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DECORATED MARKED SURFACES II: INTERSECTION

NUMBERS AND DIMENSIONS OF HOMS

YU QIU AND YU ZHOU

Abstract. We study derived categories arising from quivers with potential
associated to a decorated marked surface S�, in the sense taken in a paper by
Qiu. We prove two conjectures from Qiu’s paper in which, under a bijection
between certain objects in these categories and certain arcs in S�, the di-
mensions of morphisms between these objects equal the intersection numbers
between the corresponding arcs.

1. Introduction

1.1. The 3-Calabi–Yau categories from surfaces. In this paper, we study a
class of derived categories DfdpSq associated to quivers with potential from triangu-
lated marked surfaces S. They are 3-Calabi–Yau and originally arose in the study
of homological mirror symmetry. In type An (or equivalently, S, an pn ` 3q-gon),
such a category was first studied by Khovanov, Seidel, and Thomas [15, 20]. They
showed that there is a faithful (classical) braid group action

STDfdpSq – Bn`1 “ MCGpS, nq

on DfdpSq, where STDfdpSq is the spherical twist group of DfdpSq and MCGpS, nq

the mapping class group of the disk with n decorations. This plays a crucial role
in understanding such categories and their spaces of stability conditions. More
recently, Bridgeland and Smith [3] established a connection between dynamical
systems of S and theory of stability conditions on DfdpSq. More precisely, they
showed that

Stab˝ DfdpSq{ STDfdpSq – QuadpSq,

where Stab˝ DfdpSq is the space of stability conditions and QuadpSq the moduli
space of quadratic differentials. Moreover, Smith [21] showed that there is a fully
faithful embedding

DfdpSq ãÑ DFukpXq,

where X is a symplectic 3-fold constructed from S and D FukpXq its derived Fukaya
category. This generalizes the symplectic construction of [15]. In the attempt of
showing that Stab˝ DfdpSq is the universal cover of QuadpSq, [17] generalizes a
result of [15] that STDfdpSq can be identified with a subgroup of the mapping
class group of S�, the decorated version of S:

STDfdpSq – BTpS�q Ă MCGpS�q.
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Under this embedding, the Homs between objects in DfdpSq are in fact floer
homology between the corresponding Lagrangian submanifolds. A (double graded)
formula for calculating the dimension of Homs/floer homology (in type A or S, a
polygon) is given in [15]. Naturally, one would expect the corresponding formula
for unpunctured S, which is conjectured in [17] (an ungraded version). The main
motivation of this paper is to prove such a conjecture and another closely related
formula.

1.2. Topological aspect of cluster theory. Cluster algebras and quiver muta-
tion were introduced by Fomin and Zelevinsky [9]. Derksen, Weyman, and Zelevin-
sky [6] further developed mutation of quivers with potential. During the last decade,
the cluster phenomenon was spotted in various areas in mathematics, as well as in
physics, including geometric topology and representation theory.

On the one hand, the geometric aspect of cluster theory was explored by Fomin,
Shapiro, and Thurston [8]. They constructed a quiver QT (and later Labardini-
Fragoso [16] gave a corresponding potential WT) from any (tagged) triangulation
T of a marked surface S. Moreover, they showed that mutation of quivers (with
potential) is compatible with flip of triangulations. On the other hand, the categori-
fication of cluster algebras leads to representations of quivers due to Buan et al. [5].
Later, Amiot [2] introduced generalized cluster categories via Ginzburg dg algebras
associated to quivers with potential, where DfdpSq fits into the following short exact
sequence of triangulated categories:

0 Ñ DfdpSq Ñ perS Ñ CpSq Ñ 0,(1.1)

where CpSq is the generalized cluster category.
Several papers have been published concerning these categories associated to

marked surfaces. Namely, the following correspondences were established (cf. Ta-
ble 1):

‚ In the unpunctured case, Brüstle and Zhang [4] constructed a bijection
between the set of open arcs on S and the set of indecomposables in the
cluster category CpSq.

‚ Qiu and Zhou [19] constructed such a bijection in the general case (i.e.,
with punctures).

‚ Qiu [17] constructed a bijection between the set of (simple) closed arcs on
S� (the decorated version of S) and the set of shift orbits of (reachable)
spherical objects in DfdpSq.

‚ Qiu [18] constructed a bijection between the set of (simple) open arcs on
S� and the set of (reachable) rigid indecomposable objects in DfdpSq.

Furthermore, there are several Int “ dimHom type formulae under these types
of correspondences:

(1) Khovanov and Seidel [15] showed dimHomZ
p rXη1

, rXη2
q “ 2 Intpη1, η2q in

the case of S of type A.
(2) Gadbled, Thiel, and Wagner [10] showed that the formula in (1) holds for

S of extended affine type A.
(3) Zhang, Zhou, and Zhu [22] showed that dimHom1

pMγ1
,Mγ2

q “ Intpγ1, γ2q

for S unpunctured.
(4) Qiu and Zhou [19] showed that the formula in (3) holds for the punctured

case.
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DECORATED MARKED SURFACES II 637

Table 1. Topological model for categories associated to quivers
with potential

Topological model Correspondence Categories

S� DfdpSq: 3-CY

Closed arcs rX : η
[17]

ÝÝÝÑ XηrZs reachable spherical objects
S� perS

Open arcs ĂM : γ
[18]

ÝÝÝÑ ĂMγ reachable ind. objects
S CpSq: 3-CY

Open arcs M : μ
[4, 19]
ÝÝÝÑ Mμ ind. objects

Here HomZ
p´,´q denotes ‘mPZ Homp´,´rmsq, which can be defined for shift or-

bits of objects. Note that the differences between HomZ and Hom1 reflect the
different properties that DfdpSq is 3-Calabi–Yau, while CpSq is 2-Calabi–Yau. The
main techniques for proving these Int “ dimHom type formulae are the string
models (or its variation/generalization) in representation theory. In this paper, we
establish some framework of graded string models for certain 3-Calabi–Yau cate-
gories and prove the following two formulae (Theorems 4.5 and 4.9) of this type.

Theorem ([17, Conjectures 10.5 and 10.6]). Under the correspondence ĂM, rX in
Table 1, the following formulae hold:

dimHomZ
p rXη1

, rXη2
q “ 2 Intpη1, η2q,

dimHomZ
pĂMγ , rXηq “ Intpγ, ηq.

1.3. Context. The paper is organized as follows. In Section 2, we review back-
ground materials. In Section 3, we prove the first formula for spherical objects
under Assumption 3.2. In Section 4, we show that one can identify all sets of reach-
able spherical objects from different triangulations in a canonical way. This enables
us to generalize the first formula to all cases, and we also prove the second formula
as a byproduct. In the Appendix, we develop the graded string model, which is
independent from the rest of the paper. The key result here are the calculations
of a type of morphisms between (spherical) objects and the compositions of these
morphisms. This appendix also serves as a technical section for the prequel [17].

2. Preliminaries

2.1. Triangulated 3-Calabi–Yau categories and spherical twists. Fix an
algebraically closed field k and all categories are k-linear. A triangulated category T
is called 3-Calabi–Yau if for any objects X,Y P T , there is a functorial isomorphism

HomT pX,Y q – DHomT pY,Xr3sq

where D “ Homkp´,kq is the k-duality. An (indecomposable) object S in a trian-
gulated 3-Calabi–Yau category T is called (3-)spherical if HomT pS, Srnsq equals k
if n “ 0 or 3 and equals 0 otherwise. Recall from [20] that the twist functor of a
spherical object S is defined by

φSpXq “ Cone
´

S b HomZ

T pS,Xq Ñ X
¯

,
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with inverse

φ´1
S pXq “ Cone

´

X Ñ S b HomZ

T pX,Sq

¯

r´1s.

2.2. Quivers with potential, Ginzburg dg algebras, and associated cate-
gories. A quiver with potential [6] is a pair pQ,W q, where Q is a finite quiver and
W is a linear combination of cycles in Q. We assume that Q does not have loops or
2-cycles. The Ginzburg dg algebra [7] Γ “ ΓpQ,W q associated to pQ,W q is defined
as follows. Let Q be the graded quiver with the same set of vertices as Q and whose
arrows are

‚ the arrows of Q with degree 0,
‚ an arrow a˚ : j Ñ i with degree ´1 for each arrow a : i Ñ j of Q,
‚ a loop ti : i Ñ i with degree ´2 for each vertex i of Q.

The underlying graded algebra of Γ is the completion of the graded path algebra
kQ and the differential of Γ is determined uniquely by the following:

‚ dpaq “ 0 and dpa˚q “ BaW for a as an arrow of Q,
‚

ř

iPQ0
dptiq “

ř

aPQ1
ra, a˚s.

Let DpΓq be the derived category of Γ. We consider the following full subcategories
of DpΓq:

‚ per Γ: the perfect derived category of Γ,
‚ DfdpΓq: the finite dimensional derived category of Γ.

It is known that per Γ is Krull–Schmidt [13] and DfdpΓq is 3-Calabi–Yau [11]. Let
HΓ be the canonical heart of DfdpΓq and SimHΓ be the set of iso-classes of simple
objects in HΓ. As in [17], we use the following notations:

‚ STpΓq: the spherical twist group, which is the subgroup of AutDfdpΓq

generated by φS for S P SimHΓ;
‚ SphpΓq: the set of reachable spherical objects inDfdpΓq, i.e., STpΓq¨SimHΓ.

Here all simple objects in HΓ are spherical because the quiver Q has no loops;
see [13, Lemma 2.15 or Theorem 6.2].

2.3. Triangulations of marked surfaces. An (unpunctured) marked surface S
is an oriented compact surface with a finite set M of marked points lying on its
nonempty boundary BS [8]. Up to homeomorphism, a marked surface S is deter-
mined by the following data:

‚ the genus g of S,
‚ the number b of components of BS,
‚ the partition of the number m “ |M| describing the numbers of marked
points on components of BS.

An (open) arc γ in S is a curve in the surface satisfying the following:

‚ the endpoints of γ are in M;
‚ except for its endpoints, γ is disjoint from BS;
‚ γ has no self-intersections in S ´ M;
‚ γ is not isotopic to a point or a boundary segment.
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DECORATED MARKED SURFACES II 639

The arcs are always considered up to isotopy. A triangulation T of S is a maximal
collection of arcs in S which do not intersect each other in the interior of S. We
have

n :“ |T| “ 6g ` 3b ` m ´ 6,

and the number ℵ of the triangles in T is p2n ` mq{3.
There is a quiver with potential pQT,WTq [8,16], associated to each triangulation

T of S as follows:

‚ the vertices of QT are indexed by the arcs in T;
‚ there is an arrow i Ñ j whenever i and j are edges of the same triangle
and j follows i clockwise; hence each triangle with three edges in T gives a
3-cycle (up to cyclic permutation);

‚ the potential WT is the sum of such 3-cycles.

2.4. Decorated marked surfaces. A decorated marked surface S� is a marked
surface with an extra set � of ℵ decorating points in the interior of S. A general
closed arc η in S� is a curve in S such that

‚ its endpoints are in �;
‚ except for its endpoints, γ is disjoint from � and from BS;
‚ it is not isotopic to a point.

A closed arc in S� is a general closed arc whose endpoints do not coincide. An
open arc γ in S� is a curve in S such that

‚ its endpoints are in M;
‚ except for its endpoints, γ is disjoint from � and from BS;
‚ it is not isotopic to a point or a boundary component.

We denote by CApS�q, CApS�q, and OApS�q the set of simple closed, simple gen-
eral closed, and simple open arcs in S�, respectively. Recall from [17, Section 3.1]
the notion of intersection numbers as follows.

‚ For an open arc γ and an (open or general closed) arc η, their intersection
number is defined as the geometric intersection number in S� ´ M:

Intpγ, ηq “ mint|γ1
X η1

X pS� ´ Mq| | γ1
„ γ, η1

„ ηu.

‚ For two general closed arcs α, β in CApS�q, their intersection number is a
half integer in 1

2Z and is defined as follows (following [15]):

Intpα, βq “
1
2 Int�pα, βq ` IntS´�pα, βq,

where

IntS´�pα, βq “ mint|α1
X β1

X pS ´ �q|

ˇ

ˇ

ˇ
α1

„ α, β1
„ βu

and

Int�pα, βq “

ÿ

ZP�
|tt | αptq “ Zu| ¨ |tr | βprq “ Zu|.

A triangulation T is a maximal collection of open arcs in S� such that

‚ for any γ1, γ2 P T, Intpγ1, γ2q “ 0;
‚ each triangle of T contains exactly one (decorating) point in �.
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640 YU QIU AND YU ZHOU

The forgetful map F : S� Ñ S forgetting the decorating points induces a map
from OApS�q to the set of arcs in S, which sends a triangulation T of S� to a
triangulation T “ F pTq of S. The quiver with potential pQT,WTq associated to T
is defined to be pQT,WTq.

Let γ be an (open) arc in a triangulation T. The arc γ7 “ γ7pTq (resp., γ5) is
the arc obtained from γ by moving its endpoints counterclockwise (resp., clockwise)
along the quadrilateral in T whose diagonal is γ, to the next marked points. The
forward (resp., backward) flip of a triangulation T at γ P T is the triangulation
T7

γ “ TY tγ7u ´ tγu (resp., T5
γ “ TY tγ5u ´ tγu). See Figure 1, for example. The

exchange graph EGpS�q is the oriented graph whose vertices are triangulations of
S� and whose arrows correspond to forward and backward flips. From now on, fix
a connected component EG˝

pS�q of EGpS�q. When we say a triangulation T of
S�, we mean T is in EG˝

pS�q.

‚ ‚

‚

‚

‚

˝

˝ ˝

‚ ‚

‚

‚

‚

˝

˝ ˝

Figure 1. A forward flip of a triangulation

2.5. The braid twists. The mapping class group MCGpS�q of S� consists of the
isotopy classes of the homeomorphisms of S that fix BS pointwise and fix the set �.

For any closed arc η P CApS�q, the braid twist Bη P MCGpS�q along η is
defined as in Figure 2. The braid twist group BTpS�q is defined as the subgroup of
MCGpS�q generated by Bη for η P CApS�q. For a triangulation T “ tγ1, . . . , γnu

of S�, its dual triangulation T˚ consists of the closed arcs s1, . . . , sn in CApS�q

satisfying that Intpγi, sjq equals 1 for i “ j and equals 0 otherwise.

η

+

‚̋ ‚̋
Bη η

‚̋ ‚̋

Figure 2. The braid twist
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2.6. Topological preparation. We start with a lemma. Let

D “ tpx, yq P R2
| x2

` y2 ă 1u

be a disk with three punctures, P0 “ p0, 1
2 q, P1 “ p0,´

1
2 q, P2 “ p0, 0q. Set

Dą0
“ tpx, yq P D | y ą 0u

and

Dă0
“ tpx, yq P D | y ă 0u.

In this subsection, when we mention a curve, we always mean a continuous map
from r0, 1s to D such that it is disjoint with the punctures except for its endpoints.
Let η : r0, 1s Ñ D be a curve. Denote by η the curve defined as ηptq “ ηp1´tq. The
restriction η|rt1,t2s is the curve defined as η|rt1,t2sptq “ η ppt2 ´ t1qt ` t1q if t1 ă t2,

and η|rt1,t2s “ η|rt2,t1s if t1 ą t2. For any two curves η1, η2 with η1p1q “ η2p0q R

tP1, P2, P3u, their composition η2η1 is the curve defined by η2η1ptq “ η1p2tq for
0 ď t ď

1
2 , and η2η1ptq “ η2p2t ´ 1q for 1

2 ď t ď 1. For a simple curve η whose
endpoints coincide, denote by Dη the disk (possibly with punctures) enclosed by η.

Lemma 2.1. Let η : r0, 1s Ñ D be a simple curve with ηp0q “ P0 and ηp1q “ P1.
Assume that η is in a minimal position w.r.t. Y “ DX ty “ 0u, with Intpη, Y q ą 2.
Then there exist two simple curves η0 Ă Dą0 and η1 Ă Dă0 satisfying the following:

‚ η0p0q “ P0, η0p1q “ ηps0q, η1p0q “ ηps1q and η1p1q “ P1 for some 0 ă si ă

1;
‚ η0 j η|r0,s0s and η1 j η|rs1,1s;
‚ the curves η0, η1 intersect η at ηps0q, ηps1q, respectively, from different
sides;

‚ the curve α0 :“ η|rs0,1sη0 is isotopic to α1 :“ η1η|r0,s1s relative to t0, 1u.

Proof. Let η X Y “ tηpriq | 0 ă r1 ă ¨ ¨ ¨ ă rm ă 1u. As m ą 2, we can connect
P0 to a point in a segment η |rri,ri`1sĂ Dą0 for some i ą 0 without intersecting
η except for the endpoints to get an arc η0. Similarly, we can get an arc η1.
Moreover, η0 j η|r0,s0s and η1 j η|rs1,1s since η is in a minimal position w.r.t. Y .
Let c0 “ η0η|r0,s0s and c1 “ η|rs1,1sη1. It follows that the corresponding disks Dci

are not contractible and hence contain at least one puncture. Now we claim that
Dc0 Ă Dc1 or Dc1 Ă Dc0 . Otherwise, they are disjoint since c0 and c1 do not
intersect transversely. So Dci does not contain P0, P1; hence both Dc0 and Dc1

have to contain P2. This contradicts the fact that they are disjoint.
Without loss of generality, we assume that Dc0 Ă Dc1 and η0 intersects η at

ηps0q from the left side. Then up to isotopy, there are three cases, as shown in
Figure 3. In the first two cases, η1 intersects η at ηps1q from the right side and the
disk Dα1α0

contains no punctures. Hence α0 „ α1 relative to t0, 1u, and we are
done. In case (c), we have η „ η1η|rs0,s1sη0. But η1η|rs0,s1sη0 has fewer intersections
with Y than η, which is a contradiction. This completes the proof. �

Now we generalize [17, Lemma 3.14] to the case that T is an arbitrary triangu-
lation of S�. Recall that T˚ is the dual triangulation of T.

Lemma 2.2. Let η be a closed arc in CApS�q which is not in T˚. Then there are
two arcs α, β in CApS�q such that

(1) IntS´�pα, βq “ 0 pso Intpα, βq ď 1q;
(2) η “ Bαpβq or η “ B´1

α pβq;
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‚

‚

‚

P0

P1

P2

η1

η0

paq

‚

‚

‚

P0

P1

P2

η1

η0

pbq

‚

‚

‚

P0

P1

P2

η1

η0

pcq

Figure 3. The three cases in the proof of Lemma 2.1 (topological view)

(3) Intpγi, αq ă Intpγi, ηq and Intpγi, βq ă Intpγi, ηq for any γi P T.

Proof. Assume that η has minimal intersections with the arcs in T without loss of
generality. If η intersects at least three triangles of T, then the assertion holds by
the proof of [17, Lemma 3.14]. Thus, we can suppose that η intersects exactly two
triangles of T.

Since the original marked surface S is not a once-punctured torus, these two
triangles that intersect η cannot share three edges. On the other hand, if they share
only one edge, say, i, then η “ si because η is contained in these two triangles. This
contradicts our assumption. Therefore, these two triangles share exactly two edges,
and they form an annulus A. As we care only about the interior of the union of
these two triangles, we are in the same situation as with Lemma 2.1:

‚ the two boundaries of A correspond to BD and the puncture P2, respec-
tively;

‚ the endpoints of η correspond to punctures P0 and P1, respectively;
‚ the sharing edges topologically correspond to Y .

Now, since Intpη,Tq ą 2, there exist arcs η0 and η1 satisfying the conditions in
Lemma 2.1. Let α “ α1 „ α2, and let β “ η1η|rs0,s1sη0. Then IntS´�pα, βq “ 0,
Int�pα, βq “ 2, and η “ Bαpβq (for the case in which η0 intersects η at ηps0q from
the left side) or η “ B´1

α pβq (for the case in which η0 intersects η at ηps0q from the
right side). Note that η0 and η1 do not cross any arcs in T. Then for any γi P T,

Intpγi, αq “ Intpγi, η|r0,s1sq “ Intpγi, η|rs0,1sq ă Intpγi, ηq

and
Intpγi, βq “ Intpγi, η|rs0,s1sq ă Intpγi, ηq.

Thus, we complete the proof. �
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DECORATED MARKED SURFACES II 643

As an immediate consequence, the proof in [17, Propositions 4.3 and 4.4] works
for all cases (i.e., without Assumption 3.2).

Proposition 2.3 ([17, Propositions 4.3 and 4.4]). For any triangulation T of S�,
we have

BTpS�q “ BTpTq

and

CApS�q “ BTpS�q ¨ T˚.

3. Intersection numbers and dimensions of Homs

Recall that in [17], the author gives a bijection from the set of closed arcs in S�
to the set of reachable spherical objects in DfdpΓT0

q for any triangulation T0 such
that any two of its triangles share at most one edge. In this section, we generalize
this bijection to arbitrary triangulation T (of any decorated marked surface).

3.1. The string model. As in the Appendix, we have the following. For each
η P CApS�q, Xη is an object in DfdpΓTq which induces a map

rXT : CApS�q Ñ DfdpΓTq{r1s,(3.1)

η ÞÑ XηrZs.

The notation XrZs means the shift orbit tXris | i P Zu. Moreover, let σ, τ be
oriented general closed arcs in S� with IntS´�pσ, τ q “ 0 whose starting points
coincide. Proposition A.8 gives a nonzero morphism

ϕpσ, τ q P HomDfdpΓTqpXσ, Xτ rυsq.

In the following, we keep the notations in the Appendix and upgrade Proposi-
tion A.11 first.

Proposition 3.1. If σ, τ share their starting but not ending points, then there is
a nonsplit triangle in DfdpΓTq, whose image in DfdpΓTq{r1s is

rXpBσpτ qq ÝÑ rXpσq
ϕpσ,τq
ÝÝÝÝÑ rXpτ q ÝÑ rXpBσpτ qq.(3.2)

If σ, τ share both of the endpoints, i.e., Int�pσ, τ q “ 2, then there is a nonsplit
triangle in DfdpΓTq, whose image in DfdpΓTq{r1s is

rXpBσpτ qq ÝÑ rXpσq ‘ rXpσq
p ϕpσ,τq ϕpσ,τq q
ÝÝÝÝÝÝÝÝÝÝÑ rXpτ q ÝÑ rXpBσpτ qq,(3.3)

where ϕpσ, τ q and ϕpσ, τq are linearly independent.

Proof. For the case Int�pσ, τ q “ 1, we have Bσpτ q “ τ ^ σ. So the triangle in
Proposition A.11 becomes (3.2).

Now consider the case Int�pσ, τ q “ 2; see Figure 4. Let ς “ τ ^ σ. Then we
have

η “ Bσpτ q “ ς ^ σ.

Similarly, let ξ “ τ ^ σ, and then we have

η “ Bσpτ q “ ξ ^ σ.
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τσ

ς

ξ

V´1

Vp`1

‚̋

‚̋

η “ Bσpτ q

σ τ

‚̋

‚̋

Figure 4. The braid twists as compositions of extensions

Note that the starting segments of σ, τ , and ς are in clockwise order at the common
starting point; see Figure 4. By Corollary A.9, we have

ϕpτ , ςq ˝ ϕpσ, τ q “ ϕpσ, ςq.

By Proposition A.11, the mapping cones of ϕpτ , ςq, ϕpσ, τq, and ϕpσ, ςq are in rXpσq,
rXpξq, and rXpηq, respectively. Then applying octahedral axiom to this composition
gives the following commutative diagram of (images in DfdpΓTq{r1s of) triangles:

rXpςq

��

rXpςq

��
rXpξq �� rXpηq ��

��

rXpσq

ϕpσ,τq

��

�� rXpξq

rXpξq �� rXpσq

ϕpσ,ςq

��

ϕpσ,τq �� rXpτ q

ϕpτ,ςq

��

�� rXpξq

rXpςq rXpςq

Then we have the triangle (3.3). Since ϕpτ , ςq ˝ ϕpσ, τ q “ 0 by the triangle in the
third column and ϕpτ, ςq˝ϕpσ, τ q “ ϕpσ, ςq ‰ 0, we deduce that ϕpσ, τ q and ϕpσ, τ q

are linearly independent. �

3.2. The first formula.

Assumption 3.2. Suppose that S admits a triangulation T0 such that any two
triangles share at most one edge (i.e., there is no double arrow in the corresponding
quiver QT0

).
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DECORATED MARKED SURFACES II 645

Let T0 “ tδ1, . . . , δnu and T˚
0 “ tt1, . . . , tnu be the dual of T0. Write Γ0 “ ΓT0

,
and denote by H0 the canonical heart of DfdpΓT0

q with simples Ti corresponding
to ti. By [17, Section 6], we have the following:

‚ The map rX0 “ rXT0
in (3.1) induces a bijection

rX0 : CApS�q
1-1
ÝÝÑ SphpΓ0q{r1s and an isomorphism

ι0 : BTpT0q Ñ STpΓ0q,(3.4)

sending the generator Bti to the generator φTi
.

‚ There is a commutative diagram

CApS�q

BTpS�q
ι0

rX0
SphpΓ0q{r1s

STpΓ0q

in the sense that, for any b P BTpS�q and η P CApS�q, we have

rX0 pbpηqq “ ι0pbq
´

rX0pηq

¯

.(3.5)

We will use X0
η to denote an object in the shift orbit ĂX0pηq.

Lemma 3.3. Let σ, τ P CApS�q be two oriented arcs sharing the same starting
point, and let ti P T˚

0 . Suppose that ti, σ, τ are pairwise different and do not
intersect each other in S ´ � and that their start segments are in counterclockwise
order at the common starting point psee Figure 5q. Then ϕpσ, τ q ˝ ϕpti, σq “ 0.

Proof. Suppose that f “ ϕpσ, τ q ˝ ϕpti, σq ‰ 0 in HompTi, X
0
τ rmsq for some integer

m. Since DfdpΓT0
q is 3-Calabi–Yau, there exists f˚ P HompX0

τ rms, Tir3sq such that
f˚ ˝ f ‰ 0. On the other hand, the start segments of σ, ti, and τ are in clockwise
order. Then by Corollary A.9, ϕpσ, τ q “ ϕpti, τ q ˝ ϕpσ, tiq, where the morphisms
are properly shifted. Therefore, there is a nonzero composition

f˚
˝ f : Ti

ϕpti,σq
ÝÝÝÝÑ X0

σrls
ϕpσ,tiq

ÝÝÝÝÑ TirN s
ϕpti,τq
ÝÝÝÝÑ X0

τ rms
f˚

ÝÝÑ Tir3s.

Since Ti is a spherical object, we have N “ 0 or N “ 3. If N “ 0, then the first two
morphisms in the composition above must be identity (up to scale), which forces

X0
σrls “ Ti. Since rX0 is a bijection, this contradicts σ ‰ ti. If N “ 3, similarly, we

have X0
τ rms “ Tir3s, which contradicts τ ‰ ti. �

For any general closed curve σ P CApS�q, we define l0pσq “ Intpσ,T0q “
řn

i“1 Intpσ, tiq.

Lemma 3.4. Let σ, τ be two general closed curves in CApS�q sharing the same
starting point, and let IntS´�pσ, τ q “ 0. Let η “ τ ^ σ, and assume that l0pηq “

l0pσq ` l0pτ q. If

Intpti, ηq “ Intpti, σq ` Intpti, τ q(3.6)

holds for some ti P T˚
0 , then we have

dimHomZ
pTi, X

0
ηq “ dimHomZ

pTi, X
0
σq ` dimHomZ

pTi, X
0
τ q.(3.7)
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646 YU QIU AND YU ZHOU

Proof. Use the notations for σ and τ in (A.2). By Proposition A.11, there is a
nonsplit triangle

X0
σr´υs

ϕpσ,τq
ÝÝÝÝÑ X0

τ

ϕpτ,ηq
ÝÝÝÝÑ X0

η rls
ϕpη,σq
ÝÝÝÝÑ X0

σr´υ ` 1s

for some integers υ, l. Note that, in the case when σ “ τ , we will apply Proposi-
tion A.11 to pη, σq instead of pσ, τ q. Nevertheless, we will get the same triangle. So
it is sufficient to prove that the map

HompTirrs, X0
σr´υsq

HompTirrs,ϕpσ,τqq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ HompTirrs, X0

τ q(3.8)

is zero for any r P Z. Since l0pηq “ l0pσq ` l0pτ q, by Construction A.5, we have that
ϕpσ, τ q is of the following form:

Tk0

ϕ0

��

πa1
Tk1

r�1s ¨ ¨ ¨

Tj0rυs
p´1q

υπb1
rυs

Tj1rκ1 ` υs ¨ ¨ ¨

where ϕ0 is induced from the triangle Λ0 of T that contains the common starting
point of σ and τ . Then for any f : Tirrs Ñ X0

σ, the composition ϕpσ, τ q ˝ f is given
by ϕ0 ˝ f0, where f0 is the component of f from Tirrs to Tk0

. Thus, the map (3.8)
being 0 is equivalent to ϕ0 ˝ f0 “ 0.

Case I. If the common starting point V´1 “ W´1 of σ and τ is not an endpoint of
ti, then γi is not an edge of the triangle Λ0. So f0 is not induced from Λ0. Then
by Lemma A.2, ϕ0 ˝ f0 “ 0, as required.

Case II. If V´1 “ W´1 is an endpoint of ti, then f0 is the unique nonzero component
of ϕpti, σq by Construction A.5. Furthermore, (3.6) implies that the segment V0W0

in η intersects ti as shown in Figure 5. In particular, the start segments of ti, σ,
and τ are in counterclockwise order. Hence, by Lemma 3.3, ϕpσ, τ q ˝ ϕpti, σq “ 0,
which implies that ϕ0 ˝ f0 “ 0, as required. �

W0

V0

η
τ

σ

V´1 “ W´1 ti‚‚̋

Figure 5. The composition of σ and τ

Proposition 3.5. Let η P CApS�q. Under Assumption 3.2, we have

dimHomZ
pTi, rX0pηqq “ 2 Intpti, ηq.(3.9)
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DECORATED MARKED SURFACES II 647

Proof. When Intpti, ηq ă 1 (i.e., is 0 or 1{2), the formula is proved in [17, Proposi-
tion 5.9]. Now we assume that Intpti, ηq ě 1. Use induction on l0pηq starting with
the trivial cases l0pηq “ 1 (i.e., η “ tj for some j). Now suppose that the formula
holds for l0pηq ď l, with some l ě 1. Consider the case l0pηq “ l ` 1. Then there
are three cases:

(I) η intersects a triangle (with decorating point Z) that does not intersect ti.
Apply [17, Lemma 3.14] to decompose η into σ and τ w.r.t. Z. Since Z is
not an endpoint of ti, (3.6) holds. So by Lemma 3.4, we have (3.7) for σ
and τ (by properly choosing their orientations; the same holds for later use
of this lemma). By the induction hypothesis, (3.9) holds for σ, τ and hence
holds for η too by (3.7).

(II) IntS´�pη, tiq ‰ 0. Let Z be an endpoint of ti such that the triangle con-
taining Z contains intersections of η and ti in S ´ �. Choose the closest
intersection Y between η and ti from Z. Apply [17, Lemma 3.14] w.r.t.
Z and the line segment Y ZpĂ tiq to decompose η into σ and τ . Again
they satisfy condition (3.6) in Lemma 3.4, and thus (3.7) holds. By the
induction hypothesis, (3.9) holds for σ, τ , and hence for η.

(III) Suppose the conditions in (I) and (II) both fail, i.e.,
‚ IntS´�pη, tiq “ 0 and
‚ η is contained in the two triangles of T0 which intersect ti.

Note that these two triangles share exactly one edge by Assumption 3.2.
Then since η ‰ ti, we deduce that η is a loop enclosing ti (see Figure 6).
In this case, X0

η “ ConepTi Ñ Tir3sqr´1s. A direct calculation shows that
(3.9) holds. �

Corollary 3.6. Under Assumption 3.2,

dimHomZ
p rX0pη1q, rX0pη2qq “ 2 Intpη1, η2q(3.10)

for any ηi P CApS�q.

Proof. By Proposition 2.3, there exist ti P T˚
0 and b P BTpT0q such that η1 “ bptiq.

Then by (3.5), we have rX0pbptiqq “ ι0pbq
´

rX0ptiq
¯

. Hence

dimHomZ
p rX0pη1q, rX0pη2qq “ dimHomZ

p rX0ptiq, rX0pb´1pη2qqq

“ 2 Intpti, b
´1pη2qq

“ 2 Intpη1, η2q.

�

‚

‚

‚

‚

‚

‚

η
‚̋ ‚̋

Figure 6. A loop encloses a closed arc
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4. Main results

4.1. Independence. We still assume that Assumption 3.2 holds in this subsection;
i.e., there is an initial triangulation T0 of S� such that any two triangles share at
most one edge. Recall from [17] that two elements ψ and ψ1 in AutDfdpΓ0q are
isotopic, denoted by ψ „ ψ1, if ψ´1 ˝ ψ1 acts trivially on SphpΓ0q. Let

Aut˝ DfdpΓ0q “ AutDfdpΓ0q{ „ .

By [17, (2.6)], ψ „ ψ1 is equivalent to the condition that ψ´1 ˝ ψ1 acts trivially on
SimH0. We will say an element ϕ in AutDfdpΓ0q is null-homotopic if ϕ „ id.

Now let T be an arbitrary triangulation. Keep the notations in Section 2.5.
Denote by HT the canonical heart in DfdpΓTq with simples tSiu corresponding to
open arcs in T˚ “ tsiu. Denote by SphpΓTq the set of reachable spherical objects.

Definition 4.1. We say two exact equivalences φ, φ1 : DfdpΓ0q Ñ DfdpΓTq are
isotopic if they differ only by null-homotopies; i.e., φ1 “ ϕ1 ˝ φ ˝ ϕ0 for some
ϕ0 P AutDfdpΓ0q and ϕ1 P AutDfdpΓTq, which are null-homotopic.

Proposition 4.2. There is a unique exact equivalence ΦT : DfdpΓ0q Ñ DfdpΓTq,
up to isotopy and shifts, such that it induces a bijection

ΦT : SphpΓ0q{r1s Ñ SphpΓTq{r1s

satisfying the following condition:

‚ for any s P T˚, the corresponding simple in SimHT is in the shift orbit

ΦTp rX0psqq.

Proof. First, we show the uniqueness. Suppose that there are two such exact equiv-
alences ΦT and Φ1

T. Then we have Φ´1
T ˝ Φ1

TpTiq “ Tirmis for any simple Ti in

the canonical heart H0. By calculating the HomZ, we deduce that all mi should
coincide; i.e., Φ´1

T ˝Φ1
T˝r´ms preserves SimH0 and hence SphpΓ0q. In other words,

Φ´1
T ˝ Φ1

T ˝ r´ms is null-homotopic in AutDfdpΓ0q, as required.
Now we prove the existence by induction, on the minimal number of flips from

T0 to T, starting from the trivial case. Now suppose that T admits a required
derived equivalence ΦT, i.e.,

ΦTp rX0psiqq “ SirZs.(4.1)

Then we need to show only that there exists a required exact equivalence ΦT1 for
any flip T1 of T in S�.

Without loss of generality, suppose that T1 is the forward flip of T w.r.t. an arc
γj , and let sj be the dual arc of γj in T˚. By [13], there is an exact equivalence
Φ: DpΓTq Ñ DpΓT1 q satisfying

Φ
´

pHTq
7

Sj

¯

“ HT1 ,

where pHTq
7

Sj
is the simple forward tilt of HT w.r.t. Sj (cf. [14, Section 5]).

Let pT1q˚ consist of closed arcs s1
i, and let SimHT1 consist of the corresponding

simples S1
i. By the tilting formula in [14, Proposition 5.2], we have

Φ´1
pS1

iq “

$

’

&

’

%

φ´1
Sj

pSiq if there are arrows from i to j in QT,

Sjr1s if i “ j,

Si otherwise.
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On the other hand, note that the indexing of s1
i is induced by the indexing of si via

the Whitehead move (see [17, Figure 10]). It is straightforward to see that

s1
i “

#

Bsj psiq if there are arrows from i to j in QT,

si otherwise.

Taking b “ B´1
sj with ι0pbq “ φ´1

ĂX0psjq
and η “ si, (3.5) becomes

φ´1
ĂX0psjq

p rX0psiqq “ rX0pB´1
sj psiqq.(4.2)

Then by (4.1), we have

Φ´1pS1
irZsq “ φ´1

Sj
pSiqrZs

“ φ´1

ΦTpĂX0psjqq

´

ΦTp rX0psiqq

¯

“ ΦT

´

φ´1
ĂX0psjq

p rX0psiqq

¯

“ ΦT

´

rX0pBsj psiqq

¯

“ ΦT

´

rX0ps1
iq

¯

(4.3)

if there are arrows from i to j in QT. Note that for other i, the equation above

also holds automatically. Thus, S1
irZs “ Φ ˝ ΦTp rX0ps1

iqq and ΦT1 “ Φ ˝ ΦT is the
required equivalence. �

Recall that there is a bijection rX0 : CApS�q Ñ SphpΓ0q{r1s, and we proceed to

discuss rXT.

Proposition 4.3. rXT induces a bijection rXT : CApS�q Ñ SphpΓTq{r1s that fits
into the following commutative diagram:

CApS�q

ĂX0

�����
���

���
�

ĂXT

����
���

���
���

SphpΓ0q{r1s
ΦT �� SphpΓTq{r1s

(4.4)

where ΦT is the bijection in Proposition 4.2.

Proof. Since rX0 and ΦT are bijections, we need to prove only that

rXTpηq “ ΦT ˝ rX0pηq.(4.5)

Use induction on l0pηq “ Intpη,Tq. The starting step pl0pηq “ 1q is covered by
Proposition 4.2. Now let us deal with the inductive step for some η with l0pηq ą 1
while assuming that (4.5) holds for any η1 with l0pη1q ă l0pηq. By Lemma 2.2, there
are α and β with the corresponding conditions there. Without loss of generality,
assume that η “ Bαpβq. By inductive assumption, we have

rXTpαq “ ΦT ˝ rX0pαq and rXTpβq “ ΦT ˝ rX0pβq.(4.6)

Since by Corollary 3.6, we have

dimHomZ
p rX0pαq, rX0pβqq “ 2 Intpα, βq,(4.7)

the triangles in Proposition 3.1 imply that

rX0pηq “ φ
ĂX0pαq

´

rX0pβq

¯

.(4.8)
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650 YU QIU AND YU ZHOU

Notice that by (4.6), equalities (4.7) and (4.8) also hold for rXT. Hence

rXTpηq “ φ
ĂXTpαq

´

rXTpβq

¯

“ φ
ΦTpĂX0pαqq

´

ΦT ˝ rX0pβq

¯

“ ΦT

´

φ
ĂX0pαq

´

rX0pβq

¯¯

“ ΦT ˝ rX0pηq,

as required. �

Remark 4.4. By the proposition above, one can identify all sets SphpΓTq of reach-
able spherical objects, for any T in EG˝

pS�q, using the canonical exact equiva-
lences in Proposition 4.2 between DfdpΓTq. Hence, such equivalences also allow us
to identify all of the spherical twist groups STpΓTq. Note that here we will consider
STpΓTq as a subgroup of Aut˝ DfdpΓTq.

4.2. The first formula revisit.

Theorem 4.5 ([17, Conjecture 10.5]). For any triangulation T and ηi P CApS�q,
we have

dimHomZ
p rXTpη1q, rXTpη2qq “ 2 Intpη1, η2q.(4.9)

Proof. If Assumption 3.2 holds, the theorem is equivalent to Corollary 3.6 since

one can identify all bijections rXT as in Remark 4.4. For the special cases in which
S does not satisfy Assumption 3.2, that is,

‚ either S is an annulus with one marked point in each boundary component
‚ or S is a torus with one boundary component and one marked point,

one can apply the same method in [17, Section 7]. More precisely, the formula holds
for a higher rank surface (e.g., the surface obtained from S by adding a marked
point) and hence also holds for S. �

4.3. Independence revisit. We use intersection formula (4.9) to prove (4.2) forT.

Proposition 4.6. For any σ, τ P CApS�q with IntS´�pσ, τ q “ 0, we have

rXT pBε
τ pσqq “ φε

ĂXTpτq

´

rXTpσq

¯

, ε P t˘1u.(4.10)

Proof. Without lose of generality, we prove the formula only for ε “ 1. On the one
hand, by (4.9), we have

dimHomZ
p rXTpηq, rXTpτ qq “ Int�pσ, τ q.

On the other hand, there is a triangle, i.e., (3.3) or (3.2), in Proposition 3.1 with

η “ Bσpτ q. Then rXTpηq “ φ
ĂXTpσq

p rXTpτ qq, as required. �

Proposition 4.7. For any S and initial triangulation T0 pwithout Assumption 3.2q,
Propositions 4.2 and 4.3 hold.

Proof. Basically, we follow the same proof there. Note that (4.2) in the proof of
Proposition 4.2 is now covered by the proposition above, which enables us do the
generalization. �
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4.4. Intersection between open and closed arcs. Let Γ be the Ginzburg dg
algebra of some quiver with potential. A silting set P in a triangulated category
D is an Extą0-configuration, i.e., a maximal collection of nonisomorphic indecom-
posables such that ExtipP, T q “ 0 for any P, T P P and integer i ą 0. The silting
object associated to P is

À

TPP T . By abuse of notation, we will not distinguish a
silting set and its associated silting object. For example, Γ is the canonical silting
object/set in per Γ.

Moreover, one can forward/backward mutate a silting object to get new ones
(see [1] for details). A silting set P in per Γ is reachable if it can be obtained by
repeated mutations from Γ. Denote by SEG˝

pΓq the set of reachable silting sets in
per Γ, and denote by

RRpper Γq “

ď

PPSEG˝pΓq

P

the set of reachable rigid objects in per Γ. Recall a result from [18].

Lemma 4.8 ([18, Theorem 3.6]). There is a canonical bijection

ĂMT : OA˝
pS�q Ñ RRpper ΓTq

where OA˝
pS�q is the subset of OApS�q consisting of the open arcs in some trian-

gulation in EG˝
pS�q.

We finish the paper by proving another conjecture in [17].

Theorem 4.9 ([17, Conjecture 10.6]). For any triangulation T, γ P OA˝
pS�q, and

η P CApS�q, we have

dimHomZ
pĂMTpγq, rXTpηqq “ Intpγ, ηq.(4.11)

Proof. First, for any two triangulations T and T1, we actually have a canonical
identification Φ: DfdpΓTq Ñ DfdpΓT1 q, as shown in Proposition 4.7. Note that
there is a simple-projective duality between a silting set in per Γ and the set of
simples of the corresponding heart in DfdpΓq. Thus, as Φ preserves reachable
spherical objects up to shift, Φ preserves reachable rigid objects up to shift. Second,
by [17, Lemma 5.13], the theorem holds for γ P T and any η P OApSq. Now, choose
any γ P OA˝

pS�q. Let T1 be a triangulation in EG˝
pS�q that contains γ. Then

we have

dimHomZ

DfdpΓTqpĂMTpγq, rXTpηqq “ dimHomZ

DfdpΓT1 qpĂMT1 pγq, rXT1 pηqq “ Intpγ, ηq.

�

Appendix A. The string model

A.1. Homological preparation. Let pQ,W q “ pQT,WTq be the quiver with
potential associated to a triangulation T of an unpunctured marked surfaces S.
Recall from Section 2.2 that there is an associated graded quiver Q and an asso-
ciated Ginzburg dg algebra ΓT whose underlying graded algebra is the completion
of the graded path algebra kQ.

For each vertex i of Q, denote by Si the corresponding simple module of ΓT.
There is a canonical heart HT in DfdpΓTq whose simples are S1, . . . , Sn. Let

ST “

n
à

i“1

Si
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be the direct sum of the simples in HT. Consider the differential graded endomor-
phism algebra ET “ RHompST, STq. By [12], we have the following exact equiva-
lence:

DfdpΓTq

RHomΓT
pST,?q

����
?b

L
ET

ST

perET .(A.1)

In particular, the simples in HT become the indecomposable direct summands of
ET. Then the Ext-algebra ET “ ‘iPZ Ext

i
DfdpΓTqpST, STq is isomorphic to the

homology algebra of ET. A basis of ET is indexed by the arrows and trivial paths
in Q as follows.

Lemma A.1 ([13, Lemma 2.15]). Let i, j be vertices of Q, and let r be an integer.
Then HomDfdpΓqpSi, Sjrrsq has a basis

tπb | b : i Ñ j P Q1 with deg b “ 1 ´ ru Y tπei “ idSi
| if i “ j and r “ 0u,(A.2)

where ei is the trivial path at i.

There is an A8 structure on ET, induced by the differential of ΓT (see [11,
Appendix A.15]). In our case, this structures is as follows.

Lemma A.2. The dg algebra ET is formal and hence is quasi-isomorphic to ET.
Moreover, for any trivial paths ei and ej and any arrows x and y in Q, we have
the following.

(1)

πej ˝ πei “

#

πei if i “ j,

0 otherwise.
(A.3)

(2)

πy ˝ πei “

#

πy if spyq “ i,

0 otherwise.
(A.4)

πej ˝ πx “

#

πx if tpxq “ j,

0 otherwise.
(A.5)

(3)

πy ˝ πx “

$

’

&

’

%

πα˚ if xyα (up to cyclical equivalence) is a term in WT,

πtspxq if y “ x˚ or x “ y˚,

0 otherwise.

(A.6)

Here spαq denotes the starting point of an arrow α, and tpαq denotes the ending
point of α.

By Lemma A.2, there is an exact equivalence perET » per ET which, together
with equivalence (A.1), gives an exact equivalence DfdpΓTq » per ET. We will
identify DfdpΓTq with per ET when there is no confusion. In particular, S1, . . . , Sn

become the indecomposable direct summands of ET as dg ET-modules. Since the
differential of ET is 0, morphisms in (A.2) become homomorphisms of dg ET-
modules, and in particular maps.
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DECORATED MARKED SURFACES II 653

Convention. Let a : i Ñ j P Q1. By abuse of notation, πarms in

HomDfdpΓTqpSirms, Sjrm ` 1 ´ deg asq

will all be denoted by πa for short. In particular, πbπa makes sense whenever ba ‰ 0.
The approach is similar for other morphisms.

A.2. The string model. To each internal point A in an arc γi P T, we associate
a vertex νA :“ i. Let l be a segment in a triangle Δ of T whose endpoints are
internal points in sides of Δ and which is not isotopic to a segment of any side of
Δ. Let A,B be the endpoints of l such that from A to B the decorating point in Δ
is to the right of l. We associate a graded arrow αplq to be the unique arrow from
νA to νB in Q induced from Δ. See Figure 7.

‚ ‚

‚

˝

γk

γi γj

‚ ‚

‚

i j

k

a

a˚

c c˚
bb˚

ti tj

tk

‚ ‚

‚

˝

γk

γi γj

A B
l

αplq “ a : νA Ñ νB

‚ ‚

‚

˝

γk

γi γj

A

B

l

αplq “ c˚ : νA Ñ νB

‚ ‚

‚

˝

γk

γi γj

l

αplq “ ti : νA Ñ νB

A

B

Figure 7. Segments inducing graded arrows

Construction A.3. Let σ be an oriented general closed arc such that it is in a
minimal position w.r.t. T (i.e., there are no digons shown, as in Figure 8).

‚ ‚

‚

˝

‚ ‚

Figure 8. A digon intersected by σ and T
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‚ Suppose that σ intersects T at V0, . . . , Vp, accordingly, from its starting
point to its ending point, where Vi is in the arc γki

P T for 0 ď i ď p and
some 1 ď ki ď n (see Figure 9). Moreover, denote by V´1 and Vp`1 the
starting and ending points of σ, respectively, by σpa, bq the segment of σ
between Va and Vb for 0 ď a ă b ď p` 1, and by Λi the triangle containing
the segment σpi ´ 1, iq for 0 ď i ď p ` 1.

‚

‚

‚ ‚˝Λi ˝ Λi`1

Vi`1

Vi´1

Vi

σ γki

‚

‚

‚

Figure 9. The intersections between σ and T

‚ Each segment σpi ´ 1, iq (1 ď i ď p) of σ corresponds to a graded arrow
ai :“ αpσpi´ 1, iqq between ki´1 and ki in Q. Then we obtain a walk in Q,
called a string:

wpσq : k0
a1

k1
a2

¨ ¨ ¨
ap

kp .(A.7)

We define εpaiq “ ` if ai points to the right, and εpaiq “ ´ otherwise.
‚ The string wpσq induces a graded ET-module |Xσ| and a map dσ on |Xσ|

of degree 1 as follows.
– |Xσ| “ ‘

p
i“0Ski

r�is, where �0 “ 0 and �i “ �i´1 ´ εpaiq deg ai for
1 ď i ď p.

– For each ai, if εpaiq “ `, then the map πai
: Ski´1

Ñ Ski
r1 ´ deg ais

induces a component Ski´1
r�i´1s Ñ Ski

r�is of dσ; if εpaiq “ ´, then
the map πai

: Ski
Ñ Ski´1

r1 ´ deg ais induces a component Ski
r�is Ñ

Ski´1
r�i´1s of dσ. The other components of dσ are 0.

Proposition A.4. Xσ :“ p|Xσ|, dσq is a perfect dg ET-module in perpETq.

Proof. We need to prove only that d2σ “ 0. By Lemma A.2, this follows from the
fact that any two neighboring arc segments of σ are from different triangles. �

By construction, for any oriented general closed arc σ1, if σ1 „ σ, then Xσ1 “

Xσ. Let σ be the oriented general closed arc obtained from σ by conversing the

orientation. It is easy to see that Xσ – Xσrls for some l. Denote by rXpσq the shift
orbit XσrZs of Xσ. Then

σ ÞÑ rXpσq

is a well-defined map from the set CApS�q to the set of objects in the orbit category
per ET {r1s.
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A.3. Homomorphisms between strings. Let σ be an oriented general closed arc
as in Construction A.3, with the string (A.7) and the associated dg ET-modules
Xσ, whose underlying graded module is

Àp
i“0 Ski

r�is.
Now, take another oriented general closed arc τ with IntS´�pσ, τ q “ 0 which is

in a minimal position w.r.t. T and σ. Note that τ may be isotopic to σ. Suppose
that τ intersects T at W0, . . . ,Wq in order, where Wi is in the arc γji P T, with
starting point W´1 and ending point Wq`1. Then there is the associated string

wpτ q : j0
b1

j1
b2

¨ ¨ ¨
bq

jq ,

where bi is the arrow in QT induced by the segment τ pi ´ 1, iq, and the associated
dg ET-module Xτ , whose underlying graded module is

Àq
i“0 Sjirκis.

Construction A.5. Suppose that V´1 “ W´1. Then there is an angle θpσ, τ q

from σ to τ clockwise at this decorating point (see Figure 10). We will construct
an element ϕpσ, τ q in Hom0

pXσ, Xτ rυsq induced by θpσ, τ q. Here the value of υ “

υpσ, τ q is determined by the relative position of the segments σp´1, 0q and τ p´1, 0q.
There are four cases shown in Figure 10, where υ “ 0, 1, 2, 3, respectively.

στ
‚ ‚

‚

‚̋

θ σ

τ

θ
‚ ‚

‚

‚̋

σ

τ
θ

‚ ‚

‚

‚̋

σ τ

θ

‚ ‚

‚

‚̋

Figure 10. The four cases for the starting segments of σ and τ

Note that there is a unique s ě 0 with a unique segment lpσ, τ q in the triangle Λs

connecting Vs andWs such that lpσ, τ q, σp´1, sq, and τ p´1, sq enclose a contractible
triangle having θpσ, τ q as an internal angle. (A degenerate case is that when σ „ τ ,
lpσ, τ q is the decorating point in Λp`1.) It is clear that s “ 0 for the last three cases
in Figure 10, and s ą 0 for the first case. We show in Figure 11 all of the possible
subcases for Λs when s ą 0.

When the associated graded arrow α plpσ, τ qq exists and is from νVs
to νWs

, let
ϕs “ παplpσ,τqq : Sks

Ñ Sjsrdegϕss. By construction, for i ă s, we have Ski
“ Sji

and let ϕi “ id : Ski
Ñ Sji . We construct ϕpσ, τ q in Hom0

pXσ, Xτ rυsq, whose
nonzero components are ϕir�is. That is, when s “ 0 (i.e., the last three cases in
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Figure 10), ϕpσ, τ q has the following form,

(A.8) Sk0

ϕ0

��

πa1
Sk1

r�1s ¨ ¨ ¨

Sj0rdegϕ0s
p´1q

deg ϕ0πb1
Sj1rκ1 ` degϕ0s ¨ ¨ ¨

and when s ą 0 (i.e., the first case in Figure 10), ϕpσ, τ q has the following form:

Sk0
¨ ¨ ¨ Sks´1

r�s´1s
πas r�s´1s

Sks
r�ss

ϕsr�ss

���
�
�

πas`1
r�ss

Sks`1
r�s`1s ¨ ¨ ¨

Sk0
¨ ¨ ¨ Sjs´1

rκs´1s
πbs rκs´1s

Sjsrκss
πbs`1

rκss

Sjs`1
rκs`1s ¨ ¨ ¨

(A.9)

where ϕsr�ss exists if and only if one of the cases in (a) or (b) in Figure 11 occurs.

Lemma A.6. ϕpσ, τ q is in Z0 HompXσ, Xτ rυsq.

Proof. It suffices to prove that the components of ϕpσ, τ q commute with the dif-
ferentials of Xσ and Xτ . Since ϕs is not from the same triangle as πas`1

or πbs`1
,

their compositions (if they exist) are 0. Hence we need to prove only that when
s ą 0, ϕs commutes with πas

and πbs in a suitable way. Consider the cases for Λs:

‚ Figure 11(a): εpasq “ εpbsq “ ` and πbs “ ϕsπas
,

so ϕpσ, τ q P Z0 HompXσ, Xτ q;
‚ Figure 11(b): εpasq “ εpbsq “ ´ and πas

“ πbsϕs,
so ϕpσ, τ q P Z0 HompXσ, Xτ q;

‚ Figure 11(c), (d), (e), or (f): εpπas
q “ `, εpπbsq “ ´ (if it exists) and ϕs

does not exist, so ϕpσ, τ q P Z0 HompXσ, Xτ q. �

Lemma A.7. ϕpσ, τ q is not null-homotopic.

Proof. For the first case in Figure 10, the identities in the form of (A.9) do not
factor through πα for any graded arrow α in Q. Hence ϕpσ, τ q is not null-homotopic.

For the second and third cases in Figure 10, since ϕ0 in the form of (A.8) is
of degree 1 or 2 and is not from the same triangle as a1 or b1, it does not factor
through πa1

or πb1 . Hence ϕpσ, τ q is not null-homotopic.
Assume that ϕpσ, τ q is null-homotopic in the last case in Figure 10. Then there

exist morphisms ψu,v : Sku
Ñ Sjv rκv ` 2s such that ϕ0 “ ψ2,1 ˝πa1

`πb1 ˝ψ1,2 and
πai

˝ψi`1,i `ψi,i`1 ˝ πbi `ψi`2,i`1 ˝ πai`1
` πbi`1

˝ψi`1,i`2 “ 0 for i ě 1. Let t be
the maximal integer such that ai “ bi for i ă t. Since degϕ0 “ 3, by Lemma A.2
repeatedly, the morphisms πai

˝ψi`1,i `ψi,i`1 ˝πbi are also nonzero and of degree 3
for i ă t. Note that at and bt are from the triangle Λt. All possible cases for Λt are
shown in Figure 11, where s should be replaced by t and σ, τ should be switched for
each other. It is checked case by case in the following that there is a contradiction.
Hence ϕpσ, τ q is not null-homotopic.

‚ Figure 11(a) or (b): We have εpπat
q “ εpπbtq, but deg πat

‰ deg πbt . By
Lemma A.2, we have that πat

˝ψt`1,t `ψt,t`1 ˝πbt is nonzero and of degree
less than 3. Since at`1 and bt`1 are not from Λt, by Lemma A.2, there are
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(a)

‚ ‚

‚

˝
τ σ

B

A

‚ ‚

‚

˝
τ σ

B

A

‚ ‚

‚

˝
τ σ

B

A

(b)

‚‚

‚

˝
στ

A

B

‚‚

‚

˝
στ

A

B

‚‚

‚

˝
στ

A

B

(c)

‚‚

‚

˝

στ
‚‚

‚

˝
στ

‚‚

‚

˝

στ

(d)
στ

‚‚

‚

‚̋
στ

‚‚

‚

‚̋

στ
‚‚

‚

‚̋

(e)
τ σ

‚ ‚

‚

‚̋
τ σ

‚ ‚

‚

‚̋

τ σ
‚ ‚

‚

‚̋

(f)
τ σ

‚ ‚

‚

‚̋

Figure 11. Relative positions of σps ´ 1, sq and τ ps ´ 1, sq in the
triangle Λs

no ψt`2,t`1 and ψt`1,t`2 satisfying πat
˝ ψt`1,t ` ψt,t`1 ˝ πbt ` ψt`2,t`1 ˝

πat`1
` πbt`1

˝ ψt`1,t`2 “ 0. This is a contradiction.
‚ Figure 11(c), (d), (e), or (f): We have εpπat

q “ ´ and εpπbtq “ `, if it
exists. Then πat´1

˝ ψt,t´1 ` ψt´1,t ˝ πbt´1
does not factor through πat

or
πbt because of the directions of the maps. This is a contradiction. �

Combining the above two lemmas, we have the following result.

Proposition A.8. Let σ, τ be oriented general closed arcs in S� with
IntS´�pσ, τ q “ 0 whose starting points coincide. Then pthe homotopy class ofq
ϕpσ, τ q is a nonzero morphism in Homper ET

pXσ, Xτ rυsq.
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658 YU QIU AND YU ZHOU

In particular, ϕpσ, τ q can be regarded as a morphism in

Homper ET {r1sp
rXpσq, rXpτ qq.

Corollary A.9. Let σ1, σ2, σ3 be oriented general closed arcs in S� with
IntS´�pσi, σjq “ 0 for any i, j which share the same starting point. If the start
segments of σ1, σ2, and σ3 are in clockwise order at the starting point, then

ϕpσ2, σ3q ˝ ϕpσ1, σ2q “ ϕpσ1, σ3q.(A.10)

σ2 σ1σ3

‚ ‚

‚

‚̋

σ1σ3

σ2

‚‚

‚

‚̋ σ3 σ1

σ2

‚ ‚

‚

‚̋

σ3 σ1

σ2

‚ ‚

‚

‚̋

σ1σ3σ2

‚‚

‚

‚̋

σ1σ3

σ2

‚‚

‚

‚̋

Figure 12. The relative position of σi

Proof. Consider the relative position of the first segments of σi. See Figure 12
for all essential cases (up to mirror). Then it is straightforward to check that
ϕpσ2, σ3q ˝ ϕpσ1, σ2q is of the type in Construction A.5. Hence we are done. �

A.4. The induced triangles. Throughout this subsection, let σ, τ be oriented
general closed arcs in S� with IntS´�pσ, τ q “ 0. Suppose that σ and τ share the

same starting point and do not coincide in CApS�q.

Definition A.10. The ppositiveq extension τ ^ σ of τ by σ (w.r.t. the common
starting point) is defined in Figure 13.

τ
σ

τ ^ σ

‚̋

Figure 13. The extension
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Proposition A.11. There exists a nontrivial triangle in per ET whose image in
per ET {r1s is

rXpτ ^ σq
ϕpτ^σ,σq

ÝÝÝÝÝÝÑ rXpσq
ϕpσ,τq

ÝÝÝÝÑ rXpτ q
ϕpτ,τ^σq
ÝÝÝÝÝÝÑ rXpτ ^ σq.

Proof. Keep the notations for σ and τ in the previous subsection. Using homological
algebra, the mapping cone of ϕpσ, τ q is the dg ET-module associated to the string
arising from τ ^ σ. Hence we have the required triangle. �

Acknowledgments

The authors would like to thank Alastair King, Tom Bridgeland, Ivan Smith,
and Dong Yang for interesting discussions. The second author would like to thank
Henning Krause and his research group for a pleasant atmosphere when he was
a postdoc at the Faculty of Mathematics of Bielefeld University. We would like
to thank the anonymous referee for many concrete suggestions for improving the
paper.

References

[1] T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2)
85 (2012), no. 3, 633–668, DOI 10.1112/jlms/jdr055. MR2927802

[2] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential
(English, with English and French summaries), Ann. Inst. Fourier (Grenoble) 59 (2009),
no. 6, 2525–2590. MR2640929

[3] T. Bridgeland and I. Smith, Quadratic differentials as stability conditions, Publ. Math. Inst.

Hautes Études Sci. 121 (2015), 155–278, DOI 10.1007/s10240-014-0066-5. MR3349833
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