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Abstract. This paper concerns the physical behaviors of any solutions to the one
dimensional compressible Navier-Stokes equations for viscous and heat conductive
gases with constant viscosities and heat conductivity for fast decaying density at
far fields only. First, it is shown that the specific entropy becomes not uniformly
bounded immediately after the initial time, as long as the initial density decays to

vacuum at the far field at the rate not slower than O
(

1
|x|`ρ

)
with `ρ > 2. Further-

more, for faster decaying initial density, i.e., `ρ ≥ 4, a sharper result is discovered
that the absolute temperature becomes uniformly positive at each positive time, no
matter whether it is uniformly positive or not initially, and consequently the cor-
responding entropy behaves as O(− log(%0(x))) at each positive time, independent
of the boundedness of the initial entropy. Such phenomena are in sharp contrast
to the case with slowly decaying initial density of the rate no faster than O( 1

x2 ),
for which our previous works [34–36] show that the uniform boundedness of the
entropy can be propagated for all positive time and thus the temperature decays to
zero at the far field. These give a complete answer to the problem concerning the
propagation of uniform boundedness of the entropy for the heat conductive ideal
gases and, in particular, show that the algebraic decay rate 2 of the initial density
at the far field is sharp for the uniform boundedness of the entropy. The tools to
prove our main results are based on some scaling transforms, including the Kelvin
transform, and a Hopf type lemma for a class of degenerate equations with possible
unbounded coefficients.

1. Introduction

The compressible Navier–Stokes equations for the ideal viscous and heat conductive
gases read as

∂tρ+ div (ρu) = 0, (1.1)

ρ(∂tu+ (u · ∇)u)− µ∆u− (µ+ λ)∇divu+∇p = 0, (1.2)
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cvρ(∂tθ + u · ∇θ) + pdivu− κ∆θ = Q(∇u), (1.3)

where the unknowns ρ ≥ 0, u ∈ RN , with N the spatial dimension, θ ≥ 0, and
p = Rρθ, respectively, represent the density, velocity, temperature, and pressure.
Here, R and cv are positive constants, µ and λ are the viscous coefficients, both
assumed to be constants and satisfy the physical constraints µ > 0 and 2µ+Nλ > 0,
κ is the heat conductive coefficient, assumed to be a positive constant, and Q(∇u)
is a quadratic term of ∇u given as

Q(∇u) =
µ

2
|∇u+ (∇u)T |2 + λ(divu)2.

By the Gibbs equation θDs = De + pD(1
ρ
), where s is the specific entropy and

e = cvθ is the specific internal energy, it holds that p = Ae
s
cv ργ for some positive

constant A, where γ− 1 = R
cv

. It is clear that γ > 1. In terms of ρ and θ, the specific
entropy s can be expressed as

s = cv

(
log

R

A
+ log θ − (γ − 1) log ρ

)
, (1.4)

satisfying

ρ(∂ts+ u · ∇s)− κ

cv
∆s = κ(γ − 1)div

(
∇ρ
ρ

)
+

1

θ

(
Q(∇u) + κ

|∇θ|2

θ

)
, (1.5)

in the region where both ρ and θ are positive.
As the governing system in the gas dynamics, the compressible Navier–Stokes

equations have been studied extensively. One of the central concepts in the mathe-
matical theory for the compressible Navier–Stokes equations is the vacuum, which,
if occurs, means that the density vanishes at either some interior points or on the
boundary or at the far fields. Indeed, the possible presence of vacuum is one of the
main difficulties in the theory of global well-posedness of general solutions to the
compressible Navier–Stokes equations. Note that the equation (1.5) for the entropy
is highly degenerate and singular near the vacuum, it is even more difficult to analyze
the dynamic behavior of the entropy in the presence of vacuum. Due to this, most
of the mathematical theories developed in the existing literatures on the compress-
ible Navier–Stokes equations in the presence of vacuum are for system (1.1)–(1.3)
regardless of the entropy.

There are extensive literatures on the mathematical studies concerning the com-
pressible Navier–Stokes equations (1.1)–(1.3). In the one-dimensional case, the corre-
sponding theory is satisfactory and in particular the global well-posedness has been
known for long time. In the absence of vacuum, for which the information of the
entropy follows from that of the density and the temperature directly by (1.4), the
global well-posedness of strong solutions was established by Kazhikov–Shelukin [24]
and Kazhikov [25], which were later extended in the setting of weak solutions, see,
e.g., [2, 23, 58, 59]; large time behavior of solutions with general initial data was
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proved by Li–Liang [32]. In the presence of vacuum, but without considering the en-
tropy, the corresponding global well-posedness were established by the first author of
this paper in [29, 30], for both heat conductive and non-heat conductive ideal gases.
As shown by Hoff–Smoller [17], for the one-dimensional compressible Navier–Stokes
equations, no vacuum can be formed later in finite time from non-vacuum initial
data, while such a result remains open in the multidimensional case.

In the multi-dimensional case, the mathematical theory for the compressible Navier–
Stokes equations is less complete than that in the one-dimensional case. The break-
through for the global existence of finite energy weak solutions with general initial
data and possible vacuum, to the isentropic compressible Navier–Stokes equations,
was achieved by Lions [37, 38]. The results of Lions [37, 38] were later improved
by Feireisl–Novotný–Petzeltová [12], Jiang–Zhang [22], and more recently Bresch–
Jabin [1]. For the full compressible Navier–Stokes equations, the global existence of
variational weak solutions was proved by Feireisl [14], under some assumptions on
the equations of states. The uniqueness of weak solutions is still a challenging open
problem. If the initial datum is suitably regular, then the compressible Navier–Stokes
equations admit a unique local strong or classic solution, see [21, 39, 46, 48, 50, 51, 53]
for the case in the absence of vacuum, and [5–7, 15, 18, 31, 49] for the case in the pres-
ence of vacuum. However, the corresponding global existence with general initial data
may not be expected, due to the recent finite time blow up results by Merle–Rapha’el–
Rodnianski–Szeftel [44, 45], where for the three-dimensional isentropic compressible
Navier–Stokes equations with spherical symmetry, regular solutions with finite time
singularities are constructed for a class of initial data with far field vacuum. Indeed,
up to now, global strong or classical solutions are established only under some ad-
ditional conditions on the initial data: the case with small perturbed initial data
around non-vacuum equilibriums was achieved by Matsumura–Nishida [40–43], and
later developed in many works, see, e.g., [3, 4, 8–11, 16, 26, 47, 52]; while the case with
initial data of small energy but allowing large oscillations and vacuum was proved by
Huang–Li–Xin [20] and Li–Xin [33] for the isentropic system, and later generalized
to the full system in [19, 28, 54].

It is worth pointing out that there are some significant differences in the mathe-
matical theories for the compressible Navier–Stokes equations between the vacuum
and non-vacuum cases and new phenomena may occur depending on the locations
and states of vacuum. In the non-vacuum case, the solutions can be establish in both
the homogeneous and inhomogeneous spaces depending on the properties of the ini-
tial data, and the solution spaces guarantee the uniform boundedness of the entropy.
However, these may fail in general in the presence of vacuum. Indeed, in the case
that the density has compact support, the solution can be established in the homo-
geneous spaces, see, e.g., [5–7, 15, 18, 20, 31], but not in the inhomogeneous spaces,
see Li–Wang–Xin [27]. Further more, the blowup results of Xin [56] and Xin–Yan
[57] imply that the global solutions established in [19, 28, 54] must have unbounded
entropy, if initially there is an isolated mass group surrounded by the vacuum region.
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However, it is somewhat surprising that if the initial density vanishes only at far fields
with a rate no more than O( 1

|x|2 ), then, as for the non-vacuum case, the solutions can

be established in both the homogeneous and inhomogeneous spaces, and the entropy
can be uniformly bounded, see the recent works by the authors [34–36].

It should be noted that since system (1.1)–(1.3) is already closed, one can indeed
establish self-contained mathematical theories for it, as already developed in the pre-
vious works mentioned above. However, since the second law of the thermodynamics
is not taken in to account, these theories are insufficient from the physical point of
view. Therefore, some new theories are needed to provide information for the entropy
in the presence of vacuum to meet the physical requirements. However, due to the
lack of the expression and high singularity and degeneracy of the governing equation
for the entropy near the vacuum region, in spite of its importance, the mathematical
analysis of the entropy for the viscous compressible fluids in the presence of vacu-
um was rarely carried out before. Mathematical studies towards this direction has
been initiated in our previous works [34, 35] and further developed in [36], where
the propagation of the uniform boundedness of the entropy and the inhomogeneous
Sobolev regularities was achieved for the compressible Navier–Stokes equations, with
or without heat conductivities, in the presence of vacuum at the far fields, under the
crucial condition that the initial density decays to vacuum at the rate no faster than
O( 1
|x|2 ).

In this paper, we continue our studies on the dynamic behavior of the entropy in
the presence of vacuum. Different from the cases considered in [34–36], where the
density decays slowly to the vacuum at far fields, in the current paper, we investigate
the case with fast decaying density at the far fields. For simplicity, we study the
one-dimensional case in the current paper while leave the multi-dimensional case as
future works. It will be shown in this paper that, in sharp contrast to the cases
with slowly decaying density in [34–36], the uniform boundedness of the entropy can
not be propagated by the compressible Navier–Stokes equations for viscous and heat
conductive ideal gases with constant viscosities and heat conductivities, if the initial
density decays faster than the order O( 1

|x|`ρ ) at the far fields with `ρ > 2. Since the

uniform boundedness of the entropy has already been established in [34–36] if the
decay rate is less than O( 1

|x|2 ), our results in this paper reveal that the decay rate 2 of

the initial density at the far field is sharp for the uniform boundedness of the entropy.
Surprisingly, in case that the initial density decays faster than the order O( 1

x4
), some

sharper results can be achieved: the temperature is uniformly positive immediately
after the initial time, for any general nonnegative (not identically zero) initial tem-
perature, and, as a result, the entropy tends to infinity at the order O(− log(%0(x)))
at any positive time.

Consider the Cauchy problem to the one-dimensional compressible Navier–Stokes
equations for viscous and heat conductive ideal gases

ρt + (ρu)x = 0, (1.6)
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ρ(ut + uux)− µuxx + px = 0, (1.7)

cvρ(θt + uθx) + pux − κθxx = µ(ux)
2, (1.8)

where p = Rρθ, subject to the initial condition

(ρ, u, θ)|t=0 = (ρ0, u0, θ0). (1.9)

The main results of this paper will be stated and proved in the Lagrangian co-
ordinates; however, since the velocity of the solutions obtained in this paper have
Lipschitz regularities in the spatial variable, the results can be transformed back to
those in the Eulerian coordinates.

Define the coordinate transform between the Lagrangian coordinate y and the
Eulerian coordinate x as x = η(y, t) satisfying{

∂tη(y, t) = u(η(y, t), t),
η(y, 0) = y.

Set

%(y, t) := ρ(η(y, t), t), v(y, t) := u(η(y, t), t), ϑ(y, t) := θ(η(y, t), t),

and

J := J(y, t) = ηy(y, t).

Then, it holds that

Jt = vy, J |t=0 ≡ 1, J% = %0,

with %0 := ρ0. We still use s to denote the specific entropy in the Lagrangian
coordinates. Then, it follows from (1.4) that

s(y, t) = cv

(
log

R

A
+ log ϑ(y, t)− (γ − 1) log %0(y) + (γ − 1) log J(y, t)

)
, (1.10)

for any y ∈ R and t ∈ [0,∞).
Then, in the Lagrangian coordinates, the system (1.6)–(1.8) becomes

Jt = vy, (1.11)

%0vt − µ
(vy
J

)
y

+ πy = 0, (1.12)

cv%0ϑt + vyπ − κ
(
ϑy
J

)
y

= µ
|vy|2

J
, (1.13)

where π = R%0
J
ϑ. The initial data can be taken as

(J, v, ϑ)|t=0 = (1, v0, ϑ0), (1.14)

where v0 = u0 and ϑ0 = θ0.
The following conventions will be used throughout this paper. For 1 ≤ q ≤ ∞ and

positive integer m, Lq = Lq(R) and W 1,q = Wm,q(R) denote the standard Lebesgue
and Sobolev spaces, respectively, and Hm = Wm,2. For simplicity, Lq and Hm denote
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also their N product spaces (Lq)N and (Hm)N , respectively. ‖u‖q is the Lq norm of u,

and ‖(f1, f2, · · · , fn)‖X is the sum
∑N

i=1 ‖fi‖X or the equivalent norm
(∑N

i=1 ‖fi‖2
X

) 1
2
.

The main results of this paper are the following three theorems. The first one
yields the global existence of a solution to the Cauchy problem (1.11)–(1.13), subject
to (1.14).

Theorem 1.1. Let the initial density %0 be given such that 0 < %0 ∈ L1(R)∩W 2,∞(R)
and

|%′0|+ |%′′0| ≤ K1%0 on R, (H1)

for a positive constant K1. Assume that (v0, ϑ0) satisfies ϑ0 ≥ 0 on R and

(
√
%0v0,

√
%0v

2
0, v
′
0, v
′′
0 ,
√
%0ϑ0,

√
%0ϑ

′
0,
√
%0ϑ

′′
0) ∈ L2(R),

G′0√
%0

∈ L2(R), (1.15)

lim
y→−∞

|v′0(y)|√
%0(y)

+ lim
y→+∞

|v′0(y)|√
%0(y)

< +∞, (1.16)

where G0 := µv′0 −R%0ϑ0.
Then, there is a global solution (J, v, ϑ) to (1.11)–(1.13), subject to (1.14), satis-

fying inf(y,t)∈R×(0,T ) J > 0, θ ≥ 0, and

Jy√
%0

, Jyy, Jt, Jyt ∈ L∞(0, T ;L2(R)),

√
%0v,
√
%0v

2, vy,
vyy√
%0

,
√
%0vt ∈ L∞(0, T ;L2(R)), vyyy, vyt ∈ L2(0, T ;L2(R)),

√
%0ϑ,
√
%0ϑy,

√
%0ϑyy, %

3
2
0 ϑt ∈ L∞(0, T ;L2(R)), ϑy ∈ L2(0, T ;H2(R)),

%0ϑt, %0ϑyt ∈ L2(0, T ;L2(R)), Gt,

(
Gy

%0

)
y

∈ L2(0, T ;L2(R)),

for any positive time T , where G := µvy
J
−R%0

J
ϑ.

Remark 1.1. (i) Condition (H1) allows arbitrary algebraic and even exponential de-
cay rate of %0 at far fields. Indeed, one can check that functions of the forms A

(1+y2)`

and e−(1+y2)δ , with A, ` ∈ (0,∞) and δ ∈ (0, 1
2
], satisfy (H1). Thus, Theorem 1.1 gen-

eralizes the global existence result in our previous work [35], where some assumptions
on slow decay at far fields on %0 are assumed.

(ii) Condition (1.16) is used only to construct suitable approximated initial data
for the corresponding initial boundary value problems (which are expected to converge
to the Cauchy problem), see Step 1 in the proof of Theorem 1.1.

The second theorem gives the immediate unboundedness of the specific entropy if
the algebraic decay rate of the initial density is greater than 2.



UNBOUNDEDNESS OF ENTROPY AND UNIFORM POSITIVITY OF TEMPERATURE 7

Theorem 1.2. Assume, in addition to the conditions in Theorem 1.1, that

(1 + |y|)`ρ%0(y) ≤ K2, ∀y ∈ R, (H2)

for some positive constants `ρ ∈ (2,∞) and K2, and either ϑ0 is not identically zero
or v0 is not identically a constant. Let (J, v, ϑ) be a solution to system (1.11)–(1.13),
subject to (1.14), satisfying the properties stated in Theorem 1.1. Then, the specific
entropy s 6∈ L∞(R× (0, T )), for any positive time T ∈ (0,∞).

Remark 1.2. Theorem 1.2 reveals a completely different phenomenon from that in
[34–36], where the initial density decays no faster than O( 1

y2
) at far fields, so that the

entropy keeps uniformly bounded. While Theorem 1.2 shows that if the initial density

decays faster than O
(

1
|y|`ρ

)
, with `ρ > 2, at far fields, then the entropy becomes not

uniformly bounded immediately after the initial time. Consequently, we have given a
complete answer to the problem concerning the propagation of uniform boundedness
of entropy for ideal gases in one dimension: the uniform boundedness of the entropy
for the ideal gases, in the presence of vacuum at the far fields only in one dimension,
can be propagated if and only if the algebraic decay rate of the initial density is not
greater than 2. In other words, the decay rate 2 of the initial density at the far fields
is sharp for the uniform boundedness of the entropy in one dimension.

The main ingredients of the proof of Theorem 1.2 are based on using some scaling
transform to transform the far field vacuum to an interior vacuum and applying a
Hopf type lemma for a class of linear degenerate elliptic equations with degeneracy
in the time variable and possible unbounded coefficients. The scaling transform for
the temperature to be used here is

f(y, t) := ϑ(y−β, t), y ∈ (0,∞), t ∈ [0,∞),

for some suitably chosen β > 0. Similar transform can also be introduced for negative
y. Due to the continuity equation (1.6) and the assumption that the initial density
reaches vacuum only at the far fields, the density remains positive on any compact
interval for all positive time. Thus the equation (1.8) can be regarded a uniform
parabolic equation for θ on compact domains. Consequently, the temperature will
be positive on any finite interval for any positive time t by the strong maximum
principle, and thus f is positive for any positive y and t. By using the properties of ϑ
stated in Theorem 1.1, one can verify that 0 < f ∈ C2,1((0,∞)× (0,∞)). Assuming
by contradiction that the entropy is uniformly bounded, one can extend f by zero on
the positive time axis, such that 0 ≤ f ∈ C([0,∞)× [0,∞)) and reaches zero on the
positive time axis only. The temperature equation yields

a0ft − afyy + bfy + c̃f ≥ 0, in (0,∞)× (0,∞),

which motivates us to apply the Hopf type lema to f at the points on the positive
time axis. By choosing β suitably, one can verify that the coefficients a0 and c̃ are
uniformly bounded near the positive time axis; however, the coefficient b contains an
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unbounded term involving 1
y
. Fortunately, such an unbounded term in b is of “right”

sign while the remaining term in b is uniformly bounded for suitably chosen β, so
that the Hopf type lemma still holds (see Lemma 4.2). Thus applying the Hopf type
lemma to f near the positive time axis leads to a quantitative asymptotic behavior
of the temperature at the far field. The contradiction comes from the fact that the
asymptotic behavior of the temperature derived from the Hopf type lemma is not
consistent with that derived from (H2) and the uniform boundedness of the entropy.
This inconsistency implies that the entropy can not be uniformly bounded and thus
Theorem 1.2 follows.

The third theorem gives the uniform positivity of the temperature and consequently
the asymptotic unboundedness of the entropy, which are sharper results than those
in Theorem 1.2, under the stronger assumption that the algebraic decay rate of the
initial density at the far field is greater than 4.

Theorem 1.3. Assume, in addition to the conditions in Theorem 1.1, that

(1 + |y|)4%0(y) ≤ K3, ∀y ∈ R, (H3)

for a positive constant K3, and either ϑ0 is not identically zero or v0 is not identically
a constant. Let (J, v, ϑ) be a solution to system (1.11)–(1.13), subject to (1.14),
satisfying the properties stated in Theorem 1.1.

Then, the following statements hold:
(i) the temperature ϑ satisfies

inf
y∈R

ϑ(y, t) > 0, ∀t ∈ (0,∞);

(ii) the specific entropy s satisfies

R ≤ lim
|y|→∞

s(y, t)

− log(%0(y))
≤ lim
|y|→∞

s(y, t)

− log(%0(y))
<∞, ∀t ∈ (0,∞).

In particular, s becomes unbounded immediately after the initial time, regardless of
whether it is uniformly bounded or not at the initial time.

Remark 1.3. It is an interesting question to show whether Theorem 1.3 still holds in
the case that the algebraic decay rate of %0 lies between 2 and 4. However, as already
shown in Theorem 1.2, in this case, though the uniform positivity of the temperature
is not clear, yet the specific entropy becomes not uniformly bounded in any positive
time.

Recall that the temperature is positive on any finite interval for any positive time
t. To obtain the positive lower bound for the temperature at any positive time, it
suffices to achieve this at far fields. To this end, similar as in the proof of Theorem
1.2, we apply some scaling technique to transform the far field vacuum to an interior
vacuum and take advantage of the Hopf type lemma. However, the scaling transform
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introduced before does not work here directly. Instead, we apply the Kelvin transform
to the temperature ϑ and denote by h the transformed temperature, that is,

h(y, t) = yϑ

(
1

y
, t

)
, ∀y 6= 0, t ∈ [0,∞),

which satisfies a linear degenerate equation, with all coefficients being uniformly
bounded by the assumption (H3). By using the properties of ϑ stated in Theorem
1.1, one can verify that 0 ≤ h ∈ C2,1(Ω) ∩ C(Ω) and more importantly h(0, t) = 0,
where Ω = ((−∞, 0)∪(0,∞))×(0,∞). Note that different from the proof of Theorem
1.2, here the important property that h(0, t) = 0 holds without any condition on the
entropy. By the Hopf type lemma (Lemma 4.2) and applying the strong maximum
principle, we can derive that h behaves linearly near the origin at each positive time
and hence obtain the uniformly positive lower bound for the temperature near the far
fields. With the aid of the positive lower bound of the temperature, the asymptotic
unboundedness of the entropy follows from (1.10) as J has uniform positive lower
and upper bounds.

The rest of this paper is arranged as follows: in Section 2, we consider a carefully
designed initial-boundary value problem for the system (1.11)–(1.13) and establish a
series of a priori estimates on the solution independent of the length of the spatial
interval; in Section 3, we obtain the global existence of solutions to the Cauchy
problem and thus prove Theorem 1.1 by taking limit of the solutions obtained in
Section 2; Section 4 is devoted to the proof of Theorem 1.2; and finally, the proof of
Theorem 1.3 is given in Section 5.

Throughout this paper, C will denote a generic positive constant which may vary
from place to place.

2. Initial-boundary value problem and a priori estimates

Throughout this section, we consider the initial-boundary value problem to the
system (1.11)–(1.13), in (α, β) × (0,∞), with −∞ < α < β < +∞, subject to the
initial-boundary conditions:

(J, v, ϑ)|t=0 = (1, v0, ϑ0), (2.1)

(vy, ϑ)|y=α,β = (0, 0). (2.2)

The following global well-posedness can be proved in the same way as in [30].

Proposition 2.1. Let (%0, v0, ϑ0) ∈ H2((α, β)) be given such that %0, ϑ0 ≥ 0 on (α, β)
and v′0(α) = v′0(β) = ϑ0(α) = ϑ0(β) = 0. Assume that

µv′′0 −R(%0ϑ0)′ =
√
%0g1, κϑ′′0 + µ(v′0)2 −Rv′0%0ϑ0 =

√
%0g2,

for two functions g1, g2 ∈ L2((α, β)).
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Then, there is a unique global solution (J, v, ϑ) to system (1.11)–(1.13), in (α, β)×
[0,∞), subject to (2.1)–(2.2), satisfying inf(y,t)∈(α,β)×(0,T ) J > 0, ϑ ≥ 0, and

J ∈ C([0, T ];H2((α, β))), Jt ∈ L2(0, T ;H2((α, β))),

v, ϑ ∈ C([0, T ];H2((α, β))) ∩ L2(0, T ;H3((α, β))), vt, ϑt ∈ L2(0, T ;H1((α, β))),

for any T ∈ (0,∞).

The rest of this section is devoted to deriving the a priori estimates, independent
of α and β, on the unique global solution (J, v, ϑ) stated in Proposition 2.1. Keeping
this in mind, in the rest of this section, we will always assume that (J, v, ϑ) is the
solution stated in Proposition 2.1.

Throughout this section, for simplicity of notations, the norms ‖ · ‖q and ‖ · ‖H1

are the corresponding ones on the interval (α, β), that is,

‖ · ‖q := ‖ · ‖Lq((α,β)) and ‖ · ‖H1 := ‖ · ‖H1((α,β)).

Denote

m0 :=

∫ β

α

%0dy, E0 :=

∫ β

α

%0

(
v2

0

2
+ cvϑ0

)
dy.

Proposition 2.2. It holds that∫ β

α

%0

(
v2

2
+ cvϑ

)
dy ≤ E0.

Proof. Multiplying (1.12) with v, integrating over (α, β), and by the boundary con-
ditions, one gets by integration by parts that

1

2

d

dt

∫ β

α

%0v
2dy + µ

∫ β

α

|vy|2

J
dy −

∫ β

α

vyπdy = 0. (2.3)

Since ϑ ≥ 0 in (α, β)× (0,∞), it is clear that ϑy(α, t) ≥ 0 and ϑy(β, t) ≤ 0, for any
t ∈ (0,∞). As are result, integrating (1.13) over (α, β) and integration by parts yield

cv
d

dt

∫ β

α

%0ϑdy +

∫ β

α

vyπdy ≤ µ

∫ β

α

|vy|2

J
dy. (2.4)

Summing (2.3) with (2.4) and integrating with respect to t lead to the conclusion. �

Proposition 2.3. It holds that

e−
2
µ

√
2m0E0 ≤ J ≤ e

4
µ

√
2m0E0

(
1 +

R

µ

∫ t

0

%0ϑdτ

)
, ∀t ∈ (0,∞).

Proof. Since vy|y=α = 0 and J |t=0 = 1, it follows from (1.11) that J |y=α = 1. Substi-
tuting (1.11) into (1.12) yields

%0vt − µ(log J)yt + πy = 0,
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from which, integrating over (0, t) and using J |t=0 = 1, one can get

%0(v − v0) +

∫ t

0

πyds = µ(log J)y.

Integrating this over (α, y) and noticing that J |y=α = 1 and π|y=α = R%0
J
ϑ|y=α = 0,

one gets ∫ y

α

%0(v − v0)dz +

∫ t

0

πds = µ log J,

which leads to

J = e
1
µ(

∫ y
α %0(v−v0)dz+

∫ t
0 πds). (2.5)

It follows from Proposition 2.2 and the Hölder inequality that∫ β

α

%0(|v|+ |v0|)dz ≤
(∫ β

α

%0dz

) 1
2

[(∫ β

α

%0v
2dz

) 1
2

+

(∫ β

α

%0v
2
0dz

) 1
2

]
≤ 2

√
2m0E0. (2.6)

With the aid of (2.6) and since π ≥ 0, it follows from (2.5) that

J ≥ e−
1
µ

∫ β
α %0(|v|+|v0|)dz ≥ e−

2
µ

√
2m0E0 . (2.7)

Rewrite (2.5) as Je−
1
µ

∫ y
α %0(v−v0)dz = e

1
µ

∫ t
0 πds. Thus

1

µ
Jπ exp

{
− 1

µ

∫ y

α

%0(v − v0)dz

}
= ∂t(e

1
µ

∫ t
0 πds).

Hence, one gets by noticing Jπ = R%0ϑ that

exp

{
1

µ

∫ t

0

πds

}
= 1 +

R

µ

∫ t

0

%0ϑ exp

{
− 1

µ

∫ y

α

%0(v − v0)dz

}
ds.

Substituting this into (2.5) and using (2.6) lead to

J = e
1
µ

∫ y
α %0(v−v0)dz

(
1 +

R

µ

∫ t

0

%0ϑ exp

{
− 1

µ

∫ y

α

%0(v − v0)dz

}
ds

)
≤ e

4
µ

√
2m0E0

(
1 +

R

µ

∫ t

0

%0ϑds

)
.

Combining this with (2.7) yields the conclusion. �

In the rest of this section, we will always assumed that C is a general positive
constant depending only on R, cv, µ, κ,K1, T , and the upper bound of N0, but inde-
pendent of α and β with β − α ≥ 1, where

N0 := ‖%0‖∞+m0 +E0 +

∥∥∥∥(√%0v
2
0, v
′
0, v
′′
0 ,
√
%0ϑ0,

√
%0ϑ

′
0,
√
%0ϑ

′′
0, G0,

G′0√
%0

)∥∥∥∥
2

. (2.8)
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Proposition 2.4. It holds that

sup
0≤t≤T

‖(√%0v
2,
√
%0ϑ)‖2

2 +

∫ T

0

(
‖√%0ϑ‖2

∞ +

∥∥∥∥vvy√J
∥∥∥∥2

2

+

∥∥∥∥ ϑy√J
∥∥∥∥2

2

)
dt ≤ C.

Proof. Set E = v2

2
+ cvϑ. Then, it follows from (1.12) and (1.13) that

%0Et − κ
(
ϑy
J

)
y

=
(
µ
vvy
J
−R%0

J
ϑv
)
y
.

Note that ϑy(α, t) ≥ 0 and ϑy(β, t) ≤ 0 due to the boundary condition ϑ|y=α,β = 0
and the fact that ϑ ≥ 0 in (α, β) × (0,∞). Multiplying the above equation with E
and integration by parts yield

1

2

d

dt
‖√%0E‖2

2 + κcv

∫ β

α

|ϑy|2

J
dy − κEϑy

J

∣∣∣β
y=α

≤ −
∫ β

α

(
µ
vvy
J
−R%0

J
ϑv
)

(vvy + cvϑy)dy − κ
∫ β

α

ϑy
J
vvydy

≤ κcv
2

∥∥∥∥ ϑy√J
∥∥∥∥2

2

+ C

∫ β

α

1

J

(
|vvy|2 + %2

0v
2ϑ2
)
dy,

and thus, by the Cauchy inequality and that −κE ϑy
J

∣∣∣β
y=α
≥ 0, it follows that

d

dt
‖√%0E‖2

2 + κcv

∥∥∥∥ ϑy√J
∥∥∥∥2

2

≤ A1

∥∥∥∥vvy√J
∥∥∥∥2

2

+ A1

∫ β

α

1

J
%2

0v
2ϑ2dy, (2.9)

for a positive constant A1 depending only on κ, cv, µ, and R. Multiplying (1.12) with
4v3, using the boundary conditions, and integration by parts, one deduces

d

dt

∫ β

α

%0v
4dy + 12µ

∥∥∥∥vvy√J
∥∥∥∥2

2

= 12R

∫ β

α

1

J
v2vy%0ϑdy

≤ 6µ

∥∥∥∥vvy√J
∥∥∥∥2

2

+ C

∫ β

α

1

J
%2

0v
2ϑ2dy,

and thus,

d

dt

∫ β

α

%0v
4dy + 6µ

∥∥∥∥vvy√J
∥∥∥∥2

2

≤ C

∫ β

α

1

J
%2

0v
2ϑ2dy. (2.10)

Multiplying (2.10) with A1

3µ
and summing the resultant with (2.9) yield

d

dt

(
‖√%0E‖2

2 +
A1

3µ
‖√%0v

2‖2
2

)
+ κcv

∥∥∥∥ ϑy√J
∥∥∥∥2

2

+ A1

∥∥∥∥vvy√J
∥∥∥∥2

2

≤ C

∫ β

α

1

J
%2

0v
2ϑ2dy,
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from which, by Proposition 2.2 and Proposition 2.3, one gets

d

dt

(
‖√%0E‖2

2 +
A1

3µ
‖√%0v

2‖2
2

)
+ κcv

∥∥∥∥ ϑy√J
∥∥∥∥2

2

+ A1

∥∥∥∥vvy√J
∥∥∥∥2

2

≤ C‖√%0v‖2
2‖
√
%0ϑ‖

2
∞ ≤ C‖√%0ϑ‖2

∞. (2.11)

Since ϑ|y=α = 0, it follows from Proposition 2.3, the Hölder and Young inequalities,
and (H1) that

%0ϑ
2 =

∫ y

α

(%0ϑ
2)ydz =

∫ y

α

(%′0ϑ
2 + 2%0ϑϑy)dz

≤
∫ β

α

(
K1%0ϑ

2 + 2%0ϑ
ϑy√
J

√
J

)
dz

≤ K1‖
√
%0ϑ‖2

2 + 2‖%0ϑ‖
1
2
1 ‖%0‖

1
4∞‖
√
%0ϑ‖

1
2∞

∥∥∥∥ ϑy√J
∥∥∥∥

2

‖J‖
1
2∞

≤ K1‖
√
%0ϑ‖2

2 + C‖√%0ϑ‖
1
2∞

∥∥∥∥ ϑy√J
∥∥∥∥

2

(
1 +

∫ t

0

‖%0ϑ‖∞dτ
) 1

2

≤ K1‖
√
%0ϑ‖2

2 + C‖√%0ϑ‖
1
2∞

∥∥∥∥ ϑy√J
∥∥∥∥

2

[
1 +

(∫ t

0

‖%0ϑ‖2
∞dτ

) 1
4

]

≤ 1

2

(
‖√%0ϑ‖2

∞ + ε

∥∥∥∥ ϑy√J
∥∥∥∥2

2

)
+ C

(
1 + ‖√%0ϑ‖2

2 +

∫ t

0

‖√%0ϑ‖2
∞dτ

)
,

and thus

‖√%0ϑ‖2
∞ ≤ ε

∥∥∥∥ ϑy√J
∥∥∥∥2

2

+ Cε

(
1 + ‖√%0ϑ‖2

2 +

∫ t

0

‖√%0ϑ‖2
∞dτ

)
(2.12)

for any ε > 0. Choosing ε sufficiently small and plugging (2.12) into (2.11) yield

d

dt

(
‖√%0E‖2

2 +
A1

3µ
‖√%0v

2‖2
2

)
+ A1

∥∥∥∥vvy√J
∥∥∥∥2

2

+
κcv
2

∥∥∥∥ ϑy√J
∥∥∥∥2

2

≤ C

(
1 + ‖√%0ϑ‖2

2 +

∫ t

0

‖√%0ϑ‖2
∞dτ

)
. (2.13)

Combining (2.12) with (2.13) leads to

d

dt

(
‖√%0E‖2

2 +
A1

3µ
‖√%0v

2‖2
2 +

∫ t

0

‖√%0ϑ‖2
∞dτ

)
+ A1

∥∥∥∥vvy√J
∥∥∥∥2

2

+
κ

2

∥∥∥∥ ϑy√J
∥∥∥∥2

2

≤ C

(
1 + ‖√%0E‖2

2 +

∫ t

0

‖√%0ϑ‖2
∞dτ

)
,
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which, together with the Grönwall inequality, implies that

sup
0≤t≤T

‖√%0E‖2
2 +

∫ T

0

(
‖√%0ϑ‖2

∞ +

∥∥∥∥vvy√J
∥∥∥∥2

2

+

∥∥∥∥ ϑy√J
∥∥∥∥2

2

)
dt ≤ C.

This completes the proof of the conclusion. �

Corollary 2.1. There are two positive constants C and C, such that

C ≤ J ≤ C on (α, β)× (0, T ),

∫ T

0

‖vy‖2
2dt ≤ C.

Proof. The lower bound of J follows directly from Proposition 2.3 while the upper
bound of J follows from combining Proposition 2.3 and Proposition 2.4. Testing
(1.12) with v and integrating by parts yield

1

2

d

dt
‖√%0v‖2

2 + µ

∥∥∥∥ vy√J
∥∥∥∥2

2

= R

∫ β

α

%0

J
ϑvydy

≤ C

∥∥∥∥ vy√J
∥∥∥∥

2

‖√%0ϑ‖2 ≤
µ

2

∥∥∥∥ vy√J
∥∥∥∥2

2

+ C‖√%0ϑ‖2
2,

where the lower bound of J was used, and thus

d

dt
‖√%0v‖2

2 + µ

∥∥∥∥ vy√J
∥∥∥∥2

2

≤ C‖√%0ϑ‖2
2.

The second conclusion follows from this, the upper bound of J just proved, and
Proposition 2.4. �

In the rest of this section, we always assume that β − α ≥ 1. We will use the
following elementary inequality.

Lemma 2.1. It holds that

‖f‖Lp((α,β)) ≤ C(‖f‖L2((α,β)) + ‖f‖
1
2

+ 1
p

L2((α,β))‖f
′‖

1
2
− 1
p

L2((α,β))), p ∈ [2,∞],

for any f ∈ H1((α, β)), and for a positive constant C depending only on p.

Proof. This can be proved by scaling the corresponding inequality in (α, β) to that
in (0, 1), applying the Gagliardo-Nirenberg inequality for functions in H1((0, 1)), and
using the condition β−α ≥ 1. Since the proof is straightforward, and thus is omitted
here. �

Let G be the effective viscous flux, i.e.,

G := µ
vy
J
− π = µ

vy
J
−R%0ϑ

J
.
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Then, it holds that

Gt −
µ

J

(
Gy

%0

)
y

= −κ(γ − 1)

J

(
ϑy
J

)
y

− γ vy
J
G (2.14)

and

G|y=α,β = 0. (2.15)

Proposition 2.5. It holds that

sup
0≤t≤T

‖G‖2
2 +

∫ T

0

(∥∥∥∥ Gy√
%0

∥∥∥∥2

2

+ ‖G‖4
∞

)
dt ≤ C(1 + ‖G0‖2

2).

Proof. Testing (2.14) with JG, using (1.11), (2.15), Lemma 2.1, Corollary 2.1, and
the Young inequality, one obtains

1

2

d

dt
‖
√
JG‖2

2 + µ

∥∥∥∥ Gy√
%0

∥∥∥∥2

2

= κ(γ − 1)

∫ β

α

ϑyGy

J
dy +

(
1

2
− γ
)∫ β

α

vyG
2dy

≤ C

(
‖ϑy‖2

∥∥∥∥ Gy√
%0

∥∥∥∥
2

+ ‖vy‖2‖G‖2
4

)
≤ C

[
‖ϑy‖2

∥∥∥∥ Gy√
%0

∥∥∥∥
2

+ ‖vy‖2

(
‖G‖2

2 + ‖G‖
3
2
2 ‖Gy‖

1
2
2

)]
≤ µ

2

∥∥∥∥ Gy√
%0

∥∥∥∥2

2

+ C[‖ϑy‖2
2 + (1 + ‖vy‖2

2)‖G‖2
2],

that is,

d

dt
‖
√
JG‖2

2 + µ

∥∥∥∥ Gy√
%0

∥∥∥∥2

2

≤ C[‖ϑy‖2
2 + (1 + ‖vy‖2

2)‖G‖2
2].

Thanks to this and the Grönwall inequality, the desired conclusion, except the es-

timate on
∫ T

0
‖G‖4

∞dt, follows from Proposition 2.4 and Corollary 2.1. While the

estimate for
∫ T

0
‖G‖4

∞dt follows from Corollary 2.1, Lemma 2.1, and the estimate
just proved. �

Proposition 2.6. It holds that

sup
0≤t≤T

(∥∥∥∥ Jy√
%0

∥∥∥∥2

2

+ ‖vy‖2
2 + ‖Jt‖2

2

)
+

∫ T

0

(
‖√%0vt‖2

2 +

∥∥∥∥ vyy√%0

∥∥∥∥2

2

)
dt ≤ C.
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Proof. Note that vy = 1
µ
(JG + R%0ϑ) and

√
%0vt = Gy√

%0
. It follows from Proposition

2.4, Proposition 2.5, and Corollary 2.1 that

sup
0≤t≤T

‖vy‖2
2 +

∫ T

0

‖√%0vt‖2
2dt ≤ C,

which by (1.11) implies

sup
0≤t≤T

‖Jt‖2
2 ≤ C.

Direct calculations yield

Jyt =
1

µ
(JGy + JyG+R%′0ϑ+R%0ϑy).

Taking the inner product of the above with Jy
%0

, one obtains from Proposition 2.4,

Corollary 2.1, and (H1) that

1

2

d

dt

∥∥∥∥ Jy√
%0

∥∥∥∥2

2

≤ C

∫ β

α

(
|J |
∣∣∣∣ Gy√
%0

∣∣∣∣+

∣∣∣∣ Jy√%0

∣∣∣∣ |G|+√%0ϑ+
√
%0|ϑy|

)
|Jy|√
%0

dy

≤ C

(∥∥∥∥ Gy√
%0

∥∥∥∥
2

+ ‖G‖∞
∥∥∥∥ Jy√

%0

∥∥∥∥
2

+ ‖√%0ϑ‖2 + ‖ϑy‖2

)∥∥∥∥ Jy√
%0

∥∥∥∥
2

≤ C(1 + ‖G‖∞)

∥∥∥∥ Jy√
%0

∥∥∥∥2

2

+ C

(
1 + ‖ϑy‖2

2 +

∥∥∥∥ Gy√
%0

∥∥∥∥2

2

)
,

which, together with the Grönwall inequality, Proposition 2.4, Corollary 2.1, and
Proposition 2.5, yields

sup
0≤t≤T

∥∥∥∥ Jy√
%0

∥∥∥∥2

2

≤ C. (2.16)

Since

vyy =
1

µ
(JyG+ JGy +R%′0ϑ+R%0ϑy), (2.17)

it follows from (2.16), Corollary 2.1, Propositions 2.4, Proposition 2.5, and (H1) that∫ T

0

∥∥∥∥ vyy√%0

∥∥∥∥2

2

dt ≤ C

∫ T

0

(∥∥∥∥ Jy√
%0

∥∥∥∥2

2

‖G‖2
∞ +

∥∥∥∥( Gy√
%0

,
√
%0ϑ, ϑy

)∥∥∥∥2

2

)
dt ≤ C.

This completes the proof. �

Proposition 2.7. It holds that

sup
0≤t≤T

‖√%0ϑy‖2
2 +

∫ T

0

(‖%0ϑt‖2
2 + ‖ϑyy‖2

2)dt ≤ C.
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Proof. Rewrite (1.13) as

cv%0ϑt − κ
(
ϑy
J

)
y

= vyG. (2.18)

Note that ϑt|y=α,β = 0. Taking the inner product of the above equation with %0ϑt
yields

κ

∫ β

α

ϑy
J

(%0ϑyt + %′0ϑt)dy + cv‖%0ϑt‖2
2 =

∫ β

α

vyG%0ϑtdy. (2.19)

It follows from (1.11) that∫ β

α

ϑy
J
%0ϑytdy =

1

2

d

dt

∥∥∥∥√%0

J
ϑy

∥∥∥∥2

2

+
1

2

∫ β

α

vy
J2
%0|ϑy|2dy.

Substituting this into (2.19) and using (H1) and Corollary 2.1, one gets

κ

2

d

dt

∥∥∥∥√%0

J
ϑy

∥∥∥∥2

2

+ cv‖%0ϑt‖2
2

=

∫ β

α

(
vyG%0ϑt −

κ

2

vy
J2
%0|ϑy|2 − κ

ϑy
J
%′0ϑt

)
dy

≤
∫ β

α

(
|vy||G|%0|ϑt|+

κ

2

|vy|
J2

%0|ϑy|2 + κK1
|ϑy|
J
%0|ϑt|

)
dy

≤ cv
2
‖%0ϑt‖2

2 + C(‖G‖2
∞‖vy‖2

2 + ‖vy‖∞‖
√
%0ϑy‖2

2 + ‖ϑy‖2
2),

which implies

κ
d

dt

∥∥∥∥√%0

J
ϑy

∥∥∥∥2

2

+ cv‖%0ϑt‖2
2

≤ C
[
‖G‖2

∞‖vy‖2
2 + (‖G‖∞ + ‖%0ϑ‖∞)‖√%0ϑy‖2

2 + ‖ϑy‖2
2

]
.

It follows from this, the Grönwall inequality, Propositions 2.4–2.6, and Corollary 2.1
that

sup
0≤t≤T

‖√%0ϑy‖2
2 +

∫ T

0

‖%0ϑt‖2
2dt

≤ CeC
∫ T
0 (‖G‖∞+‖%0ϑ‖∞)dt

(
‖√%0ϑ

′
0‖2

2 +

∫ T

0

(‖G‖2
∞‖vy‖2

2 + ‖ϑy‖2
2)dt

)
≤ C. (2.20)

Direct calculations and using (2.18) yield

κϑyy = κ

(
ϑy
J

)
y

J + κ
ϑy
J
Jy = J(cv%0ϑt − vyG) + κ

ϑy
J
Jy.
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It follows from this, (2.20), Propositions 2.5–2.6, Corollary 2.1, and Lemma 2.1 that∫ T

0

‖ϑyy‖2
2dt ≤ C

∫ T

0

(
‖%0ϑt‖2

2 + ‖vy‖2
2‖G‖2

∞ + ‖ϑy‖2
∞‖Jy‖2

2

)
dt

≤ C + C

∫ T

0

‖ϑy‖2
∞dt ≤ C + C

∫ T

0

‖ϑy‖2(‖ϑy‖2 + ‖ϑyy‖2)dt

≤ 1

2

∫ T

0

‖ϑyy‖2
2dt+ C,

and thus
∫ T

0
‖ϑyy‖2

2dt ≤ C. This completes the proof. �

Proposition 2.8. It holds that

sup
0≤t≤T

∥∥∥∥ Gy√
%0

∥∥∥∥2

2

+

∫ T

0

‖Gt‖2
2 +

∥∥∥∥∥
(
Gy

%0

)
y

∥∥∥∥∥
2

2

 dt ≤ C

(
1 +

∥∥∥∥ G′0√%0

∥∥∥∥2

2

)
.

Proof. Combining (2.14) with (2.18) yields

Gt −
µ

J

(
Gy

%0

)
y

= −R
J
%0ϑt −

vy
J
G.

Note that Gt|y=α,β = 0. Multiplying the above with JGt, integrating by parts, and
using Corollary 2.1 yield

µ

2

d

dt

∥∥∥∥ Gy√
%0

∥∥∥∥2

2

+ ‖
√
JGt‖2

2 = −
∫ β

α

(R%0ϑt + vyG)Gtdy

≤ 1

2
‖
√
JGt‖2

2 + C(‖%0ϑt‖2
2 + ‖vy‖2

2‖G‖2
∞),

from which, by Propositions 2.5–2.7, the conclusion follows. �

Proposition 2.9. It holds that

sup
0≤t≤T

(∥∥∥% 3
2
0 ϑt

∥∥∥2

2
+ ‖√%0ϑyy‖2

2

)
+

∫ T

0

‖%0ϑyt‖2
2dt ≤ C.

Proof. Note that vy = 1
µ
(JG+R%0ϑ) and

vyt =
1

µ
(JGt + vyG+R%0ϑt). (2.21)

It follows from (1.11), (2.18), and direct calculations that

cv%0ϑtt − κ
(
ϑyt
J

)
y

= −κ
(
vyϑy
J2

)
y

+
vy
µ
G2 +

1

µ
(2JG+R%0ϑ)Gt +

R

µ
%0ϑtG.
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Note that ϑt|y=α,β = 0. Multiplying the above equation with %2
0ϑt and integrating by

parts yield

cv
2

d

dt

∥∥∥% 3
2
0 ϑt

∥∥∥2

2
+ κ

∫ β

α

ϑyt
J

(%2
0ϑyt + 2%0%

′
0ϑt)dy

=
1

µ

∫ β

α

[vyG
2 + (2JG+R%0ϑ)Gt +R%0ϑtG]%2

0ϑtdy

+κ

∫ β

α

vyϑy
J2

(%2
0ϑyt + 2%0%

′
0ϑt)dy.

Then, by Corollary 2.1 and (H1), one deduces

cv
2

d

dt
‖%

3
2
0 ϑt‖2

2 + κ

∥∥∥∥ %0√
J
ϑyt

∥∥∥∥2

2

≤ C

∫ β

α

[%2
0|ϑt||ϑyt|+ |vy||ϑy|(%2

0|ϑyt|+ %2
0|ϑt|)]dy

+C

∫ β

α

[|vy|G2 + (|G|+ %0ϑ)|Gt|+ %0|ϑt||G|]%2
0|ϑt|dy

≤ κ

2

∥∥∥∥ %0√
J
ϑyt

∥∥∥∥2

2

+ C(‖%0ϑt‖2
2 + ‖vy‖2

∞‖%0ϑy‖2
2) + C‖G‖2

∞(‖vy‖2
2 + ‖%2

0ϑt‖2
2)

+C‖Gt‖2
2 + C(‖G‖2

∞ + ‖%0ϑ‖2
∞)‖%2

0ϑt‖2
2 + C‖G‖∞‖%

3
2
0 ϑt‖2

2,

from which, by Propositions 2.6–2.7 and vy = 1
µ
(JG+R%0ϑ), one obtains

cv
d

dt
‖%

3
2
0 ϑt‖2

2 + κ

∥∥∥∥ %0√
J
ϑyt

∥∥∥∥2

2

≤ C(‖G‖2
∞ + ‖%0ϑ‖2

∞ + 1)‖%
3
2
0 ϑt‖2

2 + C(‖vy‖2
∞ + ‖G‖2

∞ + ‖Gt‖2
2 + ‖%0ϑt‖2

2)

≤ C(‖G‖2
∞ + ‖%0ϑ‖2

∞ + 1)‖%
3
2
0 ϑt‖2

2 + C(‖G‖2
∞ + ‖%0ϑ‖2

∞ + ‖Gt‖2
2 + ‖%0ϑt‖2

2).

Applying the Grönwall inequality to the above, one can get by Propositions 2.4–2.5
and 2.7–2.8, and Corollary 2.1 that

sup
0≤t≤T

‖%
3
2
0 ϑt‖2

2 +

∫ T

0

‖%0ϑyt‖2
2dt

≤ CeC
∫ T
0 (‖G‖2∞+‖%0ϑ‖2∞)dt

∥∥% 3
2
0 ϑt
∥∥2

2

∣∣∣
t=0

+CeC
∫ T
0 (‖G‖2∞+‖%0ϑ‖2∞)dt

∫ T

0

(‖G‖2
∞ + ‖%0ϑ‖2

∞ + ‖Gt‖2
2 + ‖%0ϑt‖2

2)dt

≤ C(1 + ‖√%0ϑ
′′
0‖2

2 + ‖√%0v
′
0G0‖2

2), (2.22)
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where the fact that %
3
2
0 ϑt|t=0 =

√
%0
cv

(κϑ′′0 + v′0G0) has been used, which follows from

(2.18). Therefore, noticing that Lemma 2.1 implies

‖√%0v
′
0G0‖2

2 ≤ C‖v′0‖2
∞‖G0‖2

2 ≤ C‖v′0‖2
H1‖G0‖2

2,

one gets from (2.22) that

sup
0≤t≤T

‖%
3
2
0 ϑt‖2

2 +

∫ T

0

‖%0ϑyt‖2
2dt ≤ C(1 + ‖√%0ϑ

′′
0‖2

2). (2.23)

Note that

ϑyy = J

(
ϑy
J

)
y

+
ϑy
J
Jy =

1

κ
(cv%0ϑt − vyG)J +

1

J
ϑyJy.

It follows from this, (2.23), Proposition 2.6, and Corollary 2.1 that

‖√%0ϑyy‖2
2 ≤ C(‖%

3
2
0 ϑt‖2

2 + ‖vy‖2
2‖G‖2

∞ + ‖√%0ϑy‖2
∞‖Jy‖2

2)

≤ C(1 + ‖G‖2
∞ + ‖√%0ϑy‖2

∞). (2.24)

It remains to estimate ‖G‖2
∞ and ‖√%0ϑy‖2

∞ as follows. Note that Lemma 2.1, Propo-
sition 2.5, and Proposition 2.8 imply that

‖G‖2
∞ ≤ C‖G‖2(‖G‖2 + ‖Gy‖2) ≤ C. (2.25)

By Lemma 2.1 and (H1), and Proposition 2.7, it holds that

‖√%0ϑy‖2
∞ ≤ C‖√%0ϑy‖2

(
‖√%0ϑy‖2 + ‖√%0ϑyy‖2 +

∥∥∥∥ %′0√
%0

ϑy

∥∥∥∥
2

)
≤ C(1 + ‖√%0ϑyy‖2). (2.26)

Plugging (2.25) and (2.26) into (2.24) and using the Cauchy inequality yield

‖√%0ϑyy‖2
2 ≤ C(1 + ‖√%0ϑyy‖2) ≤

‖√%0ϑyy‖2
2

2
+ C,

which gives ‖√%0ϑyy‖2
2 ≤ C. This completes the proof. �

Proposition 2.10. It holds that

sup
0≤t≤T

(
‖√%0vt‖2

2 +

∥∥∥∥ vyy√%0

∥∥∥∥2

2

)
+

∫ T

0

(‖vyt‖2
2 + ‖vyyy‖2

2 + ‖Jyy‖2
2)dt ≤ C.

Proof. The estimate for
√
%0vt follows directly from Proposition 2.8 since

√
%0vt =

Gy√
%0

. It follows from (H1), (2.17), (2.21), (2.25), Corollary 2.1, and Propositions

2.4–2.8 that∥∥∥∥ vyy√%0

∥∥∥∥2

2

≤ C

(∥∥∥∥ Jy√
%0

∥∥∥∥2

2

‖G‖2
∞ +

∥∥∥∥ Gy√
%0

∥∥∥∥2

2

+ ‖√%0ϑy‖2
2 + ‖√%0ϑ‖2

2

)
≤ C,
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0

‖vyt‖2
2dt ≤ C

∫ T

0

(‖vy‖2
2‖G‖2

∞ + ‖Gt‖2
2 + ‖%0ϑt‖2

2)dt ≤ C.

Noticing that

vyyy =
1

µ
(JyyG+ 2JyGy + JGyy +R%′′0ϑ+ 2R%′0ϑy +R%0ϑyy).

one can get from (H1), (2.25), Corollary 2.1, and Propositions 2.4–2.5 and 2.7–2.8
that ∫ t

0

‖vyyy‖2
2dτ ≤ C

∫ t

0

(‖Jyy‖2
2‖G‖2

∞ + ‖Jy‖2
∞‖Gy‖2

2 + ‖Gyy‖2
2

+‖%0ϑ‖2
2 + ‖%0ϑy‖2

2 + ‖%0ϑyy‖2
2)dτ

≤ C

∫ t

0

(‖Jyy‖2
2 + ‖Jy‖2

∞ + ‖Gyy‖2
2)dτ + C, (2.27)

where ‖G‖2
∞ ≤ C(‖G‖2

2 + ‖Gy‖2
2) guaranteed by Lemma 2.1 wa used. Next, ‖Jy‖2

∞
and ‖Gyy‖2

2 can be estimated as follows. Lemma 2.1 and Proposition 2.6 imply that

‖Jy‖2
∞ ≤ C(‖Jy‖2

2 + ‖Jy‖2‖Jyy‖2) ≤ C(1 + ‖Jyy‖2
2). (2.28)

While (H1) and Proposition 2.8 yield∫ T

0

‖Gyy‖2
2dt ≤

∫ T

0

(∥∥∥∥∥%0

(
Gy

%0

)
y

∥∥∥∥∥
2

+

∥∥∥∥%′0Gy

%0

∥∥∥∥
2

)2

dt

≤ C

∫ T

0

∥∥∥∥∥
(
Gy

%0

)
y

∥∥∥∥∥
2

2

+ ‖Gy‖2
2

 dt ≤ C.

It follows from this, (2.27), and (2.28) that∫ t

0

‖vyyy‖2
2dτ ≤ C

(
1 +

∫ t

0

‖Jyy‖2
2dτ

)
. (2.29)

Since Jyy =
∫ t

0
vyyydτ , one has∫ t

0

‖Jyy‖2
2dτ ≤

∫ t

0

∥∥∥∥∫ τ

0

vyyydτ
′
∥∥∥∥2

2

dτ ≤ C

∫ t

0

(∫ τ

0

‖vyyy‖2
2dτ

′
)
dτ. (2.30)

Plugging this into (2.29) leads to∫ t

0

‖vyyy‖2
2dτ ≤ C + C

∫ t

0

(∫ τ

0

‖vyyy‖2
2dτ

′
)
dτ,

which implies
∫ T

0
‖vyyy‖2

2dt ≤ CeT ≤ C by the Grönwall inequality. This, together

with (2.30), shows that
∫ t

0
‖Jyy‖2

2dτ ≤ C. This completes the proof. �



22 JINKAI LI AND ZHOUPING XIN

Proposition 2.11. It holds that

sup
0≤t≤T

(‖Jyy‖2
2 + ‖Jyt‖2

2) ≤ C.

Proof. This follows from Proposition 2.10 by using Jyy =
∫ t

0
vyyydτ and Jyt = vyy. �

Proposition 2.12. It holds that∫ T

0

‖ϑyyy‖2
2dt ≤ C.

Proof. By Lemma 2.1 and Propositions 2.5, 2.6, 2.8, 2.10, and 2.11, one has

‖Jy‖∞ + ‖Jyy‖2 + ‖vy‖∞ + ‖G‖∞ ≤ C. (2.31)

It follows from (2.18) that

ϑyyy =
cv
κ

(%′0Jϑt + 2%0Jyϑt + %0Jϑyt) +
ϑy
J
Jyy

−1

κ
(2JyvyG+ JvyyG+ JvyGy).

Then, by Corollary 2.1, (H1), (2.31), and Proposition 2.11, one deduces∫ T

0

‖ϑyyy‖2
2dt ≤ C

∫ T

0

(‖%0ϑt‖2
2 + ‖Jy‖2

∞‖%0ϑt‖2
2 + ‖%0ϑyt‖2

2 + ‖ϑy‖2
∞‖Jyy‖2

2

+‖Jy‖2
∞‖vy‖2

2‖G‖2
∞ + ‖vyy‖2

2‖G‖2
∞ + ‖vy‖2

∞‖Gy‖2
2)dt

≤ C

∫ T

0

(‖%0ϑt‖2
2 + ‖%0ϑyt‖2

2 + ‖ϑy‖2
2

+‖ϑyy‖2
2 + ‖vy‖2

2 + ‖vyy‖2
2 + ‖Gy‖2

2)dt,

where ‖ϑy‖2
∞ ≤ C(‖ϑy‖2

2 + ‖ϑyy‖2
2) guaranteed by Lemma 2.1 was used, from which,

by Corollary 2.1 and Propositions 2.4–2.10, it follows
∫ T

0
‖ϑyyy‖2

2dt ≤ C. This proves
the conclusion. �

As a consequence of Propositions 2.2–2.12 and Corollary 2.1, one has:

Corollary 2.2. Let (J, v, ϑ) be the unique global solution stated in Proposition 2.1
to system (1.11)–(1.13), subject to (2.1)–(2.2), and N0 be given by (2.8). Then, for
any T ∈ [0,∞), it holds that

inf
(α,β)×(0,T )

J ≥ CT , sup
0≤t≤T

∥∥∥∥( Jy√
%0

, Jyy, Jt, Jyt

)∥∥∥∥2

L2((α,β))

≤ CT ,

sup
0≤t≤T

∥∥∥∥(√%0v,
√
%0v

2, vy,
vyy√
%0

,
√
%0vt

)∥∥∥∥2

L2((α,β))

+

∫ T

0

‖(vyyy, vyt)‖2
L2((α,β))dt ≤ CT ,
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sup
0≤t≤T

(
‖%0ϑ‖L1((α,β)) +

∥∥∥(√%0ϑ,
√
%0ϑy,

√
%0ϑyy, %

3
2
0 ϑt

)∥∥∥2

L2((α,β))

)
+

∫ T

0

(
‖ϑy‖2

H2((α,β)) + ‖(%0ϑt, %0ϑyt)‖2
L2((α,β))

)
dt ≤ CT ,

sup
0≤t≤T

∥∥∥∥ Gy√
%0

∥∥∥∥2

L2((α,β))

+

∫ T

0

∥∥∥∥∥
(
Gy

%0

)
y

∥∥∥∥∥
2

L2((α,β))

+ ‖Gt‖2
L2((α,β))

 dt ≤ CT ,

where CT and CT are positive constants depending only on R, cv, µ, κ,K1, T , and the
upper bound of N0, but independent of α and β with β − α ≥ 1.

3. Global existence of solutions: proof of Theorem 1.1

Proof of Theorem 1.1. The proof is given in three steps as follows.
Step 1. Approximations of the initial data. By the assumption (1.16), there

are two sequences {αn}∞n=1 and {βn}∞n=1, with limn→∞ αn = −∞ and limn→∞ βn =∞,
and a positive constant M0, such that∣∣∣∣∣ v′0(αn)√

%0(αn)

∣∣∣∣∣+

∣∣∣∣∣ v′0(βn)√
%0(βn)

∣∣∣∣∣ ≤M0, ∀n ≥ 1. (3.1)

Set In = (αn − 1, βn + 1). For each n, choose 0 ≤ χn ∈ C∞0 (In), satisfying

χ ≡ 1 on [αn, βn], 0 ≤ χn ≤ 1 and |χ′n|+ |χ′′n| ≤ C0 on In, (3.2)

for a positive constant C0 independent of n. Define v0n and ϑ0n as

ϑ0n = ϑ0χn,

and

v0n =

 v0(αn) + 2
π
v′0(αn) sin

(
π
2
(y − αn)

)
, y ∈ [αn − 1, αn],

v0(y), y ∈ [αn, βn],
v0(βn) + 2

π
v′0(βn) sin

(
π
2
(y − βn)

)
, y ∈ [βn, βn + 1].

It can be checked easily that

v′0n(αn − 1) = v′0n(βn + 1) = ϑ0n(αn − 1) = ϑ0n(βn + 1) = 0. (3.3)

Noticing that

v0n(αn) = v0(αn), v′0n(αn) = v′0(αn), v0n(βn) = v0(βn), v′0n(βn) = v′0(βn),

and since v0 ∈ H2
loc(R) and 0 ≤ ϑ0 ∈ H2

loc(R), one has

v0n ∈ H2(In), 0 ≤ ϑ0n ∈ H2(In). (3.4)

Due to 0 ≤ χn ≤ 1, it is clear that

‖√%0ϑ0n‖L2(In) ≤ ‖
√
%0ϑ0‖2. (3.5)
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For any y ∈ [αn − 1, αn), the definition of v0n implies that

|v0n(y)− v0(y)| ≤ |v0(αn)− v0(y)|+ 2

π
|v′0(αn)| ≤ 2‖v′0‖∞.

Similarly, it holds that |v0n(y) − v0(y)| ≤ 2‖v′0‖∞, for any y ∈ (βn, βn + 1]. As a
result, one has

|v0n(y)− v0(y)| ≤ 2‖v′0‖∞, ∀y ∈ In. (3.6)

Hence

‖√%0v0n‖L2(In) ≤ ‖√%0(v0n − v0)‖L2(In) + ‖√%0v0‖L2(In)

= 2‖v′0‖∞‖%0‖
1
2
1 + ‖√%0v0‖2, (3.7)

and

‖√%0|v0n|2‖L2(In) ≤ 2
∥∥√%0(|v0|2 + |v0 − v0n|2)

∥∥
L2(In)

≤ 2‖√%0|v0|2‖2 + 8‖v′0‖2
∞‖%0‖

1
2
1 . (3.8)

It follows from (3.2) and direct calculations that

‖√%0ϑ
′
0n‖L2(In) ≤ ‖√%0ϑ

′
0‖2 + C0‖

√
%0ϑ0‖2, (3.9)

‖√%0ϑ
′′
0n‖L2(In) ≤ ‖√%0ϑ

′′
0‖2 + 2C0(‖√%0ϑ

′
0‖2 + ‖√%0ϑ0‖2). (3.10)

By direct calculations, one gets by the Sobolev inequality that

‖v′0n‖H1(In) ≤ ‖v′0‖H1 + C(|v′0(αn)|+ |v′0(βn)|)
≤ ‖v′0‖H1((αn,βn)) + ‖v′0‖H1((αn−1,αn)∪(βn,βn+1))

≤ C‖v′0‖2
H1 , (3.11)

for a positive constant C independent of n.
Set G0n = µv′0n −R%0ϑ0n. Combining (3.5) with (3.11) leads to

‖G0n‖L2(In) ≤ µ‖v′0n‖L2(In) +R‖%0‖
1
2∞‖
√
%0ϑ0n‖L2(In)

≤ C(‖v′0‖H1 + ‖%0‖
1
2∞‖
√
%0ϑ0‖2), (3.12)

for a positive constant C independent of n.
For y ∈ (βn, βn + 1), one has

%0(βn)

%0(y)
= 1 +

∫ y

βn

k(z)
%0(βn)

%0(z)
dz, where k(z) = −%

′
0(z)

%0(z)
. (3.13)

By (H1), it holds that |k(z)| ≤ K1, for any z ∈ R. Set

f(y) = 1 +

∫ y

βn

k(z)
%0(βn)

%0(z)
dz, ∀y ∈ (βn, βn + 1).
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Then, it follows from (3.13) that

f ′(y) = k(y)
%0(βn)

%0(y)
= k(y)f(y),

and thus

f(y) = e
∫ y
βn

k(z)dzf(βn) = e
∫ y
βn

k(z)dz ≤ eK1 , ∀y ∈ (βn, βn + 1).

It follows from this and (3.13) that

%0(βn)

%0(y)
= f(y) ≤ eK1 , ∀y ∈ (βn, βn + 1). (3.14)

Similarly, one has
%0(αn)

%0(y)
≤ eK1 , ∀y ∈ (αn − 1, αn). (3.15)

Recall that G0n = µv′0n −R%0ϑ0n. Then, direct calculations yield

G′0n√
%0

=


−π

2
µ
v′0(αn)√

%0
sin
(
π
2
(y − αn)

)
−R

(√
%0ϑ

′
0n +

%′0√
%0
ϑ0n

)
, y ∈ (αn − 1, αn),

G′0√
%0
, y ∈ (αn, βn),

−π
2
µ
v′0(βn)√

%0
sin
(
π
2
(y − βn)

)
−R

(√
%0ϑ

′
0n +

%′0√
%0
ϑ0n

)
, y ∈ (βn, βn + 1).

It follows from (3.1) and (3.14)–(3.15) that∣∣∣∣∣ v′0(αn)√
%0(y)

∣∣∣∣∣+

∣∣∣∣∣ v′0(βn)√
%0(y)

∣∣∣∣∣ =

∣∣∣∣∣ v′0(αn)√
%0(αn)

√
%0(αn)

%0(y)

∣∣∣∣∣+

∣∣∣∣∣ v′0(βn)√
%0(βn)

√
%0(βn)

%0(y)

∣∣∣∣∣
≤ 2M0e

K1
2 , ∀y ∈ (αn − 1, αn) ∪ (βn, βn + 1).

This together with (H1) yields∣∣∣∣∣ G′0n(y)√
%0(y)

∣∣∣∣∣ ≤ πµM0e
K1
2 +R (

√
%0|ϑ′0n|+K1

√
%0ϑ0n) ,

for any y ∈ (αn − 1, αn) ∪ (βn, βn + 1). Due to this and that
G′0n√
%0

=
G′0√
%0

on (αn, βn),

it follows from (3.9) that∥∥∥∥G′0n√%0

∥∥∥∥
L2(In)

≤
∥∥∥∥ G′0√%0

∥∥∥∥
2

+ 2µπM0e
K1/2 +R

(
‖√%0ϑ

′
0n‖L2(In) +K1‖

√
%0ϑ0n‖L2(In)

)
≤

∥∥∥∥ G′0√%0

∥∥∥∥
2

+ C (‖√%0ϑ
′
0‖2 + ‖√%0ϑ0‖2 + 1) , (3.16)

for a positive constant C independent of n.
Step 2. Solutions to the system in In × (0,∞) and a priori estimates.



26 JINKAI LI AND ZHOUPING XIN

For each positive integer n, let (v0n, ϑ0n) be the initial data constructed as before.
Consider the initial-boundary value problem to the system (1.11)–(1.13) in (αn −
1, βn + 1)× (0,∞), subject to

(J, v, ϑ)|t=0 = (1, v0n, ϑ0n), (vy, ϑ)|y=an−1,βn+1 = (0, 0). (3.17)

Thanks to (3.3) and (3.4), and noticing that infy∈In %0 > 0, one can verify that the
initial datum (v0n, ϑ0n) satisfies all the assumptions in Proposition 2.1, for each fixed
n. Thus, there is a unique global strong solution (Jn, vn, ϑn) to (1.11)–(1.13) with
(3.17). Moreover, due to (3.5), (3.7)–(3.12), and (3.16), it follows from Corollary 2.2
that

inf
In×(0,T )

Jn ≥ CT , ϑn(y, t) ≥ 0, (3.18)

sup
0≤t≤T

∥∥∥∥(∂yJn√
%0

, ∂2
yJn, ∂tJn, ∂ytJn

)∥∥∥∥2

L2(In)

≤ CT , (3.19)

sup
0≤t≤T

∥∥∥∥(√%0vn,
√
%0v

2
n, ∂yvn,

∂2
yvn√
%0

,
√
%0∂tvn

)∥∥∥∥2

L2(In)

+

∫ T

0

‖(∂3
yvn, ∂

2
ytvn)‖2

L2(In)dt ≤ CT , (3.20)

sup
0≤t≤T

(
‖%0ϑn‖L1(In) +

∥∥∥(√%0ϑn,
√
%0∂yϑn,

√
%0∂

2
yϑn, %

3
2
0 ∂tϑn

)∥∥∥2

L2(In)

)
+

∫ T

0

(
‖∂yϑn‖2

H2(In) + ‖(%0∂tϑn, %0∂ytϑn)‖2
L2(In)

)
dt ≤ CT , (3.21)

and

sup
0≤t≤T

∥∥∥∥∂yGn√
%0

∥∥∥∥2

L2(In)

+

∫ T

0

∥∥∥∥∥
(
∂yGn

%0

)
y

∥∥∥∥∥
2

L2(In)

+ ‖∂tGn‖2
L2(In)

 dt ≤ CT , (3.22)

for any positive time T , where Gn = µ∂yvn
Jn
− R %0

Jn
ϑn, and CT and CT are positive

constants independent of n.
Step 3. Convergence and existence.
Thanks to the a priori estimates (3.18)–(3.22) and inf(−k,k) %0(y) > 0 for any k ∈ N,

the following estimate holds

‖(Jn, vn, ϑn)‖L∞(0,T ;H2((−k,k))) + ‖(vn, ϑn)‖L2(0,T ;H3((−k,k))) + ‖∂tJn‖L∞(0,T ;H1((−k,k)))

+ ‖(∂tvn, ∂tϑn)‖L∞(0,T ;L2((−k,k)))∩L2(0,T ;H1((−k,k))) ≤ Ck,T , ∀k ∈ N,

for a positive constant Ck,T independent of n. Due to this and the Cantor’s diagonal
argument, there is a subsequence, still denoted by (Jn, vn, ϑn), and (J, v, ϑ), such that

(Jn, vn, ϑn)
∗
⇀ (J, v, ϑ), in L∞(0, T ;H2((−k, k))), (3.23)
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(vn, ϑn) ⇀ (v, ϑ), in L2(0, T ;H3((−k, k))), (3.24)

∂tJn
∗
⇀ Jt, in L∞(0, T ;H1((−k, k))), (3.25)

(∂tvn, ∂tϑn)
∗
⇀ (vt, ϑt), in L∞(0, T ;L2((−k, k))), (3.26)

(∂tvn, ∂tϑn) ⇀ (vt, ϑt), in L2(0, T ;H1((−k, k))), (3.27)

for any k ∈ N. Moreover, since H3((−k, k)) ↪→↪→ C2([−k, k]) and H2((−k, k)) ↪→↪→
C1([−k, k]), it follows from the Aubin–Lions lemma that

(Jn, vn, ϑn)→ (J, v, ϑ), in C([0, T ];C1([−k, k])), (3.28)

(vn, ϑn)→ (v, ϑ), in L2(0, T ;C2([−k, k])), (3.29)

for any k ∈ N. Thanks to these and by (3.18), one has

inf
(y,t)∈R×(0,T )

J(y, t) ≥ CT ,
1

Jn
→ 1

J
in C([0, T ];C1([−k, k])), (3.30)

for any k ∈ N.
Thanks to (3.23)–(3.30) and noticing that (v0n, ϑ0n)→ (v0, ϑ0) in H2((−L,L)) for

any L > 0, one can take the limit as n→∞ to show that (J, v, ϑ) is a solution to the
Cauchy problem to the system (1.11)–(1.13) subject to (J, v, ϑ)|t=0 = (1, v0, ϑ0). The
desired regularities of (J, v, ϑ) stated in Theorem 1.1 follow from the a priori estimates
(3.18)–(3.22) and convergence (3.23)–(3.29) by the weakly lower semi-continuity of
norms. This proves Theorem 1.1. �

4. A Hopf type lemma and unboundedness of the entropy

In this section, we prove the unboundedness of the entropy immediately after
the initial time, i.e. Theorem 1.2. As stated in the Introduction, this is based on
some suitable scaling transform and a Hopf type lemma for a class of general linear
degenerate equations. So, we first establish a Hopf type lemma in the first subsection
and then present the proof of Theorem 1.2 in the second subsection. The Hopf type
lemma has its own independent interests and will also be applied to prove the uniform
positivity of the temperature in the next section.

4.1. A Hopf type lemma. Since the results in this subsection hold in any di-
mension, we use the following notations. Denote by x = (x1, x2, · · · , xn) and t
the spatial and time variables respectively and P = (x, t) a point in Rn+1. For
P0 = (x0, t0) ∈ Rn+1 and r > 0, denote

Br(P0) :=
{

(x, t) ∈ Rn+1
∣∣∣|x− x0|2 + (t− t0)2 < r2

}
.

Let (aij)n×n, a0, b = (b1, b2, · · · , bn), and c be given functions satisfying suitable
properties to be specified later. Consider the operator

Lϕ = −aij∂ijϕ+ a0∂tϕ+ b · ∇ϕ+ cϕ.
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Note that here a0 is not required to have fixed sign and this linear operator can be
regarded only as a linear degenerate elliptic operator in the space and time variables
with degeneracy occurring in the time direction.

Lemma 4.1. Let O be a domain in Rn+1. Assume that aij, a0, b, and c are finitely
valued functions in O with c ≥ 0, and the matrix (aij)n×n is nonnegative definite in
O. Then, for any ϕ ∈ C2,1(O) ∩ C(O), satisfying

Lϕ > 0 in O, and ϕ|∂O ≥ 0,

it holds that ϕ > 0 in O. Here C2,1(O) denotes the space of all function f satisfying
f, ∂tf,∇f,∇2f ∈ C(O).

Proof. First, we claim that ϕ ≥ 0 in O. Otherwise, since ϕ ≥ 0 on ∂O and ϕ ∈ C(O),
there is P0 ∈ O, such that ϕ(P0) = minO ϕ < 0. Since ϕ ∈ C2,1(O), it is clear that
∂tϕ(P0) = ∇ϕ(P0) = 0 and ∇2ϕ(P0) is nonnegative definite. As a result

(Lϕ)(P0) = −aij(P0)∂ijϕ(P0) + c(P0)ϕ(P0) ≤ 0,

which contradicts to the assumption. Therefore, the claim holds. Next, we show
that ϕ > 0 in O. Otherwise, there is P ∗0 ∈ O, such that ϕ(P ∗0 ) = 0. Then, ϕ(P ∗0 ) =
minO ϕ = 0, from which, similar as before, one has (Lϕ)(P ∗0 ) ≤ 0, contradicting to
the assumption. Thus, ϕ > 0 in O, which proves the conclusion. �

Lemma 4.2 (Hopf type lemma). Given P0 = (x0, t0), r > 0, P∗ = (x∗, t∗) ∈ ∂Br(P0),
x∗ 6= x0, and set P ∗0 = (x∗0, t

∗
0), with x∗0 = x0+x∗

2
and t∗0 = t0+t∗

2
. Assume that there

are positive constants λ,Λ, δ∗, and C∗, with δ∗ <
|x0−x∗|

4
, such that

λ|ξ|2 ≤ aij(x, t)ξiξj ≤ Λ|ξ|2, ∀ξ ∈ Rn,
(t− t∗0)a0(x, t) + (x− x∗0) · b(x, t) ≥ −C∗,
0 ≤ c(x, t)

√
|x− x∗|2 + (t− t∗)2 ≤ C∗,

∀(x, t) ∈ B r
2
(P ∗0 ) ∩ Bδ∗(P∗).

Let ϕ ∈ C2,1(Br(P0)) ∩ C(Br(P0)) satisfy

Lϕ ≥ 0, ϕ > ϕ(P∗), in B r
2
(P ∗0 ) ∩ Bδ∗(P∗), ϕ(P∗) ≤ 0.

Then, it holds that

lim
`→0+

ϕ(P∗)− ϕ(P∗ − `n∗)
`

< 0,

where n∗ = P∗−P0

r
is the unit outward normal vector to ∂Br(P0) at P∗.

Proof. Set

D = B r
2
(P ∗0 ) ∩ Bδ∗(P∗).

It suffices to consider the case that ϕ(P∗) = 0. Otherwise, one may consider Φ :=
ϕ− ϕ(P∗), which reduces to the case considered, due to

L Φ = Lϕ−L (ϕ(P∗)) = Lϕ− cϕ(P∗) ≥ Lϕ ≥ 0 in D ,
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as ϕ(P∗) ≤ 0 and c ≥ 0 in D . It is clear that B r
2
(P ∗0 ) ⊂ Br(P0). By assumption, it

holds that

ϕ(P ) > ϕ(P∗) = 0, ∀P ∈ D \ {P∗}. (4.1)

Define

φ(x, t) = e−ζ(|x−x
∗
0|2+(t−t∗0)2) − e−

r2

4
ζ = e−ζ|P−P

∗
0 |2 − e−

r2

4
ζ ,

where ζ > 0 is a constant to be determined. Then, it follows from direct calculations
that

L φ =− e−ζ|P−P ∗0 |2
[
4(x− x∗0)TA(x− x∗0)ζ2 − 2trAζ

+ 2((t− t∗0)a0 + (x− x∗0) · b)ζ + c
(
eζ(|P−P

∗
0 |2−

r2

4
) − 1

) ]
, (4.2)

where A = (aij)n×n and trA = aii. Note that the assumptions imply

4(x− x∗0)TA(x− x∗0)ζ2 − 2trAζ + 2((t− t∗0)a0 + (x− x∗0) · b)ζ

≥4λ|x− x∗0|2ζ2 − 2nΛζ − 2C∗ζ ≥
λ

4
|x0 − x∗|2ζ2 − (2nΛ + 2C∗)ζ, (4.3)

for any (x, t) ∈ D , due to trA ≤ nΛ and

|x− x∗0| ≥ |x∗0 − x∗| − |x∗ − x| ≥
|x0 − x∗|

2
− δ∗ ≥

|x0 − x∗|
4

, ∀(x, t) ∈ D .

Note that |P − P ∗0 | < r
2

for any P ∈ D . It follows from the mean value theorem and
the triangular inequality that∣∣∣eζ(|P−P ∗0 |2− r24 ) − 1

∣∣∣ = eτζ(|P−P
∗
0 |2−

r2

4
)

∣∣∣∣|P − P ∗0 |2 − r2

4

∣∣∣∣ ζ
≤
∣∣∣|P − P ∗0 | − r

2

∣∣∣ ∣∣∣|P − P ∗0 |+ r

2

∣∣∣ ζ ≤ rζ
∣∣|P − P ∗0 | − |P ∗0 − P∗|∣∣ ≤ rζ|P − P∗|,

for any P ∈ D , where τ ∈ (0, 1). This, together with the assumptions, yields∣∣∣c(eζ(|P−P ∗0 |2− r24 ) − 1
)∣∣∣ ≤ cr|P − P∗|ζ ≤ C∗rζ, ∀P ∈ D . (4.4)

Combining (4.3) with (4.4) leads to

4(x− x∗0)TA(x− x∗0)ζ2 − 2trAζ

+2((t− t∗0)a0 + (x− x∗0) · b)ζ + c
(
eζ(|P−P

∗
0 |2−

r2

4
) − 1

)
≥ λ

4
|x0 − x∗|2ζ2 − (2nΛ + 2C∗ + rC∗)ζ > 0, ∀P ∈ D , (4.5)

if ζ > ζ0 := 8nΛ+8c∗+4rC∗
λ|x0−x∗|2 . Choose ζ = 2ζ0. Then, it follows from (4.2) and (4.5) that

L φ < 0 in D . (4.6)
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It follows from (4.1) that

ϕ ≥ 0 = φ on ∂B r
2
(P ∗0 ) ∩ Bδ∗(P∗), inf

∂Bδ∗ (P∗)∩B r
2

(P ∗0 )
ϕ > 0.

Therefore, for ε > 0 sufficiently small, it follows from the assumptions and (4.6) that

Lϕ ≥ 0 > L (εφ) in D , ϕ ≥ εφ on ∂D ,

and thus

L (ϕ− εφ) > 0 in D , ϕ− εφ ≥ 0 on ∂D .

With the aid of this, noticing that ϕ − εφ ∈ C2,1(D) ∩ C(D), and applying Lemma
4.1, one gets

ϕ > εφ in D .

Therefore, for ` > 0 sufficiently small, one has

ϕ(P∗)− ϕ(P∗ − `n∗) = −ϕ(P∗ − `n∗) < −εφ(P∗ − `n∗) = ε(φ(P∗)− φ(P∗ − `n∗))

and thus

lim
`→0+

ϕ(P∗)− ϕ(P∗ − `n∗)
`

≤ ε lim
`→0+

φ(P∗)− φ(P∗ − `n∗)
`

= ε∂n∗φ(P∗) = −εζre−
r2

4
ζ < 0.

This proves the conclusion. �

As a direct consequence of Lemma 4.2, the following corollary holds.

Corollary 4.1. Given P0 = (x0, t0), r > 0, P∗ = (x∗, t∗) ∈ ∂Br(P0), x∗ 6= x0.
Assume that a0, b, c ∈ L∞(Br(P0)), c ≥ 0 in Br(P0), and

λ|ξ|2 ≤ aij(x, t)ξiξj ≤ Λ|ξ|2, ∀ξ ∈ Rn, (x, t) ∈ Br(P0),

for some positive constants λ and Λ. Let ϕ ∈ C2,1(Br(P0)) ∩ C(Br(P0)) satisfy

Lϕ ≥ 0, ϕ > ϕ(P∗), in Br(P0), ϕ(P∗) ≤ 0.

Then, it holds that

lim
`→0+

ϕ(P∗)− ϕ(P∗ − `n∗)
`

< 0,

where n∗ = P∗−P0

r
is the unit outward normal vector to ∂Br(P0) at P∗.
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4.2. Unboundedness of the entropy. This subsection is devoted to proving The-
orem 1.2. We start with the following embedding lemma, which is used to verify the
Hölder regularity of Jy required in the proof of Theorem 1.2.

Lemma 4.3. Let L > 0 be a positive number. Then, the following embedding in-
equality holds

‖f‖
C

1
2 ,

1
4 ([−L,L]×[0,T ])

≤ C(‖f‖L∞(0,T ;H1((−L,L))) + ‖∂tf‖L2(0,T ;L2((−L,L)))),

for any function f ∈ L∞(0, T ;H1((−L,L))) such that ∂tf ∈ L2(0, T ;L2((−L,L))),
where C is an absolute positive constant.

Proof. For any t, τ ∈ [0, T ], one deduces by Lemma 2.1, the Minkovski, Hölder, and
Cauchy inequalities that

‖f(·, t)− f(·, τ)‖L∞((−L,L))

≤ C‖f(·, t)− f(·, τ)‖
1
2

L2((−L,L))‖f(·, t)− f(·, τ)‖
1
2

H1((−L,L))

≤ C‖f‖
1
2

L∞(0,T ;H1((−L,L)))

∥∥∥∥∫ t

τ

∂tf(·, s)ds
∥∥∥∥ 1

2

L2((−L,L))

≤ C‖f‖
1
2

L∞(0,T ;H1((−L,L)))

(∫ t

τ

‖∂tf‖L2((−L,L))ds

) 1
2

≤ C(‖f‖L∞(0,T ;H1((−L,L))) + ‖∂tf‖L2(0,T ;L2((−L,L))))|t− τ |
1
4 ,

for an absolute positive constant C. For any x, y ∈ [−L,L] and t ∈ [0, T ], it follows
from the Hölder inequality that

|f(x, t)− f(y, t)| ≤
∣∣∣∣∫ y

x

∂xf(z, t)dz

∣∣∣∣
≤

∣∣∣∣∫ L

−L
|∂xf |2dx

∣∣∣∣
1
2

|y − x|
1
2 ≤ ‖f‖L∞(0,T ;H1((−L,L)))|y − x|

1
2 .

Therefore, for any x, y ∈ [−L,L] and t, τ ∈ [0, T ], it holds that

|f(x, t)− f(y, τ)| ≤ |f(x, t)− f(y, t)|+ |f(y, t)− f(y, τ)|
≤ C(‖f‖L∞(0,T ;H1((−L,L))) + ‖∂tf‖L2(0,T ;L2((−L,L))))(|t− τ |

1
4 + |y − x|

1
2 ).

This leads to the conclusion. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. The proof is dived into five steps as follows.
Step 1. Regularities and pointwise positivity of ϑ. For L > 0, denote by

W 2,1
2 ((−L,L)× (0, T )) the space of all functions f ∈ L2(0, T ;H2((−L,L))) satisfying
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∂tf ∈ L2(0, T ;L2((−L,L))). Recall the embedding that W 2,1
2 ([−L,L] × (0, T )) ↪→

C
1
2
, 1
4 ([−L,L]× [0, T ]) (Theorem 4.1 of [55]). Note that

(vy, ϑy) ∈ W 2,1
2 ((−L,L)× (0, T )), J, Jy ∈ L∞(0, T ;H1((−L,L))),

and Jt, Jyt ∈ L∞(0, T ;L2((−L,L))). Hence, it follows from the Sobolev embedding
and Lemma 4.3 that

(J, Jy, vy, ϑy) ∈ C
1
2
, 1
4 ([−L,L]× [0, T ]), ∀L > 0. (4.7)

Rewrite (1.13) as

cv%0ϑt −
κ

J
ϑyy + κ

Jy
J2
ϑy +R%0

vy
J
ϑ =

µ

J
|vy|2. (4.8)

Since J is uniformly positive on R×(0, T ), it can be checked that all the coefficients in

(4.8), i.e., %0,
1
J
, Jy
J2 , %0

vy
J
, and |vy |2

J
, belong to C

1
2
, 1
4 ([−L,L]× [0, T ]). Thanks to these

and the fact that %0(y) > 0 for all y ∈ R, it follows from the classic Schauder theory

on interior regularities for uniform parabolic equations that ϑ ∈ C2+ 1
2
,1+ 1

4 ((−L,L)×
(0, T )). On the other hand, by the embedding theorem, it follows from the regularities
of ϑ that ϑ ∈ C([−L,L]× [0, T ]). Therefore, it holds that

ϑ ∈ C2,1((−L,L)× (0, T )) ∩ C([−L,L]× [0, T ]).

Note that ϑ 6≡ 0 on R × (0, T ). Otherwise, noticing that ϑ ∈ C([0, T ];L2(−L,L))
for any L > 0, one has ϑ0 ≡ 0; furthermore, it follows from (1.13) that vy ≡ 0
on R × (0, T ), from which, since v ∈ C([0, T ];L2((−L,L))) for any L > 0, one has
v0 ≡ Const. This contradicts to the assumptions. Therefore, one has ϑ 6≡ 0 on
R× (0, T ) and ϑ ≥ 0. Thanks to this and by the strong maximum principle, one gets

0 < ϑ ∈ C2,1(R× (0, T )) ∩ C(R× [0, T ]). (4.9)

Step 2. Asymptotic behavior of Jy. Note that

Jyt =
1

µ
(GJy + JGy +R%′0ϑ+R%0ϑy)

which implies

Jy =
1

µ

∫ t

0

e
1
µ

∫ t
s Gdτ (JGy +R%′0ϑ+R%0ϑy)ds.

Therefore∣∣∣∣Jy(y, t)%0(y)

∣∣∣∣ ≤ 1

µ
e

1
µ

∫ t
0 ‖G‖∞dτ

∫ t

0

(
J

∣∣∣∣Gy

%0

∣∣∣∣+R

∣∣∣∣%′0%0

∣∣∣∣ϑ+R|ϑy|
)
ds. (4.10)

For any y ≥ 0, it follows that∣∣∣∣Gy(y, t)

%0(y)

∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

Gy

%0

dz +

∫ 1

0

∫ y

z

(
Gy

%0

)
y

(z′, t)dz′dz

∣∣∣∣∣
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≤
∫ 1

0

∣∣∣∣Gy

%0

∣∣∣∣ dz +

∫ y+1

0

∣∣∣∣∣
(
Gy

%0

)
y

∣∣∣∣∣ dz
≤

∥∥∥∥ Gy√
%0

∥∥∥∥
2

(t) +
√
y + 1

∥∥∥∥∥
(
Gy

%0

)
y

∥∥∥∥∥
2

(t)

and

ϑ(y, t) =

∫ 1

0

ϑ(z, t)dz +

∫ 1

0

∫ y

z

ϑy(z
′, t)dz′dz

≤
∫ 1

0

√
%0ϑ√
%0

dz +

∫ y+1

0

|ϑy|dz ≤
‖√%0ϑ‖2(t)
√
δ0

+
√
y + 1‖ϑy‖2(t),(4.11)

where δ0 := inf [−1,1] %0 > 0. Similar estimates hold also for y < 0 and thus it holds
for any y ∈ R that∣∣∣∣Gy(y, t)

%0(y)

∣∣∣∣ ≤ ∥∥∥∥ Gy√
%0

∥∥∥∥
2

(t) +
√
|y|+ 1

∥∥∥∥∥
(
Gy

%0

)
y

∥∥∥∥∥
2

(t) (4.12)

and

ϑ(y, t) ≤
‖√%0ϑ‖2(t)
√
δ0

+
√
|y|+ 1‖ϑy‖2(t). (4.13)

Substituting (4.12)–(4.13) into (4.10) and using (H1), one can get by the Hölder
and Sobolev inequalities that∣∣∣∣Jy(y, t)%0(y)

∣∣∣∣ ≤ CeC
∫ t
0 ‖G‖∞ds

∫ t

0

(∥∥∥∥ Gy√
%0

∥∥∥∥
2

+
√
|y|+ 1

∥∥∥∥∥
(
Gy

%0

)
y

∥∥∥∥∥
2

)
ds

+CeC
∫ t
0 ‖G‖∞ds

∫ t

0

(
‖√%0ϑ‖2 + ‖ϑy‖2

√
|y|+ 1 + ‖ϑy‖H1

)
ds

≤ C
√
t
√
|y|+ 1

∫ t

0

∥∥∥∥∥
(
Gy√
%0

,

(
Gy

%0

)
y

)∥∥∥∥∥
2

2

+ ‖ϑy‖2
H1

 ds

 1
2

+Ct
√
|y|+ 1‖√%0ϑ‖L∞(0,T ;L2)

≤ C1

√
|y|+ 1,

that is, ∣∣∣∣Jy(y, t)%0(y)

∣∣∣∣ ≤ C1

√
|y|+ 1, ∀y ∈ R, t ∈ [0, T ], (4.14)

where the regularities of (ϑ,G) have been used.
Step 3. A scaling transform. Let T > 0 be any arbitrary given constant.

Assume by contradiction that s ∈ L∞(R× (0, T )). Since ϑ = A
R
e
s
cv

(
%0
J

)γ−1
and J has
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uniform positive lower and upper bounds, it follows that

0 ≤ ϑ(y, t) ≤ CT%
γ−1
0 (y), ∀(y, t) ∈ R× [0, T ]. (4.15)

Let β > 0 to be determined later and introduce a scaling transform as

f(y, t) := ϑ(y−β, t), y ∈ (0,∞), t ≥ 0.

Then, direct calculations yield

ϑ(y, t) = f(y−
1
β , t),

ϑt(y, t) = ft(y
− 1
β , t), ϑy(y, t) = − 1

β
y−(1+ 1

β
)fy(y

− 1
β , t),

ϑyy(y, t) =
1

β2
y−(2+ 2

β
)fyy(y

− 1
β , t) +

β + 1

β2
y−(2+ 1

β
)fy(y

− 1
β , t),

for any (y, t) ∈ (0,∞)× (0,∞). Besides, one deduces from (4.8) that

cv%0(y−β)y−(2+2β)J(y−β, t)ft(y, t)−
κ

β2
fyy(y, t)

−
(
κ(β + 1)

β2
y−1 +

κ

β
y−(1+β)Jy(y

−β, t)

J(y−β, t)

)
fy(y, t)

+R%0(y−β)y−(2β+2)vy(y
−β, t)f(y, t) ≥ 0, (4.16)

for all (y, t) ∈ (0,∞)× (0,∞).
Step 4. Verifying conditions of Hopf type lemma. Let MT be a positive

constant to be determined later and define

F (y, t) = e−MT tf(y, t), y ∈ (0,∞), t ∈ [0,∞).

Due to (4.9), it is clear that

0 < F ∈ C2,1((0,∞)× (0,∞)) ∩ C((0,∞)× [0,∞)).

Moreover, it follows from (4.15) and (H2) that

F (y, t) = e−MT tϑ(y−β, t) ≤ CT e
−MT t%γ−1

0 (y−β)

≤ CTK
γ−1
2 e−MT t(1 + y−β)−(γ−1)`ρ ≤ CTK

γ−1
2 e−MT ty(γ−1)β`ρ ,

for an y ∈ (0,∞) and t ∈ [0,∞). Thus, one can define F (0, t) = 0 for t ∈ [0,∞),
such that F is well defined on [0,∞)× [0,∞), satisfying{

F ∈ C2,1((0,∞)× (0,∞)) ∩ C([0,∞)× [0,∞)),
F > 0 in (0,∞)× (0,∞), F (0, t) = 0, ∀t ∈ [0,∞).

(4.17)

It follows from (4.16) that

a0(y, t)Ft(y, t)− aFyy(y, t) + b(y, t)Fy(y, t) + c(y, t)F (y, t) ≥ 0, (4.18)

in (0,∞)× (0,∞), where

a0(y, t) = cv%0(y−β)y−(2+2β)J(y−β, t), a =
κ

β2
,
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b(y, t) = −
(
κ(β + 1)

β2
y−1 +

κ

β
y−(1+β)Jy(y

−β, t)

J(y−β, t)

)
,

c(y, t) = %0(y−β)y−(2+2β)
(
cvMTJ(y−β, t) +Rvy(y

−β, t)
)
.

Take arbitrary t0 ∈ (0, T ), 0 < y0 < min{1
2
, t0}, and set

P0 = (y0, t0), r = y0, P∗ = (0, t0) =: (y∗, t∗), δ∗ =
y0

8
,

P ∗0 =
(y0

2
, t0

)
=: (y∗0, t

∗
0), D = Bδ∗(P∗) ∩ B r2 (P ∗0 ).

Then,
P∗ ∈ ∂Br(P0), D = B y0

8
((0, t0)) ∩ B y0

2
((y0

2
, t0)).

For any (y, t) ∈ D , due to 0 < y < y0
8
< 1

16
and t0

2
< t < 3

2
t0, one deduces

(t− t∗0)a0(y, t) + (y − y∗0)b(y, t)

= cv(t− t0)%0(y−β)y−(2+2β)J(y−β, t)

−
(
y − y0

2

)(κ(β + 1)

β2
y−1 +

κ

β
y−(1+β)Jy(y

−β, t)

J(y−β, t)

)
≥ −cvt0%0(y−β)y−(2+2β)J(y−β, t)− κy0

2β
y−(1+β) |Jy(y−β, t)|

J(y−β, t)

≥ −cvt0jT%0(y−β)y−(2+2β) − κ

j
T
β
y−(1+β)|Jy(y−β, t)|, (4.19)

where
jT := sup

(y,t)∈R×[0,T ]

J(y, t), j
T

:= inf
(y,t)∈R×[0,T ]

J(y, t). (4.20)

Set MT :=
R‖vy‖L∞(R×(0,T ))

cvjT
. Then,

cvMTJ(y−β, t) +Rvy(y
−β, t) ≥ cvMT jT −R‖vy‖L∞(R×(0,T )) = 0

and

cvMTJ(y−β, t) +Rvy(y
−β, t) ≤ cvMT jT +R‖vy‖L∞(R×(0,T ))

= cvMT (jT + j
T

).

Thus, for any (y, t) ∈ D , since
√
|y − y∗|2 + |t− t∗|2 ≤ δ∗ ≤ 1

16
, it holds that

0 ≤ c(y, t)
√
|y − y∗|2 + |t− t∗|2 ≤ cvMT (jT + j

T
)%0(y−β)y−(2+2β). (4.21)

For any (y, t) ∈ D , since 0 < y < 1, it follows from (4.14) and (H2) that

%0(y−β)y−(2+2β) ≤ K2(1 + y−β)−`ρy−(2+2β) ≤ K2y
(`ρ−2)β−2 ≤ K2 (4.22)

and

y−(1+β)|Jy(y−β, t)| ≤ C1y
−(1+β)%0(y−β)

√
1 + y−β ≤ C1K2y

−(1+β)(1 + y−β)−`ρ+ 1
2
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≤ C1K2y
(`ρ− 3

2
)β−1 ≤ C1K2, (4.23)

as long as β ≥ max
{

2
`ρ−2

, 2
2`ρ−3

}
= 2

`ρ−2
.

Due to (4.22) and (4.23), it follows from (4.19) and (4.21) that

(t− t∗0)a0(y, t) + (y − y∗0)b(y, t) ≥ −(C1 + 1)K2

(
cvt0jT +

κ

j
T
β

)
, (4.24)

0 ≤ c(y, t)
√
|y − y∗|2 + |t− t∗|2 ≤ cvMT (jT + j

T
)K2, (4.25)

for any (y, t) ∈ D , as long as β ≥ 2
`ρ−2

.

Step 5. Unboundedness of entropy. Choose

β = β0 := max

{
2

(γ − 1)`ρ
,

2

`ρ − 2

}
.

Due to (4.17), (4.18), (4.24), and (4.25), it follows from Lemma 4.2 that

lim
`→0+

F (P∗)− F (P∗ − n∗`)
`

= − lim
`→0+

F (P∗ − n∗`)
`

= −2ε2,

for some positive constant ε2, where we recall P∗ = (0, t0), n∗ = P∗−P0

r
= (−1, 0), and

thus P∗ − n∗` = (`, t0). Thus, there is a positive number `0, such that

F (y, t0) = e−MT t0ϑ(y−β0 , t0) ≥ ε2y, ∀y ∈ (0, `0),

that is

ϑ(y, t0) ≥ ε2e
MT t0y

− 1
β0 , ∀y ∈

(
`
− 1
β0

0 ,∞
)
.

On the other hand, it follows from (4.15) and (H2) that

ϑ(y, t) ≤ CTK
γ−1
2 (1 + y)−`ρ(γ−1) ≤ CTK

γ−1
2 y−`ρ(γ−1), ∀y > 0.

Combing the previous two inequalities leads to

y
(γ−1)`ρ− 1

β0 ≤ CTK
γ−1
2 ε−1

2 e−MT t0 , ∀y ∈ (`
− 1
β0

0 ,∞),

which is impossible when y →∞, as (γ − 1)`ρ − 1
β0
≥ γ−1

2
`ρ > 0. This contradiction

leads to the desired conclusion that s 6∈ L∞(R× (0, T )). �

5. Uniform positivity of ϑ and asymptotic unboundedness of s

In this section, we prove the uniform positivity of the temperature and asymptotic
unboundedness of the entropy, under the condition that the initial density decays at
the far field not slower than O( 1

x4
), which yields the proof of Theorem 1.3.
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Proof of Theorem 1.3. We need only to prove (i), while the conclusion (ii) follows
from (i), (1.10), and (4.13), as J has uniformly positive lower and upper bounds at
each time t ∈ (0,∞).

Let h be the Kelvin transform of ϑ defined as

h(y, t) = yϑ

(
1

y
, t

)
, ∀y 6= 0, t ∈ [0, T ]. (5.1)

Then (4.9) implies

h ∈ C2,1((R+ ∪ R−)× (0, T )) ∩ C((R+ ∪ R−)× [0, T ]). (5.2)

Note that

ϑ(y, t) = yh

(
1

y
, t

)
, ϑt(y, t) = yht

(
1

y
, t

)
,

ϑy(y, t) = h

(
1

y
, t

)
− 1

y
hy

(
1

y
, t

)
, ϑyy(y, t) =

1

y3
hyy

(
1

y
, t

)
,

for any y 6= 0 and t ∈ (0, T ). It follows from these and (4.8) that

cv%0

(
1

y

)
1

y4
ht (y, t)− κ

J
(

1
y
, t
)hyy (y, t)− κ

Jy

(
1
y
, t
)

J2
(

1
y
, t
) 1

y2
hy (y, t)

+

Rvy
(

1
y
, t
)

J
(

1
y
, t
) %0

(
1
y

)
y4

+ κ
Jy

(
1
y
, t
)

J2
(

1
y
, t
) 1

y3

h(y, t) = µ

∣∣∣vy ( 1
y
, t
)∣∣∣2

y3J
(

1
y
, t
) ,

for y 6= 0. Define a0, a, b, and c̃ as

a0 := cv%0

(
1

y

)
1

y4
, a :=

κ

J
(

1
y
, t
) , b := −κ

Jy

(
1
y
, t
)

J2
(

1
y
, t
) 1

y2
,

c̃ := R
vy

(
1
y
, t
)

J
(

1
y
, t
) %0

(
1
y

)
y4

+ κ
Jy

(
1
y
, t
)

J2
(

1
y
, t
) 1

y3
, ∀y 6= 0, t ∈ [0, T ].

Then, it holds that {
a0ht − ahyy + bhy + c̃h ≥ 0, in Q+

T ,
a0ht − ahyy + bhy + c̃h ≤ 0, in Q−T ,

(5.3)

where
Q+
T := R+ × (0, T ), Q−T := R− × (0, T ).

Properties of a0, a, b, and c̃ are analyzed as follows. It follows from (4.7) and the
regularities of %0 and J that

a0 ∈ C(R+ ∪ R−), a, b, c̃ ∈ C(Q+
T ∪Q

−
T ). (5.4)
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For a0, it follows from (H3) that

0 ≤ a0(y) ≤ cvK3

(|y|+ 1)4
≤ cvK3, ∀y 6= 0. (5.5)

For a, it holds that

λT ≤ a(y, t) ≤ ΛT , ∀y 6= 0, t ∈ [0, T ], (5.6)

where λT = κ
jT

and ΛT = κ
j
T

, with j
T

and jT given by (4.20).

It follows from (4.14) and (H3) that

|Jy(y, t)| ≤ C1%0(y)
√
|y|+ 1 ≤ C1K3(|y|+ 1)−

7
2 , ∀y ∈ R, t ∈ [0, T ]. (5.7)

This implies that

|b(y, t)| ≤ κ

j2
T

1

y2

∣∣∣∣Jy (1

y
, t

)∣∣∣∣ ≤ κ

j2
T

1

y2
C1K3

(
1

|y|
+ 1

)− 7
2

≤ C1K3κ

j2
T

, (5.8)

for any y 6= 0 and t ∈ [0, T ]. By (H3) and (5.7), one deduces

|c̃(y, t)| ≤ R

j
T

1

y4

K3(
1 + 1

|y|

)4‖vy‖∞(t) +
κ

j2
T

1

|y|3
C1K3

(
1 +

1

|y|

)− 7
2

≤ RK3

j
T

‖vy‖∞(t) +
κ

j2
T

C1K3 ≤ C(‖vy‖L∞(0,T ;H1) + 1), (5.9)

for any y 6= 0 and t ∈ [0, T ].
Set

NT =
2

cv

(
R

j
T

‖vy‖L∞(R×(0,T )) +

√
2κC1

j2
T

)
and define

H(y, t) = e−NT th(y, t), ∀y 6= 0, t ∈ [0, T ]. (5.10)

Due to (5.2), it is clear that

H ∈ C2,1((R+ ∪ R−)× (0, T )) ∩ C((R+ ∪ R−)× [0, T ]). (5.11)

Since ϑ > 0, it follows from (5.1) and (5.10) that

H > 0 in Q+
T and H < 0 in Q−T . (5.12)

By (4.13) and recalling the definitions of h and H, one deduces

|H(y, t)| ≤ |y|ϑ
(

1

y
, t

)
≤ C(‖√%0ϑ‖L∞(0,T ;L2) + ‖ϑy‖L∞(0,T ;L2))|y|

√
1 +

1

|y|

≤ C
√
y2 + |y|, ∀y 6= 0, t ∈ [0, T ].
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Thanks to this, it holds that

lim
(y,τ)→(0,t)

H(y, t) = 0, ∀t ∈ [0, T ]. (5.13)

It follows from direct calculations and (5.3) that{
a0Ht − aHyy + bHy + cH ≥ 0, in Q+

T ,
a0Ht − aHyy + bHy + cH ≤ 0, in Q−T ,

(5.14)

where

c(y, t) := c̃(y, t) +NTa0(y, t)

=

cvNT +R
vy

(
1
y
, t
)

J
(

1
y
, t
) +

κ

J2
(

1
y
, t
) Jy

(
1
y
, t
)

%0

(
1
y

) y

 %0

(
1

y

)
1

y4
.

For any y ∈ [−1, 0) ∩ (0, 1] and t ∈ [0, T ], it follows from (4.14) that

c(y, t) ≥

(
cvNT −

R

j
T

‖vy‖∞(t)− κ

j2
T

|y|C1

√
1 +

1

|y|

)
%0

(
1

y

)
1

y4

=

(
cvNT −

R

j
T

‖vy‖∞(t)− κ

j2
T

C1

√
|y|2 + |y|

)
%0

(
1

y

)
1

y4

≥

(
cvNT −

R

j
T

‖vy‖∞(t)−
√

2κC1

j2
T

)
%0

(
1

y

)
1

y4

≥

(
R

j
T

‖vy‖∞(t) +

√
2κC1

j2
T

)
%0

(
1

y

)
1

y4

and thus

c(y, t) ≥ 0, ∀y ∈ [−1, 0) ∪ (0, 1], t ∈ [0, T ]. (5.15)

Define

H̃(y, t) =

 H(y, t), if y > 0,
0, if y = 0,

−H(y, t), if y < 0,
(5.16)

for all t ∈ [0, T ]. Denote

Ω− := (−1, 0)× (0, T ), Ω+ := (0, 1)× (0, T ),

Ω := Ω+ ∪ Ω−, Γ := {0} × [0, T ].

Then, it follows from (5.11)–(5.14) that

H̃ ∈ C2,1(Ω) ∩ C(Ω), H̃ > 0 in Ω, H̃|Γ = 0, (5.17)

L H̃ = a0H̃t − aH̃yy + bH̃y + cH̃ ≥ 0 in Ω, (5.18)
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with a0, a, b, and c satisfying{
a0 ∈ C((−1, 1) \ {0}) ∩ L∞((−1, 1) \ {0}),
a, b, c ∈ C(Ω) ∩ L∞(Ω), λT ≤ a ≤ ΛT , c ≥ 0 in Ω,

(5.19)

which follows from (5.4)–(5.6), (5.8)–(5.9), and (5.15).
For arbitrary t0 ∈ (0, T ), set

P∗ = (0, t0), P0 = (y0, t0), r = y0 = min

{
1

2
, t0, T − t0

}
.

Then, it is clear that n∗ := P∗−P0

r
= (−1, 0). Let Br be the space-time ball of radius

r and centered at P0. Thanks to (5.17), (5.18), and (5.19), it is clear that H̃ satisfies
all the conditions in Corollary 4.1, and thus Corollary 4.1 implies

lim
`→0+

H̃(P∗)− H̃(P∗ − `n∗)
`

= lim
`→0+

−H̃(`, t0)

`
= −2ε0,

with a positive constant ε0. Thus, lim`→0+
H̃(`,t0)

`
= 2ε0, which yields that

H̃(y, t0) ≥ ε0y, ∀y ∈ (0, `0), (5.20)

for some positive constant `0. Then, by the definition of H̃, one derives

H̃(y, t0) = e−NT t0h(y, t0) = e−NT t0yϑ

(
1

y
, t0

)
≥ ε0y, ∀y ∈ (0, `0) (5.21)

and thus,

ϑ(y, t0) ≥ ε0e
NT t0 ≥ ε0, ∀y ∈

(
1

`0

,∞
)
. (5.22)

Similarly, there are positive constants ε1 and `1 such that

ϑ(y, t0) ≥ ε1, ∀y ∈
(
−∞,− 1

`1

)
.

Combining this with (5.22) and recalling that 0 < ϑ ∈ C(R× [0, T ]), one has

inf
y∈R

ϑ(y, t0) = min

ε0, ϑ1, inf
y∈

[
− 1
`1
, 1
`0

]ϑ(y, t0)

 > 0.

This yields the desired conclusion, and the proof of Theorem 1.3 is completed. �
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