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Abstract In this article, we provide a sufficient and necessary condition on parabolic
isometries of positive translation lengths on complete visibility CAT(0) spaces. One
of the consequences is that each parabolic isometry of a complete simply connected
visibility manifold of nonpositive sectional curvature has zero translation length.
Applications on the geometry of open negatively curved manifolds will also be dis-
cussed.
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1 Introduction

A CAT(0) space is a geodesic metric space whose geodesic triangles are “slimmer”
than the corresponding flat triangles in the plane R2. Typical examples are complete
simply connected manifolds of nonpositive sectional curvature, which are proper.
Trees, one-dimensional connected graphs without loops, are also CAT(0) spaces. A
CAT(0) space may be not proper, i.e., certain closed geodesic ball of finite radius may
be not compact. Indeed, a locally infinite tree is the simplest no-proper CAT(0) space.
The first part of this paper will focus on certain isometries of complete CAT(0) spaces
which is not required to be proper.
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376 Y. Wu

Let γ be an isometry of a complete CAT(0) space M . The translation length |γ | of
γ is defined by

|γ | := inf
p∈M dist(γ ◦ p, p).

The isometry γ is said to be parabolic if |γ | is not achieved in M . In this article, we
will focus on parabolic isometries. Let us look at the following two examples. LetH2

be the upper half plane endowed with the hyperbolic metric and define γ : H2 → H
2

to be γ ◦ (x, y) = (x + 1, y). Let c:[0,1]→ H
2 be the curve with c(t) = (x + t, y).

Since dist((x, y), γ ◦ (x, y)) is less than the length of c([0, 1]) that is 1
y , which goes

to zero as y goes to infinity. Thus, γ is parabolic and |γ | = 0. Similarly, consider the
space R × H

2 endowed with the product metric, and define γ : R × H
2 → R × H

2

to be γ ◦ (z, (x, y)) = (z + 1, (x + 1, y)). Then it is easy to see that γ is parabolic
and |γ | = 1. So parabolic isometries with positive translation lengths may occur in
CAT(0) spaces.

A visibility CAT(0) space, whose manifold case was introduced by Eberlein and
O’Neill in [12], needs the space to bemore curved. In some sense, it means that for any
two different points at “infinity,” they can be viewed from each other along the space.
One can see Definition 2.2 for the precise description. Classical examples for visibility
CAT(0) spaces include trees and complete simply connected Riemannian manifolds
of uniformly negative sectional curvatures. It is clear that a visibility CAT(0) space
cannot contain any totally geodesic flat half plane.

1.1 Translation Lengths of Parabolic Isometries

Bishop and O’Neill [6] proved that any parabolic isometry of a complete simply
connected manifold M of uniformly negative sectional curvature has zero transla-
tion length. One can also see [17] for an alternative proof using the geometry on the
horosphere. Buyalo [9] proved that any parabolic isometry of a complete Gromov
hyperbolic CAT(0) space has zero translation length. It is known that a complete Gro-
mov hyperbolic CAT(0) space is a visibility CAT(0) space (one may see Proposition
2.8 for details). It is natural to ask

Question 1.1 Does every parabolic isometry of a complete visibility CAT(0) space
have zero translation length?

Before this paper, even for the manifold case the answer to the question above is
unknown. Unfortunately, in general the answer to Question 1.1 is negative. We will
give a counterexample to this question in Sect. 2.Motivated from this counterexample,
by applying a theorem of Karlsson andMargulis in [19] we obtain the following result
which characterizes parabolic isometries of positive translation lengths on complete
visibility CAT(0) spaces.

Theorem 1.2 Let M be a complete visibility CAT(0) space. Then a parabolic isometry
γ of M satisfies |γ | > 0 if and only if there exists a γ -invariant infinite-flat-stripU×R,
which is a closed convex subset of M, such that γ acts on U × R as
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Parabolic Isometry 377

γ ◦ (x, t) = (γ1 ◦ x, t + t0), ∀(x, t) ∈ U × R,

where γ1 is a parabolic isometry of U with |γ1| = 0 and 0 �= t0 ∈ R.

Recall that a metric space is called proper if every closed ball of finite radius is
compact. Since a complete proper visibility CAT(0) space does not contain infinite-
flat-strips (see Part (1) of Proposition 2.9), Theorem 1.2 implies

Theorem 1.3 Let M be a complete proper visibility CAT(0) space. Then, for any
parabolic isometry γ of M, we have

|γ | = 0.

Remark 1.1 We call a manifold M tame if M is the interior of some compact manifold
M with boundary. Phan conjectured in [20] that let M be a tame, finite volume,
negatively curved manifold; then M is not visible if the fundamental group of M
contains a parabolic isometry of M̃ with positive translation length. Theorem 1.3
implies this conjecture.

1.2 Negatively Curved Manifolds Without Visibility

First we call a complete manifold of nonpositive sectional curvature a visibility mani-
fold if its universal cover is a visibility CAT(0) manifold. In the first paragraph of page
438 of [11], Eberlein conjectured that a complete openmanifold M with sectional cur-
vature −1 ≤ KM ≤ 0 and finite volume is a visibility manifold if the universal cover
M̃ of M contains no imbedded flat half planes. For dimension 2, the result in [10]
tells that this conjecture is true. Based on the result of Abresch and Schroeder in [1],
Buyalo in [8] showed that certain 4-dimensional manifold M with sectional curvature
−1 ≤ KM < 0 and finite volume has an end which is not incompressible. And this
example is known to experts for the first counterexample to Eberlein’s conjecture. In
this paper, we will use Theorem 1.3 as a bridge to show that the negatively curved
manifolds, constructed by Fujiwara in [15], are also counterexamples to Eberlein’s
conjecture. More precisely,

Theorem 1.4 For the manifolds of finite volumes with sectional curvatures in [−1, 0),
constructed in [15], their fundamental groups contain parabolic isometries of positive
translation lengths. In particular, they are not visibility manifolds.

Recently, Phan in [20] also proved that Fujiwara’s example M is not visible by
using a different method.

1.3 Negatively Curved Manifolds with Zero Axioms

In [12], Eberlein and O’Neill introduced the zero axiomwhich says that there does not
exist a gap between asymptotic rays and strongly asymptotic rays (see the definition in
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378 Y. Wu

Sect. 5), which holds on complete simply connected manifolds of uniformly negative
curvatures.

The structure of manifolds with pinched negative sectional curvature and finite
volume is well studied by Eberlein and Schroeder in [11,22]. In Sect. 5, we will prove
the following result using Theorem 1.3 and the arguments in [11,22].

Theorem 1.5 Let M be a complete n-dimensional visibility manifold satisfying the
zero axiom, the sectional curvature −1 ≤ KM ≤ 0, and the volume Vol(M) < ∞.
Let M̃(∞) be the ideal boundary of the universal cover M̃ of M. Let π1(M) be the
fundamental group of M which acts on M̃ by isometries. Then,

(1) for any x ∈ M̃(∞), �x is almost nilpotent;
(2) if �x contains a parabolic isometry of M̃, then the rank of �x is n − 1;
(3) the maximal almost nilpotent subgroups of π1(M) are precisely the nonidentity

stability groups �x , x ∈ M̃(∞),

where �x := {α ∈ π1(M) : α(x) = x}.
In [13], Farb conjectures that the moduli space MSg of closed surface Sg (g ≥ 2)

admits no complete, finite volume Riemannian metric with sectional curvature −1 ≤
K (M6Sg ) ≤ 0. The last result in this article is the following which says that the Farb
conjecture is true if we assume that g ≥ 3 and the universal cover satisfies the zero
axiom. More precisely,

Theorem 1.6 The moduli space MSg of closed surface Sg (g ≥ 3) admits no com-
plete Riemannian metric with sectional curvature −1 ≤ K (MSg ) ≤ 0 such that the
universal cover Teich(Sg) of MSg satisfies the zero axiom.

There is no finite volume condition in Theorem 1.6.
For the geometry and topology of open Riemannian manifold of nonpositive sec-

tional curvature, one can refer to the recent nice survey of Belegradek [2] for more
details.

1.4 Plan of the Paper

In Sect. 2, we will demonstrate some necessary backgrounds and prove some basic
properties on CAT(0) spaces, which will be applied in subsequent sections. Section 3
will establish Theorem 1.2. Theorem 1.4 is proved in Sect. 4. In Sect. 5, we will prove
Theorems 1.5 and 1.6. In the last section, we will provide an acknowledgment.

2 Notations and Preliminaries

2.1 CAT(0) Spaces

ACAT(0) space is a geodesic metric space in which each geodesic triangle is no fatter
than a triangle in the Euclidean plane with the same edge lengths. More precisely,
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Parabolic Isometry 379

Definition 2.1 LetM be a geodesicmetric space. For any a, b, c ∈ M , three geodesics
[a, b], [b, c], [c, a] form a geodesic triangle �. Let �(a, b, c) ⊂ R

2 be a triangle in
the Euclidean plane with the same edge lengths as �. Let p, q be points on [a, b] and
[a, c], and let p, q be points on [a, b] and [a, c], respectively, such that distM (a, p) =
distR2(a, p), distM (a, q) = distR2(a, q). We call M a CAT(0) space if for all � the
inequality distM (p, q) ≤ distR2(p, q) holds.

LetM be a completeCAT(0) space. The ideal boundary, denoted byM(∞), consists
of asymptotic rays. For each point p ∈ M and x ∈ M(∞), since the distance function
between geodesics is convex, there exists a unique geodesic ray c which represents x
and starts from p. We write c(+∞) = x . It is clear that flat planes are CAT(0) spaces.
The following definition will exclude CAT(0) spaces with flat sectors.

Definition 2.2 A complete CAT(0) space M is called a visibility CAT(0) space if,
for any x �= y ∈ M(∞), there exists a geodesic line c:(−∞,+∞) → M such that
c(−∞) = x and c(+∞) = y.

Although a completeCAT(0) spacemay be singular, the definition ofCAT(0) spaces
can guarantee that the notation of the angle, like the smooth case, still makes sense (see
[5]). Given two points x, y in M(∞), let � p(x, y) denote the angle at p between the
unique geodesic rays which issue from p and lie in the classes x and y, respectively.
The angular metric is defined to be � (x, y) := supp∈M � p(x, y). Then, � (x, y) = 0 if
and only if x = y. On a complete visibility CAT(0) space M , for any x �= y ∈ M(∞),
� (x, y) = π . So the angular metric gives a discrete topology on the ideal boundary
of a complete visibility CAT(0) space.

The following lemma will be used in the next section, which gives us a way to
compute the angular metric.

Lemma 2.3 (Proposition 9.8 of chapter II.9 in [5]) Let M be a complete CAT(0)
space with a basepoint p. Let x, y ∈ M(∞) and c, c′ be two geodesic rays with
c(0) = c′(0) = p, c(+∞) = x, and c′(+∞) = y. Then

2 sin

( � (x, y)

2

)
= lim

t→+∞
dist(c(t), c′(t))

t
.

2.2 Product

Let X1 and X2 be two metric spaces. The product X = X1 × X2 has a natural metric
which is called the product metric. Let γi be an isometry of Xi (i = 1, 2). It is obvious
that γ = (γ1, γ2) is an isometry of X under the natural action. The following lemma
tells when the converse is true.

Lemma 2.4 (Proposition 5.3 of chapter I.5 in [5]) Let X = X1×X2. Then an isometry
γ on X decomposes as (γ1, γ2), with γi be an isometry of Xi (i = 1, 2), if and
only if, for every x1 ∈ X1, there exists a point denoted γ1 ◦ x1 ∈ X1 such that
γ ◦ ({x1} × X2) = {γ1 ◦ x1} × X2.
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380 Y. Wu

The following product decomposition theorem will be applied several times in this
article.

Proposition 2.5 (Theorem 2.14 of chapter II.2 in [5]) Assume that M is a complete
CAT(0) space. Let c : R → M be a geodesic line and Pc be the set of geodesic lines
which are parallel to c. Then Pc is isometric to the product P ′

c × R, where P ′
c is a

closed convex subset in M.

2.3 Isometries on CAT(0) Spaces

Let M be a complete CAT(0) space. An isometry γ of M is a map γ : M → M
which satisfies dist(γ ◦ p, γ ◦q) = dist(p, q), for all p, q ∈ M . The set of isometries
on a metric space is a group. An isometry can be classified as elliptic, hyperbolic, or
parabolic. An isometry is called elliptic if it has a fixed point inM . The classical Cartan
Fixed Point Theorem (see [4,5]) says that an isometry γ of a complete CAT(0) space
is elliptic provided that γ has a bounded orbit. An isometry γ is called hyperbolic
if there exists a geodesic line c : (−∞,+∞) → M such that γ acts on the line
c(R) by a non-trivial translation. Each non-trivial element in the fundamental group
of a closed nonpositively curved Riemannian manifold acts on its universal cover as a
hyperbolic isometry. If an isometry is neither elliptic nor hyperbolic, then we call it to
be parabolic. Recall that in the introduction we also say that an isometry γ is parabolic
if the translation length |γ | is not obtained in M . Actually, these two definitions are
equivalent. One may see [5] or [4] for more details.

The following lemma is well known which gives us a new viewpoint for the trans-
lation length. One can refer to [4] for the proof.

Lemma 2.6 Let M be a complete CAT(0) space and γ be a parabolic isometry of M.
Then

(1) |γ | = limn→+∞ dist(γ n◦p,p)
n , ∀p ∈ M;

(2) |γ 2| = 2 · |γ |.
Part(2) follows directly from Part(1).

We recall a theorem of Karlsson and Margulis which is crucial for this article. Use
the same notations as in [19]. We set

X = {one point} = {x}, L = identity map, ω(x) = γ

and

D = M,

whereM is a complete CAT(0) space and γ is a parabolic isometry ofM . Then u(n, x)
in Eq. (2.1) in [19] is equal to γ n ◦ x . The Lemma above tells that A in Theorem 2.1
of [19] is equal to |γ |. Then the following result is a special case of Theorem 2.1 in
[19].
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Parabolic Isometry 381

Theorem 2.7 (Karlsson–Margulis) Let M be a complete CAT(0) space with a base
point p ∈ M and γ be a parabolic isometry with |γ | > 0. Then there exist a unique
x0 ∈ Fix(γ ) and a geodesic ray c : R≥0 → M such that c(0) = p, c(+∞) = x0,
and

lim
n→+∞

dist(γ n ◦ p, c(|γ | · n))

n
= 0.

2.4 Visibility CAT(0) Spaces Containing Infinite-Flat-Strips

Let us firstly look at the following two examples, which are motivated by Example
8.28 in [5]. We are grateful to Tushar Das for the discussions on these examples.

Example 1 We are going to construct a complete unbounded CAT(0) space M such
that M(∞) is empty and there exists a parabolic isometry on M .

Let H be the Hilbert space l2(Z) := {(xn); ∑∞
−∞ x2n < ∞}, σ be the right shift

map of H , and σ−1 be the left shift map of H , that is σ(x) is a sequence whose n-th
entry is xn+1, where x = (xn) ∈ H . Let δ ∈ H be the point whose only non-zero
entry is δ0 = 1. Define γ : H → H by

γ (x) = σ(x) + δ.

On page 276 of [5], it is shown that γ is a parabolic isometry which does not fix any
point of the visual boundary H(∞) of H .

Let 0 denote the point whose entries are all zeros.We consider the orbit {γ n(0)}n∈Z.
A direct computation implies that if n ≥ 0,

γ n(0) =
n∑

i=0

σ i (δ). (1)

So γ n(0)i = 1 for all 0 ≤ i ≤ n, and otherwise γ n(0)i = 0.
Similarly, if n < 0,

γ n(0) = −
−n∑
i=1

(σ−1)i (δ). (2)

So γ n(0)i = −1 for all n ≤ i < 0, and otherwise γ n(0)i = 0.
Let M be the closed convex hull ch({γ n(0)}n∈Z) of the orbit {γ n(0)}n∈Z. It is

clear that M is a complete unbounded CAT(0) space and γ acts on M as a parabolic
isometry. Indeed, the isometry γ satisfies

|γ | = 0

which cannot be achieved in M .
Claim: the visual boundary M(∞) is empty.
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382 Y. Wu

Proof of Claim Set

A := {(xn); −1 ≤ xm ≤ 0 f or m < 0, 0 ≤ xn ≤ 1 f or n ≥ 0}.

From Eqs. (1) and (2), we know that

ch({γ n(0)}n∈Z) ⊂ A.

If M(∞) is not empty, let z ∈ M(∞) which can be represented by a geodesic ray
c : [0,∞) → M such that c(0) = 0, c(∞) = z. Therefore, c(t) = t · x for some
non-zero x = (xn) ∈ M which is a contradiction since t · x /∈ A when t is large
enough. �
Example 2 (Counterexample to Question 1.1) Let M be the CAT(0) space in example
1. Consider the product space

N := M × R

which is endowed with the product metric.
Since the visual boundary of N consists of two points which can be joined by a

geodesic line, N is a complete visibility CAT(0) space. Consider the isometry γ0 :
N → N which is defined as γ0 ◦(m, t) = (γ ◦m, t+1). A direct computation implies
that γ0 is a parabolic isometry on N with |γ0| = √|γ |2 + 12 = 1 > 0.

Let M be a complete CAT(0) space. We call M has an infinite-flat-strip if there
exists a totally geodesic convex subset U × R ⊆ M , where U is unbounded. From
Proposition 2.5, we can always assume that U is closed convex. Example 2 tells that
a complete visibility CAT(0) space may contain an infinite-flat-strip.

Recall that a metric space M is called Gromov hyperbolic if there exists a δ > 0
such that every geodesic triangle is δ-thin, where a δ-thin geodesic triangle means that
each of its sides is contained in the δ-neighborhood of the union of the other two sides.
An R-tree is a Gromov hyperbolic space which holds for any δ > 0. For more details
one can see [5,16]. The following result will be used later. One may see Proposition
1.4 in chapter III.H of [5] for the proper case.

Proposition 2.8 (Proposition 10.1 in [9]) Every complete Gromov hyperbolic CAT(0)
space is a visibility CAT(0) space.

We enclose the section by the following result, which tells that a lot of standard
CAT(0) spaces have no infinite-flat-strips.

Proposition 2.9 (1) A complete proper visibility CAT(0) space does not contain any
infinite-flat-strips.
(2) A complete Gromov hyperbolic CAT(0) space does not contain any infinite-flat-
strips.
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Parabolic Isometry 383

Proof Proof of Part (1). If not. Then we can assume that M is a complete proper
visibility CAT(0) space which contains an infinite-flat-strip U × R. By the definition
of infinite-flat-strips, we know thatU is unbounded. Let c : (−∞,+∞) → M be the
geodesic line x0 ×R where x0 ∈ U . And let Pc be the set of geodesic lines which are
parallel to c. By Proposition 2.5, Pc is isometric to the product P ′

c ×R, where P ′
c is a

closed convex subset in M . For any u ∈ U , the line u×R ⊂ U ×R is parallel to c(R).
Thus, U ⊆ P ′

c. Since U is unbounded, P ′
c is also unbounded. Thus, P ′

c a complete
proper unbounded geodesic space. The Arzelà Ascoli theorem would guarantee that
there exists a geodesic ray d : [0,+∞) → P ′

c. Hence, M contains a flat half plane
[0,+∞) × R in M which is impossible because M is a visibility space.

Proof of Part (2). Assume not. Then we can assume that M is a complete Gro-
mov hyperbolic CAT(0) space which contains an infinite-flat-strip U ×R where U is
unbounded. Let δ > 0 be the number such that every geodesic triangle in M is δ-thin.
Let c : (−∞,+∞) → M be the geodesic line x0 × R where x0 ∈ U . And let Pc be
the set of geodesic lines which are parallel to c. By Proposition 2.5, Pc is isometric
to the product P ′

c × R, where P ′
c is a closed convex subset in M . Hence U ⊆ P ′

c.
Since U is unbounded, we can find a flat strip [0, k] × R with width k, where k is
an arbitrary positive number. If we choose k to be large enough, then we can find a
geodesic triangle � in [0, k]×R such that � is not δ-thin, which is a contradiction. �

3 Proofs of Theorem 1.2

Before proving Theorem 1.2, let us control the size of the fixed points of parabolic
isometries.

Proposition 3.1 Let M be a complete CAT(0) space and γ be an isometry on M. If
|γ | > 0, then

#{x ∈ M(∞) : γ ◦ x = x} ≥ 2.

Proof Since |γ | > 0, γ is either hyperbolic or parabolic.
If γ is hyperbolic, let c : (−∞,+∞) → M be an axis for γ . The conclusion

follows from the fact that {c(−∞), c(+∞)} belongs to {x ∈ M(∞) : γ ◦ x = x}.
If γ is parabolic. Since |γ | > 0, Theorem 2.7 tells that there exists a unique fixed

point x ∈ M(∞) such that for every p ∈ M and every geodesic ray c:[0,+∞) → M
with c(0) = p and c(+∞) = x we have

lim
n→+∞

dist(γ n ◦ p, c(n|γ |))
n

= 0.

Since |γ −1| = |γ | > 0, by Theorem 2.7, again we know that γ −1 has a unique fixed
point y ∈ M(∞) such that for every p ∈ M and every geodesic ray c′ : [0,+∞) → M
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384 Y. Wu

with c′(0) = p and c′(+∞) = y we have

lim
n→+∞

dist(γ −n ◦ p, c′(n|γ |))
n

= 0.

By the triangle inequality,

lim
n→+∞

dist(c(n|γ |), c′(n|γ |))
n

= lim
n→+∞

dist(γ n ◦ p, γ −n ◦ p)

n
.

Since γ is an isometry, by Lemmas 2.3 and 2.6, we have

2|γ | sin( � (c(+∞), c′(+∞))

2
) = |γ 2|.

From Lemma 2.6, we know that

2|γ | sin( � (c(+∞), c′(+∞))

2
) = 2|γ |.

Since |γ | �= 0, � (c(+∞), c′(+∞)) = π �= 0. That is � (x, y) �= 0. Since x, y ∈
Fix(γ ), we have

#{x ∈ M(∞) : γ ◦ x = x} ≥ 2.

�
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 “⇐”. Since γ acts on U × R as

γ ◦ (x, t) = (γ1 ◦ x, t + t0), ∀(x, t) ∈ U × R,

the translation length |γ | of γ satisfies that

|γ | =
√

|γ1|2 + t20 .

Thus, |γ | = |t0| because |γ1| = 0. Since |γ1| is a parabolic isometry of U , the
translation length |γ | can not be obtained inU ×R. That is, γ is parabolic onU ×R.
Since U × R is totally geodesic in M , Part (4) of Proposition 6.2 on page 229 of [5]
tells that γ is a parabolic isometry of M . It is clear that |γ |U×R = |t0| > 0. By Part
(4) of Proposition 6.2 on page 229 of [5] again we have that

|γ | = |t0| > 0.

“ ⇒”. Since |γ | > 0, from Proposition 3.1 we know that

#{x ∈ M(∞) : γ ◦ x = x} ≥ 2.
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Parabolic Isometry 385

Let x �= y ∈ Fix(γ ). Since M is a visibility CAT(0) space, there exists a geodesic
line c : R → M such that c(−∞) = x and c(+∞) = y. Let Pc be the set of geodesic
lines which are parallel to c. By Proposition 2.5, we know that Pc is isometric to the
product P ′

c × R, where P ′
c × {0}, still denoted by P ′

c, is a closed convex subset in M .
We let U = P ′

c.
Since c(−∞), c(+∞) ∈ Fix(γ ), γ ◦ (c(R)) is also geodesic line which is parallel

to c(R). In particular, Pc = U ×R is a γ -invariant subset in M . From Lemma 2.4, we
know that γ splits as (γ1, γ2), where γ1 is an isometry on U and γ2 is an isometry on
R. Since U × {0}, still denoted by U , is closed convex in M , the subspace U is also a
complete CAT(0) space. First we claim that Pc is an infinite-flat-strip.

Proof of Claim If U is bounded, the classical Cartan Fixed Point Theorem gives
that there exists x1 ∈ U such that γ1 ◦ x1 = x1. Since γ2 acts on R by isometry, it is
either elliptic or hyperbolic.

Case 1 γ2 is elliptic.
There exists x2 ∈ R such that γ2 ◦ x2 = x2. In particular, γ = (γ1, γ2) fixes the

point (x1, x2), which means that γ is elliptic, which contradicts the assumption that
γ is parabolic.

Case 2 γ2 is hyperbolic.
Since γ1 ◦ x1 = x1, γ = (γ1, γ2) acts on the line x1 × R as a translation. From

the definition of hyperbolic isometries, x1 × R is an axis for γ . In particular, γ is
hyperbolic, which also contradicts our assumption that γ is parabolic.

It remains to show that γ1 is parabolic with |γ1| = 0 and |γ2| = |γ | > 0.
First we show that |γ1| = 0. If not, that is |γ1| > 0. From Proposition 3.1, we know

that

#{x ∈ U (∞) : γ1 ◦ x = x} ≥ 2.

In particularU (∞) is not empty. That is, there exists a geodesic ray c : [0,∞) → U .
Thus, M contains a flat half plane c([0,∞)) × R which is a contradiction since M is
a visibility CAT(0) space.

The conclusion |γ2| = |γ | > 0 follows from |γ | = √|γ1|2 + |γ2|2 and |γ1| = 0.
Since γ is a parabolic isometry of M and γ2 is a hyperbolic isometry of R, the

isometry γ1 is parabolic on U . �

4 Proof of Theorem 1.4

First let us recall Fujiwara’s example. We use the same notations as in [15].
Let V be a 3-dimensional closed hyperbolic manifold and S be a simple closed

geodesic inV with lengtha > 0.Letσ > 0 be small enough.Then theσ -neighborhood
Nσ (S) of S is S× S1 ×[0, σ ) where the subset S× S1 ×{0} degenerates into the core
closed geodesic S. We introduce polar coordinates (ω, θ, r) on Nσ (S). The hyperbolic
metric of V on a σ -neighborhood Nσ (S) of V is given by

gV = cosh2(r)dω2 + sinh2(r)dθ2 + dr2 (0 ≤ θ ≤ 2π, 0 ≤ r ≤ σ).
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Let M = V − S and g be the metric on M as follows; the metric g|M−Nσ (S) is the
hyperbolic metric and restricted on Nσ (S) − S:

g = cosh2(r)dω2 + sinh2(r)dθ2 + f 2(r)dr2 (0 ≤ θ ≤ 2π, 0 ≤ r ≤ σ),

where f (r) is a bump function which satisfies that f |[ σ
2 ,σ ] ≡ 1, f |[0, σ

4 ] = 1√
r sinh r

,

and so on (one can see the Lemma in [15] for more details). It is shown in [15] that
(M, g) has finite volume and sectional curvature −1 ≤ KM < 0.

Proof of Theorem 1.4 First, we prove the result when the dimension of M is 3.
From the definition of g, we know that for any fixed positive number c0 ∈ (0, 2π),

the surface θ = c0, corresponding to the submanifold S×{c0}× (0, σ ) in M , is totally
geodesic. Indeed, the surface θ = c0 is the set of fixed points of an isometric reflection.

The metric g, restricted to θ = c0, is

gθ = c0 = cosh2(r)dω2 + f 2(r)dr2 (0 ≤ r ≤ σ).

We denote M |θ = c0 by S × (0, σ ). The universal cover of S × (0, σ ) is R × (0, σ ).
Let φ be the generator of the fundamental group of S × (0, σ ). Since the length of S
is a, it is not hard to see that, for all (ω, r) ∈ R × (0, σ ), we have

φ ◦ (ω, r) = (ω + a, r) (0 ≤ r ≤ σ).

Claim: φ is a parabolic isometry with positive translation length.
Proof of Claim First, we consider the curve c(t) : [0, 1] → R × (0, σ ) defined by

c(t) = (ω + t · a, r). Then we have

|φ| ≤ �(c([0, 1])) =
∫ 1

0

√
cosh2(c2(t)) · c′

1(t)
2dt

= cosh(r) ·
∫ 1

0
|c′
1(t)|dt = a · cosh(r).

Since r is arbitrary, letting r → 0 we get |φ| ≤ a.
Secondly, let c(t) = (c1(t), c2(t)) : [0, 1] → R × (0, σ ) be any smooth curve

joining (ω, r) and (ω + a, r), so that in particular c1(0) = ω and c1(1) = ω + a. The
length of c([0, 1]) is

�(c([0, 1])) =
∫ 1

0

√
cosh2(c2(t)) · c′

1(t)
2 + f 2(c2(t)) · c′

2(t)
2dt

≥
∫ 1

0
| cosh(c2(t)) · c′

1(t)|dt >

∫ 1

0
|c′
1(t)|dt

≥ (c1(1) − c1(0)) = a > 0.

Since c(t) is arbitrary, |φ| ≥ a > 0. Hence |φ| = a > 0. |φ| cannot be attained in
R × (0, σ ) since �(c([0, 1])) > a for any curve joining (ω, r) and (ω + a, r), so φ is
parabolic.
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Hence, φ restricted to R × (0, σ ) is a parabolic isometry with positive translation
length. Since θ = c0 is totally geodesic in M , R × (0, σ ) is totally geodesic in the
universal covering of M . So φ is also a parabolic isometry with positive translation
length in the universal covering of M .

From Theorem 1.3, we know that M is not a visibility manifold.
For the case that the dimension of M is greater than 3, from the construction in

[15] the closed geodesic S in the argument above is replaced by a totally geodesic
closed manifold W of codimension 2 in M . Recall that W is also hyperbolic. Let γ

be the shortest closed geodesic in W . We lift W × (0, σ ) onto its universal covering
space and let R be the geodesic line which projects into the closed geodesic γ . Then
applying a similar argument to R × (0, σ ) as in the 3 dimension case, one can show
that the deck transformation w.r.t. γ is a parabolic isometry of the universal cover M̃
of M , which has positive translation length. Then by Theorem 1.3 we know that M is
not a visibility manifold. �

Theorem 1.4 tells that the fundamental group of a negatively curved Riemannian
manifold with finite volume may contain parabolic isometries of positive translation
lengths if the dimension of the manifold is greater than or equal to 3. However, the
following result tells that parabolic isometries with positive translation lengths do not
exist in the fundamental group of nonpositively curved surface with finite volume.
More precisely,

Theorem 4.1 Let M be a complete two-dimensional Riemannian manifold with non-
positive Gauss curvature. If the fundamental group π1(M) of M contains a parabolic
isometry φ with translation length |φ| > 0, then we have

Vol(M) = ∞.

Proof Since π1(M) contains a parabolic isometry, M is non-compact. Suppose that
Vol(M) < ∞. Then M is not flat since there does not exist a non-compact flat surface
of finite area. By Corollary 3.2 of [11], the universal cover M̃ of M is a visibility
CAT(0) manifold. Since φ is parabolic, by Theorem 1.3 we know that |φ| = 0, which
is a contradiction. �
Example 3 Consider the upper half plane H2 endowed with a metric ds2 := (dx2 +
dy2) + dx2+dy2

y2
. Since ds2 is the sum of one complete metric and another metric,

(H2, ds2) is complete. The curvature formula tells that the sectional curvature of
(H2, ds2) at (x, y) is given by

K (x, y) = − 1

2(1 + 1
y2

)
× ∂

∂y

( − 2
y3

1 + 1
y2

)
= −(1 + 3y2)

(1 + y2)3
.

The formula above clearly implies that the sectional curvature satisfies −1 ≤ KH2 <

0.
Letφ : H2 → H2 definedby (x, y) �→ (x+1, y).Adirect computation implies that

φ is a parabolic isometrywith |φ| = 1 > 0.ByTheorem1.3,we know that (H2, ds2) is
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a complete 2-dimensional negatively curved surface which is not a visibility manifold.
Moreover, Theorem 4.1 tells us that (H2, ds2) cannot cover any surface of finite
volume.

5 Zero Axiom

In [12], Eberlein and O’Neill first introduced the so-called zero axiom. Recall that M
satisfies the zero axiom if for any two rays r : [0,+∞) → M and σ : [0,+∞) → M
with r(+∞) = σ(+∞) in M(∞) we have

lim
t→+∞ dist(r(t), σ (R≥0)) = 0.

A typical example of CAT(0) manifold satisfying the zero axiom is a complete sim-
ply connected Riemannian manifold whose sectional curvature is uniformly negative.

Proposition 5.1 Let M be a complete CAT(0) space satisfying the zero axiom, γ be
an infinite ordered isometry of M, and Fix(γ ) be the subset in M(∞) fixed by γ

(i.e., γ (x) = x, ∀x ∈ Fix(γ )). Then, for any geodesic ray r : [0,+∞] → M with
r(+∞) ∈ Fix(γ ), we have

lim
t→+∞ dist(γ ◦ r(t), r(t)) = |γ |.

Proof Let {pi }i≥1 be a sequence in M such that limi→+∞ dist(γ ◦ pi , pi ) = |γ | and
ri : [0,+∞) → M be a sequence of rays in M with ri (0) = pi and ri (+∞) =
r(+∞). Since M satisfies the zero axiom, for each i there exist ti , si > 0 such that

dist(ri (si ), r(ti )) <
1

i
. (3)

By the triangle inequality, we have

dist(γ ◦ r(ti ), r(ti )) ≤ dist(γ ◦ ri (si ), ri (si )) + 2 × dist(ri (si ), r(ti )). (4)

Since ri (+∞) = r(+∞) ∈ Fix(γ ) and the distance function between two rays in
M is convex (see [5]), dist(γ ◦ ri (t), ri (t)) is a decreasing function. In particular, we
have

dist(γ ◦ ri (si ), ri (si )) ≤ dist(γ ◦ ri (0), ri (0)) = dist(γ ◦ pi , pi ). (5)

Equations (3), (4), and (5) lead to

dist(γ ◦ r(ti ), r(ti )) ≤ dist(γ ◦ pi , pi ) + 2

i
.
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Taking the limit,

lim
i→+∞ dist(γ ◦ r(ti ), r(ti )) ≤ |γ |.

From the definition, we also know that

lim
i→+∞ dist(γ ◦ r(ti ), r(ti )) ≥ |γ |.

Hence,

lim
i→+∞ dist(γ ◦ r(ti ), r(ti )) = |γ |.

Since r(+∞) ∈ Fix(γ ), dist(γ ◦ r(t), r(t)) is decreasing. Therefore,

lim
t→+∞ dist(γ ◦ r(t), r(t)) = lim

i→+∞ dist(γ ◦ r(ti ), r(ti )) = |γ |.

�
LetM be a complete open n-dimensional visibilitymanifold satisfying the sectional

curvature −1 ≤ KM ≤ 0 and the volume Vol(M) < ∞. In [11], Eberlein showed that
each end is a so-called Riemannian collared, which is the cross product of a compact
quotient space of a horosphere and a ray. The compact quotient is said to be a cross
section. The fundamental group of a cross section is a finitely generated subgroup
of the fundamental group of M , which consisting of parabolic isometries fixing a
common boundary point. If the curvature of M is pinched by two negative numbers,
the Gromov–Margulis Lemma can be applied to show that this subgroup is almost
nilpotent. For the case that M is a visibility manifold and satisfies the zero axiom,
Theorem 1.3 and Proposition 5.1 can guarantee that the argument of Eberlein above
still works in our setting, which is sufficient to prove Theorem 1.5. We use the same
notations as the ones in [11,22].

Proof of Theorem 1.5 Proof of Part (1). If �x contains a semisimple isometry of M̃ ,
then it is easy to see that �x is an infinite cyclic group (see [12]).

If �x contains only parabolic elements, by Lemma 3.3 in [11], there exists φ ∈
π1(M, p) such that x = φ(xi ) (see the definition of xi in Lemma 3.3 in [11]). From
Lemma 3.1g in [11], we know that�xi is finitely generated. The fact that�x has a finite
generating set follows from�x = φ�xiφ

−1.Assume that�x =< ψ1, . . . , ψk >. Since
�x contains only parabolic elements and M is a visibility manifold, from Theorem
1.3 we know that the translation length of ψi |ψi | = 0 for all 1 ≤ i ≤ k. Now let
r : [0,+∞) → M̃ be a geodesic ray in M̃ with r(+∞) = x . Proposition 5.1 tells us
that limt→+∞ dist(ψi ◦ r(t), r(t)) = 0 for each 1 ≤ i ≤ k. Let ε(n) be the Margulis
constant for M (see [4]). For all i and suitable large t , we have dist(ψi ◦ r(t), r(t)) <

ε(n). Then the conclusion that �x =< ψ1, . . . , ψk > is almost nilpotent follows from
the Gromov–Margulis Lemma.
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Proof of Part (2).Let N be the nilpotent subgroup of�x of finite index. It is sufficient
to show that the rank of N is n − 1. Since M has nonpositive sectional curvature,
π1(M, p) is torsion-free. From Part (1), we know that N is a finitely generated torsion-
free nilpotent group. By a theorem of Malcev (see Theorem II. 2.18 in [21]), we have
that N is isomorphic to a lattice of a simply connected nilpotent Lie group whose
dimension is the same as the rank of N . By Lemma 3.1g in [11], we know that
N operates on a horosphere of M̃ which is homeomorphic to R

n−1 with compact
quotient. The conclusion that the rank of N is n − 1 follows from the fact that any
simply connected nilpotent Lie group of rank d is homeomorphic to Rd .

Proof of Part (3). Let N ′ be a maximal almost nilpotent subgroup of π1(M, p). By
Lemma 3.1b in [11], there exists a point z ∈ M̃(∞) such that N ′ ⊂ �z . From Part (1),
we know that �z is almost nilpotent. Since N ′ is a maximal almost nilpotent subgroup,
N ′ = �z . �

Before proving Theorem 1.6, let us make some preparations. Let Sg be a hyperbolic
surfacewith genus g. It is well known that the completion Teich(Sg) of the Teichmüller
space, endowed with the Weil–Petersson metric, is a CAT(0) space, and Mod(Sg)
acts on Teich(S) by isometries. The Dehn twists here behave as elliptic isometries
whose fixed points are products of lower-dimensional Teichmüller spaces. Actually,
Bridson in [7] proved the following more general result using Theorem 2.7 (Karlsson–
Margulis).

Theorem 5.2 (Bridson)WheneverMod(Sg) (g ≥ 3) acts by isometries on a complete
CAT(0) space M, then each Dehn twist τ ∈ Mod(Sg) has |τ | = 0.

A group G acting on a metric space X is said to act properly discontinuously if for
each compact subset K ⊂ X , the set K ∩ gK is nonempty for only finitely many g in
G. The following corollary is a direct result of Theorem 5.2.

Corollary 5.3 Whenever Mod(Sg) (g ≥ 3) acts properly discontinuously on a com-
plete CAT(0) space M by isometries, eachDehn twist τ ∈ Mod(Sg) acts as a parabolic
isometry with |τ | = 0.

Proof If not, by Theorem 5.2 τ is elliptic, so τ has a fixed point x0 ∈ M which
contradicts the assumption that the action is properly discontinuous, since every Dehn
twist has infinite order. �

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6 Let σ be a non-separate simple closed curve. Since g ≥ 3, we
can find two intersecting simple closed curves σ1, σ2 ⊂ (Sg − σ) such that the group
generated by the two Dehn twists τσ1 and τσ2 is a free group of rank ≥ 2 (see [14]).

Let τσ be the Dehn twist on σ in Mod(Sg). We define the centralizer N (τσ ) of τσ

in the following way:

N (τσ ) := {α ∈ Mod(Sg) : α ◦ τσ = τσ ◦ α}.

Thus, < τσ1 , τσ2 >⊂ N (τσ ) since σ1, σ2 ⊂ (Sg − σ).
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We argue it by getting a contradiction. Assume that Teich(Sg) admits a complete
Mod(Sg)-invariant Riemannian metric ds2 such that −1 ≤ K(Teich(Sg),ds2) ≤ 0 and

(Teich(Sg), ds2) satisfies the zero axiom. Then first by Corollary 5.3, the Dehn twist
τσ would act as a parabolic isometry on the (Teich(Sg), ds2). By Lemma 7.3 on page
87 of [4], we know that there exists a point x ∈ Teich(Sg)(∞) such that N (τσ ) fixes
x , that is for any α ∈ N (τσ ), α(x) = x . In particular, < τσ1 , τσ2 > fixes x since
< τσ1 , τσ2 >⊂ N (τσ ).

Let r : [0,+∞) → (Teich(Sg), ds2) be a geodesic ray in M with r(+∞) = x .
Since g ≥ 3, by Corollary 5.3 we know that the translation length of any Dehn twist
is zero. Since (Teich(Sg), ds2) satisfies the zero axiom, by Proposition 5.1 we have
limt→+∞ dist(τσ1 ◦ r(t), r(t)) = limt→+∞ dist(τσ2 ◦ r(t), r(t)) = 0. Hence, for any
ε > 0 we can find t0 such that

dist(τσ1 ◦ r(t0), r(t0)) < ε, dist(τσ2 ◦ r(t0), r(t0)) < ε.

Choose ε small enough so that ε is smaller than the Margulis constant for
(Teich(Sg), ds2). After applying the Gromov–Margulis Lemma (see [4]) at the point
r(t0), we have that the group 〈τσ1 , τσ2〉 is a finitely generated subgroup of an almost
nilpotent group. Thus, the group 〈τσ1 , τσ2〉 is also almost nilpotent, which contradicts
the fact that 〈τσ1 , τσ2〉 is a free group of rank ≥ 2. �
Remark 5.1 Since Theorem 5.2 of Bridson is also true for g ≥ 3 and n ≥ 0, Theorem
1.6 also holds for the moduli space Mg,n of surface of genus g with n punctures if
g ≥ 3. In [3,18], it was proved that the mapping class group Mod(Sg,n) cannot act
properly discontinuously on any complete simply connected Riemannian manifold
with pinched negative sectional curvature when 3g + n ≥ 5. Since a complete simply
connected Riemannian manifold, whose sectional curvature is bounded above by a
negative number, satisfies the zero axiom, Theorem 1.6 generalizes these results for
the cases g ≥ 3. One may also see [23] for related results.
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