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Abstract. In this paper, the local well-posedness of strong solutions to the Cauchy
problem of the isentropic compressible Navier-Stokes equations is proved with the
initial date being allowed to have vacuum. The main contribution of this paper is
that the well-posedness is established without assuming any compatibility condition
on the initial data, which was widely used before in many literatures concerning the
well-posedness of compressible Navier-Stokes equations in the presence of vacuum.

1. Introduction

The isentropic compressible Navier-Stokes equations read as

ρ(ut + (u · ∇)u)− µ∆u− (λ+ µ)∇divu+∇P = 0, (1.1)

ρt + div (ρu) = 0, (1.2)

in R3×(0, T ), where the density ρ ≥ 0 and the velocity field u ∈ R3 are the unknowns.
Here P is the scalar pressure given as P = aργ, for two constants a > 0 and γ > 1.
The viscosity constants λ, µ satisfy the physical requirements:

µ > 0, 2µ+ 3λ ≥ 0.

System (1.1)–(1.2) is complemented with the following initial-boundary conditions{
(ρ, ρu)|t=0 = (ρ0, ρ0u0),
u(x, t)→ 0, as |x| → ∞. (1.3)

There are extensive literatures on the studies of the compressible Navier-Stokes
equations. In the absence of vacuum, that is the density has positive lower bound,
the system is locally well-posed for large initial data, see, e.g., [23, 41, 46, 48, 49, 51];
however, the global well-posedness is still unknown. It has been known that system in
one dimension is globally well-posed for large initial data, see, e.g., [2, 26–29, 57, 58]
and the references therein, see [35] for the large time behavior of the solutions, and
also [34, 37, 38] for the global well-posedness for the case that with nonnegative
density. For the multi-dimensional case, the global well-posedness holds for small
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initial data, see, e.g., [6, 10–13, 19, 30, 42–45, 47, 50]. In the presence of vacuum,
that is the density may vanish on some set, global existence (but without uniqueness)
of weak solutions has been known, see [1, 14–16, 25, 39, 40]. Local well-posedness
of strong solutions was proved for suitably regular initial data under some extra
compatibility conditions (being mentioned in some details below) in [7–9]. In general,
when the vacuum is involved, one can only expect solutions in the homogeneous
Sobolev spaces, that is, the L2 integrability of u is not expectable, see [31]. Global
well-posedness holds if the initial basic energy is sufficiently small, see [20, 21, 36, 54];
however, due to the blow-up results in [55, 56], the corresponding entropy of the global
solutions in [20, 54] must be infinite somewhere in the vacuum region, if the initial
density is compactly supported.

In this paper, we focus on the well-posedness of the Cauchy problem to system
(1.1)–(1.2) in the presence of vacuum. As mentioned in the previous paragraph, local
well-posedness of strong solutions to the compressible Navier-Stokes in the presence
of vacuum has already been studied in [7–9], where, among some other conditions,
the regularity assumption

ρ0 − ρ∞ ∈ H1 ∩W 1,q, u0 ∈ D1
0 ∩D2, (1.4)

for some constant ρ∞ ∈ [0,∞), and the compatibility condition

−µ∆u0 − (µ+ λ)∇divu0 +∇P (ρ0) =
√
ρ0g, (1.5)

for some g ∈ L2, were used. Similar assumptions as (1.4) and (1.5) were also widely
used in studying many other fluid dynamical systems when the vacuum is involved,
see, e.g., [3–5, 17, 18, 20–22, 32, 36, 52–54].

Assumptions (1.4) and (1.5) are so widely used when the initial vacuum is taken
into consideration, one may ask if the regularities on the initial data stated in (1.4)
can be relaxed and if the compatibility condition (1.5) is necessary for the local well-
posedness of strong solutions to the corresponding system. In a previous work [33],
the second author of this paper considered these questions for the inhomogeneous
incompressible Navier-Stokes equations, and found that the compatibility condition
is not necessary for the local well-posedness. The aim of the current paper is to
give the same answer for the isentropic compressible Navier-Stokes equations. As
will be shown in this paper that we can indeed reduce the regularities of the initial
velocity in (1.4) and remove the compatibility condition (1.5), without loosing the
existence and uniqueness, but the prices that we need to pay are the following: (i)
the corresponding strong solutions do not have as high regularities as those in [7–9]
where both (1.4) and (1.5) were assumed; (ii) one can only ask for the continuity, at
the initial time, of the momentum ρu, instead of the velocity u itself.

Before stating our main results, let us introduce some notations. Throughout this
paper, we use Lr = Lr(R3) and W k,r = W k,r(R3) to denote, respectively, the standard
Lebesgue and Sobolev spaces in R3, where k is a positive integer and r ∈ [1,∞]. When
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r = 2, we use Hk instead of W k,2. For simplicity, we use ‖ · ‖r = ‖ · ‖Lr . We denote

Dk,r =
{
u ∈ L1

loc(R3)
∣∣∣ ‖∇ku‖r <∞

}
, Dk = Dk,2,

D1
0 =

{
u ∈ L6

∣∣∣ ‖∇u‖2 <∞}.
For simplicity of notations, we adopt the notation∫

fdx =

∫
R3

fdx.

Our main result is the following:

Theorem 1.1. Suppose that the initial data (ρ0, u0) satisfies

ρ0 ≥ 0, ρ− ρ∞ ∈ H1 ∩W 1,q, u0 ∈ D1
0, ρ0u0 ∈ L2,

for some ρ∞ ∈ [0,∞) and some q ∈ (3, 6).
Then, there exists a positive time T , depending only on µ, λ, a, γ, q, and the

upper bound of ψ0 := ‖ρ0‖∞ + ‖ρ0 − ρ∞‖2 + ‖∇ρ0‖L2∩Lq + ‖∇u0‖2, such that system
(1.1)–(1.2), subjects to (1.3), admits a unique solution (ρ, u) on R3×(0, T ), satisfying

ρ− ρ∞ ∈ C([0, T ];L2) ∩ L∞(0, T ;H1 ∩W 1,q), ρt ∈ L∞(0, T ;L2),

ρu ∈ C([0, T ];L2), u ∈ L∞(0, T ;D1
0) ∩ L2(0, T ;D2),

√
ρut ∈ L2(0, T ;L2),

√
tu ∈ L∞(0, T ;D2) ∩ L2(0, T ;D2,q),

√
tut ∈ L2(0, T ;D1

0).

Remark 1.1. (i) Compared with the local well-posedness results established in [7, 8],
in Theorem 1.1, u0 is not required to be in D2 and we do not need any compatibility
conditions on the initial data.

(ii) The same result as in 1.1 also holds for the initial boundary value problem if
imposing suitable boundary conditions on the velocity.

2. Lifespan estimate and some a priori estimates

As preparations of proving the main result being carried out in the next section,
the aim of this section is to give the lifespan estimate and some a priori estimates,
under the condition that the initial velocity u0 ∈ D1

0 ∩ D2 and some compatibility
condition; however, it should be emphasized that all these estimates depend neither
on ‖∇2u0‖2 nor on the compatibility condition.

We start with the following local existence and uniqueness result, which has been
essentially proved in [7–9].

Proposition 2.1. Let ρ∞ ∈ [0,∞) and q ∈ (3, 6) be fixed constants. Assume that
the data ρ0 and u0 satisfy the regularity condition

ρ0 ≥ 0, ρ0 − ρ∞ ∈ H1 ∩W 1,q, u0 ∈ D1
0 ∩D2,

and the compatibility condition

−µ∆u0 − (µ+ λ)∇divu+∇P0 =
√
ρ0g,



4 HUAJUN GONG, JINKAI LI, XIAN-GAO LIU, AND XIAOTAO ZHANG

for some g ∈ L2, where P0 = aργ0 .
Then, there exists a small time T∗ > 0 and a unique strong solution (ρ, u) to

(1.1)–(1.2), subject to (1.3), such that

ρ− ρ∞ ∈ C([0, T∗];H
1 ∩W 1,q), u ∈ C([0, T∗];D

1
0 ∩D2) ∩ L2(0, T∗;D

2,q),

ρt ∈ C([0, T∗];L
2 ∩ Lq), ut ∈ L2(0, T∗;D

1
0),

√
ρut ∈ L∞(0, T∗;L

2).

As will be shown in this section, the existence time T∗ in the above proposition
can be chosen depending only on µ, λ, a, γ, q, and the upper bound of

Ψ0 := ‖ρ0‖∞ + ‖P0 − P∞‖2 + ‖P0‖∞ + ‖∇P0‖2 + ‖∇P0‖q + ‖∇u0‖2,
with P∞ = aργ∞, and, in particular, independent of ‖∇2u0‖2 and ‖g‖2. The following
quantity plays the key role in this section

Ψ(t) := (‖ρ‖∞ + ‖P − P∞‖2 + ‖P‖∞ + ‖∇P‖2 + ‖∇P‖q
+‖∇u‖2 + ‖

√
t
√
ρut‖2)(t) + 1.

In the rest of this section, until the last proposition, we always assume (ρ, u)
is a solution to system (1.1)–(1.2), subject to (1.3), on R3 × (0, T ), satisfying the
regularities stated in Proposition 2.1, with T∗ there replaced with T .

Throughout this section, except otherwise explicitly mentioned, we denote by C a
generic constant depending only on µ, λ, a, γ, and the upper bound of Ψ0.

Proposition 2.2. The following estimates hold

‖∇2u‖22 ≤ C(Ψ10 + Ψ‖√ρut‖22),
‖√ρ(u · ∇)u‖22 ≤ C(Ψ9 + Ψ5‖√ρut‖2),

‖∇2u‖q ≤ C(‖
√
t∇ut‖22 + ‖√ρut‖22 + t−

5q−6
4q + Ψα1), q ∈ (3, 6),

with α1 := max
{

12, (5q−6)
2

2q(6−q)

}
.

Proof. Applying the elliptic estimates to (1.1) yields

‖∇2u‖22 ≤ C‖ρ‖∞(‖√ρut‖22 + ‖√ρ(u · ∇)u‖22) + C‖∇P‖22.
By the Hölder and Sobolev inequality, one has

‖√ρ(u · ∇)u‖22 ≤ ‖ρ‖∞‖u‖26‖∇u‖2‖∇u‖6 ≤ CΨ4‖∇2u‖2.
Substituting the above inequality into the previous one and using the Cauchy in-
equality, one gets

‖∇2u‖22 ≤ C(Ψ‖√ρut‖22 + Ψ5‖∇2u‖2 + Ψ2)

≤ 1

2
‖∇2u‖22 + C(Ψ‖√ρut‖22 + Ψ10),

that is
‖∇2u‖22 ≤ C(Ψ10 + Ψ‖√ρut‖22), (2.1)
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and, consequently,

‖√ρ(u · ∇)u‖22 ≤ C(Ψ9 + Ψ5‖√ρut‖2),
proving the first two conclusions.

It follows from the Hölder and Gagliardo-Nirenberg inequalities that

‖ρ(u · ∇)u‖q ≤ ‖ρ‖∞‖u‖ 6q
6−q
‖∇u‖6

≤ C‖ρ‖∞‖u‖
3
q

6 ‖∇u‖
2− 3

q

6 ≤ C‖ρ‖∞‖∇u‖
3
q

2 ‖∇2u‖
2q−3
q

2 , (2.2)

from which, by the Young inequality and using (2.1), one has

‖ρ(u · ∇)u‖q ≤ CΨ
q+3
q (Ψ10 + Ψ‖√ρut‖22)

2q−3
2q

≤ CΨ3(Ψ9 + ‖√ρut‖22)
2q−3
2q

≤ C(Ψ2q + Ψ9 + ‖√ρut‖22) ≤ C(Ψ12 + ‖√ρut‖22).
It follows from the Hölder and Sobolev inequalities that

‖ρut‖q ≤ ‖ρ‖
5q−6
4q
∞ ‖√ρut‖

6−q
2q

2 ‖ut‖
3q−6
2q

6 ≤ C‖ρ‖
5q−6
4q
∞ ‖√ρut‖

6−q
2q

2 ‖∇ut‖
3q−6
2q

2 , (2.3)

and further by the Young inequality that

‖ρut‖q ≤ CΨ
5q−6
4q t−

3q−6
4q ‖
√
t∇ut‖

3q−6
2q

2 ‖√ρut‖
6−q
2q

2

≤ C(‖
√
t∇ut‖22 + ‖√ρut‖22 + t−

5q−6
4q + Ψ

(5q−6)2

2q(6−q) ).

Thanks to the above two, and applying the elliptic estimates to (1.1), one obtains

‖∇2u‖q ≤ C(‖ρut‖q + ‖ρ(u · ∇)u‖q + ‖∇P‖q)

≤ C(‖
√
t∇ut‖22 + ‖√ρut‖22 + t−

5q−6
4q + Ψα1),

proving the conclusion. �

Proposition 2.3. The following estimate holds

sup
0≤t≤T

(‖∇u‖22 + ‖P − P∞‖22) +

∫ T

0

‖√ρut‖22dt ≤ C + C

∫ T

0

Ψ10dt.

Proof. Multiplying (1.1) with ut, it follows from integration by parts that

1

2

d

dt
(µ‖∇u‖22 + (µ+ λ)‖divu‖22) + ‖√ρut‖22 = −

∫
(ρ(u · ∇)u+∇P ) · utdx.

Integration by parts and noticing that

Pt + u · ∇P + γdivuP = 0, (2.4)

one deduces

−
∫
∇P · utdx =

∫
(P − P∞)divutdx
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=
d

dt

∫
(P − P∞)divudx−

∫
Ptdivudx

=
d

dt

∫
(P − P∞)divudx+

∫
(u · ∇P + γdivuP )divudx.

Therefore

d

dt

(
µ‖∇u‖22 + (µ+ λ)‖divu‖22 − 2

∫
(P − P∞)divudx

)
+ ‖√ρut‖22

=

∫
(u · ∇P + γdivuP )divudx−

∫
ρ(u · ∇)u · utdx =: I1 + I2.

By the Hölder, Sobolev, and Young inequalities, and applying Proposition 2.2, one
has

I1 ≤ ‖u‖6‖∇P‖2‖divu‖3 + γ‖divu‖22‖P‖∞
≤ C‖∇u‖2‖∇P‖2‖∇u‖

1
2
2 ‖∇2u‖

1
2
2 + CΨ3

≤ CΨ
5
2 (Ψ

5
2 + Ψ

1
4‖√ρut‖

1
2
2 ) + CΨ3

≤ 1

4
‖√ρut‖22 + CΨ5,

and

I2 ≤ ‖√ρut‖2‖
√
ρ(u · ∇)u‖2

≤ C(Ψ
9
2 + Ψ

5
2‖√ρut‖

1
2
2 )‖√ρut‖2

≤ 1

4
‖√ρut‖22 + CΨ10.

Therefore

1

2

d

dt

(
µ‖∇u‖22 + (µ+ λ)‖divu‖22 − 2

∫
(P − P∞)divudx

)
+ ‖√ρut‖22 ≤ CΨ10,

from which, one obtains by the Cauchy inequality that

sup
0≤t≤T

‖∇u‖22 +

∫ T

0

‖√ρut‖22dt ≤ C

(
1 + sup

0≤t≤T
‖P − P∞‖22 +

∫ T

0

Ψ10dt

)
. (2.5)

Multiplying (2.4) with P−P∞, it follows from integration by parts and the Sobolev
inequality that

d

dt
‖P − P∞‖22 = −(γ − 1

2
)

∫
divu(P − P∞)2dx− γP∞

∫
divu(P − P∞)dx

≤ C‖∇u‖2‖P − P∞‖
1
2
2 ‖∇P‖

3
2
2 + C‖∇u‖2‖P − P∞‖2 ≤ CΨ3,

which gives

sup
0≤t≤T

‖P − P∞‖22 ≤ C + C

∫ T

0

Ψ3dt.
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This, combined with (2.5), leads to the conclusion. �

The t-weighted estimate in the next proposition is the key to remove the compat-
ibility condition on the initial data.

Proposition 2.4. The following estimate holds

sup
0≤t≤T

‖
√
t
√
ρut‖22 +

∫ T

0

‖
√
t∇ut‖22dt ≤ C + C

∫ T

0

Ψ16dt.

Proof. Differentiating (1.1) in t and using (1.2) yield

ρ(∂tut + (u · ∇)ut)− µ∆ut − (λ+ µ)∇divut

= −∇Pt + div (ρu)(ut + (u · ∇)u)− ρ(ut · ∇)u.

Multiplying it by ut, integrating by parts over R3 and then using the continuity
equation (1.2), one has

1

2

d

dt
‖√ρut‖22 + µ‖∇ut‖22 + (λ+ µ)‖divut‖22

=

∫
Ptdivutdx+

∫
div (ρu)|ut|2dx+

∫
div (ρu)(u · ∇)u · utdx

−
∫
ρ(ut · ∇u) · utdx =: II1 + II2 + II3 + II4.

Recalling (2.4) and using the Sobolev and Young inequalities, one deduces

II1 = −
∫

(γdivuP + u · ∇P )divutdx

≤ C (‖P‖∞||∇u||2||∇ut||2 + ||u||6||∇P ||3||∇ut||2)

≤ C
(
Ψ4 + ||∇u||22||∇P ||2L2∩Lq

)
+
µ

8
||∇ut||22

≤ CΨ4 +
µ

8
||∇ut||22.

Integrating by parts, using the Hölder, Sobolev and Young inequalities, and applying
Proposition 2.2, we have

II2 = −
∫
R3

ρu · ∇|ut|2dx

≤ C||ρ||
1
2∞||u||6||

√
ρut||

1
2
2 ||
√
ρut||

1
2
6 ||∇ut||2

≤ C||ρ||
3
4∞||∇u||2||

√
ρut||

1
2
2 ||∇ut||

3
2
2

≤ CΨ7||√ρut||22 +
µ

8
||∇ut||22,

II3 ≤
∫
R3

ρ|u|(|∇u|2|ut|+ |u||∇2u||ut|+ |u||∇u||∇ut|)dx
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≤ C||ρ||∞(||u||6||∇u||23||ut||6 + ||u||26||∇2u||2||ut||6
+||u||26||∇u||6||∇ut||2)

≤ C||ρ||∞||∇u||22||∇2u||2||∇ut||2
≤ CΨ6||∇2u||22 +

µ

8
||∇ut||2L2

≤ C(Ψ16 + Ψ7||√ρut||22) +
µ

8
||∇ut||2L2 ,

and

II4 ≤
∫
R3

ρ|ut|2|∇u|dx

≤ C||ρ||
1
2∞||∇u||2||

√
ρut||

1
2
2 ||
√
ρut||

1
2
6 ||ut||6

≤ C||ρ||
3
4∞||∇u||2||

√
ρut||

1
2
2 ||∇ut||

3
2
2

≤ CΨ7||√ρut||22 +
µ

8
||∇ut||22.

Therefore, we have

d

dt
‖√ρut‖22 + µ‖∇ut‖22 ≤ C(Ψ16 + Ψ7||√ρut||22),

which, multiplied by t, gives

d

dt
‖
√
t
√
ρut‖22 + µ‖

√
t∇ut‖22 ≤ C(Ψ16 + Ψ7||

√
t
√
ρut||22 + ‖√ρut‖22)

≤ C(Ψ16 + ‖√ρut‖22).

Integrating this in t and applying Proposition 2.3, the conclusion follows. �

Proposition 2.5. The following estimate holds∫ T

0

(‖∇u‖∞ + ‖∇2u‖q)dt ≤ C + C

∫ T

0

Ψα2dt,

with α2 := max {16, α1} = max
{

16, (5q−6)
2

2q(6−q)

}
.

Proof. Noticing that t−
5q−6
4q ∈ (0, 1), for q ∈ (3, 6), and recalling the following estimate

by Proposition 2.2

‖∇2u‖q ≤ C(‖
√
t∇ut‖22 + ‖√ρut‖22 + t−

5q−6
4q + Ψα1),

it follows from the Gagliardo-Nirenberg and Young inequalities and Propositions 2.3
and 2.4 that∫ T

0

‖∇u‖∞dt ≤ C

∫ T

0

‖∇u‖1−θ2 ‖∇2u‖θqdt
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≤ C

∫ T

0

(‖∇u‖2 + ‖∇2u‖q)dt

≤ C

∫ T

0

(‖
√
t∇ut‖22 + ‖√ρut‖22 + t−

5q−6
4q + Ψα1)dt

≤ C + C

∫ T

0

Ψα2dt,

where θ = 3q
5q−6 ∈ (0, 1), proving the conclusion. �

Proposition 2.6. The following estimate holds

sup
0≤t≤T

(‖ρ‖∞ + ‖P‖∞) ≤ C exp

(
C

∫ T

0

Ψα2dt

)
,

where α2 is the number in Proposition 2.5.

Proof. Define X(t;x) as {
d
dt
X(t;x) = u(X(t;x), t),

X(0;x) = x.

One can show that for any t ∈ (0, T ), and for any y ∈ R3, there is a unique x ∈ R3,
such that X(t;x) = y, and, in particular, X(t;R3) = R3; in fact, to show this, it
suffices to consider the backward problem d

dt
Z(t) = u(Z(t), t), X(T ;x) = y. Then, by

(1.2), it has

d

dt
ρ(X(t;x), t) = ∂tρ(X(t;x), t) + u(X(t;x), t) · ∇ρ(X(t;x), t)

= −divu(X(t;x), t)ρ(X(t;x), t),

and, thus,

ρ(X(t;x), t) = ρ0(x) exp

(
−
∫ t

0

divu(X(τ ;x), τ)dτ

)
. (2.6)

Therefore,

‖ρ‖∞(t) = ‖ρ(X(t;x), t)‖∞(t)

≤ ‖ρ0‖∞ exp

(∫ T

0

‖∇u‖∞dt
)
,

and the conclusion follows by applying Proposition 2.4. �

Proposition 2.7. The following estimate holds

sup
0≤t≤T

(‖∇P‖2 + ||∇P ||q) ≤ C exp

(
C

∫ T

0

Ψα2dt

)
, q ∈ (3, 6),

where α2 is the number in Proposition 2.5.
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Proof. From (2.4), one has

∂t∇P + γdivu∇P + γP∇divu+ (u · ∇)∇P +∇P∇u = 0.

Multiplying the above by |∇P |p−2∇P , integrating over R3, one has

d

dt
‖∇P‖pp ≤ C(||∇u||∞||∇P ||pp + ||P ||∞||∇2u||p||∇P ||p−1p ),

which gives
d

dt
||∇P ||p ≤ C(||∇u||∞||∇P ||p + ||P ||∞||∇2u||p).

By the Gronwall inequality, one has

sup
0≤t≤T

||∇P ||p ≤C
(
‖∇P0‖p +

∫ T

0

‖P‖∞‖∇2u‖pdt
)

exp

(
C

∫ T

0

‖∇u‖∞dt
)

≤C
(

1 +

∫ T

0

‖∇2u‖pdt
)

exp

(
C

∫ T

0

Ψα2dt

)
.

(2.7)

Thanks to the above, it follows from Proposition 2.5 and Proposition 2.6 that

sup
0≤t≤T

||∇P ||q ≤ C

(
1 +

∫ T

0

Ψα2dt

)
exp

(
C

∫ T

0

Ψα2dt

)
≤ C exp

(
C

∫ T

0

Ψα2dt

)
,

where we have used the fact that ez ≥ 1 + z for z ≥ 0. By Proposition 2.2 and
Proposition 2.3, it follows from (2.7) and the Cauchy inequality that

sup
0≤t≤T

||∇P ||2 ≤ C

[
1 +

∫ T

0

(Ψ5 + Ψ
1
2‖√ρut‖2)dt

]
exp

(
C

∫ T

0

Ψα2dt

)
≤ C

[
1 +

∫ T

0

(Ψ5 + ‖√ρut‖22)dt
]

exp

(
C

∫ T

0

Ψα2dt

)
≤ C

(
1 +

∫ T

0

Ψ10dt

)
exp

(
C

∫ T

0

Ψα2dt

)
≤ C exp

(
C

∫ T

0

Ψα2dt

)
.

This proves the conclusion. �

Proposition 2.8. The following estimates hold

sup
0≤t≤T

(‖ρ− ρ∞‖2 + ‖∇ρ‖2 + ‖∇ρ‖q) ≤ C exp

(
C

∫ T

0

Ψα2dt

)
, q ∈ (3, 6),
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with constant C depending also on ‖ρ0 − ρ∞‖2 + ‖∇ρ0‖2 + ‖∇ρ0‖q, and

sup
0≤t≤T

‖
√
t∇2u‖22 ≤ C sup

0≤t≤T
(Ψ10 + Ψ‖

√
t
√
ρut‖22),

where α2 is the number in Proposition 2.5.

Proof. The estimate of ‖ρ − ρ∞‖2 follows in the same way as that for ‖P − P∞‖2
in Proposition 2.3, while those for ‖∇ρ‖2 and ‖∇ρ‖q can be proved similarly as in

Proposition 2.7. The conclusion for ‖
√
t∇2u‖22 follows from combining Propositions

2.2 and 2.4. �

We end up this section with the following proposition on the lifespan estimate and
a priori estimates.

Proposition 2.9. Assume in addition to the conditions in Proposition 2.1 that ρ ≥ ρ
for some positive constant ρ.

Then, there are two positive constants T and C depending only on µ, λ, a, γ, q,
and the upper bound of ψ0 := ‖ρ0‖∞ + ‖ρ0 − ρ∞‖2 + ‖∇ρ0‖L2∩Lq + ‖∇u0‖2, and, in
particular, independent of ρ and ‖∇2u0‖2, such that system (1.1)–(1.2), subject to

(1.3), has a unique solution (ρ, u) on R3 × (0, T ), enjoying the regularities stated in
Proposition 2.1, with T∗ there replaced by T , and the following a priori estimates

sup
0≤t≤T

(‖ρ‖∞ + ‖ρ− ρ∞‖2 + ‖∇ρ‖2 + ‖∇ρ‖q + ‖ρt‖2) ≤ C,

sup
0≤t≤T

‖∇u‖22 +

∫ T
0

(‖∇2u‖22 + ‖√ρut‖22)dt ≤ C,

sup
0≤t≤T

(‖
√
t
√
ρut‖22 + ‖

√
t∇2u‖22) +

∫ T
0

(‖
√
t∇ut‖22 + ‖

√
t∇2u‖2q)dt ≤ C.

Proof. Define the maximal time Tmax as

Tmax := max{T ∈ T },

where

T := {T ∈ [T∗,∞) | There is a solution (ρ, u) in the class XT

to system (1.1)− (1.2), subject to (1.3), on R3 × (0, T )},

where XT is the class of (ρ, u) enjoying the regularities as stated in Proposition 2.1,
with T∗ there replaced with T . By Proposition 2.1, it is clear that Tmax is well
defined and Tmax ≥ T∗. Moreover, by the uniqueness result, see the proof of the
uniqueness part of Theorem 1.1 in the next section, one can easily show that any
two solutions (ρ̄, ū) and (ρ̃, ũ) to system (1.1)–(1.2), subject to (1.3), on R3 × (0, T̄ )
and on R3 × (0, T̃ ), respectively, coincide on R3 × (0,min{T̄ , T̃}). Choose Tk ∈ T
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with Tk ↑ Tmax as k ↑ ∞. By definition of T , there is a solution (ρk, uk) to system
(1.1)–(1.2), subject to (1.3), on R3 × (0, Tk). Define (ρ, u) on R3 × (0, Tmax) as

(ρ, u)(x, t) = (ρk, uk)(x, t), x ∈ R3, t ∈ (0, Tk), k = 1, 2, · · · .
Applying the uniqueness result again, the definition of (ρ, u) is independent of the
choice of the sequence {Tk}∞k=1. By the construction of (ρ, u), one can verify that
(ρ, u) is a solution to (1.1)–(1.2), subject to (1.3), on R3×(0, Tmax), and (ρ, u) ∈XT ,
for any T ∈ (0, Tmax).

By Propositions 2.3, 2.4, 2.6, and 2.7, it is clear

Ψ(t) ≤ Cm exp

(
Cm

∫ t

0

Ψα2dτ

)
, t ∈ (0, Tmax),

where Cm is a positive constant depending only on µ, λ, a, γ, q, and the upper bound
of ψ0. Here we have used the fact that Ψ0 can be controlled by ψ0. One can easily
derive from the above inequality that

Ψ(t) ≤ 2
1
α2Cm, ∀t ∈

(
0,min

{
Tmax, (2α2Cα2+1

m )−1
})
. (2.8)

Thanks to the above estimate, one can get by applying Propositions 2.5 and 2.8 that

(‖ρ− ρ∞‖2 + ‖∇ρ‖2 + ‖∇ρ‖q + ‖
√
t∇2u‖22)(t) +

∫ t

0

‖∇u‖∞dτ ≤ C, (2.9)

for any t ∈ (0,min {Tmax, (2α2Cα2+1
m )−1}), and for a positive constant C depending

only on µ, λ, a, γ, q, and the upper bound of ψ0. Thanks to (2.8)–(2.9) and using
(1.2) one can further obtain

‖ρt‖2 = ‖u · ∇ρ+ divuρ‖2
≤ ‖u‖6‖∇ρ‖3 + ‖∇u‖2‖ρ‖∞
≤ C(1 + ‖∇ρ‖L2∩Lq)‖∇u‖2 ≤ C, (2.10)

for any 0 < t < min{Tmax, (2α2Cα2+1
m )−1}. Using the estimate

∫ t
0
‖∇u‖∞dτ ≤ C in

(2.9) and recalling (2.6), it is clear that

ρ(x, t) ≥ Cρ, x ∈ R3, 0 < t < min
{
Tmax, (2α2Cα2+1

m )−1
}
. (2.11)

We claim that Tmax > (2α2Cα2+1
m )−1. Assume in contradiction that this does not

hold. Then, all the estimates in (2.8)–(2.11) hold for any t ∈ (0, Tmax). Estimates
(2.8)–(2.11), holding on time interval (0, Tmax), guarantee that (ρ, u)( · , t) can be
uniquely extended to time Tmax, with (ρ, u)( · , Tmax) defined as the limit of (ρ, u)( · , t)
as t ↑ Tmax, and that

(ρ− ρ∞)( · , Tmax) ∈ H1 ∩W 1,q, u( · , Tmax) ∈ D1
0 ∩D2.

Thanks to this and recalling (2.11), it is clear that the compatibility condition holds
at time Tmax. Therefore, by the local well-posedness result, i.e., Proposition 2.1, one
can further extend solution (ρ, u) beyond the time Tmax, which contradicts to the
definition of Tmax. This contradiction proves the claim that Tmax > (2α2Cα2+1

m )−1.
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As a result, one obtains a solution (ρ, u) on time interval (0, (2α2Cα2+1
m )−1) satisfying

all the a priori estimates in (2.8)–(2.10), except
∫ T
0
‖
√
t∇2u‖2qdt ≤ C, on the same

time interval.
It remains to verify

∫ T
0
‖
√
t∇2u‖2qdt ≤ C. To this end, recalling (2.2) and (2.3),

it follows from the elliptic estimate, the estimates just obtained, and the Young
inequality that

‖∇2u‖q ≤ C(‖ρut‖q + ‖ρ(u · ∇)u‖q + ‖∇P‖q)

≤ C(‖ρ‖
5q−6
4q
∞ ‖√ρut‖

6−q
2q

2 ‖∇ut‖
3q−6
2q

2 + ‖ρ‖∞‖∇u‖
3
q

2 ‖∇2u‖
2q−3
q

2 + ‖∇ρ‖q)
≤ C(1 + ‖∇2u‖22 + ‖√ρut‖2 + ‖∇ut‖2),

and further that∫ T
0

‖
√
t∇2u‖2qdt ≤ C

∫ T
0

(1 + ‖∇2u‖22‖
√
t∇2u‖22 + ‖√ρut‖22 + ‖

√
t∇ut‖22)dt ≤ C,

proving the conclusion. �

3. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1.
The following lemma, proved in [33], will be used in proving the uniqueness.

Lemma 3.1. Given a positive time T and nonnegative functions f, g,G on [0, T ],
with f and g being absolutely continuous on [0, T ]. Suppose that

d
dt
f(t) ≤ δ(t)f(t) + A

√
G(t),

d
dt
g(t) +G(t) ≤ α(t)g(t) + β(t)f 2(t),

f(0) = 0,

where α, β and δ are three nonnegative functions, with α, δ, tβ ∈ L1((0, T )).
Then, then following estimates hold

f(t) ≤ AB
√
tg(0) exp

(
1

2

∫ t

0

(α(s) + A2B2sβ(s))ds

)
,

g(t) +

∫ t

0

G(s)ds ≤ g(0) exp

(∫ t

0

(α(s) + A2B2sβ(s))ds

)
,

where B = 1 + e
∫ T
0 δ(τ)dτ . In particular, if g(0) = 0, then f ≡ g ≡ 0 on (0, T ).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We first prove the uniqueness and then the existence.
Uniqueness: Let (ρ̌, ǔ), (ρ̂, û) be two solutions of system (1.1)-(1.2), subject to

(1.3), on R3×(0, T ), satisfying the regularities stated in the theorem. For u ∈ {û, ǔ},
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by the Gagliardo-Nirenberg and Hölder inequalities, one has∫ T

0

‖∇u‖∞dt ≤ C

∫ T

0

‖∇u‖1−θ2 ‖∇2u‖θqdt ≤ C

∫ T

0

‖
√
t∇2u‖θqt−

θ
2dt

≤ C

(∫ T

0

‖
√
t∇2u‖2qdt

) θ
2
(∫ T

0

t−
θ

2−θ dt

)1− θ
2

<∞,

where θ = 3q
5q−6 ∈ (0, 1). Therefore, ∇û,∇ǔ ∈ L1(0, T ;L∞).

Denote

σ = ρ̌− ρ̂, W = P̌ − P̂ , v = ǔ− û.
Then, straightforward calculations show

σt + v · ∇ρ̂+ ǔ · ∇σ + div ǔσ + div vρ̂ = 0, (3.1)

ρ̂(vt + û · ∇v)− µ∆v − (λ+ µ)∇div v +∇W = −σǔt − σǔ · ∇ǔ− ρ̂v · ∇ǔ, (3.2)

Wt + v · ∇P̂ + ǔ · ∇W + γdiv ǔW + γdiv vP̂ = 0. (3.3)

Testing (3.1) with σ and using the Hölder inequality, we have

d

dt

∫
|σ|2dx ≤ C

∫
(|v · ∇ρ̂| |σ|+ |divǔ||σ|2 + |div vρ̂| |σ|)

≤ C(||∇ρ̂||3||σ||2||v||6 + ||∇ǔ||∞||σ||22) + C||ρ̂||∞||∇v||2||σ||2
≤ C||∇ǔ||∞||σ||22 + C(‖ρ̂‖∞ + ‖∇ρ̂‖3)||∇v||2||σ||2,

and, thus,
d

dt
‖σ‖2 ≤ C||∇ǔ||∞||σ||2 + C(‖ρ̂‖∞ + ‖∇ρ̂‖3)||∇v||2. (3.4)

Similarly, by testing (3.3) with W yields

d

dt
||W ||2 ≤ C||∇ǔ||∞||W ||2 + C(||∇P̂ ||3 + ||P̂ ||∞)||∇v||2. (3.5)

Testing (3.2) with v and using the Hölder and Young inequalities, we have

1

2

d

dt

∫
ρ̂|v|2dx+

∫
[µ|∇v|2 + (λ+ µ)(div v)2]dx

≤
∫

(|W ||∇v|+ |σ||ǔt||v|+ |σ||ǔ||∇ǔ||v|+ |ρ̂(v · ∇ǔ) · v|)dx =: RHS. (3.6)

We proceed the proof separately for the cases ρ∞ = 0 and ρ∞ > 0.
Case I: ρ∞ = 0.
By the Hölder, Sobolev, and Young inequalities, we can control RHS as

RHS ≤ ‖W‖2‖∇v‖2 + ‖σ‖ 3
2
‖ǔt‖6‖v‖6

+‖σ‖2‖ǔ‖6‖∇ǔ‖6‖v‖6 + ‖∇ǔ‖∞‖
√
ρ̂v‖22

≤ C(‖W‖2‖∇v‖2 + ‖σ‖ 3
2
‖∇ǔt‖2‖∇v‖2
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+‖σ‖2‖∇ǔ‖2‖∇2ǔ‖2‖∇v‖2 + ‖∇ǔ‖∞‖
√
ρ̂v‖22)

≤ µ

2
‖∇v‖22 + C(‖W‖22 + ‖∇ǔt‖22‖σ‖23

2

+‖∇ǔ‖22‖∇2ǔ‖22‖σ‖22 + ‖∇ǔ‖∞‖
√
ρ̂v‖22),

which plugged into (3.6) leads to

d

dt
‖
√
ρ̂v‖22 + µ‖∇v‖22 ≤ C‖∇ǔ‖∞‖

√
ρ̂v‖22 + C(1 + ‖∇ǔt‖22 + ‖∇ǔ‖22|∇2ǔ‖22)

×(‖W‖22 + ‖σ‖22 + ‖σ‖23
2
). (3.7)

The appearance of ‖σ‖ 3
2

in the above inequality requires the energy estimate for ‖σ‖ 3
2

given in the below.
Testing (3.1) with sign(σ)|σ| 12 and using the Hölder and Sobolev inequalities that

d

dt

∫
|σ|

3
2dx ≤ C

∫
(|v · ∇ρ̂| |σ|

1
2 + |divǔ||σ|

3
2 + |div vρ̂| |σ|

1
2 )

≤ C(||∇ρ̂||2||σ||
1
2
3
2

||v||6 + ||∇ǔ||∞||σ||
3
2
3
2

) + C||ρ̂||6||∇v||2||σ||
1
2
3
2

≤ C||∇ǔ||∞||σ||
3
2
3
2

+ C||∇ρ̂||2||∇v||2||σ||
1
2
3
2

,

which gives
d

dt
‖σ‖ 3

2
≤ C||∇ǔ||∞||σ|| 3

2
+ C||∇ρ̂||2||∇v||2. (3.8)

Denote

f1(t) = (‖σ‖ 3
2

+ ‖σ‖2 + ‖W‖2)(t), g1(t) = ‖
√
ρ̂v‖22(t), G1(t) = µ‖∇v‖22(t),

δ1(t) = C‖∇ǔ‖∞(t), A1 = C sup
0≤t≤T

(‖ρ̂‖∞ + ‖P̂‖∞ + ‖∇ρ̂‖L2∩L3 + ‖∇P̂‖3)(t),

α1(t) = C‖∇ǔ‖∞(t), β1(t) = C(1 + ‖∇ǔt‖22 + ‖∇ǔ‖22‖∇2ǔ‖22)(t),

then, it follows from (3.4), (3.5), (3.7), and (3.8) that
d
dt
f1(t) ≤ δ1(t)f1(t) + A1

√
G1(t),

d
dt
g1(t) +G1(t) ≤ α1(t)g1(t) + β1(t)f

2
1 (t),

f1(0) = 0.

By the regularities of (ρ̂, û) and (ρ̌, ǔ), and recalling ∇ǔ ∈ L1(0, T ;L∞), one can
easily verify that α1, δ1, tβ1 ∈ L1((0, T )). Therefore, one can apply Lemma 3.1 to get
f1(t) = g1(t) = G1(t) = 0, on (0, T ), which implies the uniqueness for Case I.

Case II: ρ∞ > 0.
By the Hölder and Sobolev inequalities, it follows for (ρ, u) ∈ {(ρ̂, û), (ρ̌, ǔ)} that

ρ4∞

∫
|ut|2dx =

∫
|ρ∞ − ρ+ ρ|4|ut|2dx
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≤ C

∫
(|ρ− ρ∞|4 + ρ4)|ut|2dx

≤ C(‖ρ− ρ∞‖46‖ut‖26 + ‖ρ‖3∞‖
√
ρut‖22)

≤ C(‖∇ρ‖42‖∇ut‖22 + ‖ρ‖3∞‖
√
ρut‖22),

and, thus,∫ T

0

t‖ut‖22dt ≤ C sup
0≤t≤T

(‖∇ρ‖42 + ‖ρ‖3∞)

∫ T

0

(‖
√
t∇ut‖22 + ‖√ρut‖22)dt <∞,

that is,
√
tut ∈ L2(0, T ;L2), for u ∈ {û, ǔ}.

By the Hölder, Sobolev, and Cauchy inequalities, we deduce

RHS ≤ ‖W‖2‖∇v‖2 + ‖σ‖2‖ǔt‖3‖v‖6
+‖σ‖2‖ǔ‖6‖∇ǔ‖6‖v‖6 + ‖∇ǔ‖∞‖

√
ρ̂v‖22

≤ ‖W‖2‖∇v‖2 + ‖∇ǔ‖∞‖
√
ρ̂v‖22

+(‖ǔt‖
1
2
2 ‖∇ǔt‖

1
2
2 + ‖∇ǔ‖2‖∇2ǔ‖2)‖∇v‖2‖σ‖2

≤ µ

2
‖∇v‖22 + C‖∇ǔ‖∞‖

√
ρ̂v‖22 + C(1 + ‖ǔt‖2‖∇ǔt‖2

+‖∇ǔ‖22‖∇2ǔ‖22)(‖σ‖22 + ‖W‖22).

Plugging this into (3.6) leads to

d

dt
‖
√
ρ̂v‖22 + µ‖∇v‖22 ≤ C‖∇ǔ‖∞‖

√
ρ̂v‖22 + C(1 + ‖ǔt‖2‖∇ǔt‖2

+‖∇ǔ‖22‖∇2ǔ‖22)(‖σ‖22 + ‖W‖22). (3.9)

Denote

f2(t) = (‖σ‖2 + ‖W‖2)(t), g2(t) = ‖
√
ρ̂v‖22(t), G2(t) = µ‖∇v‖22(t),

δ2(t) = C‖∇ǔ‖∞(t), A2 = C sup
0≤t≤T

(‖ρ̂‖∞ + ‖P̂‖∞ + ‖∇ρ̂‖2 + ‖∇P̂‖3)(t),

α2(t) = C‖∇ǔ‖∞(t), β2(t) = C(1 + ‖ǔt‖2‖∇ǔt‖2 + ‖∇ǔ‖22‖∇2ǔ‖22)(t),

then, it follows from (3.4), (3.5), and (3.9) that
d
dt
f2(t) ≤ δ2(t)f2(t) + A2

√
G2(t),

d
dt
g2(t) +G2(t) ≤ α2(t)g2(t) + β2(t)f

2
2 (t),

f2(0) = 0.

By the regularities of (ρ̂, û) and (ρ̌, ǔ), and recalling ∇u ∈ L1(0, T ;L∞) and
√
tut ∈

L2(0, T ;L2), for u ∈ {û, ǔ}, one can easily verify that α2, δ2, tβ2 ∈ L1((0, T )). There-
fore, one can apply Lemma 3.1 to get f2(t) = g2(t) = G2(t) = 0, on (0, T ), which
implies the uniqueness for Case II.
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Existence: Set ρ0n = ρ0 + 1
n
, ρn∞ = ρ∞+ 1

n
, and choose u0n ∈ D1

0 ∩D2, such that
u0n → u0 in D1

0, as n→∞. Denote

ψ0 = ‖ρ0‖∞ + ‖ρ0 − ρ∞‖2 + ‖∇ρ0‖L2∩Lq + ‖∇u0‖2,
ψ0n = ‖ρ0n‖∞ + ‖ρ0n − ρn∞‖2 + ‖∇ρ0n‖L2∩Lq + ‖∇u0n‖2.

Then, one can easily check that ψ0n ≤ ψ0 + 1, for sufficiently large n. By Proposition
2.9, there are two positive constants T and C depending only on µ, λ, a, γ, q, and
ψ0, such that system (1.1)–(1.2), subject to (1.3), has a unique solution (ρn, un), on
R3 × (0, T ), satisfying

sup
0≤t≤T

(‖ρn‖∞ + ‖ρn − ρn∞‖2 + ‖∇ρn‖2 + ‖∇ρn‖q + ‖∂tρn‖2) ≤ C, (3.10)

sup
0≤t≤T

‖∇un‖22 +

∫ T
0

(‖∇2un‖22 + ‖√ρn∂tun‖22)dt ≤ C, (3.11)

sup
0≤t≤T

‖
√
t∇2un‖22 +

∫ T
0

(‖
√
t∂t∇un‖22 + ‖

√
t∇2un‖2q)dt ≤ C. (3.12)

Thanks to (3.10)–(3.12), there is a subsequence, still denoted by (ρn, un), and a
pair (ρ, u), satisfying

ρ− ρ∞ ∈ L∞(0, T ;H1 ∩W 1,q), ρt ∈ L∞(0, T ;L2), (3.13)

u ∈ L∞(0, T ;D1
0) ∩ L2(0, T ;D2), (3.14)

√
t∇2u ∈ L∞(0, T ;L2),

√
t∇ut ∈ L2(0, T ;L2),

√
t∇2u ∈ L2(0, T ;Lq), (3.15)

such that

ρn − ρn∞
∗
⇀ ρ− ρ∞, in L∞(0, T ;H1 ∩W 1,q), (3.16)

∂tρn
∗
⇀ ρt, in L∞(0, T ;L2), (3.17)

un
∗
⇀ u, in L∞(0, T ;D1

0), (3.18)

un ⇀ u, in L2(0, T ;D2), (3.19)

∂tun ⇀ ut, in L2(δ, T ;D1
0), (3.20)

for any δ ∈ (0, T ). Note that W 1,q ↪→↪→ C(Bk), for any positive integer k. With
the aid of (3.16)–(3.20), by the Aubin-Lions lemma, and using the Cantor’s diagonal
argument, there is a sequence, still denoted by (ρn, un), such that

ρn → ρ, in C([0, T ];C(Bk)), (3.21)

un → u, in L2(δ, T ;H1(Bk)) ∩ C([δ, T ];L2(Bk)), (3.22)

for any positive integer k, and for any δ ∈ (0, T ), where Bk is the ball in R3 centered
at the origin of radius k. By the aid of (3.20), (3.21) and (3.22), one has

ρnun → ρu, in L2(Bk × (0, T )), (3.23)

ρn∂tun ⇀ ρut, in L2(Bk × (δ, T )), (3.24)
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ρn(un · ∇)un → ρ(u · ∇)u, in L1(Bk × (δ, T )), (3.25)

aργn → aργ, in C(Bk × [0, T ]), (3.26)

for any δ ∈ (0, T ), and for any positive integer k.
Due to (3.17), (3.19), and (3.23)–(3.26), one can take the limit to the system of

(ρn, uu) to show that (ρ, u) is a strong solution to system (1.1)–(1.2), on R3× (0, T ),
satisfying the regularities (3.13)–(3.15). The convergence (3.21) implies that the
initial value of ρ is ρ0. The regularity of ρ− ρ∞ ∈ C([0, T ];L2) follows from (3.13).

The regularity
√
ρut ∈ L2(0, T ;L2) is verified as follows. It follows from (3.20) and

(3.21) that
√
ρn∂tun ⇀

√
ρut in L2(0, T ;L2(Bk)), for any positive integer k. Then,

the weakly lower semi-continuity of the norms implies∫ T
0

‖√ρut‖2L2(Bk)
dt ≤ lim inf

n→∞

∫ T
0

‖√ρn∂tun‖2L2(Bk)
dt ≤ C,

for a positive constant C independent of k. Taking k → ∞ in the above inequality
yields

√
ρut ∈ L2(0, T ;L2).

Finally, we show that ρu ∈ C([0, T ];L2) and ρu|t=0 = ρ0u0. By (1.2) and (3.13)–

(3.14), and noticing that ‖u‖∞ ≤ C‖∇u‖
1
2
2 ‖∇2u‖

1
2
2 , guaranteed by the Gagliardo-

Nirenberg and Sobolev embedding inequalities, it follows∫ T
0

‖∂t(ρu)‖22dt

=

∫ T
0

‖ − (u · ∇ρ+ divuρ)u+ ρut‖22dt

≤
∫ T
0

(
‖u‖2∞‖∇ρ‖2 + ‖u‖∞‖∇u‖2‖ρ‖∞ + ‖ρ‖

1
2∞‖
√
ρut‖2

)2
dt

≤ C

∫ T
0

(
‖∇u‖22‖∇2u‖22 + ‖∇u‖32‖∇2u‖2 + ‖√ρut‖22

)
dt

≤ C

∫ T
0

(1 + ‖∇2u‖22 + ‖√ρut‖22)dt ≤ C. (3.27)

Similarly, it follows from (3.10)–(3.11) that
∫ T
0
‖∂t(ρnun)‖22dt ≤ C, for a positive

constant C independent of n. Thanks to theses, we deduce by the Hölder inequality
that

‖(ρu)( · , t)− ρ0u0‖L2(BR)

≤ ‖ρu− ρnun‖L2(BR) + ‖ρnun − ρ0nu0‖L2(BR) + ‖ρ0nu0 − ρ0u0‖L2(BR)

≤ ‖ρu− ρnun‖L2(BR) +

∫ t

0

‖∂t(ρnun)‖L2(BR)dτ +
C

n
‖u0‖L2(BR)

≤ ‖ρu− ρnun‖L2(BR) + C
√
t+

C

n
‖u0‖L2(BR),
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for a positive constant C independent of n and R. Noticing that ρnun → ρu in
C([δ, T ];L2(BR)), for any δ ∈ (0, T ), guaranteed by (3.21)–(3.22), one can pass the
limits n → ∞ first and then R → ∞ to the above inequality, and end up with
‖(ρu)( · , t) − ρ0u0‖2 ≤ C

√
t. This implies ρu ∈ L∞(0, T ;L2) and ρu|t=0 = ρ0u0.

Thank to these and recalling (3.27), one gets further that ρu ∈ C([0, T ];L2). This
completes the proof. �
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