores of selected maps, and constraints en-
force the consistency of selected maps along cycles. The major
advantage of these approaches is that the correct maps are deter-
mined globally. However, as the cycle consistency constraint needs
to apportion blame along many edges on a cycle, the success of
these approaches relies on the assumption that correct maps are
dominant in the model graph so that the small number of bad maps
can be identified through their participation in many bad cycles.

In contrast, our approach exhibits two advantages. First, we for-
mulate shape matching as selection from a small set of high-quality
candidate correspondences. This formulation allows us to combine
the strength of both categories of approaches — i.e., the ability
to optimize maps globally and the ability to tolerate a large frac-
tion of partially incorrect input maps. Second, existing approaches
construct improved maps by composition of initial maps in their en-
tirety. This requires a dominant subset of the initial maps to be fully
correct to get good results. In contrast, our method aggregates cor-
respondence information from all initial maps, since the candidate
correspondences are created through diffusion-and-sharpening. We
thus take advantage of the best parts of each initial map.

The diffusion-and-sharpening operator used in our algorithm fol-
lows the line of diffusion-based techniques in geometry process-
ing [Sun et al. 2009; Sidi et al. 2011; Kim et al. 2012], which
offer rich tools to relate shapes and to aggregate information from
multiple shapes. In particular, Sidi et al [2011] compute diffusion
distances between shape parts for clustering. In independent work,
Kim et al. [2012] compute fuzzy correspondences based on the

diffusion distance induced from the network of initial maps. In
the appendix, we show a mathematical connection between this ap-
proach and ours. Both earlier approaches employ spectral analysis
to compute diffusion distances. In contrast, our approach is based
on exponential maps, involving only sparse matrix multiplication.
The new approach is thus more suitable for large-scale data sets.

2 Method Overview

2.1 Terminology

We assume that shapes are represented as discrete metric
spaces [Mémoli and Sapiro 2005], i.e., a shape S is given by a
set of M samples and a distance matrix dS(·, ·) that describes all
pair-wise distances between samples. For all the examples tested
in this paper, we use M = 512 samples and geodesic distances
for collections of non-rigid shapes, such as humans or animals;
and M = 128 samples and Euclidean distances for more rigid,
man-made objects. For shapes given as triangular meshes, we
can generate such a representation using the approach proposed
in [Lipman and Funkhouser 2009].

Given a source shape S and a target shape S′, a correspondence
c = (s, s′) ∈ S × S′ is an oriented link between a pair of points. A
point-to-point map φ : S → S′ is equivalent to a set of correspon-
dences of the form {(s, φ(s)) : s ∈ S} ⊂ S × S′, i.e., each point on
the source shape appears in exactly one correspondence. This map
is one-to-one if in addition each point from the target shape appears
in exactly one correspondence. We encode a set of correspondences
from S to S′ as a sparse matrix X ∈ R

M×M with X(s, s′) = 1 if (s, s′)
are in correspondence and X(s, s′) = 0 otherwise.

We use the notion of soft map [Solomon et al. 2012] to describe
candidate correspondences. A soft map from S to S′ associates to
each s ∈ S a probability distribution over S′ giving the probability
that s′ ∈ S′ corresponds to s. We encode a soft map as a matrix
C ∈ R

M×M with C(s, s′) ∈ [0, 1] and
∑

s′∈S′ C(s, s′) = 1 for each
s ∈ S. Note that point-to-point maps are a special case of soft maps.

2.2 Pipeline

Input. Shapes S = {Si : i = 1, . . . , n} and a (typically sparse) set
of initial point-to-point maps along with an associated map weight.
We organize this data into a model graph that we denote Minit.
In our evaluations in Section 6, we have used methods adapted
from [Kim et al. 2012] to compute the initial model graph.



Output. A subset of base shapes B ⊂ S , a hub-and-spoke corre-
spondence network G (in which correspondences between points
are routed through base shapes), and a complete set of maps
φi j : Si → S j between all shapes encoded by G .

Components. We use an iterative strategy involving three sepa-
rate components to compute this output. These components are:

1. Construction of optimized maps from a single base shape to all
other shapes along with their approximate inverses.

2. Construction of a complete set of maps encoded in a hub-and-
spoke correspondence network, given a subset of base shapes
and maps between each base shape and all other shapes.

In the process, we also derive quality measures that assess the
degree to which the resulting complete set of maps is neighbor-
preserving and cycle-consistent.

3. Selection of the next base shape.

Pipeline. These components combine in the following way. At
the beginning of each step of the iteration, we have a current subset
of base shapes and maps from these base shapes to all other shapes.

• Add a new base shape and apply the first algorithm component
to produce maps from the new base shape to all other shapes.

• Apply the second algorithm component to the augmented subset
of base shapes and maps.

• If the quality of these maps improves (as defined in Section 5.3),
then proceed to the next iteration.

• Otherwise stop and output the most recent complete set of maps
plus the associated correspondence network and base shapes.

2.3 Pipeline Components

Optimized maps from a single base shape. The input for this
component is the model graph Minit and a choice of a base shape
denoted without loss of generality by S1. The procedure is divided
into two steps: we first compute soft maps C1i from S1 to each other
shape Si along with an associated score w1i that encodes the global
similarity between S1 and Si. We then treat these soft maps as candi-
date correspondences from which we construct point-to-point maps
X1i from S1 to each other shape Si as well as approximate inverse
maps Yi1 from Si back to S1 using a global optimization procedure.
The output is this set of point-to-point maps.

We use a diffusion-and-sharpening approach to compute the soft
maps. The diffusion process aggregates correspondence informa-
tion contained in the model graph through map compositions. This
is motivated by the fact that meaningful correspondences can be
realized along many different paths of maps in this graph. The
sharpening operator ensures that the resulting soft maps are sparse
and neighbor-preserving in the sense that soft maps of neighboring
points have similar distributions. The conversion to point-to-point
maps is then achieved by optimally selecting the most likely corre-
spondences from the soft maps so that the induced maps between
all pairs of shapes are neighbor-preserving and well-aligned with
the initial maps. These two steps are presented in Sections 3 and 4.

Complete set of maps between all shapes. The input for this com-
ponent is the current subset of base shapes B and the map pairs Xb j,
Yjb between each base shape Sb ∈ B and all other S j. The output
is a correspondence network G that is used to encode a complete
set of maps between all pairs of shapes, as well as quality measures
based on cycle-consistency and neighbor-preservation criteria.

Since there is no guarantee that the full set of maps {Xb j,Yjb}
is cycle-consistent, we construct the correspondence network G
by extracting correspondences from a greedily chosen subset of
{Xb j,Yjb} optimizing the above-mentioned quality measures. The
maps encoded by G between all pairs of shapes are defined in terms
of shortest paths in G , which amounts to choosing the appropri-
ate path through base shapes for each correspondence in each map.
This step is presented in Section 5.

Base shape selection. The first base shape is chosen as the shape
having the maximum sum of initial weights to all other shapes:

Sfirst = arg max
S j

∑

j 6=i

winit
ji .

The idea for augmenting the subset of base shapes is to choose the
next base shape “farthest” from the existing base shapes; i.e., the
new base shape covers shapes that are least similar to existing base
shapes. Thus given base shapes B ⊂ S , the next base shape is

Snext = arg min
Si∈S/B

max
Sb∈B

wbi

where w ji is the similarity score between shapes Sb and Si computed
during the most recent run of the soft map creation step. We stop
adding base shapes when the change in the quality measures of the
complete set of maps created from B is smaller than 0.01 times their
absolute value (i.e., the quality measures stabilize).

3 Soft Maps by Diffusion-and-Sharpening

In this section, we introduce an algorithm for computing soft maps
from a single base shape to all other shapes. The algorithm takes as
input a sparse weighted model graph Minit, a set of initial maps X init

i j

between each pair of shapes (Si, S j) ∈ Minit, and a choice of base
shape (without loss of generality, we let S1 denote the base shape).
The output consists of soft maps C1i from S1 to each other shape Si

and weights w1i for i = 2, . . . , n.

Our algorithm is based on the following intuition. Since we can
expect the underlying ground truth maps in a shape collection to be
cycle-consistent, the point correspondences with high confidence
value are those that can be realized by composing maps along
many different paths in the model graph — the more such paths,
the higher the confidence. Since the analog of composing maps is
multiplying soft map matrices (e.g., the composition Si → S j → Sk

corresponds to the matrix product
∑

u C jk(t, u)Ci j(u, s) because this
equals the addition of all (independent) probabilities of reaching
t ∈ Sk from s ∈ Si through u ∈ S j), a standard diffusion procedure
would thus construct a weighted linear combination of products of
soft map matrices that represents the contributions of all paths in the
model graph, with decreasing weights reflecting the fact that long
paths carry less reliable information than short paths. However,
such a standard formulation is insufficient for our purpose because
the diffusion procedure amplifies noise in the soft maps, resulting in
non-sparse soft maps that are unsuitable for the point-to-point map
optimization procedure that will be carried out in the next section.
We therefore introduce a sharpening operator that we apply at each
diffusion step to counteract this effect.

3.1 Algorithm

The diffusion procedure generates a sequence of soft maps C
(k)
1i and

weights w
(k)
1i for k = 1, . . . , kmax representing the soft maps and the

global similarity weights derived from paths from S1 to Si of length
k. The choice of kmax will be given below. To begin with, we set

w
(1)
1i = winit

1i and C
(1)
1i = X init

1i for i = 2, · · · , n .
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Figure 3: The sharpening operator locally perturbs a soft map into
a sharpened soft map that favors crisp distributions for each point
and similar distributions for neighboring points.

Next, given C
(k−1)
1i and w

(k−1)
1i , we compute C

(k)
1i and w

(k)
1i by taking

another matrix product with the initial maps:

w
(k)
1i C

(k)
1i =

∑

( j,i)∈Minit

(winit
ji X init

ji ) ·
(

w
(k−1)
1 j S

(

C
(k−1)
1 j

))

(1)

where S : RM×M → R
M×M is a column-sum preserving sharpening

operator that we will define precisely below. Finally, we set

w
output

1i C
output

1i = S

(

kmax
∑

k=1

αkw
(k)
1i S
(

C
(k)
1i

)

)

. (2)

Here, αk are parameters specifying the importance of aggregating
maps along paths of different length. We take αk = tk/k! and have
found in our experiments that t = 8/G where G is the average va-
lence in Minit offers a good balance between short and long paths.

We also choose kmax as the least k for which ‖αkS
(

C
(k)
1i

)

‖1 < 0.01.
Note that equation (1) and (2) define both the soft maps and the
weights because matrices with fixed column sums are closed under
linear combinations.

3.2 Sharpening Operator

We formulate the process of sharpening a soft map C from shape
S to shape T as solving a constrained optimization problem. The
constraints ensure that correspondences are only aggregated locally
during the sharpening process (i.e., we would like to preserve the
peaks in the probability distributions represented by the columns
of C while dampening the noise). The objective function favors
sparsity (i.e., only a small number of candidate correspondences
are retained) and neighbor-preservation (i.e., target points of neigh-
boring source points are also neighbors).

Constraints. We parameterize soft map matrices Ĉ near C by
adapting the mass-preserving formulation of Earth-Mover’s Dis-
tance [Rubner et al. 2000]. Let AT be the adjacency graph con-
necting each point in T with its k = 18 nearest neighbors. To each
edge (t, t ′) ∈ AT let gt→t ′

s be a positive latent variable giving the

contribution of t ∈ T to the t ′-entry of the column Ĉ(s, ·). That is,

Ĉ(s, t) =
∑

(t ′,t)∈AT

gt ′→t
s ∀t ∈ T. (3)

Additionally, we require that the sum of the latent variables of edges
emitting from each t ∈ T should equal the original entries of the
column C(s, ·). In other words,

C(s, t) =
∑

(t,t ′)∈AT

gt→t ′

s ∀t ∈ T. (4)

Note that by construction Ĉ has the same column sums as C. We
summarize Equations 3 and 4 in their matrix form as

Ĉ(s, ·) = Joutgs and Jings = C(s, ·) ∀s ∈ S. (5)

where the matrices Jout and Jin encode the connectivity of AT and
the vector gs holds the latent variables associated with the point s.

Objective function. Let AS be the adjacency graph connecting each
point in S with its k = 6 nearest neighbors, we define the objective

source points

source shape

target shape

so! corres. sharpened corres. overlaid

Figure 4: The effect of sharpening on a soft map from a cow model
to a horse model. For clarity, we only show the soft maps and
sharpened soft maps from two sample points on the source. Note
that the sharpened soft maps do not necessarily correspond to local
extrema of the original soft maps.

function to be maximized as

F(Ĉ) =
∑

t,t ′∈T

∑

(s,s′)∈AS

Ĉ(s, t)M(s, s′, t, t ′)Ĉ(s′, t ′)
(6)

where M(s, s′, t, t ′) = exp(−(dS(s, s′) − dT (t, t
′))2/2σ2) encodes

local similarity of geodesic distances and σ estimates the allowed
stretching. We set σ equal to 0.05 times the average of the maxi-
mum inter-point geodesic distances of the input shapes.

The objective function above achieves both sparsity and neighbor-
preservation for the following reasons. First, as the sum of elements
of vector Ĉ(s, ·) is 1 for each point s, the expected value of the
summand in Equation 6 is roughly proportional to 1/kk′ where k

and k′ are the number of non-zero elements of Ĉ(s, ·) and Ĉ(s′, ·),
respectively. Thus, maximizing F favors a small number of non-
zero matrix entries. Second, maximizing F favors preservation of
distances between induced candidate correspondences of neighbor
points. We are aware of other possible objective functions — e.g.,
one could achieve sparsity by optimizing an entropy potential [Chui
and Rangarajan 2003].

Optimization. Substituting Equation 5 into Equation 6, we have
the following linearly constrained quadratic programming problem:

(goptimal
s1

, . . . , goptimal
sM

) = arg max
∑

(s,s′)∈AS

[Joutgs]
⊤Mss′Joutgs′ (7)

s.t. Jings = C(s, ·) ∀ s ∈ S and gs ≥ 0 ∀ s ∈ S.

The sharpened soft map is then given by

S(C)(s, ·) = Joutg
optimal
s ∀ s ∈ S .

As each variable gt→t ′

s appears exactly once in the constraints, this
optimization problem can be understood as a quadratic program-
ming relaxation of the standard second-order maximum a posteriori
(MAP) problem [Leordeanu and Hebert 2006; Kumar et al. 2009].
In this paper, we use the climbing method introduced in [Leordeanu
and Hebert 2006] for optimization due to its memory efficiency
(only sparse matrix multiplications are performed).

Discussion. We have studied the influence of the sharpening op-
erator on the resulting diffused maps. Figure 4 illustrates the dif-
ference between the soft map from a cow model to a horse model
and its sharpened soft map. The sharpened soft map contains far
fewer correspondences while still preserving the main correspon-
dence clusters. In addition, the sparse correspondences vary in a
consistent manner as the source point changes. Figure 5 compares
the quality of the best soft correspondences, i.e., the maximum-
likelihood correspondence, among (i) diffused maps without sharp-
ening, (ii) sharpened maps after standard diffusion, and (iii) sharp-
ening throughout the diffusion process (i.e., our approach). Exper-
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Figure 5: Comparison among three different strategies for diffus-
ing maps on the Fourleg data set: sharpening through diffusion;
sharpening after diffusion; no sharpening. The former yields the
soft maps with sharpest peaks and smallest geodesic error. (Left)
Geodesic error of the best soft maps for each point. (Right) The
mean number of non-zero entries in the soft map per point. The
statistics are averaged over the results obtained by using each input
shape as the base shape.

imental results show that our approach yields far better results in
quality and sparsity than maps generated through diffusion alone.
Moreover, sharpening the soft map throughout the diffusion process
prevents large-scale drifting of the correspondences, after which
rectification through local modifications alone is impossible.

4 Joint Point-to-Point Map Optimization

We now show how to extract maps X1i : S1 → Si and their approx-
imate inverses Yi1 : Si → S1 from the soft maps C1i created above.
We perform a joint optimization, formulated as a quadratic integer
program, using the entries of C1i to constrain the number of can-
didate correspondences from which the correspondences in X1i and
Yi1 are selected. The objective function consists of an alignment
term favoring the alignment of the initial maps with the induced
maps between all pairs of shapes (i.e., the maps X1i, Yi1 and the
composite maps X1 j · Yi1 : Si → S j), a neighbor-preservation term,
and a regularization term favoring Yi1 · X1i approximate the identity
map on S1.

Constraints. To allow only high-probability correspondences, we
set a threshold δ ∈ (0, 1) (we take δ = 0.05) and impose

X1i(s, s′) = 0 whenever C1i(s, s′) ≤ δ . (8)

We add additional constraints designed to ensure that the remaining
entries of X1i have a single one in each column, namely

∑

s′

X1i(s, s′) = 1 ∀ s ∈ S1 and ∀ i = 2, . . . , n . (9)

Similarly, each Yi1 is also constrained by (8) and (9).

Alignment term. We score the similarity between the induced
maps and the initial maps in Minit by means of cumulative similarity
between their correspondences:

Falign(X12, . . . ,X1n,Y21, . . . ,Yn1)

=
1

M

[

∑

(1,i)∈Minit

−−→
align1(X1i) +

∑

(i,1)∈Minit

←−−
align1(Yi1)

+
∑

(i, j)∈Minit

align2(X1i,Yj1)
]

(10)

where M is the number of points for each shape. Here

−−→
align1(X1i) =

∑

s∈S1

∑

t∈Si

X1i(s, t)α
(

(s, t),X init
1i

)

←−−
align1(Yi1) =

∑

s∈S1

∑

t∈Si

Yi1(t, s)α
(

(t, s),X init
i1

)

align2(X1i,Yj1) =
∑

s∈S1

∑

t∈Si

∑

t ′∈S j

X1i(s, t)Yj1(t
′, s)α

(

(t, t ′),X init
i j

)

and α
(

(s, t),X
)

scores the alignment between a single correspon-
dence (s, t) ∈ Si × S j and an initial map X from Si to S j via

α
(

(s, t),X
)

= max
t ′:dS j

(t,t ′)≤2σ
w X(s, t ′) .

Here w is the weight associated to X and σ is 0.05 times the average
of the maximum inter-point geodesic distance of each input shape.
In other words, α

(

(s, t),X
)

= w if the distance between t and the
image point of s under X is less than 2σ .

Neighbor-preservation term. We score neighbor-preservation
only for the maps X1i since optimizing this score implicitly opti-
mizes the neighbor-preservation property of all other induced maps.
We count pairs of neighboring points in S1 mapped to neighboring
points in Si. Formally, let A1 be the adjacency graph connecting
each point in S1 with its k = 6 nearest neighbors and define

Fnb(X12, . . . ,X1n)

=
1

E1

n
∑

i=2

∑

(s,s′)∈A1

∑

t,t ′∈Si

X1i(s, t)W
nb
i (s, s′, t, t ′)X1i(s

′, t ′) (11)

where E1 denotes the number of edges of A1 and

W nb
i (s, s′, t, t ′) =

{

1
∣

∣dS1
(s, s′)− dSi

(t, t ′)
∣

∣ ≤ 2σ

0 otherwise .

Regularization term. The regularization term promotes the maps
X1i and Yi1 to be inverses of each other. We achieve this with

F reg(X12, . . . ,X1n,Y21, . . . ,Yn1) =
n
∑

i=2

align2(Yi1,X1i) . (12)

We use the function align2 to score the alignment of the com-
position X1i · Yi1 with the identity mapping of S1, i.e, by setting
X init

i j = identity in the definition of align2 given above.

Optimization. We find the desired point-to-point maps by solving
(

X12, . . . ,X1n,Y21, . . . ,Yn1

)

= arg max
(

Falign(X12, . . . ,X1n,Y21, . . . ,Yn1)

+ λ · Fnb(X12, . . . ,X1n)

+ µ · F reg(X12, . . . ,X1n,Y21, . . . ,Yn1)
)

(13)

subject to the constraints

X1i,Yi1 ∈ [0, 1]M×M ∀ i = 2, . . . , n
∑

s′

X1i(s, s′) = 1 ∀ s ∈ S1,
∑

s

Yi1(s, s′) = 1 ∀ s′ ∈ Si

X1i(s, s′) = Yi1(s
′, s) = 0 whenever C1i(s, s′) ≤ δ .

The parameters λ and µ control the importance of the neighbor-
preservation and the regularization terms respectively. We have
chosen λ = 10 and µ = 100 for all examples tested herein.

The variables in Equation 13 are binary, the objective function is
quadratic, and the second constraint can be understood as picking a
label between each sample s and each shape Si. Thus the problem
(13) is again a second-order MAP problem [Kumar et al. 2009] that
we solve using the technique of [Leordeanu and Hebert 2006].
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Figure 6: The quality of all
pair-wise induced maps is similar
across different shapes.

Discussion. We have eval-
uated the performance of
the resulting point-to-point
maps on the Fourlimb data
set consisting of 18 hu-
mans and 20 animals. As
shown in Figure 6, the
resulting maps are much
better than those obtained
from the most likely cor-
respondences implied by
the soft maps. This indi-
cates the need for optimiz-
ing maps simultaneously.
Moreover, using different base shapes yields roughly the same re-
sult, indicating the approximate invariance of our objective function
to different base shapes.

5 Creating a Complete Set of Maps

In this section, we show how to create a complete set of maps be-
tween all pairs of shapes given a subset of base shapes B ⊂ S along
with the map pairs Xb j, Yjb between Sb ∈ B and all other S j for
j ∈ {1, . . . , n} \ {b}. Let MB be the model graph that represents
this data. Our strategy is to construct the complete set of maps in
a holistic way in terms of paths of individual points through a hub-
and-spoke correspondence network G constructed from a greedily
chosen subset Mseed ⊆ MB (See Figure 7). We make the choice of
Mseed in such a way to optimize neighbor-preservation and cycle-
consistency of the induced complete set of maps, as there is no
guarantee that the maps in MB are cycle-consistent. Unlike standard
approaches that use composition to define maps between shapes,
the idea of using the hub-and-spoke correspondence network allows
us to utilize the best parts of the supplied maps.

Below we show how to initialize Mseed and how to augment it
by adding pairs of maps Xb j,X jb. Then we show how to con-
struct the hub-and-spoke correspondence network G given an in-
stance of Mseed and how to extract maps between all pairs of shapes
from G . Finally, we introduce the neighbor-preservation and cycle-
consistency quality measures used to determine whether a pair of
maps should be kept in Mseed during the augmentation process.

5.1 Initialization

We initialize Mseed by selecting a minimal spanning tree for MB

w.r.t. the weights 1/align2(Xb j,Yjb) for each Xb j,Yjb pair. Intu-
itively, these weights favor map pairs for which Yjb is close to the
inverse of Xb j and imply a high similarity between Sb and S j.

Furthermore, we augment Mseed during the procedure of the next
section by adding map pairs in order of increasing weight.

Mseed:

G :

Figure 7: Schematic illustration of the process of creating a com-
plete set of maps. Mseed is initialized as a minimum spanning tree
of MB. We then add remaining maps in MB into Mseed by monitor-
ing the quality measures of complete set of maps derived from the
associated hub-and-spoke correspondence network G .

Removed

Base shapesInput shapes

Ini!al map

Maps in 

Maps in 

Final map

Mseed

MB

Figure 8: Creating a complete set of maps for the Plane dataset.
(Top) Mseed that defines the hub-and-spoke correspondence net-
work. (Bottom) The initial and final point-to-point map between
two airplanes. The coloring in the final map represents the inter-
mediate base shape used for defining correspondences.

5.2 Constructing the Complete Set of Maps

We first build the hub-and-spoke correspondence network induced
by the current Mseed. This is a graph G over all sample points in
all shapes S1, . . . , Sn using the correspondence information con-
tained in all the X ,Y maps encoded in Mseed. That is, we let the
vertices of G be all points s ∈ Si for all i ∈ {1, . . . , n}. We declare
(s, t) ∈ Si × S j to be a directed edge in G if the correspondence
(s, t) appears in any of these X ,Y maps. In addition, we assign a
weight ω(s, t) to this edge based on the amount of local geodesic
distance distortion caused by these maps. That is,

ω(s, t) =
∑

s′,s′′∈N (s)

∣

∣dSi
(s′, s′′)− dS j

(t ′, t ′′)
∣

∣ , (14)

where t ′, t ′′ ∈ S j correspond to s′, s′′ under the appropriate X or Y
map, and N (s) is the set of k = 32 nearest neighbors of s.

We now use this graph to construct maps between all shapes. Let
distG denote the graph metric of G induced by the edge weights
defined in (14). For any i, j ∈ {1, . . . , n} we define φi j : Si → S j as

φi j(s) = arg min
t∈S j

distG (s, t) . (15)

5.3 Accepting New Maps Based On Quality Measures

Let Φ = {φi j : i, j = 1, . . . , n} be the complete set of maps between
all pairs of shapes created above. It remains to test the quality of
Φ in order to decide whether or not to accept the additional Xb j,Yjb

pair under consideration. We use two quality measures qualcycle

and qualnb that evaluate the extent to which these maps fail to be
cycle-consistent and neighbor-preserving, respectively. The crite-
rion we use for accepting a new map pair is: if qualcycle(Φ) ≤ 3 and

qualnb(Φ) decreases from the previous iteration, then we accept it.

The quality measures we use are defined as follows.

Cycle-consistency. Let Ci denote the union of the 2-cycles
(φi j, φ ji) and the 3-cycles (φi j, φ jk, φki) starting at Si. Define

qualcycle(Φ) = max
i

max
c∈Ci

1

M

∑

s∈Si

∣

∣dSi

(

s, s′)
∣

∣

σi

, (16)
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Figure 9: Comparison between various methods on the Chair and
Airplane datasets provided in [Kim et al. 2012].

where s′ is the image point of s under the composition of the maps
in the cycle c (i.e., s′ = φ ji ◦ φi j(s) in the case of a 2-cycle and
s′ = φki ◦ φ jk ◦ φi j(s) in the case of a 3-cycle).

Neighbor-preservation. Let Ai be the adjacency graph connect-
ing each point in Si with its k = 6 nearest neighbors and let σi be
0.05 times the average inter-point geodesic distance of Si. Define

qualnb(Φ) = max
i j

∑

(s,s′)∈Ai

∣

∣dSi
(s, s′)− dS j

(φi j(s), φi j(s
′))
∣

∣

|Ai|σi

. (17)

5.4 Discussion

The maps φi j that we have created with the procedure explained
above are constructed by assembling individual correspondences
taken from compositions of X and Y maps along different
paths. Therefore, a natural question to ask is whether neighbor-
preservation and cycle consistency still hold for the output maps.

First and foremost, our experimental results show that these qual-
ities are indeed exhibited by the output maps. Although we do
not supply theoretical justification for this behavior, a strong ar-
gument can be given as follows. First, if it is the case that the
maps in Mseed are cycle-consistent, then the composite map along
any paths between a fixed pair of shapes commute. Thus, these
two criteria are satisfied in this case (the composite maps inherit
the neighbor-preserving property from the maps in Mseed). Since
we have greedily chosen Mseed to satisfy cycle-consistency and
neighbor-preservation criteria, we thus expect the output maps to
approximately satisfy these criteria in the general case as well.

6 Results

6.1 Experimental Setup

We have evaluated the presented approach on the benchmark
datasets SCAPE [Anguelov et al. 2004], SHREC07 [Giorgi et al.
2007; Kim et al. 2011] and the datasets from [Kim et al. 2012].
The SCAPE dataset consists of 71 models. Each model is meshed
with the same topology, providing ground-truth correspondences
for evaluation. The SHREC07 benchmark contains 400 models in
20 categories of 20 models each provided with manually aligned
features across shapes for evaluation. As in [Kim et al. 2011],
we select 11 datasets that are most suitable for computing shape-
wise maps. We further divide them into a non-symmetric subset

Nb-Pres. Cycle-Cons. Tim-

n Mean Max Mean Max |B| ing(s)

Scape. 71 0.25 2.3 0.45 2.3 3 255.4

Armadil. 20 0.27 2.7 0.65 3.3 2 55.4

Fish 20 0.42 3.5 0.73 3.9 3 287.1

Fourleg 20 0.39 3.5 0.81 3.4 3 71.4

Hand 20 0.35 3.2 0.78 3.3 3 115.1

Human 18 0.28 3.5 0.46 3.4 2 34.2

Fourlimb 38 0.39 3.7 0.87 3.9 4 321.2

Ant 20 0.25 3.2 0.78 3.4 2 282.6

Bird 20 0.34 3.4 0.76 3.5 4 179.1

Glasses 20 0.41 3.5 0.72 3.1 2 172.4

Plane 20 0.37 3.8 0.78 3.3 3 210.6

Plier 20 0.37 2.6 0.62 3.1 2 101.2

Teddy 20 0.34 3.1 0.67 2.8 1 107.6

Airplane 86 0.39 2.2 1.02 2.7 7 981.2

Chair 111 0.36 2.5 1.16 3.2 9 1423

Table 1: Statistics on the shape collections provided in
SHREC07 [Giorgi et al. 2007] and in [Kim et al. 2012]. From
left to right, we show the number of input shapes, the mean and the
max of neighbor-preservation distortion, the mean and the max of
cycle-consistency distortion, the number of base shapes being used,
and the running time.

(Armadillo, Fish, Fourleg, Hand, Human), where models do not ad-
mit salient rotational intrinsic symmetries, and a symmetric subset
(Ant, Bird, Glasses, Plane, Plier, Teddy) containing the remaining
models. For the Man-Made datasets from [Kim et al. 2012], we
select Chair and Airplane which include manually labeled features.

Initial maps. For all the categories provided in the SHREC07 and
the SCAPE dataset, we compute blended intrinsic maps [Kim et al.
2011] between all pairs of shapes. For the Chair and the Airplane
datasets, we use the same strategy described in [Kim et al. 2012]
that performs affine registration between a sparse of set of shape
pairs that are close to each other in feature space. In order to make
a fair comparison with [Kim et al. 2012], we use the same strat-
egy described in [Kim et al. 2012] for weighting each initial map
and its correspondences. The weighting scheme essentially consid-
ers neighbor-preservation at both the correspondence level and the
shape level. Please refer to [Kim et al. 2012] for details.

Evaluation protocol. We evaluate the quality of the complete set of
maps produced by our algorithm in three ways. (1) We evaluate the
feature alignment error of the maps when manually labeled features
are available. Note that for the SCAPE dataset, we take correspond-
ing vertices on different models. Between each pair of shapes S1, S2

and for each pair of corresponding feature points f1, f2, we evaluate
the geodesic distance distortion dS j

( f2,Xi j( f1)). To visualize the er-
ror, we plot the percentage of feature pairs with dS j

( f2,Xi j( f1)) < ε

against ε (Figures 10, 11). If f1 does not lie on a sample point, we
snap f1 into its closest sample. (2) We evaluate cycle-consistency
distortion by collecting the mean and maximum of the per-cycle
quality measure qualcycle(s, c) (defined by removing both maxima
and the average from (16)). Note that we weigh 2-cycles and 3-
cycles properly to equalize their contributions. (3) We evaluate
neighbor-preservation distortion by collecting the mean and max-
imum of the per-map quality measure qualnb(Xi j, s, s′) (defined by
removing the maximum and the average from (17)) and plot the
percentage of maps with qualnb(Xi j, s, s′) < ε against ε (Figure 12).

6.2 Analysis of Matching Results

Table 1 and Figures 9-10 provide the main results of the presented
approach. All results were obtained with the same set of parameters
described throughout the paper. Overall, both the sharpened soft
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Figure 10: Performance of various methods on the SCAPE dataset [Anguelov et al. 2004] and on the SHREC07 benchmark [Giorgi et al.
2007]. The sharpened soft maps outperform existing approaches. The cycle-consistent point-to-point maps further improve over the sharp-
ened soft maps. Most of our errors are caused by global intrinsic symmetries existing in the datasets.
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Figure 11: Comparison between the output of various methods by taking blended intrinsic maps as input. In the plots, (Opt+Fuzzy) stands
for using local extrema of fuzzy correspondences [Kim et al. 2011] as input to the global optimization framework, and (Opt+Sharpened Soft)
stands for using sharpened soft maps as input to the same framework.

maps and the cycle-consistent point-to-point maps produce results
that are much better than the initial maps.

Feature alignment. On non-symmetric datasets, the alignment
errors between nearly all pairs of features are less than 0.25dmax

where dmax is the averaged maximum distance between all pairs of
points in every shape. In other words, our cycle-consistent point-
to-point correspondences can recover the underlying ground truth
maps in the global sense, a favorable result. For symmetric shapes,
the performance of the presented approach drops. This is expected
because both cycle-consistency and neighbor-preservation are pre-
served if we compose all pairwise maps by the self-symmetries
associated with each shape. However, the feature alignment error
of our approach is still significantly lower than the initial maps.

Neighbor-preservation. Our approach generates maps with low
geometric distortion. As shown in Table 1, the averaged neighbor-
preservation distortion qualnb(Xi j, s, s′) on all datasets tested ranges
from 0.25 to 0.41. Since the correspondences between neighbor-
ing points may follow different paths, the maximum neighbor-
preservation distortion is larger than the sampling density. How-
ever, it is still bounded above by 3-4 times the sampling density.

We also studied the behavior of neighbor-preservation when using
different numbers of base shapes. There are two potential effects
when increasing this number. On one hand, adding more base
shapes may provide better base shape selection in building the map
between a pair of shapes. On the other hand, a pair of neighbor-
ing points might follow different paths in the expanded graph, and
thus may be less neighbor-preserving. In practice, we find that the
former effect is more dominant than the latter (see Figure 12).

Cycle-consistency. The averaged distortion along cycles ranges
from 0.45 to 1.16 (the implied geodesic distance distortion is that
number times the sample spacing). The cycle distortion increases
when variation in the input shapes becomes large, e.g., on Fourlimb,
Airplane and Chair datasets. Cycle-consistency distortion increases
slightly when using more base shapes (see Figure 12). This is

expected since multiple base shapes allow correspondences in the
pairwise maps to follow different paths through the correspondence
network. However, we find that this effect quickly tapers off.

Few base shapes are sufficient. In general, we find that our ap-
proach converges in a few iterations. In the ideal case where all
input shapes are highly similar, one base shape is enough. For
datasets with moderate shape variation, our approach converges
in up to four iterations. The number of base shapes increases as
the shape variation becomes bigger (7 base shapes for the Airplane
dataset and 9 base shapes for the Chair dataset). But still the number
of base shapes is much smaller than the number of input shapes.

Timing. Our approach runs in a few minutes to dozens of minutes
on shape collections with approximately 100 models. Please refer
to Table 1 for details. The majority of time is spent on solving the
two optimization problems, i.e., sharpening soft maps and convert-
ing soft maps into point-to-point maps. The complexity of sharpen-
ing one soft map is given by O(Mn2

c imax) where nc is the averaged
number of correspondences with non-zero entries and imax is the
number of climbing methods [Leordeanu and Hebert 2006]. In our
experiments, sharpening one soft map takes ∼ 0.01s to 0.2s. The
complexity of converting to point-to-point maps is O(n · n2

c imax).
This procedure took 100.2 seconds for the Chair dataset.
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Figure 12: Statistics on the Chair dataset. (a) The base shapes, (b-
d) plots respectively of neighbor-preservation, cycle-consistency,
feature alignment error when using different numbers of shapes.
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Figure 13: Comparison between optimized graph I derived from
fuzzy correspondences, and optimized graph II derived from cycle-
consistent point-to-point maps.

Limitations. A limitation of our approach is that the global opti-
mization strategy, which assigns each point on the base shape with
exactly one correspondence on each other shape, favors full simi-
larity between shapes. In future, we will consider how to modify
the formulation so that it allows partial similarity between shapes.

6.3 Comparisons

Comparison with [Kim et al. 2012]. First, we compare the
best fuzzy correspondences [Kim et al. 2012] with best correspon-
dences provide by (sharpened) soft maps computed by our ap-
proaches. It is clear that the sharpened soft maps are much better
than results from fuzzy correspondences and unsharpened fuzzy
correspondences (see Figures 10, 11). This shows that enforcing
neighbor-preservation can significantly improve the resulting cor-
respondences and maps. In addition, the un-sharpened soft maps
yield similar results as fuzzy correspondences.

Second, we compare the resulting cycle-consistent point-to-point
maps with the maps obtained by using local extrema of fuzzy cor-
respondences as input, as well as with the maps obtained by using
sharpened soft maps as input. As shown in Figure 11, our global
optimization framework improves both methods. However, the one
with sharpened soft maps as input yields slightly better results. This
is because the fuzzy correspondences are less consistent between
neighboring points than the sharpened soft correspondences, de-
creasing the effectiveness of the neighbor-preservation term.

When evaluating the presented approach on datasets with different
quality of initial maps, we can see that the cycle-consistent point-
to-point maps are less sensitive to the initial maps than (sharpened)
soft maps and best fuzzy correspondences [Kim et al. 2012]. This
indicates the stability of our global optimization framework against
noise introduced in the initial maps (see Figure 11).

We also compare the effects of feeding the cycle-consistent point-
to-point maps into the graph optimization strategy described
in [Kim et al. 2012] with that of using the original strategy (see
Figure 13). Given the current maps between pairs of shapes, the
graph optimization first deletes initial maps that are inconsistent
with current maps and then re-computes initial maps between
similar shapes suggested by current maps. As the cycle-consistent
point-to-point maps provide better alignments of shapes, the soft
maps and fuzzy correspondences computed on the optimized graph
derived from cycle-consistent maps are better than those computed
on the optimized graph generated from fuzzy correspondences.
However, the final maps on both optimized graphs are similar,
again indicating the stability of our approach.

Comparison with [Nguyen et al. 2011]. Since the approach pre-
sented in [Nguyen et al. 2011] only works for dense graphs, we only
present the comparison on SHREC07. As shown in Figures 10, 11,

our approach yields much better results, particularly on datasets
where initial maps have moderate or low quality. This is because
their approach is based on composing full maps and assumes full
maps are correct everywhere when composing maps. In contrast,
our approach breaks maps into correspondences which are then re-
assembled into new maps through global optimization. We can thus
tolerate a significant amount of noise in the initial maps.

7 Conclusion

In this paper, we have presented an optimization approach that gen-
erates a compact representation of a set of pair-wise maps between
all shapes in a collection so that several global consistency criteria
are met. The collection of maps is represented in an implicit format,
through the extraction of a small set of base shapes that best repre-
sents the collection and well-chosen correspondences between each
base shape and all the other shapes. This hub-and-spoke network of
correspondences reflects our joint understanding of the shape col-
lection and enables us to robustly transport correspondences across
the collection. The final map for each pair of shapes S and T is
obtained by tracing optimal paths through this network, allowing
for different intermediate shapes on the paths that transport points
of S to points of T . This provides the flexibility to benefit from
good parts of various maps, without being forced to use a particular
map in its entirety or not at all. Experimental results on benchmark
datasets show that exploiting the context provided by the shape col-
lection by means of correspondence regularization via consistency
constraints enables significant improvements in map quality when
compared to extant methods.

The presented work suggests many avenues for future research. For
example, it would be desirable to have more formal conclusions
about the quality of the final maps (cycle closure, etc), under some
assumptions on the quality/number of input maps. It would also
be nice to better understand the stability of the computed maps
under various perturbations, both to the initial maps and to the
set of shapes being given. Ideally, the process of computing the
initial maps (and deriving the model graph we start from) should
be integrated into our approach to produce a unified pipeline for
computing globally consistent maps in a shape collection. Both
the selection of the base shapes as the collection representatives,
and the combinatorial path classes by which our network routes
correspondences among shapes suggest further investigations into
ways to summarize shape collections and to recover consistent parts
among shapes in the collection. Finally, we also hope that each of
our individual technical contributions can be useful in other con-
texts — for example the diffusion/sharpening approach may also
be applicable in processing other kinds of signals, such as images.
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A Connection Between Unsharpended Soft

Maps and Spectral Embedding Distance

Let A ∈ RMn×Mn be the big initial map matrix for points on all
shapes, i.e. each non-zero M ×M block Ai j = Cinit

i j is given by the
corresponding initial map specified in the model graph. Denote
C ∈ RMn×Mn as the big soft map matrix that collects all unsharpened
soft maps, i.e. the M×M block Ci j is given by the unsharpened soft
map from shape Si to S j. Let (λi,ui), 1 ≤ i ≤Mn be the eigenvalue-
eigenvector pairs of matrix A, we can write

C =

∞
∑

k=0

αkAk =

∞
∑

k=0

tk

k!
(

Mn
∑

j=1

λ k
j u ju

T
j ) =

Mn
∑

j=1

eλ jtu ju
T
j .

Define a distance d(s, s′) between two points s and s′ as the distance
between their corresponding vectors C(s, ·) and C(s′, ·):

d2(s, s′) = ‖C(s, ·)−C(s′, ·)‖2 =

Mn
∑

j=1

eλ jt‖u j(s)− u j(s
′)‖2.

In other words, d(s, s′) is the distance between s and s′ in the space
spanned by weighted eigenvectors {eλ jtui}. This gives a connection
between our approach and [Kim et al. 2012].


