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ON POSITIVE SCALAR CURVATURE AND MODULI
OF CURVES
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Abstract

In this article we first show that any finite cover of the moduli
space of closed Riemann surfaces of genus g with g > 2 does not
admit any Riemannian metric ds2 of nonnegative scalar curvature
such that ‖ · ‖ds2 � ‖ · ‖T where ‖ · ‖T is the Teichmüller metric.

Our second result is the proof that any cover M of the moduli
space Mg of a closed Riemann surface Sg does not admit any com-
plete Riemannian metric of uniformly positive scalar curvature in
the quasi-isometry class of the Teichmüller metric, which implies
a conjecture of Farb–Weinberger in [9].

1. Introduction

Many aspects of positive scalar curvatures on Riemannian manifolds
have been well understood since the fundamental works of Schoen–Yau
[31, 32] and Gromov–Lawson [14, 15]. Important generalizations have
been developed by Roe [29], Yu [43] and many others. The main object
of this paper is to study obstructions to the existence of positive scalar
curvature metric on the moduli spaces of Riemann surfaces.

Let Sg be a closed Riemann surface of genus g with g > 2, Mod(Sg)
be the mapping class group and Teich(Sg) be the Teichmüller space of
Sg. Topologically Teich(Sg) is a manifold of real dimension 6g−6, which
carries various Mod(Sg)-invariant metrics which descend to metrics on
the moduli spaceMg of Sg with respective properties. For examples, the
famous Weil–Petersson metric and Teichmüller metric. The Teichmüller
metric ‖ · ‖T is not Riemannian but a complete Finsler metric. It was
shown in [24] that ‖·‖T is not nonpositively curved in the metric sense by
showing that there exists two different geodesic rays starting at the same
point such that they have bounded Hausdorff distance. Furthermore,
Masur and Wolf in [26] showed that (Teich(Sg), ‖ · ‖T ) is not Gromov-
hyperbolic. The Weil–Petersson metric ds2WP is Kähler [1], incomplete
[7, 35], geodesically convex [37] and has negative sectional curvature
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[34, 36]. Since g > 2, the works in [38, 42] tell that Teich(Sg) is
not Gromov-hyperbolic. Let Teich(Sg,n) be the Teichmüller space of
surfaces of genus g with n punctures. Brock and Farb in [4] showed
that the space (Teich(Sg,n), ds2WP ) is Gromov-hyperbolic if and only if
3g + n 6 5.

There are also some other important metrics on Mg. For exam-
ples, the asymptotic Poincaré metric, the induced Bergman metric, the
Kähler–Einstein metric, the McMullen metric, the Ricci metric, and
the perturbed Ricci metric are all complete and Kähler metrics. The
Kobayashi metric and the Caratheódory metric are complete Finsler
metrics. In [21, 22, 27], the authors showed that all these metrics are
bi-Lipschitz (or equivalent) to the Teichmüller metric. And the Weil–
Petersson metric plays important roles in their proofs.

The perturbed Ricci metric [21, 22] has pinched negative Ricci curva-
ture. In particular, it also has negative scalar curvature. The McMullen
metric [27] has negative scalar curvature at certain points since the met-
ric, restricted on a certain thick part of the moduli space, is the Weil–
Petersson metric. However, Farb and Weinberger in [13] showed that
any finite cover M of the moduli space Mg (g > 2) admits a complete
finite-volume Riemannian metric of (uniformly) positive scalar curva-
ture, which is analogous to Block–Weinberger’s result in [5] on certain
locally symmetric arithmetic manifolds.

The motivation of this paper is a result of Gromov–Lawson in [15]
which says that given a complete Riemannian manifold (X, ds21) of non-
positive sectional curvature, then X cannot admit any Riemannian met-
ric ds22 on X with ‖ · ‖ds22 � ‖ ·‖ds21 such that (X, ds22) has positive scalar

curvature. (One can also see Theorem 1.1 in [29]) where ‖·‖ds22 � ‖·‖ds21
means that there exists a constant k > 0 such that for all tangent vector
v we have ‖v‖ds22 > k · ‖v‖ds21 . One immediate application is that the

torus Tn (n ≥ 2) cannot carry a complete Riemannian metric of positive
scalar curvature. For low dimensions n 6 7, this was first settled in a
series of papers by R. Schoen and S. T. Yau in [31] and [32].

Our first result in this paper is the following theorem.

Theorem 1.1. Let Sg be a closed Riemann surface of genus g with
g > 2 and M be a finite cover of the moduli space Mg of Sg. Then for
any Riemannian metric ds2 on M with ‖ · ‖ds2 � ‖ · ‖T where ‖ · ‖T is
the Teichmüller metric,

inf
p∈(M,ds2)

Sca(p) < 0.

E. Leuzinger in [20] showed that any finite cover of the moduli space
Mg of Sg does not admit any Riemannian metric of uniformly positive
scalar curvature such that the metric is bi-Lipschitz to the Teichmüller
metric. Theorem 1.1 generalizes his result and the method in this article
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is completely different from the one of E. Leuzinger in [20]. Leuzinger
first provided a good partition for a finite manifold cover of the moduli
space and then apply an argument of Chang [6] to prove his theorem.
Our method is to use some recent developments in [2, 21, 22, 27] on
the geometry of Teichmüller space as bridges to prove Theorem 1.1.
The second author in [41] applied the negativity of the Ricci curvature
of the perturbed Ricci metric [21, 22] to show that any finite cover of
the moduli space Mg does not admit any complete finite-volume Kähler
metric of nonnegative scalar curvature. Moreover, he also showed that
the total scalar curvature of any Kähler metric, which is bi-Lipschitz
to the Teichmüller metric, is negative provided the scalar curvature is
bounded from below. However, the method in [41] highly depends on
the canonical complex structure on Mg. For example, the identity map
between Mg endowed with different Kähler metrics is biholomorphic.
Then certain Bochner formula can be applied. In the setting of Rie-
mannian metrics, the identity map cannot even be harmonic.

Theorem 1.1 applies to the metric ds2 = ds2∗+ds2a where ds2∗ is either
the McMullen metric, Bergman metric, Ricci metric or perturbed Ricci
metric and ds2a is only Riemannian and not necessarily Hermitian. We
remark here that there is no finite-volume condition for Theorem 1.1.
As stated above the Teichmüller metric is not nonpositively curved. So
the argument in [15] cannot lead to Theorem 1.1.

Remark 1.2. (1). Following entirely the same arguments in this
article, one can deduce that Theorem 1.1 is still true for the Teichmüller
space of noncompact surface Sg,n of genus g with n punctures if 3g+n >
5. Note that Theorem 4.1 and 4.3 require that the dimension of the
space is greater than or equal to 3.

(2). For the cases (g, n) = (1, 1) or (0, 4), it is not hard to see that
Theorem 1.1 still holds without the assumptions on the Teichmüller
metric, since for these two cases the scalar curvature is the same as
the sectional curvature up to a constant. More precisely, Theorem 1.1
directly follows from the fact that the mapping class group contains free
subgroups of rank > 2.

(3). The existence theorem of Farb–Weinberger in [13], which one
can also see Theorem 4.5 in [9], tells that Theorem 1.1 does not hold
anymore without the assumptions on the Teichmüller metric if 3g+n >
6. It is interesting to know whether Theorem 1.1 is still true without
the assumption on the Teichmüller metric when 3g + n = 5.

As stated above Farb and Weinberger in [13] proved the existence
of complete Riemannian metrics of uniformly positive scalar curvature
on the moduli space. Actually they also showed that these metrics are
not quasi-isometric to the Teichmüller metric. Motivated by Chang’s
result in [6] on certain locally symmetric spaces, they conjecture in
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[9] (see Conjecture 4.6 in [9]) that any finite cover M of the moduli
space Mg of Sg does not admit a finite volume Riemannian metric of
(uniformly bounded) positive scalar curvature in the quasi-isometry class
of the Teichmüller metric. Instead of using Theorem 5.2 of Gromov–
Lawson in the proof of Theorem 1.1, we apply a theorem of Yu in [43]
to give a short proof of the following result, which, in particular, gives
a proof of this conjecture of Farb–Weinberger.

Theorem 1.3. Let Sg be a closed surface of genus g with g > 2.
Then any cover M of the moduli space Mg of Sg does not admit a
complete Riemannian metric of uniformly positive scalar curvature in
the quasi-isometry class of the Teichmüller metric.

There are no conditions on finite cover and finite volume in Theorem
1.3, compared to the Farb–Weinberger conjecture. We remark here
that Farb and Weinberger have a different approach to their conjecture
by using methods from Chang’s thesis [6] together with a theorem of
Farb–Masur in [11] on the asymptotic cone of the moduli space, which
is different from the method in this article. We thank Prof. Farb for
sharing their information.

1.1. Plan of the paper. In Section 2, we give some necessary prelim-
inaries and notations for surface theory. In Section 3, we review some
recent developments on the geometry of Teichmüller space which will
be served as bridges to prove Theorem 1.1. In Section 4, we will show
that any complete Riemannian metric on the moduli space of surfaces
with nonnegative scalar curvature can be deformed an equivalent Rie-
mannian metric of positive scalar curvature. Theorem 1.1 will be proved
in Section 5. In Section 6, we will discuss Theorem 1.3 in details. A
related open problem will be discussed in Section 7.

Acknowledgment. The authors would like to thank E. Leuzinger, G.
Yu and S. T. Yau for their interests. The first author is supported
by an NSF grant. The second author is grateful to J. Brock and M.
Wolf for their consistent encouragement and help. He also would like
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DMS 1107452, 1107263, 1107367 “RNMS: Geometric structures And
Representation varieties” (the GEAR Network). We would like to thank
one anonymous referee for the comments and suggestions, which greatly
improve the paper.

2. Notations and preliminaries

2.1. Surfaces. Let Sg be a closed Riemann surface of genus g with
g > 2, and M−1 denote the space of Riemannian metrics on Sg with
constant curvature −1, and X = (Sg, σ|dz|2) be an element in M−1.
The group Diff0 of diffeomorphisms of Sg isotopic to the identity, acts
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on M−1 by pull-backs. The Teichmüller space Teich(Sg) of Sg is defined
by the quotient space

Teich(Sg) = M−1/Diff0 .

Let Diff+ be the group of orientation-preserving diffeomorphisms of
Sg. The mapping class group Mod(Sg) is defined as

Mod(Sg) = Diff+ /Diff0 .

The moduli space Mg of Sg is defined by the quotient space

Mg = Teich(Sg) /Mod(Sg).

The Teichmüller space has a natural complex structure, and its holo-
morphic cotangent space T ∗X Teich(Sg) is identified with the quadratic
differentials

QD(X) = {φ(z)dz2},
while its holomorphic tangent space is identified with the harmonic Bel-
trami differentials

HBD(X) = {φ(z)

σ(z)

dz

dz
}.

2.2. Mapping class group. The mapping class group Mod(Sg) is a
finitely generated discrete group which acts properly on the Teichmüller
space. One special set of generators of Mod(Sg) is the Dehn-twists along
simple closed curves, which play an important role in studying Mod(Sg).
Let α be a nontrivial simple closed curve on Sg and τα be the Dehn-twist
along α. The following lemma will be applied later.

Lemma 2.1. Let α, β be two simple closed curves on M such that
the geometric intersection points i(α, β) > 2. Then, for any n,m ∈ Z+,
the group < τnα , τ

m
β > is a free group of rank 2.

Proof. One can check chapter 3 in [12] for details. q.e.d.

2.3. The Teichmüller metric and Weil–Petersson metric. Recall
that the Teichmüller metric ‖ · ‖T on Teich(Sg) is defined as

||φ(z)

σ(z)
||T := sup

ψdz2∈QD(X),
∫
X |ψ|=1

Re

∫
X

φ(z)

σ(z)
· ψ(z)

dz ∧ dz
−2i

,

where dz∧dz
−2i is the area form of the hyperbolic surface X.

The induced path metric of the above metric, denoted by distT , on
Teich(Sg) can also be characterized as follows; let p1, p2 ∈ Teich(Sg),
then

distT (p1, p2) =
1

2
logK,

where K > 1 is the least number such that there is a K-quasiconformal
mapping between the hyperbolic surfaces p1 and p2. The Teichmüller
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metric is not Riemannian but Finsler. The following fundamental the-
orem on the Teichmüller metric will be used later.

Theorem 2.2 (Teichmüller).
(1). The Teichmüller space (Teich(Sg), ‖ · ‖T ) is complete.
(2). The Teichmüller space (Teich(Sg), ‖ · ‖T ) is uniquely geodesic,

i.e., for any two points p1, p2 ∈ Teich(Sg) there exists a unique geodesic
c : [0, 1]→ (Teich(Sg), ‖ · ‖T ) such that c(0) = p1 and c(1) = p2.

A direct corollary is

Proposition 2.3. Any geodesic ball of finite radius in (Teich(Sg), ‖ ·
‖T ) is contractible.

Proof. Let p ∈ (Teich(Sg), ‖ · ‖T ) and r > 0. Consider the geodesic
ball

B(p; r) := {q; distT (p, q) 6 r} ⊂ (Teich(Sg), ‖ · ‖T ).

For any z ∈ B(p; r), by Theorem 2.2 we know that there exists a
unique geodesic cz : [0, distT (p, z)] → B(p; r) such that cz(0) = p and
cz(distT (p, z)) = z. Here we use the arc-length parameter for c. Then
we consider the following map

H : B(p; r)× [0, 1] → B(p; r),

(z, t) 7→ cz(t · distT (p, z)).

Theorem 2.2 tells us that H is well-defined and continuous.
It is clear that

H(z, 0) = p and H(z, 1) = z ∀z ∈ B(p; r).

That is, the geodesic ball B(p; r) is contractible. q.e.d.

For more details on Teichmüller geometry, one can refer to the book
[18] and the recent survey [25] for more details.

The Weil–Petersson metric ds2WP is the Hermitian metric on Tg aris-
ing from the Petersson scalar product

< ϕ,ψ >ds2WP
=

∫
X

ϕ(z) · ψ(z)

σ(z)

dz ∧ dz
−2i

,

via duality. The Weil–Petersson metric is Kähler ([1]), incomplete ([7,
35]) and has negative sectional curvature ([34, 36]). One can refer to
Wolpert’s recent book [39] for the progress on the study of the Weil–
Petersson metric.

Both the Teichmüller metric and the Weil–Petersson metric are
Mod(Sg)-invariant.

Let ‖·‖1 and ‖·‖2 be any two Finsler (including Riemannian) metrics
on Teich(Sg). If there exists a constant k > 0 such that for any p ∈
Teich(Sg) and v ∈ Tp Teich(Sg) we have

||v||1 > k · ||v||2,
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where ||v||∗ is the norm of the tangent vector v with respect to the
metric ‖ · ‖∗. We write it as

‖ · ‖1 � ‖ · ‖2.
We call the two metrics ‖ ·‖1 and ‖ ·‖2 are bi-Lipschitz (or equivalent)

if

‖ · ‖1 � ‖ · ‖2 and ‖ · ‖2 � ‖ · ‖1,
which is denoted by

‖ · ‖1 � ‖ · ‖2.
It is not hard to see that the Cauchy–Schwarz inequality and the

Gauss–Bonnet formula give that

‖ · ‖T � ‖ · ‖ds2WP
.

However, since the Weil–Petersson metric is incomplete and the Te-
ichmüller metric is complete, we have

‖ · ‖ds2WP
� ‖ · ‖T .

3. Universal properties of Riemannian metrics equivalent
to ‖ · ‖T

It is shown in [21, 22, 27] that the asymptotic Poincaré metric, the
induced Bergman metric, Kähler–Einstein metric, the McMullen metric,
the Ricci metric, and the perturbed Ricci metric are all Kähler and
equivalent to the Teichmüller metric. For any metric ds2 in the convex
hull of all these metrics we have ‖ · ‖ds2 � ‖ · ‖T . We are going to apply
one of these metrics as bridges to prove Theorem 1.1. Actually any one
of these six metrics works.

3.1. Kähler metrics on Mg. In this subsection we briefly review some
properties of the following two Kähler metrics Mg: the Ricci metric and
the perturbed Ricci metric. They will be applied to prove Theorem 1.1.

3.1.1. The Ricci metric and the perturbed Ricci metric. In [34,
36] it is shown that the Weil–Petersson metric has negative sectional
curvature. The negative Ricci curvature tensor defines a new metric
ds2τ on Mg, which is called the Ricci metric. Trapani in [33] proved
ds2τ is a complete Kähler metric. In [21] Liu–Sun–Yau perturbed the
Ricci metric with the Weil–Petersson metric to give new metrics on Mg

which are called the perturbed Ricci metrics, denoted by ds2LSY . More
precisely, let ωτ be the Kähler form of the Ricci metric, for any constant
C > 0, the Kähler form of the perturbed Ricci metric is

ωLSY = ωτ + C · ωWP .

Motivated by the results of McMullen in [27], K. Liu, X. Sun and S.
T. Yau in [21] showed that
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Theorem 3.1 (Liu–Sun–Yau). On the moduli space Mg, both
(Mg, ds

2
τ ) and (Mg, ds

2
LSY ) satisfy

(1). They have bounded sectional curvatures and finite volumes.
(2). ‖ · ‖ds2τ � ‖ · ‖ds2LSY � ‖ · ‖T .

(3). There exists a constant ε0 > 0 such that the injectivity radii of
the universal covers satisfy that

inj(Teich(Sg), ds2τ ) > ε0 > 0,

and

inj(Teich(Sg), ds2LSY ) > ε0 > 0.

3.2. Asymptotic dimension. Gromov in [16] introduced the notion
of asymptotic dimension as a large-scale analog of the covering di-
mension. More precisely, a metric space X has asymptotic dimension
asydim(X) 6 n if for every R > 0 there is a cover of X by uniformly
bounded sets such that every metric R-ball intersects at most n + 1
of sets in the cover. One can refer to Theorem 19 in [3] for some
other equivalent definitions of the asymptotic dimension. By using Min-
sky’s product theorem in [28] for the thin part of the Teichmüller space
(Teich(Sg), ‖ · ‖T ), recently M. Bestvina, K. Bromberg and K. Fujiwara
in [2] proved the following result which is crucial for this paper.

Theorem 3.2 (Bestvina-Bromberg-Fujiwara). Let Sg be a closed sur-
face of genus g with g > 1. Then the Teichmüller space, endowed with
the Teichmüller metric, satisfies

asydim((Teich(Sg), ‖ · ‖T )) <∞.

From the definition of the asymptotic dimension it is not hard to see
that the asymptotic dimension is a quai-isometric invariance. For more
details, one can see the remark on page 21 of [16] or Proposition 22 in
[3].

Theorem 3.3. Let ds2 be a Riemannian metric on Teich(Sg) with
‖ · ‖ds2 � ‖ · ‖T . Then,

(3.1) asydim((Teich(Sg), ds2)) <∞.

In particular, for the perturbed Ricci metric d2LSY we have

asydim((Teich(Sg), ds2LSY )) <∞.(3.2)

Proof. Since the asymptotic dimension is a quasi-isometry invariant
of Teich(Sg), it is clear that inequality (3.1) follows from Theorem 3.2,
and inequality (3.2) follows from Part (2) of Theorem 3.1 and inequality
(3.1). q.e.d.
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4. Deformation to positive scalar curvature

As stated in the introduction Farb and Weinberger in [13] showed
that the set of complete Riemannian metrics of positive scalar curvatures
on the moduli space Mg is not empty. In this section, we will show that
any complete Riemannian metric of nonnegative scalar curvature on a
manifold which finitely covers Mg can be deformed to a new complete
Riemannian metric of positive scalar curvature which is equivalent to
the base metric. This will be applied to prove Theorem 1.1.

In [19] Kazdan showed that any Riemannian metric of zero scalar
curvature on a manifold, whose dimension is greater than or equal to
3, can be deformed to a new metric of positive scalar curvature which
is equivalent to the base metric provided that the based metric is not
Ricci flat. Actually his method also works when the scalar curvature
is nonnegative. This argument will be used in this section to prove
Theorem 4.1. One can see [19] for more details.

Let M be a finite cover of the moduli space Mg and ds2 be a complete
Riemannian metric on M . Since M may be an orbifold, the Riemann-
ian metric ds2 on M means a Riemannian metric on the Teichmüller
space Teich(Sg) on which the orbiford fundamental group π̃1(M) acts on
(Teich(Sg), ds2) by isometries. It is known that the mapping class group
Mod(Sg) contains torsion-free subgroups of finite indices (see [12]). We

can pass to a finite cover M of M such that M is a manifold. It is
clear that the fundamental group π1(M) is a torsion-free subgroup of
Mod(Sg) of finite index.

In this section, we prove the following result.

Theorem 4.1. Let Sg be a closed surface of genus g with g > 2
and M be a finite cover of the moduli space Mg of Sg such that M is a
manifold. Then for any complete Riemannian metric ds2 of nonnegative
scalar curvature on M , there exists a new metric ds21 on M such that

(1). The scalar curvature Sca(M,ds21)
> 0 on (M,ds21).

(2). ‖ · ‖ds21 � ‖ · ‖ds2.

Before we go to prove the theorem above. First let us provide the
following fact in the moduli space.

Lemma 4.2. Let Sg be a closed surface of genus g with g > 2 and M
be a finite cover of the moduli space Mg of Sg. Then, for any complete
Riemannian metric ds2 on M , there exists a point p0 ∈ M such that
the Ricci tensor at p0 satisfies

Ric(M,ds2)(p0) 6= 0.

Proof. The following argument is standard. One may see [17] for
more applications of this argument.

We argue by contradiction. Suppose not. That is, there exists a
complete Riemannian metric ds2 on M such that for all p ∈ M the



324 K. LIU & Y. WU

Ricci tensor

Ric(M,ds2)(p) = 0.

As described above, if necessary we pass to a finite cover M such that
M is a manifold. We lift the metric ds2 onto M , still denoted by ds2.
Then,

(4.1) Ric(M,ds2)(p) = 0.

Let α, β be two nontrivial simple closed curves on Sg with the geo-
metric intersection i(α, β) > 2, and τα, τβ be the Dehn-twists along

α and β respectively. Since the fundamental group π1(M) is a sub-
group of Mod(Sg) of finite index, there exists n0,m0 ∈ Z+ such that

τn0
α , τm0

β ∈ π1(M). From Lemma 2.1 we know that the group

(4.2) < τn0
α , τm0

β >∼= F2,

where F2 is a free group of rank 2. For sure < τn0
α , τm0

β > acts on the

universal cover (Teich(Sg), ds2) of (M,ds2) by isometries.
We endow < τn0

α , τm0
β > with the word metric distword w.r.t the

generator set {τn0
α , τ−n0

α , τm0
β , τ−m0

β }. Let e be the unit in < τn0
α , τm0

β >.
For any r > 0 we set

B(e, r) := {φ ∈< τn0
α , τm0

β >: distword(φ, e) 6 r}.

Let q0 ∈ (Teich(Sg), ds2) and distds2 be the induced path metric of
(Teich(Sg), ds2) on Teich(Sg). We define

C := max {distds2(τn0
α ◦ q0, q0), distds2(τm0

β ◦ q0, q0)} > 0.

The triangle inequality leads to

distds2(φ ◦ q0, q0) 6 r · C, ∀φ ∈ B(e, r).(4.3)

Since < τn0
α , τm0

β > acts freely on the universal cover (Teich(Sg), ds2)

of (M,ds2), there exists a number ε0 > 0 such that

distds2(γ ◦ q0, q0) > 2ε0, ∀e 6= γ ∈< τn0
α , τm0

β >,

which implies

(4.4) γ1 ◦B(q0; ε0) ∩ γ2 ◦B(q0; ε0) = ∅, ∀γ1 6= γ2 ∈< τn0
α , τm0

β >,

where B(q0; ε0) := {p ∈ (Teich(Sg), ds2); distds2(p, q0) 6 ε0}.
From inequality (4.3) and the triangle inequality we know that, for

all r > 0,

(4.5)
⋃

γ∈B(e,r)

γ ◦B(q0; ε0) ⊂ B(q0; r · C + ε0).
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Equation (4.4) tells that the geodesic balls {γ ◦B(q0; ε0)}γ∈B(e,r) are
pairwisely disjoint. Thus, by taking the volume, equations (4.4) and
(4.5) lead to∑

γ∈B(e,r)

Vol(γ ◦B(q0, ε0)) = Vol(
⋃

γ∈B(e,r)

γ ◦B(q0; ε0))

6 Vol(B(q0; r · C + ε0)).(4.6)

Since the group < τn0
α , τm0

β > acts on (Teich(Sg), ds2) by isometries,

Vol(γ ◦ B(q0, ε0)) = Vol(B(q0; ε0)) for all γ ∈< τn0
α , τm0

β >. From in-

equality (4.6) we have

(4.7) #B(e, r) ·Vol(B(q0, ε0)) 6 Vol(B(q0, r · C + ε0)).

Rewrite it as

(4.8) #B(e, r) 6
Vol(B(q0; r · C + ε0))

Vol(B(q0; ε0))
.

Since (Teich(Sg), ds2) is complete, from equation (4.1) and the
Gromov–Bishop volume comparison inequality (see [17]), we have, for
all r > 0,

#B(e, r) 6
Vol(B(q0; r · C + ε0))

Vol(B(q0; ε0))
(4.9)

6
(r · C + ε0)

6g−6

ε6g−60

.(4.10)

Which, in particular, implies that the group < τn0
α , τm0

β >⊂ Mod(Sg)

has polynomial growth, which contradicts equation (4.2) since the free
group F2 has exponential growth. q.e.d.

Let M be a finite cover of Mg which is a manifold and ds2 be a com-
plete Riemannian metric on M which has nonnegative scalar curvature.
Since the metric is smooth, for any p0 ∈ M there exists a constant
r1 > 0 such that the geodesic ball B(p0; r1) centered at p0 of radius r1
has smooth boundary ∂B(p0; r1) and smooth outer normal derivative
∂
∂ν on ∂B(p0, r1). It suffices to choose r1 to be less than the injectivity
radius of M at p0.

We let Scads2 be the scalar curvature of (M,ds2) and ∆ds2 be the
Laplace operator of (M,ds2). Consider the operator

(4.11) Lds2(u) := −2(m− 1)

m/2− 1
∆ds2u+ Scads2 ·u,

where u ∈ C∞((M,ds2),R) and m = 6g− 6 is the real dimension of M .
For 0 < r < inj(p0) where inj(p0) is the injectivity radius of (M,ds2)

at p0. Let µ1(B(p0; r)) be the lowest eigenvalue of L with Neumann
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boundary conditions ∂u
∂ν = 0 on ∂B(p0; r). It is well-known that

(4.12)

µ1(B(p0; r)) = inf
v∈C∞((M,ds2),R)

∫
B(p0;r)

(||∇v||2ds2 + Scads2 ·v2) dVol∫
B(p0;r)

v2 dVol
.

The following result is Theorem A in [19] which is crucial in this
section.

Theorem 4.3 (Kazdan). Assume that µ1(B(p0; r)) > 0. Then there
is a solution u > 0 on (M,ds2) of Lu > 0; in fact, there exist two
constants C1, C2 > 0 such that

0 < C1 6 u(p) 6 C2, ∀p ∈ (M,ds2).

Assume that u > 0 on (M,ds2). We define the conformal metric

(4.13) ds2u := u
2

3g−4 · ds2.

Direct computation shows that the scalar curvature Scads2u of ds2u is
given by the formula

Lds2u = −2(6g − 7)

3g − 4
∆ds2u+ Scads2 ·u(4.14)

= Scads2u ·u
3g−2
3g−4 .(4.15)

Thus,

(4.16) Scads2u = Lds2u · u
− 3g−2

3g−4 .

Proof of Theorem 4.1. We follow the argument as in [19].
First from Lemma 4.2 we know that there exists a point p0 ∈M such

that the Ricci tensor

(4.17) Ric(M,ds2)(p0) 6= 0.

We let r1 be a constant with 0 < r1 < inj(p0). Pick a function
η ∈ C∞0 (B(p0, r1);R>0) with η(p0) > 0 and consider a family of metrics

ds2t := ds2 − t · η · Ric(M,ds2),

with scalar curvature Sca(M,ds2t )
and the corresponding operator Lds2t de-

fined in equation (4.11) with lowest Neumann eigenvalue µ1(B(p0, r1), t).
The first variation formula (see [19]) gives that

(4.18)
d

dt
µ1(B(p0, r1), t)|t=0 =

η < Ric,Ric >

Vol(B(p0, r1))
,

where < . > is the standard inner product for tensors in the ds2 metric.
Since η(p0) > 0, equations (4.17) and (4.18) give that

(4.19)
d

dt
µ1(B(p0, r1), t)|t=0 > 0.
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Since Sca(M,ds2) > 0, equation (4.12) gives that

µ1(B(p0, r1), 0) = µ1(B(p0, r1)) > 0.

Thus, from inequality (4.19) we know that for small enough t0 > 0,

(4.20) µ1(B(p0, r1), t0) > 0.

It is clear that

(4.21) ‖ · ‖ds2t0 � ‖ · ‖ds2 .

Because of inequality (4.20) we apply Theorem 4.3 to (M,ds2t0). Thus,

there is a smooth function u on (M,ds2t0) such that

(4.22) Lds2t0u(p) > 0 and u(p) > 0, ∀p ∈ (M,ds2t0).

And there exist two constants C1, C2 > 0 such that

(4.23) 0 < C1 6 u(p) 6 C2, ∀p ∈ (M,ds2t0).

Then we define the new metric as

(4.24) ds21 := u
2

3g−4 · ds2t0 .
It is clear that Part (1) follows from equations (4.16) and (4.22).

And Part (2) follows from equations (4.21), (4.24) and inequality (4.23).
q.e.d.

5. Proof of Theorem 1.1

Before we prove Theorem 1.1, let us make some preparation and fix
the notations.

Let (M1, ds
2
1), (M2, ds

2
2) be two Finsler manifolds of the same dimen-

sions, and f : (M1, ds
2
1) → (M2, ds

2
2) be a smooth map. For C > 0, we

call that f is a C − contraction if for any p ∈M1,

(5.1) ||f∗(v)||ds22 6 C · ||v||ds21 , ∀ v ∈ TpM1.

Recall that the degree deg(f) of f is defined as

(5.2) deg(f) =
∑

q∈f−1(p)

sign(det f∗(q)),

where p is a regular value of f .

Definition 5.1. We call an n-dimensional Riemannian manifold X
is hyperspherical if for every ε > 0, there exists an ε-contraction map
fε : X → Sn of nonzero degree onto the standard unit n-sphere such
that fε is a constant outside a compact subset in X.

The following result was proved by Gromov and Lawson in [15].

Theorem 5.2 (Gromov–Lawson). A complete aspherical Riemann-
ian manifold X cannot have positive scalar curvature if the universal

cover X̃ of X is hyperspherical.
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Proof. See the proof of Theorem 6.12 in [15]. q.e.d.

The classical Cartan–Hardamard theorem implies that any complete
simply connected Riemannian manifold of nonpositive sectional curva-
ture is hyperspherical. A direct corollary of Theorem 5.2 is

Theorem 5.3 (Gromov–Lawson). Let (X, ds21) be a complete Rie-
mannian manifold of nonpositive sectional curvature. Then for any
Riemannian metric ds22 on X with ‖ · ‖ds22 � ‖ · ‖ds21, the scalar cur-

vature of (X, ds22) cannot be positive everywhere on X.

Proof. One may see [15] or [29] for the details. q.e.d.

Now let us state the theorem (Theorem 1.1) we will prove in this
section.

Theorem 5.4. Let Sg be a closed surface of genus g with g > 2
and M be a finite cover of the moduli space Mg of Sg. Then for any
Riemannian metric ds2 on M with ‖ · ‖ds2 � ‖ · ‖T , we have

inf
p∈(M,ds2)

Sca(p) < 0.

Recall that in the proof of Theorem 5.3 in [15], the nonpositivity
of the sectional curvature is crucial because in this case the inverse of
the exponential map is a contraction. In the setting of Theorem 5.4,
although the inverse of the exponential map is well-defined by Theorem
2.2, it is far from a contraction. In fact, Masur in [24] showed that
there exists two different geodesics in (Teich(Sg), ‖ · ‖T ) starting from
the same point such that they have bounded Hausdorff distance. In
particular, (Teich(Sg), ‖ · ‖T ) is not nonpositively curved in the sense of
metric spaces. Hence, the argument in [15] cannot be directly applied
to show Theorem 5.4. Furthermore, the following question is unknown
as far as we know.

Question 1. Is (Teich(Sg), ‖ · ‖T ) hyperspherical?

We are going to steer clear of Question 1 to prove Theorem 5.4. It is
very interesting to know the answer to Question 1. We will discuss it
from different viewpoints in the last section.

Before we prove Theorem 5.4, we first provide two important prop-
erties for the Teichmüller space (Teich(Sg), ds2) where ‖ · ‖ds2 � ‖ · ‖T ,
which will be applied later.

Definition 5.5. Let X be a metric space. We call X is uniformly
contractible if there is a function f : (0,∞) → (0,∞) so that for each
x ∈ X and r > 0, the ball B(x; r) of radius r centered at x is contractible
in the concentric ball B(x; f(r)) of radius f(r).

Proposition 5.6. Let ds2 be a Riemannian metric on Teich(Sg) such
that ‖ · ‖ds2 � ‖ · ‖T . Then (Teich(Sg), ds2) is uniformly contractible.
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In particular, the Teichmüller space endowed with the perturbed Ricci
metric (Teich(Sg), d2LSY ) is uniformly contractible.

Proof. From Theorem 3.1 we know that ‖ · ‖ds2LSY � ‖ · ‖T . It suffices

to show that (Teich(Sg), ds2) is uniformly contractible provided that
‖ · ‖ds2 � ‖ · ‖T .

Since ‖ · ‖ds2 � ‖ · ‖T , there exist two constants k1, k2 > 0 such that

k1 · ‖ · ‖T 6 ‖ · ‖ds2 6 k2 · ‖ · ‖T .

In particular, we have, for each p ∈ Teich(Sg) and r > 0

(5.3) Bds2(p; r) ⊂ B‖·‖T (p;
r

k1
) ⊂ Bds2(p;

k2
k1
· r),

where Bds2(p; r) := {q ∈ Teich(Sg); distds2(p, q) 6 r} and B‖·‖T (p; r) :=
{q ∈ Teich(Sg); distT (p, q) 6 r}.

Proposition 2.3 tells that the Teichmüller ball B‖·‖T (p; r) is con-
tractible for all r > 0 and p ∈ Teich(Sg). Thus, equation (5.3) tells

that Bds2(p; r) is contractible in Bds2(p; k2k1 · r). Therefore, the conclu-
sion follows by choosing

f(r) =
k2
k1
· r. q.e.d.

Definition 5.7. LetX be a metric space. We call thatX has bounded
geometry in the sense of coarse geometry if for every ε > 0 and every
r > 0, there exists an integer n(r, ε) > 0 such that for each x ∈ X every
ball B(x; r) contains at most n(r, ε) ε-disjoint points. Where ε-disjoint
means that any two different points are at at least ε distance from each
other.

Proposition 5.8. (Teich(Sg), d2LSY ) have bounded geometry in the
sense of coarse geometry.

Proof. Let ε0 > 0 be the constant which is the lower bound for
the injectivity radius of (Teich(Sg), ds2LSY ) in Theorem 3.1. For ev-
ery r > 0 and every ε > 0. Let p ∈ Teich(Sg) and B(p; r) := {q ∈
Teich(Sg); distds2LSY

(p, q) 6 r} be the geodesic ball of radius r cen-

tered at p. Assume K = {xi}ki=1 be an arbitrary ε- disjoint points in
Bds2LSY

(p; r). That is

(5.4) distds2LSY
(xi, xj) > ε, ∀1 6 i 6= j 6 k.

Let ε1 = min { ε4 , ε0}. First the triangle inequality tells that

(5.5) ∪ki=1B(xi; ε1) ⊂ B(p, r + ε1) ⊂ B(p, r + ε0).

By our assumptions that ε1 6 ε
4 , inequality (5.4) gives that

(5.6) B(xi; ε1) ∩B(xj ; ε1) = ∅, ∀1 6 i 6= j 6 k.
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From equations (5.5) and (5.6) we have

(5.7)

k∑
i=1

Vol(B(xi; ε1)) 6 Vol(B(p, r + ε0)).

From Theorem 3.1 there exists a lower bound for the sectional curva-
tures of (Teich(Sg), ds2LSY ), by using the Gromov–Bishop volume com-
parison inequality, in particular, we have that there exists a constant
C(r, ε0, g) > 0 depending on r, ε0 and the genus g such that the volume

(5.8) Vol(B(p, r + ε0)) 6 C(r, ε0, g).

On the other hand, from Theorem 3.1 we know that the sectional
curvatures of (Teich(Sg), ds2LSY ) have an upper bound. Since

ε1 6 ε0 = inj(Teich(Sg), ds2LSY ).

Elementary Riemannian geometry tells that there exists a constant
D(ε1, g) > 0 depending on ε1 and the genus g such that the volume

(5.9) Vol(B(xi, ε1)) > D(ε1, g) > 0, ∀1 6 i 6 k.

Inequalities (5.7), (5.8) and (5.9) give that

(5.10) k 6
C(r, ε0, g)

D(ε1, g)
.

Then the conclusion follows by choosing

n(r, ε) =
C(r, ε0, g)

D(ε1, g)
. q.e.d.

The following result of A. N. Dranishnikov in [8] will be applied to
prove Theorem 5.4.

Theorem 5.9 (Dranishnikov). Let X be a complete uniformly con-
tractible Riemannian manifold with bounded geometry whose asymptotic
dimension is finite, then the product X ×Rn, endowed with the product
metric, is hyperspherical for some positive number n ∈ Z.

We remark here that the statement of the theorem above is different
from Theorem 5 (or Theorem B) in [8] where there is no condition on
the bounded geometry. But if one checks the proof of Theorem 5 in [8],
Theorem 5 follows from Theorem 4 and Lemma 4 in [8] where Theorem
4 requires that the space X has bounded geometry. We are grateful to
Prof. Dranishnikov for the clarification.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let M be a finite cover of the moduli spaceMg

of Sg and ds2 be a Riemannian metric on M such that ‖ · ‖ds2 � ‖ · ‖T .
That is, there exists a constant k1 > 0 such that

(5.11) ‖ · ‖ds2 > k1 · ‖ · ‖T .
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We argue by contradiction. Assume that

(5.12) inf
p∈(M,ds2)

Sca(p) > 0.

If necessary, we pass to a finite cover of M , still denoted by M , such
that M is a manifold. From inequality (5.11) we know that (M,ds2) is
complete since the Teichmüller metric is complete. Thus, from Theorem
4.1 we know that there exists a new metric ds21 on M such that

(5.13) Sca(p) > 0, ∀p ∈ (M,ds21),

and

(5.14) ‖ · ‖ds21 � ‖ · ‖ds2 .

Let ds2LSY be the perturbed Ricci metric on M . In fact, either the
McMullen metric or the Ricci metric also works here. From Proposition
5.6, Proposition 5.8 and Theorem 3.3 we know that the universal cover
(Teich(Sg), ds2LSY ) of (M,ds2LSY ) is uniformly contractible, has bounded
geometry and

asydim((Teich(Sg), ds2LSY )) <∞.
Hence, one may apply Theorem 5.9 to get a positive integer n such

that (Teich(Sg), ds2LSY )× Rn, endowed with the product metric, is hy-
perspherical.

We pick this integer n ∈ Z+ and consider the product space

(Teich(Sg), ds21)× Rn,

where (Teich(Sg), ds21) is the universal cover of (M,ds21).
It is clear that (Teich(Sg), ds21) × Rn is a complete (6g − 6 + n)-

dimensional Riemannian manifold, and the scalar curvature of
(Teich(Sg), ds21)× Rn satisfies that

(5.15) Sca((p, v)) = Sca(p) > 0,

where (p, v) is arbitrary in (Teich(Sg), ds21)× Rn.

Claim. The complete product manifold (Teich(Sg), ds21) × Rn is hy-
perspherical.

Proof of the Claim: First since ‖ · ‖ds21 � ‖·‖ds2 (see equation (5.14)),

the identity map

(5.16) i1 : (Teich(Sg), ds21)× Rn → (Teich(Sg), ds2)× Rn

is a c1-contraction diffeomorphism for some constant c1 > 1.
Since we assume that ‖ · ‖ds2 � ‖ · ‖T (by assumption), the identity

map

(5.17) i2 : (Teich(Sg), ds2)× Rn → (Teich(Sg), ‖ · ‖T )× Rn

is a c2-contraction diffeomorphism for some constant c2 > 1.
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From Theorem 3.1 we know that ‖·‖T � ‖·‖ds2LSY . Thus, the identity
map

(5.18) i3 : (Teich(Sg), ‖ · ‖T )× Rn → (Teich(Sg), ds2LSY )× Rn

is a c3-contraction diffeomorphism for some constant c3 > 1.
By the choice of n ∈ Z+ we know that for every ε > 0 there exists an

ε-contraction map

(5.19) fε : (Teich(Sg), ds2LSY )× Rn → S6g−6+n,

such that fε is of nonzero degree onto the unit (6g − 6 + n)-sphere and
fε is a constant outside a compact subset in (Teich(Sg), ds2LSY )× Rn.

Consider the following composition map

Fε : (Teich(Sg), ds21)× Rn → S6g−6+n(5.20)

(p, v) 7→ fε ◦ i3 ◦ i2 ◦ i1(p, v),

where (p, v) is arbitrary in (Teich(Sg), ds21)× Rn.
Since i1, i2 and i3 are diffeomorphisms and fε has nonzero degree, Fε

also has nonzero degree by the definition.
Since i1, i2 and i3 are diffeomorphisms and fε is a constant outside

a compact subset of (Teich(Sg), ds2LSY ) × Rn, a standard argument in
set-point topology gives that Fε is also a constant outside a compact
subset of (Teich(Sg), ds2LSY )× Rn.

It is clear that Fε is onto because i1, i2, i3 and fε are onto.
It remains to show that Fε is a contraction. For every point (p, v) ∈

(Teich(Sg), ds21) × Rn and any tangent vector W ∈ T(p,v)((Teich(Sg),

ds21)× Rn) = R6g−6+n,

||(Fε)∗(W )|| = ||(fε ◦ i3 ◦ i2 ◦ i1)∗(W )||
6 ε · ||(i3 ◦ i2 ◦ i1)∗(W )||
6 ε · c3 · ||(i2 ◦ i1)∗(W )||
6 ε · c3 · c2 · ||(i1)∗(W )||
6 ε · c3 · c2 · c1 · ||W ||,

where ‖ · ‖ is the standard Euclidean norm in R6g−6+n.
Since ε > 0 is arbitrary and c1, c2, c3 > 0, the claim follows. q.e.d.

From the claim above and Theorem 5.2 of Gromov–Lawson we know
that the product manifold (Teich(Sg), ds21) × Rn cannot have positive
scalar curvature which contradicts inequality (5.15). q.e.d.

Remark 5.10. The following more general statement follows from
exactly the same argument as the proof of Theorem 1.1.

Theorem 5.11. Let Sg be a closed surface of genus g with g > 2 and
M be any (maybe infinite) cover of the moduli space Mg of Sg such that
the orbiford fundamental group of M contains a free subgroup of rank
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> 2. Then for any Riemannian metric ds2 on M with ‖ · ‖ds2 � ‖ · ‖T
we have

inf
p∈(M,ds2)

Sca(p) < 0.

6. Proof of Theorem 1.3

We start with the following definition.

Definition 6.1. Let M be a cover, which may be an infinite cover,
of the moduli space Mg and ds2 be a Riemannian metric on M . We call
that ds2 is quasi-isometric to the Teichmüller metric ‖ · ‖T if there exist
two positive constants L > 1 and K > 0 such that on the universal cover
(Teich(Sg), ds2) ((Teich(Sg), ‖·‖T )) of (M,ds2) ((M, ‖·‖T )) respectively,
the identity map satisfies

L−1 distT (p, q)−K 6 distds2(p, q)6L distT (p, q)+K, ∀p, q ∈ Teich(Sg).

If K = 0, ds2 is equivalent to ‖ · ‖T .
In the quasi-isometry setting, the identity map, defined in equation

(5.17) in the proof of Theorem 1.1, may not be a contraction. Therefore,
the proof of Theorem 1.1 cannot directly lead to Theorem 1.3. Instead
of applying Theorem 5.2 in the proof of Theorem 1.1, we apply the
following theorem of Yu in [43] to prove Theorem 1.3. One can see
Corollary 7.3 in [43].

Theorem 6.2 (Yu). A uniformly contractible Riemannian manifold
with finite asymptotic dimension cannot have uniform positive scalar
curvature.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let M be a cover of the moduli spaceMg of Sg
and ds2 be a Riemannian metric on M such that ds2 is quasi-isometric
to ‖ · ‖T . That is, there exist two constants L > 1 and K > 0 such that
(6.1)
L−1 distT (p, q)−K 6 distds2(p, q)6L distT (p, q)+K, ∀p, q ∈ Teich(Sg).

Since the asymptotic dimension is a quasi-isometric invariance, The-
orem 3.2 gives that

(6.2) asydim((Teich(Sg), ds2)) <∞.
From Theorem 6.2 of Yu, it remains to show that (Teich(Sg), ds2) is

uniformly contractible. We follow a similar argument in the proof of
Proposition 5.6 to finish the proof.

For each p ∈ Teich(Sg) and every r > 0, inequality (6.1) and the
triangle inequality lead to

Bds2(p; r) ⊂ B‖·‖T (p;L · r +K) ⊂ B‖·‖T (p;L · (r +K))(6.3)

⊂ Bds2(p;L2 · (r +K) +K),
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where Bds2(p; r) := {q ∈ Teich(Sg); distds2(p, q) 6 r} andB‖·‖T (p; r) :=
{q ∈ Teich(Sg); distT (p, q) 6 r}.

Proposition 2.3 tells that the Teichmüller ball B‖·‖T (p;L · (r+K)) is
contractible for all r > 0 and p ∈ Teich(Sg). Thus, equation (6.3) tells
that Bds2(p; r) is contractible in Bds2(p;L2 · (r + K) + K). Thus, the
conclusion follows by choosing

f(r) = L2 · (r +K) +K. q.e.d.

Remark 6.3. Theorem 1.3 also holds in the following sense of quasi-
isometry, where we call that ds2 is quasi-isometric to the Teichmüller
metric ‖ · ‖T if there exist two positive constants L > 1, K > 0 and a
map

f : (Teich(Sg), ‖ · ‖T )→ (Teich(Sg), ds2),

such that for all p, q ∈ Teich(Sg),

L−1 distT (p, q)−K 6 distds2(f(p), f(q)) 6 L distT (p, q) +K.

If we assume that (Teich(Sg), ds2) is quasi-isometric to (Teich(Sg), ‖·‖T ),
then the space (Teich(Sg), ds2) is also quasi-isometric to (Teich(Sg),
ds2M ) or (Teich(Sg), ds2LSY ), where these two metrics are uniformly con-
tractible. Indeed, Theorem 7.1 in [43] and Theorem 3.3 give that the
coarse Baum–Connes conjecture holds for (Teich(Sg), ds2M ) or (Teich(Sg),
d2LSY ). Then one can see Corollary 3.9 in [30] and use the same argu-
ment in the proof of Theorem 1.3 to get the conclusion.

7. An open question

Let N be an n-dimensional complete simply-connected Riemannian
manifold of nonpositive sectional curvature. For any p ∈ N , let TpN
be the tangent space of N at p, it is well-known that the inverse of the
exponential map at p

exp−1p : N → TpN = Rn

is a 1-contraction diffeomorphism. And this property plays an important
role in the proof of Theorem 5.3 of Gromov–Lawson. The following
question arises in this project.

Question 2. Is there any proper differential map

F : (Teich(Sg), ‖ · ‖T )→ R6g−6,

such that F is a 1-contraction of degree one? Moreover, could F be a
diffeomorphism?

The constant 1 for the contraction property in this question is not
essential, since one can take a rescaling on the target space R6g−6. An
affirmative answer to Question 2 will give another proof of Theorem 1.1
by following exact the same argument in [15]. See Theorem 5.2.
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We end this section by recalling several well-known parameterizations
of the Teichmüller space, which may be helpful for this question.

(1). Recall that the Teichmüller parametrization at a point X ∈
Teich(Sg) is given by

FX : (Teich(Sg), ‖ · ‖T ) → R6g−6 = S6g−7 × R>0,

Y 7→ (V [X,Y ], distT (X,Y )),

where V [X,Y ] is the direction of the Teichmüller geodesic from X to Y .
It is well-known that FX is a proper differential map of degree one.

However, FX is not a contraction since there exists two geodesics start-
ing at X which have bounded Hausdorff distance, which was proved by
Masur in [24].

(2). Let X ∈ Teich(Sg) be a hyperbolic surface and QD(X) be the
holomorphic quadratic differential on X which can be identified with
R6g−6. Let βX be the Bers embedding of (Teich(Sg), ‖ · ‖T ) into QD(X)
with respect to the base point X.

It is well-known that βX is a contraction (For example, one can see
Theorem 4.3 in [10]). However, βX is not proper since the image of the
Bers embedding is a bounded subset in R6g−6.

(3). Fix a hyperbolic surface X ∈ Teich(Sg). Then for any Y ∈
Teich(Sg) there exists a unique harmonic map from X to Y which is
isotopic to the identity map. The Hopf differential FX(Y ) of this har-
monic map is a holomorphic quadratic differential on X. In particular,
this gives a differential map from Teich(Sg) to QD(X). Wolf in [40]
showed that this map

FX : (Teich(Sg), ‖ · ‖T )→ QD(X) = R6g−6

is a diffeomorphism. In particular, this map is proper of degree one.
However, Markovic in [23] showed that FX is not a contraction (One
can see Theorem 2.2 in [23]).

(4). Since ‖ · ‖T � ‖ · ‖ds2WP
, the identity map

i : (Teich(Sg), ‖ · ‖T )→ (Teich(Sg), ds2WP )

is a contraction diffeomorphism. Fix a hyperbolic surfaceX ∈ Teich(Sg).
Since the sectional curvature of the Weil–Petersson metric is negative
[34, 36] and the Weil–Petersson metric is geodesically convex [37], the
inverse of the exponential map at X

exp−1X : Teich(Sg)→ TX(Teich(Sg)) = R6g−6

is a 1-contraction. Consider the composition map

FX : (Teich(Sg), ‖ · ‖T ) → TX(Teich(Sg)) = R6g−6,

Y 7→ exp−1X ◦i(Y ).

It is not hard to see that FX is a contraction and differential map of
degree one. However, since the Weil–Petersson metric is incomplete
[7, 35], FX is not proper.
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