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Abstract. We introduce the cluster exchange groupoid associated to a non-degenerate
quiver with potential, as an enhancement of the cluster exchange graph. In the case
that arises from an (unpunctured) marked surface, where the exchange graph is mod-
elled on the graph of triangulations of the marked surface, we show that the universal
cover of this groupoid can be constructed using the covering graph of triangulations of
the surface with extra decorations.

This covering graph is a skeleton for a space of suitably framed quadratic differen-
tials on the surface, which in turn models the space of Bridgeland stability conditions
for the 3-Calabi-Yau category associated to the marked surface. By showing that the
relations in the covering groupoid are homotopically trivial when interpreted as loops
in the space of stability conditions, we show that this space is simply connected.
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1. Introduction

This paper is the last in a series on decorated marked surfaces ([Q2, Q3, QZ1, BQZ,
QZ2]). We construct a moduli space of framed quadratic differentials for a decorated
marked surface, that is isomorphic to the space of stability conditions on the 3-Calabi-
Yau (3-CY) category associated to the surface. We introduce the cluster exchange
groupoid as the main tool to show that (the principal component of) this space is simply
connected.
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2 ALASTAIR KING AND YU QIU

1.1. Cluster exchange graphs and groupoids. The cluster exchange graph CEG(Q)
for a quiver Q, without loops or 2-cycles, is initially defined with vertices given by the
clusters in the cluster algebra defined from Q and edges corresponding to mutation of
clusters (or seeds) [FZ]. It is an unoriented n-regular graph, where n is the number of
vertices of Q. Each cluster also carries with it a quiver, obtained from the initial one by
quiver mutation, and any of these can be taken as the starting point for the construction.
Thus the graph is really associated to a mutation equivalence class of quivers.

For example, when Q is a Dynkin quiver of type A3 the graph is (the 1-skeleton of)
the famous associahedron, whose faces are six pentagons and four squares. Indeed, the
appearance of squares or pentagons is a universal phenomenon, arising whenever a pair
of vertices in Q are joined by no arrow or one arrow, respectively.

Since the categorification of cluster combinatorics, the cluster exchange graph may also
be realised with vertices corresponding to cluster tilting objects in the cluster category
C(Γ) = per Γ/Dfd(Γ) where Γ is the Ginzburg dg algebra associated to a quiver with
potential (Q,W ) (see §2.1 for definitions). The edges still correspond to mutation, now
of cluster tilting objects, and the potential is required to be non-degenerate, in the
sense that (Q,W ) repeatedly mutates (as in [DWZ]) in the same way as Q, without the
introduction of non-cancelling 2-cycles.

In this context, there is a second closely related exchange graph EG◦(Γ) of (finite,
reachable) hearts in Dfd(Γ) or, equivalently, silting objects in per Γ, which naturally
covers the cluster exchange graph of C(Γ), since the image, in the quotient C(Γ), of a
silting object is a cluster tilting object.

The mutation, or tilting, of hearts is a directed operation and so EG◦(Γ) is an ori-
ented n, n-regular graph and it is therefore more natural to consider an oriented version
CEG(Q) of the cluster exchange graph in which each edge is replaced by a 2-cycle. The
natural map EG◦(Γ) → CEG(Q) is then a covering of oriented n, n-regular graphs in
the sense that it gives a bijection between the 2n edges emanating from any vertex and
those from its image (cf. [KQ]).

The first goal of this paper is to turn both these exchange graphs into groupoids
by the addition of suitable relations, with the expectation that the map of groupoids
EG◦(Γ) → CEG(Q) actually becomes the universal cover. In particular, EG◦(Γ) should
be simply-connected. The main surprise here is that, as well as adding expected re-
lations corresponding to the squares and pentagons mentioned above, we have to add
additional hexagonal relations. One nice consequence of these is that the generators of
the fundamental group of CEG(Q) become ‘local twists’ (see §2.3 and §2.4 for details).

We will prove this expectation (see Theorem 3.13 and Theorem 3.17) in the case
that arises from (unpunctured) marked surfaces, as studied by Fomin-Shapiro-Thurston
[FST], when there is a topological model for cluster exchange graph with vertices given
by triangulations and the edges by ‘flips’, which replace one diagonal of a quadrilateral
by the other. More precisely, in this case, Γ = ΓT is associated, in the manner of [LF],
to a triangulation T of a surface S with marked points on its boundary (see §3.1 for
a precise definition of “triangulation”). We achieve the proof by showing that there is
also a topological model EGT(S4) of EG◦(ΓT ), given by triangulations of the decorated
marked surface S4 obtained by equipping S with an extra set of interior points, or

decorations, of which there must be one in each triangle. Note that the T in EGT(S4)
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is a decorated version of the T in EG◦(ΓT ) and picks out a connected component of a
larger graph EG(S4) (see §3.4 for more details).

A key step in the proof uses the presentation of the braid twist group of S4 obtained in
the prequel [QZ2]. This approach of decorating marked surfaces is inspired by Krammer’s
analysis of the classical braid group [Kr], which is the case when the marked surface is
a polygon, that is, a disc with a number of marked points on the boundary.

1.2. Quadratic differentials and stability conditions. One reason for being inter-
ested in the graph EG◦(Γ) is that it is a skeleton of the principal component Stab◦(Γ) of
the space of Brideland stability conditions [B] on the category Dfd(Γ). In other words,
there is an embedding ℘Γ : EG◦(Γ) → Stab◦(Γ) realising EG◦(Γ) as a dual graph to
the natural cell and wall structure on Stab◦(Γ). Thus there is also an induced map on
fundamental groups

℘∗ : π1 EG◦(Γ)→ π1 Stab◦(Γ)

This provides a strategy for proving that Stab◦(Γ) is simply connected: namely, prove
(1) that ℘∗ is surjective, (2) that ℘∗ factors through the quotient π1 EG◦(Γ)→ π1 EG◦(Γ)
and (3) that EG◦(Γ) is simply connected. We are able to prove (2) for general Γ (Propo-
sition 4.14), while (3) is proved in the first part of the paper in just the marked surface
case Γ = ΓT , as already described.

To prove (1) in that case, we adapt the work of Bridgeland-Smith [BS], who showed
that a geometric model for Stab◦(ΓT )/Aut is given by the moduli space Quad(S) of qua-
dratic differentials. More precisely, we show that a connected component FQuadT(S4)
of a suitably defined space of S4-framed quadratic differentials (Definition 4.3) provides
a geometric model of Stab◦(ΓT ) itself. Note that, under the framing, the decorations
are identified with the zeros of the quadratic differential.

Now, the association of a WKB triangulation to a saddle free quadratic differential
gives rise to a cell and wall structure on FQuadT(S4) that is naturally dual to the graph

EGT(S4). Thus we actually have an embedding ℘S : EGT(S4)→ FQuadT(S4), which
models ℘Γ and, crucially, for which one can show (by an argument from [BS]) that the
induced map on π1 is surjective. This enables us to complete the above strategy and
show that Stab◦(ΓT ) is simply-connected (Theorem 4.16).

A consequence of this is that (each component of) the moduli space FQuad(S4) of
S4-framed quadratic differentials is simply connected. Furthermore, all components are
isomorphic and the set of components can be parametrised explicitly (Corollary 4.17).
This result is similar to results in [KZ, Bo], where topological properties of moduli spaces
of abelian/quadratic differentials with given singularities are described. However, the
methods used here are quite different.

Note also that the methods in this paper can’t prove that the space of stability con-
ditions is contractible, in comparison with the results of [Q1, QW, PSZ, AW] which
do, but these depend crucially on the cluster type being finite, which it rarely is in the
surface case.

Acknowledgements. QY would like to thank Aslak Buan and Yu Zhou for collaborat-
ing on the prequels to this paper. He is also grateful to Tom Bridgeland and Ivan Smith
for inspiring discussions. This work is supported by Hong Kong RGC 14300817 (from
Chinese University of Hong Kong) and Beijing Natural Science Foundation (Z180003).
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2. Cluster exchange groupoid

2.1. Quivers with potential and their associated categories. (See [K2, §7] for
more details.) A quiver Q is a directed graph and a potential W on Q is a linear
combination of cycles in Q. For each vertex i of a quiver with potential (Q,W ), there is
an involutory operation µi, known as mutation [DWZ, §5], that produces a new quiver
with potential (Q′,W ′). We will always assume that a quiver with potential (Q,W ) is
non-degenerate [DWZ, §7], i.e. that it has no loops or 2-cycles and iterated mutation
preserves this condition, so that the underlying quivers undergo normal quiver mutation.
Denote by Γ = Γ(Q,W ) the Ginzburg dg algebra (of degree 3) associated to a quiver
with potential (Q,W ), which is constructed as follows (over any infinite field k).

• Let Q be the 3-Calabi-Yau double of Q, that is, the graded quiver whose vertex
set is Q0 and whose arrows are: the arrows in Q in degree 0; an arrow a∗ : j → i
in degree −1 for each arrow a : i→ j in Q; a loop e∗ : i→ i in degree −2 for each
vertex e in Q.
• The underlying graded algebra of Γ is the completion of the graded path algebra

kQ with respect to the ideal generated by the arrows of Q.
• The differential of Γ is the unique continuous linear endomorphism, homogeneous

of degree 1, which satisfies the Leibniz rule and takes the following values

d
∑
e∈Q0

e∗ =
∑
a∈Q1

[a, a∗], d
∑
a∈Q1

a∗ = ∂W,

where ∂W is the full cyclic derivative of W with respect to the arrows.

A triangulated category D is called N -Calabi-Yau (N -CY) if, for any objects L,M in
D, we have a natural isomorphism

S : Hom•D(L,M)
∼−→ Hom•D(M,L)∨[N ], (2.1)

where the graded dual of a graded vector space V =
⊕

i∈Z Vi[i] is V ∨ =
⊕

i∈Z V
∗
i [−i].

Further, an object S is N -spherical if Hom•(S, S) = k⊕ k[−N ].
For simplicity, we will assume that Γ is Jacobi finite, that is, H0(Γ) is finite dimen-

sional. This holds in the case of most interest for this paper, by [LF, Thm 36]. However,
the Jacobi infinite case may also be handled using results in [P]. There are three trian-
gulated categories associated to a Ginzburg dg algebra Γ, namely,

• the perfect derived category per Γ,
• the finite-dimensional derived category Dfd(Γ), which is a full subcategory of

per Γ and which is 3-Calabi-Yau,
• the cluster category C(Γ), which is defined by the following short exact sequence

of triangulated categories (due to Amiot [A])

0→ Dfd(Γ)→ per Γ→ C(Γ)→ 0 (2.2)

and which is 2-Calabi-Yau.

If Γ′ = Γ(Q′,W ′) is obtained by mutation, then Dfd(Γ
′) ∼= Dfd(Γ) and per Γ′ ∼= per Γ,

so C(Γ′) ∼= C(Γ) (see [KY, §3-4]).
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2.2. Cluster tilting and cluster exchange graphs. (See e.g. [BIRS] for more detail.)
A cluster tilting set (or cluster, for short) C in a cluster category C(Γ) is a maximal
collection of indecomposable objects satisfying an Ext1 vanishing condition. There is an
involutory operation, known as mutation on any cluster tilting set C, with respect to
any one of its objects, cf [IY]. We denote by QC the Gabriel quiver of C, that is, of the
algebra End(

⊕
M∈CM).

The cluster category C(Γ) admits a canonical cluster CΓ, which is the image of the
set of indecomposable summands of Γ in per Γ under the quotient map in (2.2). If
Γ = Γ(Q,W ), then QCΓ

= Q, by [A, Thm 2.1]. If Γ′ is obtained from Γ by mutation,
then the isomorphism C(Γ′) ∼= C(Γ) identifies CΓ′ with a mutation of CΓ. Consequently,
for a non-degenerate (Q,W ), the quiver QC will have no loops or 2-cycles, for every
cluster C in C(Γ) obtained by iterated mutation from CΓ. Indeed, when such clusters are
related by cluster mutation, their Gabriel quivers are related by normal quiver mutation.

Definition 2.1. The unoriented cluster exchange graph CEG(Γ) of the cluster category
C(Γ) is the connected graph whose vertices are the clusters in C(Γ) that are reachable
from CΓ by iterated mutation and whose edges correspond to mutations.

The oriented cluster exchange graph CEG(Γ) is the graph obtained from CEG(Γ)
by replacing each unoriented edge with a 2-cycle. We call the oriented edges forward
mutations. See Figure 2.1 for two elementary examples.

Note that, by the preceding discussion, these graphs only depend on the mutation
class Q of the (non-degenerate) quiver with potential (Q,W ) that determines Γ. Hence
we also write CEG(Q) and CEG(Q) for these graphs.

•

x y
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•

xy

•
x

y
•C

•

x
y

•
x
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•

x
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•

x

y

•
x

y•C

Figure 2.1. CEG(Q) for a quiver Q of type A1 ×A1 and A2

2.3. Cluster exchange groupoids. We now introduce the cluster exchange groupoid,
which is an enhancement of the cluster exchange graph. Note that the path groupoid
of an oriented graph E is the category whose objects are the vertices of E and whose
generating morphisms are the edges of E and their formal inverses.

Definition 2.2. For each cluster C in CEG(Q) and each vertex i of the associated
quiver QC, the local twist ti is the length two loop in the path groupoid of CEG(Q)
obtained by composing the two forward mutations at i corresponding to the edge µi in
CEG(Q).
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Let i and j be two vertices of QC. Then CEG(Q) contains the following full subgraph

• • • •
x

y

x

y

x

yC C′
i j i (2.3)

where the labels i, j indicate the vertices being mutated; for example, C′ is the mutation
of C at j. The local twists at C are ti = yx and tj = xy, while the local twists at C′

are t′i = xy and t′j = yx, where we compose arrows left to right.
As there are no 2-cycles in the quiver QC or any quiver obtained from it by mutation,

there can only be arrows between i and j in (at most) one direction. If there are arrows
in one direction, then x and y can be distinguished as being forward mutation at either
the tail or head of arrows. For example, if there are arrows j → i in QC, then there are
arrows i→ j in QC′ and x is mutation at the tail (or source) in each case.

Definition 2.3. The cluster exchange groupoid CEG(Q) is the quotient of the path
groupoid of CEG(Q) by the following three kinds of relations, starting at each cluster
C and for each i, j in QC with no arrow from i to j. We use the notation in (2.3).

1◦. The hexagonal dumbbell relation x2y = yx2. This can also written xt′i = tix
(hence “dumbbell”), where ti and t′i are local twists at C and C′, respectively,
as above. It can be drawn as a (flattened) hexagon:

C

C

C′

C′
•• = =

x
x

x
x

y

y

(2.4)

2◦. The square relation x2 = y2, when there is also no arrow from j to i, in which
case (2.3) extends to the subgraph of CEG(Q) on the left of Figure 2.1.

3◦. The pentagon relation x2 = y3, when there is exactly one arrow from j to i, in
which case (2.3) extends to the subgraph of CEG(Q) on the right of Figure 2.1.

Remark 2.4. When there is at most one arrow between two vertices i and j at C, the
hexagonal dumbbell relation at C for (i, j) is already implied by square or pentagon
relations in CEG(Q). More precisely, two square relations of the form x2 = y2 imply
x2y = y3 = yx2. Note that, in this case, they also imply y2x = x3 = xy2, which is
another hexagonal dumbbell relation obtained by interchanging the roles of i and j, and
thus x and y.

On the other hand, two pentagon relations of the form x2 = y3 imply x2y = y4 = yx2.
These calculations can be visualized as decomposing the hexagon into two squares or
two pentagons as shown in (2.5).

C

C

C′

C′

••

x

x

x

x

y

y

y

C

C

C′

C′

••

x

x

x

x

y

y

•
y y

(2.5)
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When there is more than one arrow between two vertices, the hexagon cannot be de-
composed. There are two (unconnected) infinite mutation sequences from/to the two
middle clusters as shown in (2.6).

•• •• •• •• •• ••· · · •· · ·

C

C

C′

C′

••

x

x

x

x

y

y

(2.6)

Consider a cluster C in CEG(Q) with vertices i and j in its associated quiver QC such
that there is at most one arrow between them. The sub-graph of CEG(Q) obtained by
freezing all vertices of the quiver QC except i and j, is an ordinary square or pentagon,
i.e. the unoriented graphs that give the oriented graphs in Figure 2.1 on replacing edges
by 2-cycles.

We may also define the unoriented cluster exchange groupoid CEG(Q) to be the quo-
tient of the path groupoid of CEG(Q) by appropriate square and pentagon relations.
More precisely, this path groupoid has a pair of mutually inverse generators for each un-
oriented edge in CEG(Q) and the cycle around any square or pentagon is made trivial.
Note that CEG(Q) can be obtained from CEG(Q) by setting all local twists ti equal to 1
in Definition 2.2.

The following condition is known to hold in many cases, for example, when Q is of
Dynkin type ([Q1, Prop 4.5]) or when Q is from a marked surface ([FST, Thm 3.10]).
Note, however, that it does not always hold ([FST, Rem 9.19]).

Condition 2.5. The fundamental group of CEG(Q) is trivial. In other words, any loop
in the cluster exchange graph CEG(Q) decomposes into ordinary (unoriented) squares
and pentagons.

2.4. The cluster braid groups. Recall, from Definition 2.2, that at each cluster C in
CEG(Q), there are local twists ti at C, for each vertex i of the associated quiver QC.

Definition 2.6. The cluster braid group CT(C) of C is defined to be the subgroup of
π1(CEG(Q),C) generated by {ti | i ∈ QC}.

Lemma 2.7. If there is no arrow between i and j, then the local twists ti and tj at C
satisfy titj = tjti. If there is exactly one arrow between i and j, then the local twists ti
and tj at C satisfy titjti = tjtitj.

Proof. In the first case, we have the local full sub-graph shown on the left of Figure 2.1.
Then x2 = y2 implies

titj = (yx)(xy) = y4 = x4 = (xy)(yx) = tjti.
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• ◦ •

◦ ◦ ◦

• ◦ •

• ◦ • ◦ •

◦ ◦ ◦ ◦ ◦ ◦

• ◦ • ◦ •

Figure 2.2. Braid relations of local twists comes from squares and pentagons

In the second case, without loss of generality, suppose the arrow is from j to i so that
we have the local full sub-graph shown on the right of Figure 2.1. Then x2 = y3 implies

titjti = (yx)(xy)(yx) = yx2y2x = y6x = x5

= xy6 = xy2x2y = (xy)(yx)(xy)
= tjtitj .

These calculation also be also read from the pictures in Figure 2.2, where the bullet
points denote the initial cluster C, the green arrows are x and the orange ones are y.

�

Consider any forward mutation C◦
z−→ C• in CEG(Q). Conjugation by z gives a

isomorphism

adz : π1(CEG(Q),C◦)→ π1(CEG(Q),C•) : t 7→ z−1tz.

Note that (locally) we can identify the vertex sets of QC◦ and QC• ; denote this set by
Q0. Denote by {t◦l | l ∈ Q0} the local twists generating CT(C◦) and by {t•l | l ∈ Q0} the
local twists generating CT(C•).

Proposition 2.8 (Conjugation formula). Suppose that z, as above, is forward mutation
with respect to vertex k ∈ Q0. We have

adz(t
◦
l ) =

{
(t•k)

−1t•l t
•
k if there are arrows from l to k in Q0,

t•l otherwise,

and hence adz induces an isomorphism CT(C◦) ∼= CT(C•).

Proof. We only need to show the formula. Consider the case that there are no arrows

from l to k first. Then we are in the situation of (2.3) such that C◦
z−→ C• is C

x−→ C′

and (k, l) = (j, i). Hence the hexagon relation x2y = yx2 implies

adx(t◦i ) = x−1(yx)x = x−1(x2y) = xy = t•i

for l 6= j and

adx(t◦j ) = x−1(xy)x = yx = t•j

as required.



CLUSTER EXCHANGE GROUPOIDS AND FRAMED QUADRATIC DIFFERENTIALS 9

Now, suppose there are arrows from l to k. Then we are in the situation of (2.3) such

that C◦
z−→ C• is C′

y−→ C and (k, l) = (i, j). Hence the hexagon relations x2y = yx2

implies

ady(t
◦
j ) = y−1(xy)y = (xy)−1x2y2 = (xy)−1yx2y = (xy)−1(yx)(xy) = (t•i )

−1t•j t
•
i

as required. �

Proposition 2.9. Condition 2.5 is equivalent to the identity CT(C) = π1(CEG(Q),C)
for any cluster C.

Proof. First, we claim that for any t ∈ CT(C◦) and any path p : C◦ → C in CEG(Q),
the loop p−1tp is in CT(C). By induction, we only need to show the case when p is
of length one, which follows from the conjugation formula in Proposition 2.8. Hence,
{CT(C) | C ∈ CEG(Q)} is the normal subgroupoid (cf. [H, Chap. 12]) of π1(CEG(Q),C),
normally generated by the local twists.

Consider the canonical covering CEG(Q)→ CEG(Q), which sets all local twists equal
to 1. We have a short exact sequence

1→ CT(C)→ π1(CEG(Q),C)→ π1(CEG(Q),C)→ 1

which shows the required equivalence. �

2.5. Exchange graphs of hearts and tilting. There is a close relationship between
cluster exchange graphs and exchange graphs of hearts in the corresponding 3-CY cat-
egories Dfd(Γ). We will describe this relationship here and show that it extends to the
same relationship between groupoids.

A t-structure P on a triangulated category D is a full subcategory P ⊂ D with
P[1] ⊂ P and such that, if one defines

P⊥ = {G ∈ D : HomD(F,G) = 0,∀F ∈ P},
then, for every object E ∈ D, there is a unique triangle F → E → G→ F [1] in D with
F ∈ P and G ∈ P⊥. It is bounded if for any object M in D, the shifts M [k] are in P for
k � 0 and in P⊥ for k � 0. We will only consider bounded t-structures. The heart of
a (bounded) t-structure P is the full subcategory H = P⊥[1] ∩ P, which is an abelian
category and also uniquely determines P.

A torsion pair in a heart H (or any abelian category) is a pair of full subcategories
〈F , T 〉 of H, such that Hom(T ,F) = 0 and, for every E ∈ H, there is a short exact
sequence 0 → ET → E → EF → 0, for some ET ∈ T and EF ∈ F . In this situation,
there is a new heart H] with torsion pair 〈T ,F [1]〉, called the forward tilt of H, and

a heart H[ with torsion pair 〈T [−1],F〉, called the backward tilt of H. We say that a

forward tilt is simple if F = 〈S〉 for a rigid simple S and write it as H]S . Similarly, a

backward tilt is simple if T = 〈S〉 for a rigid simple S, and we write it as H[S . See, for
example, [KQ, §3] for more detail.

Let Γ = Γ(Q,W ) be the Ginzburg dg algebra of some quiver with potential (Q,W ).
Then Dfd(Γ) admits a canonical heart HΓ generated by simple Γ-modules Se, for e ∈ Q0,
each of which is spherical (see e.g. [K2, §7.4]). Recall that, here, an object S is spherical
if Hom•(S, S) = k⊕ k[−3] and that it then induces a twist functor ϕS , defined by

ϕS(X) = Cone (S ⊗Hom•(S,X)→ X)
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with inverse
ϕ−1
S (X) = Cone

(
X → S ⊗Hom•(X,S)∨

)
[−1].

Denote by ST(Γ) ≤ AutDfd(Γ) the spherical twist group, generated by {ϕSe | e ∈ Q0}.
The (total) exchange graph EG(D) of a triangulated category D is the oriented graph

whose vertices are all hearts in D and whose directed edges correspond to simple forward
tiltings between them. We will focus attention on the principal component EG◦(Γ) of the
exchange graph EG(Dfd(Γ)), consisting of those hearts that are reachable by repeated
tilting from the canonical heart HΓ.

Denote by Sph(Γ) the set of reachable spherical objects in Dfd(Γ), that is,

Sph(Γ) = ST(Γ) · SimHΓ, (2.7)

where SimH denotes the set of simples of an abelian category H. Then Sph(Γ) in fact
consists of all the simples of reachable hearts (see, e.g. [Q2]).

We have the following result (cf. [KQ, Thm 8.6] for the acyclic case).

Theorem 2.10. Let Γ be the Ginzburg dg algebra of some non-degenerate quiver with
potential (Q,W ). There is a covering of oriented graphs

EG◦(Γ)→ CEG(Γ), (2.8)

with covering group ST◦(Γ) = ST(Γ)/ST0, where ST0 is the subgroup of ST(Γ) that acts
trivially on EG◦(Γ), so that ST◦(Γ) acts faithfully.

Proof. This is essentially a result of Keller-Nicolás [K1, Thm 5.6]. The map is given
by associating to a heart in Dfd(Γ) a silting set in per Γ and taking its image in C(Γ)
under the quotient map in (2.2). The map is a covering of oriented graphs because it is
compatible with tilting/mutation. The group ST(Γ) acts transitively on the fibres and
the stabiliser of a single heart must act trivially on adjacent hearts and thus, recursively,
on the whole component EG◦(Γ). �

The compatibility of the covering (2.8) with mutation implies that the Ext quiver of
the simples in a heart H in EG◦(Γ) coincides with the 3-Calabi-Yau double (as in §2.1)
of the Gabriel quiver QC of the cluster C in CEG(Γ) to which it maps. Note that the
no-loop condition on QC becomes the rigidity of simples in H. Recall that an object S is
rigid if Ext1(S, S) = 0. One important feature of the covering (2.8) is that the squares,
pentagons and hexagons that we identified in CEG(Γ) in Section 2.3 all lift to EG◦(Γ).

Remark 2.11. In fact, ST◦(Γ) = ST(Γ), i.e. ST0 is trivial, in both the Dynkin case
([QW]) and the surface case ([BQZ, Theorem B]). In other words, ST(Γ) acts faithfully
on EG◦(Γ) in these cases. In Section 3, the surface case becomes the main example we
study in the paper.

In a similar way to CEG(Γ), the covering exchange graph EG◦(Γ) contains hexagons,
squares and pentagons and thus there is an exchange groupoid analogous to Defini-
tion 2.3. More precisely we have the following.

Lemma 2.12. Let H be a heart in EG◦(Γ) with rigid simples Si, Sj satisfying Ext1(Si, Sj) =

0. Then Si is a simple in Hj = H]Sj and there is a hexagon in EG◦(Γ), as on the left of

Figure 2.3, where Hi = H]Si, Hji = (Hj)]Si and Tj = ϕ−1
Si

(Sj).
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Proof. The assumption Ext1(Si, Sj) = 0 implies that Si is still a simple in Hj by [KQ,

Prop. 5.4]. By [KQ, (8.3)], the spherical twist ϕ−1
Si

of H can be obtained by two tilts,

with respect to Si and then Si[1]:

ϕ−1
Si

(H) =
(
H]Si

)]
Si[1]

.

Similarly, we have

ϕ−1
Si

(Hj) =
(

(Hj)]Si
)]
Si[1]

.

Also note that, as ϕ−1
Si

is an auto-equivalence, the tilting H
Sj−→ Hj becomes

ϕ−1
Si

(H)
Tj−→ ϕ−1

Si
(Hj).

Thus we obtain the claimed hexagon. �

H Hj

Hji

ϕ−1
Si

(Hj)ϕ−1
Si

(H)

Hi

Sj

Si

Tj

Si[1]

Si

Si[1]

H Hj

Hji

ϕ−1
Si

(Hj)ϕ−1
Si

(H)

Hi

Sj

Si

Sj

Si[1]

Si

Si[1]

Sj

H Hj

Hji

ϕ−1
Si

(Hj)ϕ−1
Si

(H)

Hi H∗

Sj

Si

Tj

Si[1]

Si

Si[1]

Tj

Sj

Figure 2.3. A hexagon and its decompositions into squares/pentagons

Remark 2.13. In Lemma 2.12, we may also describe Hji as the forward tilt of H with
respect to the torsion pair with F = 〈Si, Sj〉. Furthermore, by [KQ, Prop. 5.4], Tj is the
simple in Hi that replaces Sj after the tilt from H.

If, in addition, Ext1(Sj , Si) = 0, then Tj = Sj and Hji is also (Hi)]Sj . Thus there is

a square in EG◦(Γ), as in the upper part of the middle diagram in Figure 2.3, and the
hexagon in Lemma 2.12 decomposes into two similar squares.

If Ext1(Sj , Si) = k, then Hji = (H∗)]Sj , where H∗ = (Hi)]Tj . This follows because

F = 〈Si, Sj〉 has just three indecomposables Si, Tj , Sj (cf. proof of Lemma 6.1 in [QW]).
Thus there is a pentagon in EG◦(Γ), as in the upper part of the right diagram in
Figure 2.3, and the hexagon in Lemma 2.12 decomposes into two similar pentagons.

Definition 2.14. The exchange groupoid EG◦(Γ) is the quotient of the path groupoid
of EG◦(Γ) by the commutation relations, starting at each heart H, corresponding to the
squares, pentagons and hexagons in Figure 2.3.
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With this definition, Theorem 2.10 can be upgraded as follows, noting that the
squares/pentagons/hexagons in Figure 2.3 cover the ones in Definition 2.3.

Proposition 2.15. There is a covering of groupoids

EG◦(Γ)→ CEG(Γ), (2.9)

with covering group ST◦(Γ). Hence there is an induced short exact sequence

1→ π1(EG◦(Γ),HΓ)→ π1(CEG(Γ),CΓ)→ ST◦(Γ)→ 1. (2.10)

For the mutation class of a Dynkin quiver, we can explicitly identify these fundamental
groups.

Theorem 2.16. If Γ = Γ(Q, 0) for a Dynkin quiver Q, then CT(CΓ) = π1(CEG(Γ),CΓ)
and is isomorphic to the usual braid group Br(Q).

Proof. As explained in Remark 2.13, there are squares and pentagons in the exchange
graph EG◦(Γ). By [QW, Remark 6.2], π1(EG◦(Γ),HΓ) is generated by these squares
and pentagons and hence π1(EG◦(Γ),HΓ) is trivial. Thus (2.10) gives an isomorphism
π1(CEG(Γ),CΓ) ∼= ST◦(Γ). By Remark 2.11 and [QW, Cor. 6.12],

ST◦(Γ) = ST(Γ) ∼= Br(Q).

In this case, Condition 2.5 holds by [Q1, Prop 4.5], so CT(CΓ) = π1(CEG(Γ),CΓ) by
Proposition 2.9. �

Note that the same conclusion holds for Γ = Γ(Q,W ), where (Q,W ) is mutation
equivalent to a Dynkin quiver, simply by choosing a mutation sequence from it to (Q,W ).
However, the isomorphism CT(CΓ) ∼= Br(Q) only sends the local twist generators to
standard generators in the case of the quiver itself.

When the mutation class is of type A1 × A1 or A2, the universal cover of CEG(Γ) is
described in [Q4, Example 3.7 and 3.8].

Remark 2.17. In Section 4.3, we will see that the exchange graph EG◦(Γ) is a skeleton
(in the sense explained there) for the space Stab◦(Γ) of Bridgeland stability conditions
on Dfd(Γ). In Section 4.5 (Proposition 4.14), we will show that the squares, pentagons
and hexagons in EG◦(Γ) are contractible loops in Stab◦(Γ). This fact also justifies these
relations in the exchange groupoids EG◦(Γ) and CEG(Γ).

3. Decorated marked surfaces

3.1. Marked surfaces. Following [FST], an (unpunctured) marked surface S is a com-
pact connected oriented smooth surface with a finite set M of marked points on its
boundary ∂S, satisfying the following conditions:

• S is not closed, i.e. ∂S 6= ∅,
• each connected component of ∂S contains at least one marked point.

Up to diffeomorphism, S is determined by the following data

• the genus g,
• the number b of boundary components,
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• the integer partition of m = #M into b parts giving the number of marked points
on each boundary component.

In this paper, we use the following terminology:

• an open arc is (the isotopy class of) a curve on S with endpoints in M but
otherwise in S r ∂S, which is simple, that is, does not intersect itself (except
maybe at its endpoints) and essential, that is, not homotopic to a constant arc
or a boundary arc (i.e. an arc in ∂S),
• a curve is a closed curve in S r M,
• two arcs are compatible if they do not intersect (except maybe at their endpoints),
• an ideal triangulation T of S is a maximal collection of compatible open arcs,

considered up to isotopy.

Recall first the following elementary result (cf. [FST, Prop. 2.10]).

Proposition 3.1. Any ideal triangulation T of S, consists of

n = 6g − 6 + 3b+m (3.1)

open arcs and divides S into ℵ = (2n+m)/3 triangles.

Note that the sides of a triangle in a triangulation can be either open arcs or boundary
arcs. As in [FST, §2], when S is a disc, i.e. g = 0 and b = 1, we will require m ≥ 4, so
that n ≥ 1 in (3.1) and ℵ ≥ 2.

The unoriented exchange graph EG(S) has vertices corresponding to ideal triangula-
tions of S and edges corresponding to flips, as illustrated in Figure 3.1. Every open arc
in an ideal triangulation is the diagonal of the quadrilateral formed by the two triangles
on either side of it. Hence every open arc can be flipped and so the exchange graph is
n-regular.

•

•

•

•
−
•

• •

•

Figure 3.1. An ordinary (unoriented) flip

Given a pair of open arcs in an ideal triangulation, one of three things can happen.

• The two arcs border four distinct triangles, which form two quadrilaterals in the
surface and the two flips are independent, giving rise to a ‘square’ in the exchange
graph, as on the left of Figure 3.2.
• The two arcs share one triangle, so border three distinct triangles, which form a

local pentagon in the surface and repeated flips give rise to a ‘pentagon’ in the
exchange graph, as on the right of Figure 3.2.
• The two arcs share two triangles, which form a local annulus in the surface and

repeated flips give rise to a infinite line in the exchange graph, part of which is
shown in Figure 3.3, where the thick green lines are glued to make the annulus.
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

−

−

−−
• •

•
•

•

• •

•
•

•

• •

•
•

•

• •

•
•

•

• •

•
•

•

− −

− −

−

Figure 3.2. A square and a pentagon in the unoriented exchange graph

3.2. The cluster category of a surface. Let S be a marked surface with a trian-
gulation T . Then there is an associated quiver QT (without loops or 2-cycles) with a
potential WT , constructed as follows (cf. [FST, §4] and [LF, §3], which also deal with
the more general punctured case):

• the vertices of QT correspond to the open arcs in T ;
• for each angle in T , i.e. a pair of open arcs in the same triangle, there is an arrow

between the corresponding vertices pointing towards the arc that is a positive
(anti-clockwise) rotation of the other;
• if three open arcs form a triangle, then the corresponding arrows form a 3-cycle

in QT (as in Figure 3.4) and WT is the sum of all such 3-cycles.

If two triangulations are related by a flip, then both the corresponding quivers and
quivers with potential are related by mutation ([FST, Prop 4.8] and [LF, Thm 30]). In
particular, since QT never has loops or 2-cycles, (QT ,WT ) is always non-degenerate.

As proved in [BZ], this correspondence identifies EG(S) with the cluster exchange
graph of the associated mutation class of quivers with potential.

Theorem 3.2. Let ΓT be the Ginzburg dg algebra Γ(QT ,WT ), for a triangulation T of a
marked surface S. There is a bijection γ 7→Mγ between the set of open arcs on S and the
set of rigid indecomposables in C(ΓT ). This induces an isomorphism EG(S) ∼= CEG(ΓT ),
sending any triangulation {γ} to a cluster tilting set {Mγ}. In particular, it sends the
initial triangulation T to the canonical cluster tilting set CT := CΓT .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

− − − − −· · · · · ·

Figure 3.3. A length three interval of an infinite line in the unoriented
exchange graph
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•

•

•
d

b c

•
d

•b •c

Figure 3.4. Part of the quiver with potential associated to a triangle
on a marked surface

Proof. See [BZ, Corollary 1.6] for the isomorphism on vertices and [BZ, Theorem 4.4]
for the isomorphism on edges. �

3.3. The exchange groupoid of a surface. Just as the exchange graph CEG(Γ) can
be enhanced to the exchange groupoid CEG(Γ), as in Definition 2.3, we may enhance
EG(S), which we can think of as a special case, following Theorem 3.2.

In this case, doubling the edges to form the oriented exchange graph EG(S) has
a geometric interpretation, whose significance will become apparent shortly when we
decorate the surface. More precisely, we consider a forward flip to move the endpoints
of an open arc γ anti-clockwise along two sides of the quadrilateral with diagonal γ.
Thus each ordinary flip T − T ′ can be realised by either of two forward flips T → T ′ or
T ′ → T , as shown in Figure 3.5. These are not inverse to each other; the inverse of a
forward flip is a backward flip, which moves the endpoints clockwise.

•

•

•

•

•

• •

•

Figure 3.5. An ordinary flip becomes two forward flips

Definition 3.3. The exchange groupoid EG(S) of an (unpunctured) marked surface S
is the quotient of the path groupoid of EG(S) by the following relations:

• Any square in EG(S), as on the left of Figure 3.2, induces four oriented squares
in EG(S), one starting at each triangulation, as on the left of Figure 3.6. The
square relation is the commutation relation between the two paths from source
to sink in this figure.
• Any pentagon in EG(S), as on the right of Figure 3.2, induces five oriented

pentagons in EG(S), one starting at each triangulation, as on on the right of
Figure 3.6. The pentagon relation is the commutation relation between the two
paths from source to sink in this figure.
• Any length three interval in EG(S), as in Figure 3.3, induces a flat hexagon in

EG(S), as in Figure 3.7 (cf. (2.6)). The hexagonal dumbbell relation is the
commutation relation between the two paths from source to sink in this figure.
As before, the thick green edges are glued to form an annulus.
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•
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•

•

•

•

•

•

•

•

•

•

•

•

• •

•
•

•

• •

•
•

•

• •

•
•

•

• •

•
•

•

• •

•
•

•

Figure 3.6. The square and pentagon relation for EG(S)

Remark 3.4. The three cases in Definition 3.3 correspond precisely to the three cases
for a pair of open arcs described at the end of §3.1. Hence, for any triangulation, each
pair of open arcs in it will determine one of the three exchange groupoid relations starting
at that triangulation. However, just as in Remark 2.4, if a square or pentagon relation
holds, then a further hexagonal dumbbell relation will be implied.

Indeed, if we associate the quiver QT to a triangulation T , then the square, penta-
gon and hexagonal dumbbell relations of Definition 3.3, starting at T , coincide with
the corresponding relations of Definition 2.3, starting at QT . Hence the isomorphism
EG(S) ∼= CEG(ΓT ) implied by Theorem 3.2 induces an isomorphism EG(S) ∼= CEG(ΓT ),
so that EG(S) is a special case of a cluster exchange groupoid.

To conclude this subsection, we recall the following classical topological result (see
[FST, Thm 3.10] for the statement and attributions).

Theorem 3.5. The fundamental group of the exchange graph EG(S) of (ideal) triangu-
lations is generated by squares and pentagons.

•

•

•

••

•

•

• •

•

•

•

•

•

•

• •

•

•

••

•

•

•

= =

Figure 3.7. The hexagonal dumbbell relation (in a local annulus) for EG(S)
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In other words, Condition 2.5 holds and so, by Proposition 2.9, we have

CT(CT ) = π1(CEG(ΓT ),CT ) ∼= π1(EG(S), T ). (3.2)

3.4. Decorated marked surfaces. Following Krammer [Kr], we can construct a cov-
ering of EG(S) by decorating the marked surface S. Recall that any triangulation of S
consists of ℵ = (2n+m)/3 triangles.

Definition 3.6. [Q2] A decorated marked surface S4 is a marked surface S together
with a fixed set 4 of ℵ ‘decorating’ points in the interior of S. Moreover,

• An open arc in S4 is (the isotopy class of) a simple essential curve in S4 r4
that connects two marked points in M.
• A triangulation T of S4 is an (isotopy class of) maximal collection of compatible

open arcs (i.e. no intersection in S r M) dividing S4 into ℵ triangles, each of
which contains exactly one point in 4.
• Forgeting the decorating points gives a forgetful map F : S4 → S, which induces

a map from the set of open arcs in S4 to the set of open arcs in S, because
isotopy in S4 implies isotopy in S.
• The forward flip of a triangulation T of S4 is defined, as in §3.3, by moving the

endpoints of an open arc γ anticlockwise along the quadrilateral to obtain a new
open arc γ], as shown in Figure 3.8.
• The exchange graph EG(S4) is the oriented graph whose vertices are triangula-

tions of S4 and whose edges correspond to forward flips between them.

•

••

•

γ
◦

◦
in S4

•

γ]
••

•

◦

◦

F

•

••

•

γ

in S

F

•

••

•

γ]

Figure 3.8. The forward flip in EG(S4) and EG(S)

The mapping class group MCG(S4) is the group of isotopy classes of diffeomorphisms
of S4, where all diffeomorphisms and isotopies fix M and 4 setwise. On the other hand,
the mapping class group MCG(S) fixes just M setwise. Thus there is a forgetful group
homomorphism

FM : MCG(S4)→ MCG(S). (3.3)

See Lemma 4.4 for more about this map and its kernel.
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Definition 3.7. The exchange groupoid EG(S4) is the quotient of the path groupoid of
EG(S4) by the following relations, starting at any triangulation T in EG(S4):

• if two open arcs are not adjacent in any triangle of T, then the forward flips with
respect to them form a square in EG(S4), as in Figure 3.9, and we impose the
commuting square relation;
• if two open arcs are adjacent in one triangle of T, then they induce an oriented

pentagon in EG(S4), as in Figure 3.10, and we impose the corresponding com-
muting pentagon relation;
• if two open arcs are adjacent in two triangles of T, then they induce an ori-

ented hexagon in EG(S4), as in Figure 3.11, and we impose the corresponding
commuting hexagon relation.

•

•

•

•

•

•

•

•
◦

◦
◦

◦

•

•

•

•

•

•

•

•
◦

◦
◦

◦

•

•

•

•

•

•

•

•
◦

◦
◦

◦

•

•

•

•

•

•

•

•
◦

◦
◦

◦

Figure 3.9. The square relation for EG(S4)

• •

•
•

•
◦

◦ ◦

• •

•
•

•
◦

◦ ◦

• •

•
•

•
◦

◦ ◦

• •

•
•

•
◦

◦ ◦

• •

•
•

•
◦

◦ ◦

Figure 3.10. The pentagon relation for EG(S4)

Lemma 3.8. The forgetful map F induces a covering functor F∗ : EG(S4) → EG(S),
which is a Galois covering with group kerFM.
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•
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◦

•

•

•

•
◦

◦

•

•

•

•
◦

◦

•

•

•

•
◦

◦

Figure 3.11. The hexagon relation for EG(S4)

Proof. Since F induces a map on open arcs that respects compatibility, it also induces
a map F∗ on triangulations, which is easily seen to be surjective. Figure 3.8 shows that
F∗ maps generating morphisms to generating morphisms. Comparing Figures 3.6 and
Figure 3.7 with Figures 3.9, 3.10 and 3.11, we see that F∗ also respects the relations.

To show that F∗ is a covering, we need to check that it has the unique lifting property,

i.e. for any morphism α : k → l in EG(S) and any object k̂ in EG(S4) with F∗(k̂) = k,

there is a unique morphism α̂ : k̂ → l̂ in EG(S4) such that F∗(α̂) = α.
This property clearly holds for the similar map F∗ : EG(S4)→ EG(S), because each

graph is (n, n) regular (i.e. there are n arrows going out and n arrows coming in at each
vertex) and F∗ locally matches edges. In addition, each square, pentagon and hexagon
relation in EG(S) lifts to a corresponding relation in EG(S4) with an arbitrary source
lifting. Thus paths in EG(S) that are equal in EG(S) lift to paths in EG(S4) that are
equal in EG(S4).

By the Alexander method (cf. [FM, §2.3]), the mapping class group MCG(S4) acts
freely on EG(S4). On the other hand, any two decorated triangulations of S4 mapping
by F to the same triangulation of S are related by the action of an element of MCG(S4)
in kerFM. Since kerFM preserves the fibres, we see that it is the Galois group of the
covering. �

Note that EG(S4), and hence EG(S4), are usually not connected, but all connected
components are isomorphic by Lemma 3.8. Consequently, for any initial triangulation
T of S4, we define EGT(S4) and EGT(S4) to be the connected components of EG(S4)
and EG(S4), respectively, that contain T.

3.5. The braid twist group.



20 ALASTAIR KING AND YU QIU

•

•

•

•

•

•

•

•

•

•

•

•
•◦
η1γ1

•◦η2

γ2

•◦

η3

γ3

•◦

Figure 3.12. The dual graph of a triangulation

Definition 3.9. A closed arc in S4 is (the isotopy class of) a simple curve in the interior
of S4 that connects two decorating points in 4. Denote by CA(S4) the set of closed
arcs on S4.

Let T be a triangulation of S4 consisting of n open arcs. The dual graph T∗ of T is
the collection of n closed arcs in S4 with the property that each closed arc intersects
just one different open arc in T once (see Figure 3.12 for an example). More precisely,
for γ in T, the corresponding closed arc η in T∗ is the one contained in the quadrilateral
A with diagonal γ, connecting the two decorating points in A and intersecting γ only
once. We say that η and γ are dual to each other with respect to T.

Definition 3.10. For any closed arc η ∈ CA(S4), there is a (positive) braid twist
Bη ∈ MCG(S4) along η, as shown in Figure 3.13.

The braid twist group BT(S4) of the decorated marked surface S4 is the subgroup of
MCG(S4) generated by the braid twists Bη for all η ∈ CA(S4).

η

+

•◦ •◦
η

•◦ •◦

Figure 3.13. The braid twist Bη

Given a triangulation T of S4, the group BT(S4) has a natural set of generators
{Bη | η ∈ T∗} ([Q2, Lemma 4.2]) and we will also write the group as BT(T) to indicate
this choice of generators.

Observe that the composition of a pair of forward/backward flips in EG(S4) is the
change of triangulation of S4 induced by the negative/positive braid twist of the dual

closed arc (cf. Figure 3.14). Hence BT(S4) acts on each connected component EGT(S4).
In fact, we have the following.

Lemma 3.11. The restricted covering F∗ : EGT(S4) → EG(S) (cf. Lemma 3.8) is a
Galois covering with group BT(S4).
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Proof. The group BT(S4) does not alter the underlying triangulation of S, so acts on
the fibres of the restricted covering. Given Lemma 3.8, we just need to show that it acts
transitively on these fibres.

Take any path p̂ : T1 → T2 in EGT(S4) with end points in the same fibre, mapping
down to p : T → T in EG(S). By (3.2), p can be expressed (up to homotopy, i.e.
groupoid relations) as a product of local twists at T . Lifted to EGT(S4), these local
twists become braid twists. In other words, there is an element of BT(S4) mapping T1

to T2, as required. �

• •

••

◦

◦

•

••

•

◦

◦

•

••

•

◦

◦

Figure 3.14. The composition of forward flips

Combining and enhancing results from the prequels to this paper, we record the
following closely related results, for later use.

Theorem 3.12. There is an isomorphism

ιT : BT(T)→ ST(ΓT ) (3.4)

sending generating braid twists to the generating spherical twists and ST(ΓT ) acts faith-
fully on EG◦(ΓT ).

Proof. In [Q2, Thm 1] the isomorphism is proved replacing ST(ΓT ) by its quotient
ST◦(ΓT ), as defined in Theorem 2.10, which acts faithfully on Sph(ΓT ) or equivalently
on EG◦(ΓT ). However we now know that ST◦(ΓT ) = ST(ΓT ) by Remark 2.11. �

Theorem 3.13. The isomorphism EG(S) ∼= CEG(ΓT ) of Theorem 3.2 lifts to an iso-
morphism

EGT(S4) ∼= EG◦(ΓT ), (3.5)

mapping the decorated triangulation T with underlying ordinary triangulation T to the
canonical heart HΓT . Furthermore, this induces an isomorphism

EGT(S4) ∼= EG◦(ΓT ). (3.6)

Proof. The first isomorphism (3.5) is proved (just using [Q2, Thm 1]) in [Q3, Prop 3.2]
for the silting exchange graph, but the proof applies (even more naturally) to EG◦(ΓT ).
The compatibility of squares, pentagons and hexagons in EG(S) and CEG(ΓT ) discussed
in Remark 3.4, lifts to EGT(S4) and EG◦(ΓT ), so (3.5) induces (3.6), as required. �
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3.6. Fundamental groups. We now proceed to prove a theorem analogous to Theo-
rem 3.5, but for the cover EGT(S4). In this case, we also have to include hexagons. We
need to import a result from a prequel concerning various types of relations in BT(T).

Definition 3.14. [QZ2, Definition 5.1] Let (QT,WT) be the quiver with potential asso-
ciated to a triangulation T of S4. Define the braid group Br(QT,WT) as follows: the
generators are identified with the vertices of QT, and thus with the open arcs in T, and
the relations are

1◦. Co(a, b), that is, ab = ba, if there is no arrow between them.
2◦. Br(a, b), that is, aba = bab, if there is exactly one arrow between them.
3◦. Co(ab, c), where

ab : = b−1ab,

if the full subquiver between a, b, c is the first quiver in Figure 3.15 and this
3-cycle contributes a term in WT.

4◦. Br(ab, c) if the full subquiver between a, b, c is the second quiver in Figure 3.15
and (exactly) one 3-cycle between them contributes a term in WT.

5◦. Co(cae, b) if the full subquiver between a, e, b, c is the third quiver in Figure 3.15
and one 3-cycle between {a, b, c} and one 3-cycle between {e, b, c} contribute
terms in WT, in such a way that the arrows b → c in these two 3-cycles are
different.

6◦. Br(cae, b) and Br(cea, b) if the full subquiver between a, b, c, e is the forth quiver
in Figure 3.15 and the 3-cycles between {a, b, c} and {e, b, c} contribute terms in
WT in the same way as the previous case.

7◦. if, in the previous case, there is also a unique 3-cycle between {a, e, f}, which
also contributes a term in WT, then there is an additional relation Co(e, fabc).

a

bc b

a

c b

a

c

e

b

a

c

e

b

a

c

e

f

Figure 3.15. Five cases of (sub-)quivers with potential

Note that all the terms in the potentials mentioned above are necessary (and lo-
cally they are sufficient) to ensure that that quivers with potential appearing are non-
degenerate, i.e. that any 2-cycles created by mutation will be cancelled by a correspond-
ing quadratic term in the mutated potential. Thus the corresponding relations are in
effect determined just by the full sub-quivers appearing.

Theorem 3.15. [QZ2, Theorem 5.3] The braid twist group BT(T) is isomorphic to the
braid group Br(QT,WT) above, where the braid twist Bη corresponds to the dual open arc
of η in T, for any η ∈ T∗. Thus we obtain an explicit finite presentation of BT(T).
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Proposition 3.16. If the associated quiver of a cluster C in CEG(Γ) has a full sub-
quiver in one of the cases of Definition 3.14, then the corresponding relation there holds
in the cluster braid group CT(C).

Proof. The first two relations are Lemma 2.7. The remaining relations follow from the
conjugation formula in Proposition 2.8, after applying one or more mutations and using
the first two relations. The precise arguments are the same as for [QZ2, Prop 5.3]. For
instance, in the third case (the leftmost quiver in Figure 3.15), after mutating at b, a
becomes ab, c does not change and there is no arrow between the corresponding vertices
in the mutated quiver. Hence, the commutation relation Co(ab, c) holds. �

Theorem 3.17. The fundamental group of the exchange graph EGT(S4) of decorated

triangulations is generated by squares, pentagons and hexagons. Equivalently, EGT(S4)
is simply connected or

π1(EG(S), T ) = BT(T).

Proof. Consider the Galois covering F∗ : EGT(S4)→ EG(S) with covering group BT(S4),
as in Lemma 3.11. Then there is a covering sequence:

1→ π1(EGT(S4),T)→ π1(EG(S), T )
iT−→ BT(T)→ 1. (3.7)

Denote by {γi} the open arcs in T and their dual closed arcs by {ηi}. Since π1(EG(S), T )
is generated by local twists, by (3.2), the map iT is determined by sending the local twist
with respect to an open arc F (γi) in T to the braid twist B−1

ηi (cf. Figure 3.14).
A finite presentation of BT(T) is given in Theorem 3.15 with respect to the standard

generators {Bη | η ∈ T∗}. The (generating) relations are precisely those given in Defi-
nition 3.14 and we know, by Proposition 3.16, that these relations are satisfied by the
local twists in CT(CT ). Hence iT has a well-defined inverse, also taking generators to
generators, and so iT is an isomorphism and π1(EGT(S4),T) = 1, as required. �

One consequence of Theorem 3.17 is that the covering F∗ : EGT(S4)→ EG(S) is the
universal cover of the groupoid EG(S). Note that the short exact sequence (3.7) can in
fact be identified with (2.10).

4. Stability conditions via quadratic differentials

4.1. Quadratic differentials. We recall the relationship between marked surfaces and
quadratic differential, following [BS]. Let X be a compact Riemann surface and ωX be
its holomorphic cotangent bundle. A meromorphic quadratic differential φ on X is a
meromorphic section of the line bundle ω2

X. In terms of a local coordinate z on X, such
a φ can be written as φ(z) = g(z) dz2, where g(z) is a meromorphic function.

We will only consider GMN differentials φ on X, which, in our case (i.e. an unpunc-
tured marked surface), are meromorphic quadratic differential such that

• all zeroes of φ are simple.
• every pole of φ has order at least three.

Denote by Zero(φ) the set of zeroes of φ, Polj(φ) the set of poles of φ with order j and
Crit(φ) = Zero(φ) ∪ Pol(φ).

At a point of X◦ = Xr Crit(φ), there is a distinguished local coordinate ω, uniquely
defined up to transformations of the form ω 7→ ±ω + const, with respect to which
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φ(ω) = dω ⊗ dω. In terms of a local coordinate z, we have ω =
∫ √

g(z)dz. A GMN
differential φ on X determines the φ-metric on X◦, which is defined locally by pulling
back the Euclidean metric on C using a distinguished coordinate ω. Thus, there are
geodesics on X◦ and each geodesics have a constant phase with respect to ω.

A (horizontal) trajectory of a GMN differential φ on X◦ is a maximal horizontal
geodesic γ : (0, 1) → X◦, with respect to the φ metric. When lim γ(t) exists in X as
t → 0 (resp. t → 1), the limits are called the left (resp. right) endpoint of γ. The
trajectories of a meromeorphic quadratic differential φ provide the horizontal foliation
on X. There are several cases (cf. [BS, § 3].

• For a simple zero of φ on X, the local trajectory structure is shown in Figure 4.1.

Figure 4.1. Local trajectories at a simple zero

• For poles of φ with order 3, 4, 5 on X, the local trajectory structures are shown
in the pictures of Figure 4.2. In general, there is a neighbourhood U of each pole
P (with order m) in X and a collection of m−2 distinguished tangent directions
{vj} at P , such that any trajectory entering U will eventually tends to P and
becomes asymptotic to one of the vj .

• • •

Figure 4.2. Local trajectories at poles of order 3, 4, 5

The real (oriented) blow-up of (X, φ) is a differentiable surface Xφ, which is obtained
from the underlying differentiable surface by replacing a pole P ∈ Pol(φ) with order
at least 3 by a boundary ∂P , where the points on the boundary correspond to the real
tangent directions at P . Furthermore, we will mark the points on ∂P that correspond
to the distinguished tangent directions, so there are ordφ(P ) − 2 marked points on ∂P .

Thus Xφ is a marked surface, diffeomorphic to some (S,M) as encountered already.
Denote by Diff(S) the group of diffeomorphism of S that preserves the set M of

marked points setwise and Diff0(S) the connected component of Diff(S) containing the
identity. The mapping class group is defined as MCG(S) = Diff(S)/Diff0(S).
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Definition 4.1. An S-framed quadratic differential (X, φ, ψ) is a Riemann surface X
with GMN differential φ, equipped with a diffeomorphism ψ : S → Xφ, preserving the
marked points.

Two S-framed quadratic differentials (X1, φ1, ψ1) and (X2, φ2, ψ2) are equivalent, if
there exists a biholomorphism f : X1 → X2 such that f∗(φ2) = φ1 and furthermore

ψ−1
2 ◦ f∗ ◦ ψ1 ∈ Diff0(S), where f∗ : Xφ1

1 → Xφ2
2 is the induced diffeomorphism.

We denote by FQuad(S) the moduli space of S-framed quadratic differentials.

Remark 4.2. As Diff(S) acts on FQuad(S) by pre-composition with ψ and Diff0(S)
acts trivially, we deduce that MCG(S) acts on FQuad(S) in a natural way. Without the
framing ψ, the group MCG(S) does not act on the data (X, φ).

The analogous description of the unframed moduli space Quad(S) of quadratic differ-
entials on S, which appears in [BS], places no restriction on ψ−1

2 ◦ f∗ ◦ ψ1 and hence, in
effect, the framing ψ carries no information. As a consequence, we have

Quad(S) = FQuad(S)/MCG(S). (4.1)

Definition 4.3. The decorated real blow-up Xφ
4 of (X, φ) is the decorated marked

surface obtained from Xφ by adding the set Zero(φ) as decorations.
Given any decorated marked surface S4, an S4-framed quadratic differential (X, φ, ψ)

is a Riemann surface X with GMN differential φ, equipped with a diffeomorphism

ψ : S4 → Xφ
4, preserving the marked points and decorations.

Equivalence is defined in the same way as in Definition 4.1, but with the restriction
ψ−1

2 ◦ f∗ ◦ ψ1 ∈ Diff0(S4), the identity component of the group Diff(S4) of diffeomor-
phisms preserving marked points and decorations (each setwise).

We denote by FQuad(S4) the moduli space of S4-framed quadratic differentials. As
before, MCG(S4) = Diff(S4)/Diff0(S4) acts on FQuad(S4) and we have

Quad(S) = FQuad(S4)/MCG(S4). (4.2)

Lemma 4.4. The kernel of the forgetful map MCG(S4)→ MCG(S) is the surface braid
group SBr(S4), that is, the fundamental group of the configuration space of | 4 | points
in (the interior of) S, based at the set 4.

Proof. Since MCG(S4) and MCG(S) act in the same way on the marked points M, we
can restrict to the subgroups which fix M pointwise. However, any such (orientation
preserving) diffeomorphism is isotopic to one that fixes the boundary ∂S pointwise.
Hence the required kernel is the same as the kernel of the forgetful map

MCG(S4, ∂S)→ MCG(S, ∂S)

between the mapping class groups that fix the boundary. This kernel is well-known to
be the surface braid group SBr(S4), e.g. by [GJP, § 2.4 (5)]. �

By Lemma 4.4, we have the following commutative diagram of quotients.
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FQuad(S4)

FQuad(S)

Quad(S)SBr(S4)

MCG(S4)

MCG(S)

(4.3)

We will see that FQuad(S4) and FQuad(S) are both manifolds and the vertical
quotient is a Galois covering. However, FQuad(S4) is not connected, so we must see
how to understand its connected components.

We do this by embedding the exchange graphs EG(S) and EG(S4) in FQuad(S) and
FQuad(S4), respectively.

4.2. WKB triangulations. There are the following types of trajectories of a GMN
differential φ in our case:

• saddle trajectories whose both ends are in Zero(φ);
• separating trajectories with one end in Zero(φ) and the other in Pol(φ);
• generic trajectories whose both ends are in Pol(φ);

By removing all separating trajectories (which are finitely many) from X◦, the remaining
open surface splits as a disjoint union of connected components. Each component is one
of the following types (cf. [BS, §3]):

• a half-plane, i.e. is isomorphic to {z ∈ C | Im(z) > 0} equipped with the
differential dz2. It is swept out by generic trajectories which connect a fixed pole
to itself.
• a horizontal strip, i.e. is isomorphic to {z ∈ C | a < Im(z) < b} equipped with

the differential dz2 for some a < b ∈ R. It is swept out by generic trajectories
connecting two (not necessarily distinct) poles.

We call this union the horizontal strip decomposition of X with respect to φ. A GMN
differential φ on X is saddle-free, if it has no saddle trajectory. Similarly, a framed
quadratic differential on S (or S4) is saddle-free if the corresponding GMN differential
is saddle-free. Note the following:

• In each horizontal strip, the trajectories are isotopic to each other.
• the boundary of any component consists of separating trajectories.
• In each horizontal strip, there is a unique geodesic, the saddle connection, con-

necting the two zeroes on its boundary.
• For a saddle-free GMN differential φ on X, we have Pol(φ) 6= ∅. Then φ has no

closed or recurrent trajectories by [BS, Lemma 3.1]. Thus, in the horizontal strip
decomposition of X with respect to φ, there is only half-planes and horizontal
strips.

By construction, the generic trajectories on X (with respect to φ) are inherited by S,
for any ψ : S → Xφ, and all trajectories on X (with respect to φ) are inherited by S4,

for any Ψ: S4 → Xφ. For instance, the generic trajectories become open arcs on S (as
well as on S4) and saddle trajectories becomes closed arcs on S4.

Definition 4.5. [BS] Let ψ : S → Xφ be an S-framed quadratic differential, which is
saddle-free. Then there is a WKB triangulation Tψ on S induced from ψ, where the
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arcs are (isotopy classes of inherited) generic trajectories. Moreover, each triangle in Tψ
contains exactly one zero, so Tψ becomes a decorated triangulation Tψ of S4, with dual
graph consisting of saddle trajectories.

Example 4.6. Figure 4.3 shows several local horizontal strip decompositions on X or
S corresponding to the arcs in a square and its flip, including two ‘wall crossings’, when
there is a saddle trajectory. Note that, in the pictures

• the blue vertices are poles or marked points,
• the red vertices are simple zeroes,
• the green arcs are geodesics,
• the black arcs are separating trajectories,
• the red dotted arcs are the saddle connections in the horizontal strips; the red

solid arcs are saddle trajectories.

Moreover, Figure 4.3 actually demonstrates a loop in the moduli space FQuad(S) which
corresponds to the braid twist of the saddle connection in the center of each picture in
the figure.
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Figure 4.3. A loop in FQuad(S)
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We consider the top two parts of the stratification of FQuad(S) analogous to the
stratification of Quad(S) from [BS, § 5]:

F0(S) = {[X, φ, ψ] ∈ FQuad(S) | φ has no saddle trajectories},
F2(S) = {[X, φ, ψ] ∈ FQuad(S) | φ has exactly one saddle trajectory}.

Then B0(S) := F0(S) is open and dense, and F2(S) has codimension 1. Furthermore,
B2(S) := F0(S) ∪ F2(S) is also open and dense, and has complement of codimension 2.

Let U(T ) be the subspace in FQuad(S) consisting of those saddle-free [ψ] whose WKB
triangulation is T . Then

B0(S) =
⋃

T∈EG(S)

U(T ). (4.4)

By the argument of [BS, Prop 4.9], we can see that U(T ) ∼= HT , where

H = {z ∈ C | Im(z) > 0} ⊂ C

is the (strict) upper half plane. The coordinates (uγ)γ∈T give the complex modulus of
the horizontal strip with generic trajectory in the isotopy class γ (see [BS, §4.5] for more
detail). Thus the U(T ) are precisely the connected components of B0(S).

The boundary of U(T ) meets F2(S) in 2n connected components, which we denote

∂]γ U(T ) and ∂[γ U(T ), where the coordinate uγ goes to the negative or positive real axis,
respectively. Note that uγ cannot go to zero because that would correspond to two
zeroes of φ coming together.

Similarly, in FQuad(S4) there are cells U(T) and a stratification {Bp(S4)}. We can
import a key lemma from [BS], where the original statement is actually for Quad(S).

Lemma 4.7. [BS, Prop 5.8] Any path in FQuad(S) is homotopic (relative to its end-
points) to a path in B2(S). Therefore there is a surjective map π1B2(S)→ π1 FQuad(S).
The same holds replacing S by S4.

Hence, we have the following result, showing that EG(S) is a skeleton for FQuad(S).

Lemma 4.8. There is a canonical embedding ℘S : EG(S)→ FQuad(S) whose image is
dual to B2(S). More precisely, the embedding is unique up to homotopy, satisfying

• for each triangulation T ∈ EG(S), the point ℘S(T ) is in U(T ),

• for each flip x : T → T ]γ, the path ℘S(x) is in U(T ) ∪ ∂]γ U(T ) ∪ U(T ]γ),

connecting ℘S(T ) to ℘S(T ]γ) and intersecting ∂]γ U(T ) at exactly one point,

Moreover, ℘S induces a surjective map

π1 EG(S) ∼= π1B2(S)→ π1 FQuad(S).

Similarly, there is a canonical embedding ℘S4 : EG(S4) → FQuad(S4). As a corol-
lary, connected components of EG(S4) are in one-to-one correspondence with connected
components of FQuad(S4). For the rest of the paper, we will fix a triangulation T in

EG(S4) and study the connected component EGT(S4) and the corresponding connected

component FQuadT(S4). For later use, we record the corresponding lemma, showing

that EGT(S4) is a skeleton for FQuadT(S4).
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Lemma 4.9. There is a (unique up to homotopy) canonical embedding

℘S4 : EGT(S4)→ FQuadT(S4) (4.5)

whose image is dual to B2(S4) and which induces a surjective map

℘∗ : π1 EGT(S4)→ π1 FQuadT(S4).

4.3. Stability conditions on triangulated categories. A stability function (also
called central charge) on an abelian category C is a group homomorphism Z : K(C)→ C
such that for any object 0 6= M ∈ C, we have

Z(M) = mZ(M) · exp(iπϕZ(M))

for some mass mZ(M) ∈ R>0 and phase ϕZ(M) ∈ (0, 1], i.e. Z(M) lies in the half-closed
upper half-plane H ∪ R<0.

We say that a non-zero object M ∈ C is semistable (resp. stable) with respect to Z
if every non-zero proper subobject L ⊆ M satisfies ϕZ(L) ≤ ϕZ(M) (resp. ϕZ(L) <
ϕZ(M)). Further, we say that a stability function Z on C satisfies the HN-property, if
every non-zero object M in C has a finite filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mk = M,

whose factors Li = Mi/Mi−1 are Z-semistable with phases ϕZ(L1) > · · · > ϕZ(Lk).

Definition 4.10. [B, Prop. 5.3] A stability condition σ on a triangulated category D
consists of a heart H and a stability function Z on H with the HN-property. We will say
σ is supported on H. Equivalently, a stability condition σ = (Z,H) consists of a central
charge Z : K(D)→ C and a slicing P = {P(ϕ) | ϕ ∈ R}, such that

• Hom(M1,M2) = 0 if Mi ∈ P(ϕi) with ϕ1 > ϕ2.
• P(ϕ+ 1) = P(ϕ)[1].
• Z(M) = mM · exp(iπϕ) for some mM ∈ R>0, if M ∈ P(ϕ).
• any object admits an HN-filtration (see [B, Def 5.1] for details).

The important fact proved in [B] is that, for a triangulated categoryD whose Grothendieck
group K(D) has finite rank, the stability conditions (that satisfy the so-called support
property) form a complex manifold, denoted by StabD, with dimension rankK(D).

There is also a canonical C-action on StabD, which is given by (in terms of center
charge and slicing)

θ · (Z,P) = (e−iπθ · Z,P−Re(θ)), θ ∈ C (4.6)

where Px(ϕ) = P(x+ ϕ), for some x, ϕ ∈ R.
When Γ is the Ginzburg dg algebra associated to some quiver with potential, we denote

by Stab◦(Γ) the principal component of StabDfd(Γ), that is, the connected component
that includes those stability conditions supported on the canonical heart HΓ.

Recall (e.g. from [B, Q1, QW]) the following well-known cell structure of Stab◦(Γ).
Let H be a finite heart in Dfd(Γ), that is, a length category with finitely many simples.
Then the cell U(H) is the subspace in StabDfd(Γ) consisting of those stability conditions
σ = (H, Z) whose the central charge Z takes values in H. The coordinates {Z(S) | S ∈
SimH} give an isomorphism U(H) ∼= HSimH. Recall from §2.5 that SimH denotes the
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set of simples in H. For each tilting H → H′ = H]S , there is co-dimensional one wall
where Z(S) ∈ R>0,

∂]S U(H) = ∂[S[1] U(H′) = U(H) ∩U(H′).
Let

B0(Γ) =
⋃

H∈EG◦(Γ)

U(H)

and
B2(Γ) = B0(Γ) ∪

⋃
H∈EG◦(Γ), S∈SimH

∂]S U(H).

Note that B2(Γ) is connected as a space, because EG◦(Γ) is connected as a graph (by
definition). Thus B2(Γ) ⊆ Stab◦(Γ) and, in particular, U(H) ⊆ Stab◦(Γ), for all H in
EG◦(Γ).

As in Lemma 4.8 for framed quadratic differentials, the cell structure determines an
embedding of the exchange graph as a skeleton for the space of stability conditions,
uniquely up to homotopy,

℘Γ : EG◦(Γ)→ Stab◦(Γ), (4.7)

so that the image is dual to B2(Γ). A more detailed discussion of this embedding can
be found in [Q1, §3].

Remark 4.11. In a ‘finite type’ component of spaces of stability conditions, the gluing
structure has been studied in more details in [QW], where it is shown that such a
component is always contractible. Our case is rather ‘tame type’, similar to [HKK]. In
such a case, there is a surjection ℘∗ : π1 EG◦(Γ)→ π1 Stab◦(Γ), as proved in Lemma 4.9.
However, it is not clear whether this still holds in the general case.

4.4. Bridgeland-Smith theory. In this section, we follow the theory developed in
[BS] that relates quadratic differentials and stability conditions and adapt it to our case.
Recall that they proved the following.

Theorem 4.12. [BS, Thm. 11.2 and Thm. 9.9] There is an isomorphism of complex
manifolds

Stab◦(ΓT )/Aut◦(ΓT ) ∼= Quad(S). (4.8)

In particular, we have the induced short exact sequence

1→ π1 Stab◦(ΓT )→ π1 Quad(S)
ρ∗−→ Aut◦(ΓT )→ 1. (4.9)

Furthermore, there is another short exact sequence

1→ ST(ΓT )→ Aut◦(ΓT )→ MCG(S)→ 1. (4.10)

Here, Aut◦(ΓT ) = Aut∗Dfd(ΓT )/Aut0, where Aut∗Dfd(ΓT ) is the subgroup of the
auto-equivalence group of Dfd(ΓT ) that preserves the principal component Stab◦(ΓT )
and Aut0 is its subgroup that acts trivially on Stab◦(ΓT ). Note that, in (4.10), the map
ST(ΓT )→ Aut◦(ΓT ) is injective, because ST(ΓT ) acts faithfully on EG◦(ΓT ) and hence
on Stab◦(ΓT ) (see Remark 2.11). Thus, we also have Aut◦(ΓT ) = Aut∗Dfd(ΓT ).

We prove the following upgraded version of Theorem 4.12 using Theorem 3.13, which
relates the exchange graphs which are the skeleta of the respective spaces. Note that
Quad(S) here is denoted Quad♥(S,M) in [BS] and is really an orbifold. It is realised
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there as an orbifold quotient of a certain space of framed quadratic differentials, but
with a different sort of framing to ours. Here Quad(S) is naturally the orbifold quotient
of FQuad(S) by MCG(S), or of FQuad(S4) by MCG(S4); cf. (4.3).

Theorem 4.13. Let T be a triangulation of a decorated marked surface S4, with un-
derlying marked surface S and triangulation T and let ΓT be the associated Ginzburg dg
algebra. As complex manifolds, there are isomorphisms

κT : Stab◦(ΓT )/ ST(ΓT ) ∼= FQuad(S), (4.11)

κT : Stab◦(ΓT ) ∼= FQuadT(S4). (4.12)

Furthermore the second isomorphism (4.12) is compatible with the embeddings (4.7) and
(4.5), given the isomorphism (3.5) between the exchange graphs of triangulations and
exchange graphs of hearts.

Proof. We sketch the construction/proof of these isomorphisms as a straightforward
generalisation of the arguments of Bridgeland-Smith [BS, §11]. The argument for (4.11)
is almost identical to that for (4.8) and indeed the two are directly related via (4.10).
Hence we only need to discuss the case (4.12).

We start from the isomorphism of exchange graphs EGT(S4) ∼= EG◦(ΓT ) as in Theo-

rem 3.13. At each vertex of these graphs, i.e. a triangulation T0 in EGT(S4) and a heart
H0 in EG◦(ΓT ), the open arcs γi in T0 are in one-to-one correspondence to the simples
Si of H0 (see [Q2, Thm 6.6]). Then we can identify any S4-framed quadratic differential
(X, φ, ψ) ∈ U(T0) with a unique stability condition σ ∈ U(H0). More precisely, consider
the spectral cover ΣX of X, that is, the double cover associated to the quadratic dif-
ferential φ, branched at the zeroes and odd order poles, and the corresponding abelian
differential

√
φ on ΣX. Then the central charge of Z of σ is given by the formula (cf.

[BS, §1.1])

Z(Si) =

∫
η̃i

√
φ, (4.13)

where η̃i is the simple closed curve on ΣX that covers to the closed arc ηi = ψ(γ∗i )
in the dual graph T∗0. Thus, we have an isomorphism κT : U(T0) → U(H0) and hence
κT : B0(S4) → B0(ΓT ). Following the idea in the proof of [BS, Prop. 11.3], i.e. using
the C-action on both sides to perturb things a little, κT can be extended to the whole
of FQuadT(S4) and we eventually obtain the isomorphism as required. �

We summarize the results in this section in Figure 4.4, where the red/blue middle
horizontal maps are isomorphisms between spaces/groups.

4.5. Simply connectedness. We finish the paper by achieving the main aim of the
series, namely proving that Stab◦(ΓT ) is simply connected. To do this we need to upgrade
[Q1, Lemma 4.6], i.e. that squares and pentagons can be contracted in Stab◦(Q) for a
Dynkin quiver Q, to our context and include the fact that hexagons can be contracted.

Proposition 4.14. Let Γ = Γ(Q,W ) be the Ginzburg algebra of a non-degenerate
quiver with potential. Let H be a heart in EG◦(Γ) with simples Si and Sj satisfying
Ext1(Si, Sj) = 0, so that there is a hexagon H in EG◦, as in Lemma 2.12. Then the
image, in Stab◦(Γ), of H under ℘Γ, as in (4.7), is trivial in π1 Stab◦(Γ). Similarly, the
images of pentagons and squares, as in Remark 2.13, are also trivial loops.
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FQuad(S4)

FQuadT(S4)

FQuad(S)

Quad(S)

BT(S4)

MCG(S)

Stab◦(ΓT )

Stab◦(ΓT )/ ST(ΓT )

Stab◦(ΓT )/Aut◦(ΓT )

ST(ΓT )

Aut◦ / ST

ιT

Aut◦(ΓT )
SBr(S4)

MCG(S4)

Figure 4.4. Comparing Quad and Stab.

Proof. The hexagon H consists of the following six hearts, linked by tilts in the simples
labelling the edges,

(H;Si, Sj) (Hj ;Si, Sj [1])

(Hji;Si[1], Sj [1])

(Hjii;Si[2], Tj [1])(Hii;Si[2], Tj)

(Hi;Si[1], Tj)

Sj

Si

Tj

Si[1]

Si

Si[1]

(4.14)

where Hi = H]Si , Hj = H]Sj , Hji = (Hj)]Si , Hii = ϕ−1
Si

(H), Hjii = ϕ−1
Si

(Hj) and

Tj = ϕ−1
Si

(Sj). Note that Hji is also the forward tilt of H with respect to the torsion pair

whose torsion free part is 〈Si, Sj〉, that is, the extension-closed subcategory generated
by Si and Sj .

Recall from [KQ, Prop. 5.4], that the simples in H]S are S[1] together with ψ]S(X),

for X ∈ SimHr{S}, and the simples in H[S are S[−1] together with ψ[S(X), for X ∈
SimHr{S}, where ψ]S(X) and ψ[S(X) appear in the following exact triangles

X[−1]→ S ⊗ Ext1(X,S)∗ → ψ]S(X)→ X (4.15)

X → ψ[S(X)→ S ⊗ Ext1(S,X)→ X[1] (4.16)

or, by [KQ, Rem. 7.1], are given by the following formulae

ψ]S(X) =

{
ϕ−1
S (X) if Ext1(X,S) 6= 0,

X if Ext1(X,S) = 0,
(4.17)

ψ[S(X) =

{
ϕS(X) if Ext1(S,X) 6= 0,

X if Ext1(S,X) = 0.
(4.18)
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For example, ψ]Sj (Si) = Si since Ext1(Si, Sj) = 0, while ψ]Si(Sj) = Tj . Similar calcula-

tions show that

• Si and Sj [1] are simples in Hj , while Si[1] and Tj are simples in Hi,
• Si[1] and Sj [1] are simples in Hji,
• Si[2] and Tj are simples in Hii, while Si[2] and Tj [1] are simples in Hjii.

These, along with Si and Sj in H, are the key simples in the arguments that follow.
Recall from §4.3 that any heart H0 gives a cell U(H0) in Stab◦(Γ) that is isomorphic

to Hn using the coordinates {Z(S) | S ∈ SimH0}. Furthermore, each simple tilting
gives a wall between the cells of the corresponding hearts.

0

Z0(S)

Z0(Si)

Z0(Sj)

0

Z1(S)

Z1(Si)

Z1(Sj)

Z1(Tj)

0

Z2(S)

Z2(Si)
Z2(Sj)

Z2(Tj)

Figure 4.5. Stability conditions σ0, σ1 and σ2, denoting X[1] by X.

For k = 0, 1, 2, define the stability conditions σk = (Zk,Pk) ∈ U(Hji) by

Zk(S) = M · exp iπ
2 , for S ∈ SimHjir{Si[1], Sj [1]},

and
Z0(Si[1]) = m · exp iπ(1− δ), Z0(Sj [1]) = exp iπ(1− 3δ),
Z1(Si[1]) = m · exp iπ(1− 3δ), Z1(Sj [1]) = exp iπ(1− δ),
Z2(Si[1]) = m · exp iπδ, Z2(Sj [1]) = exp iπ(1− δ),

for some small δ,m ∈ R>0 and large M ∈ R>0 (see Figure 4.5). By (4.15),

Zk(Tj [1]) = dim Ext1(Sj , Si) · Zk(Si[1]) + Zk(Sj [1]),

Suppose that Tj [1] ∈ Pk(1− εk), for k = 1, 2. Then, by choosing m, δ small enough, we
can assume

δ < εk < 2δ. (4.19)

By also choosing M large enough, the phases of simples in the hearts H, Hi, Hj and Hji,
other than those of Si, Sj , Tj and their shifts, will be very close to 1/2, for any stability
condition in [−4δ, 0] · σk, when k = 0, 1 or 2.

Remark 4.15. Let H be a finite heart and σ = (Z,P) a stability condition in U(H).
By the definition of the C-action, the heart of (−ϕ) · σ is H′ = P(−ϕ, 1−ϕ]. Moreover,
H[−1] ≤ H′ ≤ H, in the sense that the corresponding t-structures satisfy

P(−1,∞) ⊃ P(−ϕ,∞) ⊃ P(0,∞).

Thus (cf. [KQ, Rem. 3.3]) we have the following criterion.
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The heart H′ = P(−ϕ, 1− ϕ] is the backward tilt of H = P(0, 1] with respect to the
torsion pair 〈F , T 〉, where

F = H∩H′ = P(0, 1− ϕ] and T = H∩H′[1] = P(1− ϕ, 1].

Similarly the heart of ϕ · σ is P(ϕ,ϕ+ 1], which is the forward tilt of H with respect to
the torsion pair 〈P(0, ϕ],P(ϕ, 1]〉.

We can use Remark 4.15 to find the hearts of stability conditions obtained from σk
by the C-action. For example, the heart H′ of (−ϕ) · σ0 is the backward tilt of Hji with
respect to the torsion pair whose torsion part T is P0(1 − ϕ, 1]. If 0 ≤ ϕ < δ, then T
is trivial and H′ = Hji. If δ ≤ ϕ < 3δ, then T is generated by Si[1] and H′ = Hj . If
3δ ≤ ϕ < 1/2, then T is generated by Si[1] and Sj [1] and H′ = H. In other words, we
have the following.

• (−δ, 0] · σ0 is in U(Hji),
• (−δ) · σ0 is in the wall ∂[Si[1] U(Hji) = ∂]Si U(Hj),
• (−3δ,−δ) · σ0 is in U(Hj),
• (−3δ) · σ0 is in the wall ∂[Sj [1] U(Hj) = ∂]Sj U(H),

• [−4δ,−3δ) · σ0 is in U(H),

Thus

(1) [−4δ, 0] · σ0 is homotopic to ℘Γ(H → Hj → Hji).
Similarly, the heart of (−4δ) · σ1 is H and we may apply the C-action in a positive
direction from there to deduce that

• [−4δ,−3δ) · σ1 is in U(H),

• (−3δ) · σ1 is in the wall ∂[Si[1] U(Hi) = ∂]Si U(H),

• (−3δ,−ε1) · σ1 is in U(Hi).
Thus, as ε1 < 2δ,

(2) [−4δ,−2δ] · σ1 is homotopic to ℘Γ(H → Hi).
Indeed, since we can observe that Hji is the forward tilt of Hi with respect to the torsion
theory with torsion-free part F = 〈Tj , Sj〉, we can apply Remark 4.15 to see that

σ′2 := (−2δ) · σ1 and σ′1 := (−2δ) · σ2

are both in U(Hi). Furthermore, we can choose σ′0 ∈ U(Hi) given by

Z ′0(S) = M · exp iπ
2 , for S ∈ SimHir{Si[1], Tj},

Z ′0(Si[1]) = m · exp iπδ,

Z ′0(Tj) = exp 3iπδ.

The scheme of how the proof is completed is depicted in Figure 4.6. The goal is to
produce a curve that is homotopic to the hexagon H and that is also the boundary of
the union of three contiguous strips in Stab◦(Γ), showing that this curve is contractible.

The vertical edges of the violet strip in the middle of Figure 4.6 arise as follows:

(3) there is a line (segment) ` in U(Hji) that connects σ1 to σ2 by varying just the
coordinate Z(Si[1]),

(4) the line (−2δ) · ` is in U(Hi), for the same reason that σ′2 and σ′1 are.
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• σ0

• σ1

•
σ2

•
σ′2

•σ′1

•σ′0

•
(−2δ)·σ0

•
(−4δ)·σ0

•
(−4δ)·σ1

•
2δ·σ2

•
2δ·σ′

0

•
4δ·σ′

0

U(H)

U(Hjii)

U(Hji)

U(Hi)

U(Hj)

U(Hii)

→ →

→

→

→→

[−4δ, 0] · `1

[0, 4δ] · `′1

[−2δ, 0] · `

Figure 4.6. Filling in the hexagon H with three strips in Stab◦(Γ)

Similarly, we can produce the vertical edges of the outer green strips in Figure 4.6:

(5) there is a line `1 in U(Hji) connecting σ0 to σ1 by varying just the coordinates
Z(Si[1]) and Z(Sj [1]), such that the line (−4δ) · `1 is in U(H);

(6) there is a line `′1 in U(Hi) connecting σ′1 to σ′0 by varying just the coordinates
Z(Si[1]) and Z(Tj), such that the line 4δ · `′1 is in U(Hjii).

By construction, the three strips [−4δ, 0]·`1, [−2δ, 0]·` and [0, 4δ]·`′1 are contiguous in the
way indicated in Figure 4.6. Finally, similar to (1) and (2) above, noting that Hjii is the
forward tilt of Hi with respect to the torsion pair with torsion-free part F = 〈Tj , Si[1]〉,
we have:

(7) [0, 4δ] · σ′0 is homotopic to ℘Γ(Hi → Hii → Hjii).
(8) [2δ, 4δ] · σ′1 is homotopic to ℘Γ(Hji → Hjii).

Combining all the facts (1) to (8) above, we deduce that the boundary loop of the union
of the three strips is homotopic to the image ℘Γ(H) of the hexagon H in (4.14) and
hence this is contractible in Stab◦(Γ).

The cases of squares and pentagons work in the same way as [Q1, Lemma 4.6], which
uses a simpler analogue of the above argument. �

From this and earlier results we can now conclude.

Theorem 4.16. Let T be a triangulation of an (unpunctured) marked surface S and
ΓT be the associated Ginzburg dg algebra. Then the principal component Stab◦(ΓT ) is
simply connected.
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Proof. The immediate corollary of Proposition 4.14 is that the map

π1 EG◦(ΓT )→ π1 Stab◦(ΓT ), (4.20)

induced by the embedding (4.7), factors through a map

π1 EG◦(ΓT )→ π1 Stab◦(ΓT ). (4.21)

On the other hand, by Theorem 4.13, we know Stab◦(ΓT ) ∼= FQuadT(S4), where S4
is some decoration of S and T is some triangulation of S4 lifting T . Furthermore, the
map (4.20) is identified with

π1 EGT(S4)→ π1 FQuadT(S4) (4.22)

which is surjective, by Lemma 4.9, and so the map (4.21) is surjective.
Finally, EG◦(ΓT ) ∼= EGT(S4), by Theorem 3.13, which is simply-connected, by Theo-

rem 3.17. Hence π1 Stab◦(ΓT ) is trivial, as required. �

A direct corollary about the space of quadratic differentials is the following.

Corollary 4.17. The moduli space FQuad(S4) of S4-framed quadratic differentials
consists of SBr(S4)/BT(S4) many connected components, each of which is isomorphic

to FQuadT(S4) and they are all simply connected.

Proof. The simply connectedness is a direct corollary of Theorem 4.16 and (4.12). On the
other hand, as summarised in Figure 4.4, the space FQuad(S4) is a SBr(S4) covering

of FQuad(S), while any component FQuadT(S4) is a BT(S4) covering of FQuad(S).
Hence the action of SBr(S4) provides isomorphisms between components and the set of
connected components is acted on simply transitively by SBr(S4)/BT(S4). �
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