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DECORATED MARKED SURFACES II: INTERSECTION
NUMBERS AND DIMENSIONS OF HOMS

YU QIU AND YU ZHOU

ABSTRACT. We study derived categories arising from quivers with potential
associated to a decorated marked surface S, in the sense taken in a paper by
Qiu. We prove two conjectures from Qiu’s paper in which, under a bijection
between certain objects in these categories and certain arcs in Sa, the di-
mensions of morphisms between these objects equal the intersection numbers
between the corresponding arcs.

1. INTRODUCTION

1.1. The 3-Calabi—Yau categories from surfaces. In this paper, we study a
class of derived categories Dyq(S) associated to quivers with potential from triangu-
lated marked surfaces S. They are 3-Calabi—Yau and originally arose in the study
of homological mirror symmetry. In type A, (or equivalently, S, an (n + 3)-gon),
such a category was first studied by Khovanov, Seidel, and Thomas [15.20]. They
showed that there is a faithful (classical) braid group action

STDsa(S) = Bpyy = MCG(S, n)

on Dy4(8S), where ST Dy4(S) is the spherical twist group of Dy4(S) and MCG(S, n)
the mapping class group of the disk with n decorations. This plays a crucial role
in understanding such categories and their spaces of stability conditions. More
recently, Bridgeland and Smith [3] established a connection between dynamical
systems of S and theory of stability conditions on Dq(S). More precisely, they
showed that

Stab® Dra(S)/ ST Dya(S) = Quad(S),
where Stab® Dy4(S) is the space of stability conditions and Quad(S) the moduli
space of quadratic differentials. Moreover, Smith [21] showed that there is a fully
faithful embedding

D;a(S) — DRuk(X),

where X is a symplectic 3-fold constructed from S and D Fuk(X) its derived Fukaya
category. This generalizes the symplectic construction of [15]. In the attempt of
showing that Stab®Dy4(S) is the universal cover of Quad(S), [17] generalizes a
result of [I5] that ST Dy4(S) can be identified with a subgroup of the mapping
class group of Sa, the decorated version of S:

ST Dfd(S) = BT(SA) C MCG(SA)
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Under this embedding, the Homs between objects in Dyq(S) are in fact floer
homology between the corresponding Lagrangian submanifolds. A (double graded)
formula for calculating the dimension of Homs/floer homology (in type A or S, a
polygon) is given in [I5]. Naturally, one would expect the corresponding formula
for unpunctured S, which is conjectured in [I7] (an ungraded version). The main
motivation of this paper is to prove such a conjecture and another closely related
formula.

1.2. Topological aspect of cluster theory. Cluster algebras and quiver muta-
tion were introduced by Fomin and Zelevinsky [9]. Derksen, Weyman, and Zelevin-
sky [6] further developed mutation of quivers with potential. During the last decade,
the cluster phenomenon was spotted in various areas in mathematics, as well as in
physics, including geometric topology and representation theory.

On the one hand, the geometric aspect of cluster theory was explored by Fomin,
Shapiro, and Thurston [§]. They constructed a quiver @t (and later Labardini-
Fragoso [10] gave a corresponding potential W) from any (tagged) triangulation
T of a marked surface S. Moreover, they showed that mutation of quivers (with
potential) is compatible with flip of triangulations. On the other hand, the categori-
fication of cluster algebras leads to representations of quivers due to Buan et al. [5].
Later, Amiot [2] introduced generalized cluster categories via Ginzburg dg algebras
associated to quivers with potential, where D4(S) fits into the following short exact
sequence of triangulated categories:

(1.1) 0 — Dyq(S) — perS — C(S) — 0,

where C(S) is the generalized cluster category.

Several papers have been published concerning these categories associated to
marked surfaces. Namely, the following correspondences were established (cf. Ta-
ble [):

e In the unpunctured case, Briistle and Zhang [4] constructed a bijection
between the set of open arcs on S and the set of indecomposables in the
cluster category C(S).

e Qiu and Zhou [19] constructed such a bijection in the general case (i.e.,
with punctures).

e Qiu [I7] constructed a bijection between the set of (simple) closed arcs on
SA (the decorated version of S) and the set of shift orbits of (reachable)
spherical objects in Dq(S).

e Qiu [I§] constructed a bijection between the set of (simple) open arcs on
S and the set of (reachable) rigid indecomposable objects in Dyq(S).

Furthermore, there are several Int = dim Hom type formulae under these types
of correspondences:

(1) Khovanov and Seidel [I5] showed dimHomZ(X'm,)Z}h) = 2Int(n,n2) in
the case of S of type A.

(2) Gadbled, Thiel, and Wagner [I0] showed that the formula in (1) holds for
S of extended affine type A.

(3) Zhang, Zhou, and Zhu [22] showed that dim Hom' (M., , M.,,) = Int(v1, 7o)
for S unpunctured.

(4) Qiu and Zhou [19] showed that the formula in (3) holds for the punctured
case.
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DECORATED MARKED SURFACES II

TABLE 1. Topological model for categories associated to quivers

with potential

Topological model | Correspondence Categories
SA Dfd(S)Z 3—CY
Closed arcs X:n 1, X,|Z] reachable spherical objects
SUN perS
Open arcs M: vy =, J\Z reachable ind. objects
S C(S): 3-CY
Open arcs M: B, M, ind. objects

Here Hom”(—, —) denotes @ez Hom(—, —[m]), which can be defined for shift or-
bits of objects. Note that the differences between Hom” and Hom' reflect the
different properties that Dy4(S) is 3-Calabi-Yau, while C(S) is 2-Calabi-Yau. The
main techniques for proving these Int = dim Hom type formulae are the string
models (or its variation/generalization) in representation theory. In this paper, we
establish some framework of graded string models for certain 3-Calabi—Yau cate-
gories and prove the following two formulae (Theorems and [£9) of this type.

Theorem ([I7, Conjectures 10.5 and 10.6]). Under the correspondence M, X in
Table [, the following formulae hold:

dimHomZ()z'm,;(m) = QIHt(Ula 772))
dim Hom”(M,, X)) = Int(v,7).

1.3. Context. The paper is organized as follows. In Section 2] we review back-
ground materials. In Section Bl we prove the first formula for spherical objects
under Assumption In Section [, we show that one can identify all sets of reach-
able spherical objects from different triangulations in a canonical way. This enables
us to generalize the first formula to all cases, and we also prove the second formula
as a byproduct. In the Appendix, we develop the graded string model, which is
independent from the rest of the paper. The key result here are the calculations
of a type of morphisms between (spherical) objects and the compositions of these
morphisms. This appendix also serves as a technical section for the prequel [17].

2. PRELIMINARIES

2.1. Triangulated 3-Calabi—Yau categories and spherical twists. Fix an
algebraically closed field k and all categories are k-linear. A triangulated category T
is called 3-Calabi—Yau if for any objects X,Y € T, there is a functorial isomorphism

Hom7(X,Y) = DHomy(Y, X[3])

where D = Homy (—, k) is the k-duality. An (indecomposable) object S in a trian-
gulated 3-Calabi-Yau category T is called (3-)spherical if Homy(S, S[n]) equals k
if n = 0 or 3 and equals 0 otherwise. Recall from [20] that the twist functor of a
spherical object S is defined by

¢s(X) = Cone (S®H0mZT(S, X)— X) ,
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with inverse

¢35 (X) = Cone (X — S ® Hom% (X, 5)) [—1].

2.2. Quivers with potential, Ginzburg dg algebras, and associated cate-
gories. A quiver with potential [6] is a pair (Q, W), where @ is a finite quiver and
W is a linear combination of cycles in Q. We assume that ) does not have loops or
2-cycles. The Ginzburg dg algebra [7] T' = I'(Q, W) associated to (Q, W) is defined
as follows. Let @Q be the graded quiver with the same set of vertices as ) and whose
arrows are

e the arrows of @ with degree 0,
e an arrow a* : j — ¢ with degree —1 for each arrow a : i — j of Q,
e aloop t; : i — i with degree —2 for each vertex i of Q.

The underlying graded algebra of I' is the completion of the graded path algebra
k@ and the differential of I" is determined uniquely by the following:

e d(a) =0 and d(a*) = 0, for a as an arrow of @,
b Zier d(t;) = Zate la, a*]'

Let D(T') be the derived category of I'. We consider the following full subcategories
of D(T):

e per[: the perfect derived category of T,
e D;y(T'): the finite dimensional derived category of T

It is known that perI is Krull-Schmidt [I3] and Dy4(T') is 3-Calabi-Yau [II]. Let
Hr be the canonical heart of Dyq(I') and Sim Hr be the set of iso-classes of simple
objects in Hr. As in [I7], we use the following notations:

e ST(I'): the spherical twist group, which is the subgroup of AutDq(T)
generated by ¢g for S € Sim Hr;
e Sph(T"): the set of reachable spherical objects in Dsq(T'), i.e., ST(I')-Sim Hr.

Here all simple objects in Hr are spherical because the quiver () has no loops;
see [13, Lemma 2.15 or Theorem 6.2].

2.3. Triangulations of marked surfaces. An (unpunctured) marked surface S
is an oriented compact surface with a finite set M of marked points lying on its
nonempty boundary dS [8]. Up to homeomorphism, a marked surface S is deter-
mined by the following data:

e the genus g of S,

e the number b of components of 0S,

e the partition of the number m = |M| describing the numbers of marked
points on components of 0S.

An (open) arc 7 in S is a curve in the surface satisfying the following:

the endpoints of v are in M;

except for its endpoints, v is disjoint from 0S;

~ has no self-intersections in S — M;

~ is not isotopic to a point or a boundary segment.
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DECORATED MARKED SURFACES II 639

The arcs are always considered up to isotopy. A triangulation T of S is a maximal
collection of arcs in S which do not intersect each other in the interior of S. We
have

n:=|T| = 6g +3b+m — 6,

and the number R of the triangles in T is (2n + m)/3.
There is a quiver with potential (Qr, Wr) [8,[16], associated to each triangulation
T of S as follows:
o the vertices of Qr are indexed by the arcs in T;
e there is an arrow ¢ — j whenever 7 and j are edges of the same triangle
and j follows i clockwise; hence each triangle with three edges in T gives a
3-cycle (up to cyclic permutation);
e the potential Wy is the sum of such 3-cycles.

2.4. Decorated marked surfaces. A decorated marked surface Sa is a marked
surface with an extra set A of N decorating points in the interior of S. A general
closed arc 1 in Sa is a curve in S such that

e its endpoints are in A;
e except for its endpoints, 7 is disjoint from A and from JS;
e it is not isotopic to a point.

A closed arc in Sa is a general closed arc whose endpoints do not coincide. An
open arc v in Sa is a curve in S such that

e its endpoints are in M,
e except for its endpoints, 7 is disjoint from A and from JS;
e it is not isotopic to a point or a boundary component.

We denote by CA(Sa), CA(Sa), and OA(SA) the set of simple closed, simple gen-
eral closed, and simple open arcs in Sa, respectively. Recall from [I7, Section 3.1]
the notion of intersection numbers as follows.

e For an open arc v and an (open or general closed) arc 7, their intersection
number is defined as the geometric intersection number in SAo — M:

Int(y,n) = min{|y’ "y’ 0 (SA —M)| |7 ~~,7 ~n}.

e For two general closed arcs a, 3 in CA(S,), their intersection number is a
half integer in $Z and is defined as follows (following [15]):

Int(a, 8) = 3 Inta (e, B) + Intg_a (a, B),

where
Ints_a(a,B) =min{la’ n ' A (S = A)||a' ~ a, 8" ~ B}
and

Inta(a, 8) = Y [{t|a(t) = Z}| - [{r | B(r) = Z}.
ZeA

A triangulation T is a maximal collection of open arcs in Sa such that

e for any 71,72 € T, Int(vy1,72) = 0;
e cach triangle of T contains exactly one (decorating) point in A.
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640 YU QIU AND YU ZHOU

The forgetful map F' : SA — S forgetting the decorating points induces a map
from OA(SAa) to the set of arcs in S, which sends a triangulation T of Sa to a
triangulation T = F(T) of S. The quiver with potential (QT, W) associated to T
is defined to be (Qr, Wr).

Let v be an (open) arc in a triangulation T. The arc % = 4#(T) (resp., 7°) is
the arc obtained from ~ by moving its endpoints counterclockwise (resp., clockwise)
along the quadrilateral in T whose diagonal is 7, to the next marked points. The
forward (resp., backward) flip of a triangulation T at v € T is the triangulation
TEY =T u{v*} — {7} (resp., TEY =T u{y}—{y}). See Figure[ll for example. The
exchange graph EG(Sa) is the oriented graph whose vertices are triangulations of
S and whose arrows correspond to forward and backward flips. From now on, fix
a connected component EG°(Sa) of EG(Sa). When we say a triangulation T of
Sa, we mean T is in EG°(Sa).

FIGURE 1. A forward flip of a triangulation

2.5. The braid twists. The mapping class group MCG(Sa) of SA consists of the
isotopy classes of the homeomorphisms of S that fix JS pointwise and fix the set A.

For any closed arc n € CA(Sa), the braid twist B, € MCG(Sa) along n is
defined as in Figure 2l The braid twist group BT(S ) is defined as the subgroup of
MCG(Sa) generated by B,, for n € CA(Sa). For a triangulation T = {vy1,..., 7.}
of Sa, its dual triangulation T* consists of the closed arcs s1,...,$, in CA(SA)
satisfying that Int(y;, s;) equals 1 for ¢ = j and equals 0 otherwise.

FIGURE 2. The braid twist
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2.6. Topological preparation. We start with a lemma. Let
D= {(z,y) e R?* | z® +4* < 1}

be a disk with three punctures, Py = (0,1), P1 = (0,—1), P> = (0,0). Set

D7% = {(z,y) e D |y >0}
and

D=’ = {(z,y) e D | y < 0}.
In this subsection, when we mention a curve, we always mean a continuous map
from [0, 1] to D such that it is disjoint with the punctures except for its endpoints.

Let n : [0,1] — D be a curve. Denote by 7 the curve defined as 7j(t) = n(1—t). The
restriction 7|, 4,1 is the curve defined as |, +,1(t) = n ((t2 — t1)t +t1) if t1 < to,

and N[, ;] = Nita,t] if t1 > t2. For any two curves ny,m2 with n;(1) = 72(0) ¢
{Py, Py, P53}, their composition 7977 is the curve defined by noni(t) = n1(2t) for
0<t<li :

5, and mani(t) = n2(2t — 1) for 5 <t < 1. For a simple curve 1 whose

endpoints coincide, denote by D, the disk (possibly with punctures) enclosed by 7.

Lemma 2.1. Let n: [0,1] — D be a simple curve with n(0) = Py and n(1) = P;.

Assume that 1 is in a minimal position w.r.t. Y = Dn{y = 0}, with Int(n,Y) > 2.

Then there exist two simple curves ng < D0 and m, < D=0 satisfying the following:
e 10(0) = Py, no(1) = n(s0), 11(0) =n(s1) and n1(1) = Py for some 0 < s; <

1;

® 00 * N[o,s0] and M % N[5y 175

e the curves g, m1 intersect n at n(so), n(s1), respectively, from different

sides;
e the curve ag := n|[s,,1]M0 18 isotopic to ay = mnl[o,s,] relative to {0, 1}.

Proof. Let n nY ={n(r;) |0 <ry <--- <rp < 1}. Asm > 2, we can connect
Py to a point in a segment n |[, ., 1< D>° for some i > 0 without intersecting
n except for the endpoints to get an arc 7. Similarly, we can get an arc 7.
Moreover, 19 # 1lf,s,] and m1 # n|[s,,1] since 7 is in a minimal position w.r.t. Y.
Let co = 7onl[0,s,] and ¢1 = s, 1)71- It follows that the corresponding disks D,
are not contractible and hence contain at least one puncture. Now we claim that
D., < D, or D,, < D.,. Otherwise, they are disjoint since ¢y and c¢; do not
intersect transversely. So D., does not contain Py, P;; hence both D., and D,
have to contain P,. This contradicts the fact that they are disjoint.

Without loss of generality, we assume that D., < D., and 7 intersects n at
7(so) from the left side. Then up to isotopy, there are three cases, as shown in
Figure Bl In the first two cases, n; intersects n at 7(s1) from the right side and the
disk D7, contains no punctures. Hence oy ~ ay relative to {0, 1}, and we are
done. In case (c), we have n ~ m19|[5,,5,170- But 717[s,,s,170 has fewer intersections
with Y than 7, which is a contradiction. This completes the proof. O

Now we generalize [17, Lemma 3.14] to the case that T is an arbitrary triangu-
lation of SA. Recall that T* is the dual triangulation of T.

Lemma 2.2. Let n be a closed arc in CA(Sa) which is not in T*. Then there are
two arcs o, B in CA(Sa) such that

(1) Ints—a (e, 8) =0 (s0 Int(e, B) < 1);

(2) n = Ba(B) orn = B3 (8);
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Ui

FIGURE 3. The three cases in the proof of Lemma 21l (topological view)

(3) Int(vy;, @) < Int(vy,n) and Int(y;, B) < Int(v;,n) for any ~; € T.

Proof. Assume that 1 has minimal intersections with the arcs in T without loss of
generality. If 7 intersects at least three triangles of T, then the assertion holds by
the proof of [I7, Lemma 3.14]. Thus, we can suppose that n intersects exactly two
triangles of T.

Since the original marked surface S is not a once-punctured torus, these two
triangles that intersect 7 cannot share three edges. On the other hand, if they share
only one edge, say, ¢, then n = s; because 7 is contained in these two triangles. This
contradicts our assumption. Therefore, these two triangles share exactly two edges,
and they form an annulus A. As we care only about the interior of the union of
these two triangles, we are in the same situation as with Lemma 2Tt

e the two boundaries of A correspond to ¢D and the puncture Ps, respec-
tively;

e the endpoints of n correspond to punctures Py and Pj, respectively;

e the sharing edges topologically correspond to Y.
Now, since Int(n, T) > 2, there exist arcs 79 and 7; satisfying the conditions in
Lemma 2Tl Let o = a1 ~ a2, and let 8 = min|[s,,5,170- Then Ints_A(a,3) = 0,
Inta (o, B) = 2, and n) = B, () (for the case in which ng intersects 1 at n(sg) from
the left side) or n = B, 1(3) (for the case in which 7y intersects 1 at 1(sqg) from the

right side). Note that 1y and 7, do not cross any arcs in T. Then for any ~; € T,
Int(’}/ia Oé) = Int(’Yu 7]'[0,51]) = Int('yivn‘[so,l]) < Int(’}/ia 77)

and
Int(yi, B) = Int (7, Nlsg,s,7) < Int(vi,m)-
Thus, we complete the proof. O
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As an immediate consequence, the proof in [I7, Propositions 4.3 and 4.4] works
for all cases (i.e., without Assumption [3.2)).

Proposition 2.3 ([I7, Propositions 4.3 and 4.4]). For any triangulation T of S,
we have

BT(SA) = BT(T)
and
CA(Sp) = BT(Sa) - T*.

3. INTERSECTION NUMBERS AND DIMENSIONS OF HoMS

Recall that in [I7], the author gives a bijection from the set of closed arcs in S
to the set of reachable spherical objects in Dyq(I't,) for any triangulation T¢ such
that any two of its triangles share at most one edge. In this section, we generalize
this bijection to arbitrary triangulation T (of any decorated marked surface).

3.1. The string model. As in the Appendix, we have the following. For each
ne CA(Sa), X, is an object in Dsq(I't) which induces a map

(3.1) Xr: CA(Sa) — Dya(Tr)/[1],

n— Xy (Z].
The notation X[Z] means the shift orbit {X[i] | ¢ € Z}. Moreover, let o, 7 be
oriented general closed arcs in Sa with Intg_a(o,7) = 0 whose starting points
coincide. Proposition gives a nonzero morphism
¢(o,7) € Homp ., (rp) (X, X7 [0]).
In the following, we keep the notations in the Appendix and upgrade Proposi-
tion [ATT] first.

Proposition 3.1. If 0,7 share their starting but not ending points, then there is
a nonsplit triangle in Dyq(T'T), whose image in Dyy(T'1)/[1] is

(3:2) X (B, () — X(0) 277 X (1) — X(B,(7)).
If 0,7 share both of the endpoints, i.e., Inta(o,7) = 2, then there is a nonsplit

triangle in Dyq(T't), whose image in Dyq(T'r)/[1] is

~ ~

(33)  X(B,(r) — X(0) @ X (o) FHIEIDL X (r) — X (B, (7).
where (o, T) and ¢(7,T) are linearly independent.

Proof. For the case Inta(o,7) = 1, we have B,(7) = 7 A 0. So the triangle in

Proposition [A 1] becomes ([3.2]).
Now consider the case Inta(o,7) = 2; see Figure dl Let ¢ = 7 A 0. Then we
have

N =DB,(T) =% AT.
Similarly, let £ =7 A @, and then we have

77=BU(T)=E/\0.
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644 YU QIU AND YU ZHOU

FIGURE 4. The braid twists as compositions of extensions

Note that the starting segments of &, 7, and < are in clockwise order at the common
starting point; see Figure @ By Corollary [A.9] we have
p(7:5) 0 (7, 7) = ¢(7,3)-

By Proposition[AIT] the mapping cones of ¢(7, <), ¢(7,7), and ¢(7,5) are in X (),
X (&), and X (n), respectively. Then applying octahedral axiom to this composition
gives the following commutative diagram of (images in Dyq(T'1)/[1] of) triangles:

X(<) X(s)
X(¢) X(n) X (o) X()
v(o,7)
X(e) X (o) 27 X () X(e)
©(T,5) »(7,3)
X(s) =—=2X(o)

Then we have the triangle [B.3]). Since ¢(7,%) o ¢(o,7) = 0 by the triangle in the
third column and ¢(7,3) op(7,7T) = ¢(7,3) # 0, we deduce that ¢(o, 7) and ¢(7,7)
are linearly independent. ([l

3.2. The first formula.

Assumption 3.2. Suppose that S admits a triangulation Ty such that any two
triangles share at most one edge (i.e., there is no double arrow in the corresponding
quiver Q).
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Let To = {1,...,0,} and T§ = {t1,...,tn} be the dual of Ty. Write I'g = I'r,,
and denote by H, the canonical heart of Dyq(I'r,) with simples T; corresponding
to t;. By [I7, Section 6], we have the following:

e The map Xo = )N(To in @I) induces a bijection
Xo: CA(Sp) RN Sph(T)/[1] and an isomorphism
(34) Lo BT(T()) — ST(F()),

sending the generator B, to the generator ¢r,.
e There is a commutative diagram

BT(Sp) — 0, ST(IY)

o Q

CA(SA) —0 L Sph(To)/[1]

in the sense that, for any b € BT(Sa) and n € CA(Sa), we have
(3.5) Ko (b(m) = 10(b) (Ko(n)) -
We will use X} to denote an object in the shift orbit XNO(n).

Lemma 3.3. Let 0,7 € CA(Sp) be two oriented arcs sharing the same starting
point, and let t; € T§. Suppose that t;, 0,7 are pairwise different and do not
intersect each other in S — A and that their start segments are in counterclockwise
order at the common starting point (see Figure B). Then ¢(o, 7)o ¢(t;,0) = 0.

Proof. Suppose that f = ¢(0,7) 0 p(t;,0) # 0 in Hom(T}, X2[m]) for some integer
m. Since Dy4(I'r,) is 3-Calabi-Yau, there exists f* € Hom(X?[m], T;[3]) such that
f*of #0. On the other hand, the start segments of o, ¢;, and 7 are in clockwise
order. Then by Corollary [0 p(o,7) = ¢(t;, T) o ¢(0,t;), where the morphisms
are properly shifted. Therefore, there is a nonzero composition

i, O,l; i T *
f* o fi 1 ST xS O T N] ED X0[m] 5 73[3)

Since T; is a spherical object, we have N = 0 or N = 3. If N = 0, then the first two
morphisms in the composition above must be identity (up to scale), which forces
XO[I] = T;. Since Xy is a bijection, this contradicts o # t;. If N = 3, similarly, we
have X?[m] = T;[3], which contradicts 7 # t;. O

For any general closed curve o € CA(Sa), we define lo(0) = Int(o, To) =
> Int(o, ;).

Lemma 3.4. Let 0,7 be two general closed curves in CA(Sp) sharing the same
starting point, and let Ints_a(0,7) = 0. Let n = 7 A 0, and assume that lo(n) =
lo(O’) + lo(’?’). ]f

(3.6) Int(¢;,n) = Int(¢;, 0) + Int(t;, 7)
holds for some t; € T§, then we have

(3.7) dim Hom® (T}, X0) = dim Hom” (T}, X2) + dim Hom"(T}, X?).
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Proof. Use the notations for o and 7 in (A2). By Proposition [A 1] there is a
nonsplit triangle

Xg[—’U] »(o,T) XO »(7,7) Xg[l] w(n,7) Xg[-’U-’-l]

T

for some integers v,l. Note that, in the case when o = 7, we will apply Proposi-
tion [A.TT]to (n, o) instead of (o, 7). Nevertheless, we will get the same triangle. So
it is sufficient to prove that the map

Hom (T;[r],¢(o

(3.8) Hom(T}[r], X°[—v]) ), Hom(T;[r], X°)

is zero for any r € Z. Since lo(n) = lo(o) +lo(7), by Construction [A5] we have that
(o, 7) is of the following form:

Tk‘(] = Tk1 [Ql]
l#’o
(=1)"mpy [v]
Tjo[v] ——————— T, [51 + v]

where g is induced from the triangle Ay of T that contains the common starting
point of ¢ and 7. Then for any f : T;[r] — X2, the composition (o, 7)o f is given
by ¢o © fo, where fp is the component of f from T;[r] to Tk,. Thus, the map B8)
being 0 is equivalent to ¢ o fo = 0.

Case 1. If the common starting point V_; = W_; of ¢ and 7 is not an endpoint of
t;, then 7; is not an edge of the triangle Ag. So fy is not induced from Ag. Then
by Lemma [A2] ¢q o fo = 0, as required.

Case I1. If V_1 = W_ is an endpoint of ¢;, then fj is the unique nonzero component
of p(t;, o) by Construction Furthermore, (80 implies that the segment VoW
in 7 intersects ¢; as shown in Figure In particular, the start segments of ¢;, o,
and 7 are in counterclockwise order. Hence, by Lemma B3] ¢(o,7) o o(t;,0) = 0,

which implies that ¢ o fo = 0, as required. (|
Vo
O— /
V_1 = I/V_ 1 ti,
Ui
-
Wy

FIGURE 5. The composition of o and 7

Proposition 3.5. Let ne CA(Sp). Under Assumption 3.2, we have
(3.9) dim Hom? (T}, Xo(n)) = 2Int(t;, n).
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DECORATED MARKED SURFACES II 647

Proof. When Int(t;,n) < 1 (i.e., is 0 or 1/2), the formula is proved in [I7, Proposi-
tion 5.9]. Now we assume that Int(¢;,7) > 1. Use induction on ly(n) starting with
the trivial cases lo(n) = 1 (i.e., n = t; for some j). Now suppose that the formula
holds for lg(n) < I, with some [ > 1. Consider the case lo(n) = I + 1. Then there
are three cases:

(I) n intersects a triangle (with decorating point Z) that does not intersect ¢;.
Apply [I7, Lemma 3.14] to decompose 7 into o and 7 w.r.t. Z. Since Z is
not an endpoint of ¢;, (B8] holds. So by Lemma B4 we have ) for o
and 7 (by properly choosing their orientations; the same holds for later use
of this lemma). By the induction hypothesis, (.9) holds for o, 7 and hence
holds for 1 too by [B1).

(I1) Ints_A(n,t;) # 0. Let Z be an endpoint of ¢; such that the triangle con-
taining Z contains intersections of 7 and t; in S — A. Choose the closest
intersection Y between n and ¢; from Z. Apply [17, Lemma 3.14] w.r.t.
Z and the line segment Y Z(c t;) to decompose 7 into ¢ and 7. Again
they satisfy condition ([B.0) in Lemma B4 and thus (87) holds. By the
induction hypothesis, [39) holds for o, 7, and hence for 7.

(IIT) Suppose the conditions in (I) and (IT) both fail, i.e.,

e Ints_a(n,t;) =0 and

e 7) is contained in the two triangles of Ty which intersect ¢;.
Note that these two triangles share exactly one edge by Assumption
Then since 1 # t;, we deduce that 1 is a loop enclosing t; (see Figure [6).
In this case, X} = Cone(T; — T;[3])[~1]. A direct calculation shows that

B3) holds. O
Corollary 3.6. Under Assumption [3.2],
(3.10) dim HomZ()N(O(m), )N(o(ng)) = 2Int(n1, n2)
for any n; € CA(Sa).
Proof. By Proposition 23] there exist t; € T§ and b € BT(Ty) such that n; = b(¢;).
Then by B3], we have Xo(b(t;)) = to(b) ()N(O(ti)). Hence

dim Hom?(Xo(m), Xo(n2)) =  dimHom?(Xo(t;), Xo(b~ (1))
= 2Int(t;, b= (n2))
= ZInt(m, )

S

FIGURE 6. A loop encloses a closed arc
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4. MAIN RESULTS

4.1. Independence. We still assume that Assumption 3.2l holds in this subsection;
i.e., there is an initial triangulation T of S such that any two triangles share at
most one edge. Recall from [I7] that two elements ¢ and ¢’ in AutD;q(T) are
isotopic, denoted by ¥ ~ 1, if 1p~! 09/ acts trivially on Sph(Ty). Let

Aut® Dfd(ro) = Aut Dfd(Fo)/ ~ .

By [I7, (2.6)], ¥ ~ ¢’ is equivalent to the condition that ¢)~1 o4’ acts trivially on
Sim Ho. We will say an element ¢ in Aut D;4(T) is null-homotopic if ¢ ~ id.
Now let T be an arbitrary triangulation. Keep the notations in Section
Denote by Hr the canonical heart in Dyq(I'r) with simples {S;} corresponding to
open arcs in T* = {s;}. Denote by Sph(I't) the set of reachable spherical objects.

Definition 4.1. We say two exact equivalences ¢, ¢": Dsq(I'g) — Dsq(I't) are
isotopic if they differ only by null-homotopies; i.e., ¢' = @1 0 ¢ 0 ¢ for some
o € Aut Dry(To) and 1 € Aut Dyg(T'r), which are null-homotopic.

Proposition 4.2. There is a unique exact equivalence ®1: Dyq(Ty) — Dyqa(l'r),
up to isotopy and shifts, such that it induces a bijection

®r: Sph(T'o)/[1] — Sph(I'r)/[1]
satisfying the following condition:

o for any s € T*, the corresponding simple in Sim H- is in the shift orbit
P (Xo(s))-

Proof. First, we show the uniqueness. Suppose that there are two such exact equiv-
alences @ and ®7.. Then we have <I>r}1 o O (T;) = T;[m;] for any simple T; in
the canonical heart Hy. By calculating the Hom?, we deduce that all m; should
coincide; i.e., @,}.1 o®lLo[—m] preserves Sim H and hence Sph(T'y). In other words,
®1' o @l o [—m] is null-homotopic in Aut Ds4(Ty), as required.

Now we prove the existence by induction, on the minimal number of flips from
Ty to T, starting from the trivial case. Now suppose that T admits a required
derived equivalence @, i.e.,

(4.1) O (Xo (1)) = Si[Z].

Then we need to show only that there exists a required exact equivalence & for
any flip T/ of T in SA.

Without loss of generality, suppose that T is the forward flip of T w.r.t. an arc
7v;, and let s; be the dual arc of v; in T*. By [L3], there is an exact equivalence
®: D(I't) - D(I'p) satisfying

o ((’HT)ZJ.) = Hy,

where (’HT)ﬁSj is the simple forward tilt of Hr w.r.t. S; (cf. [14, Section 5]).
Let (T')* consist of closed arcs s}, and let Sim H consist of the corresponding
simples S]. By the tilting formula in [I4] Proposition 5.2], we have

¢§J_1(Si) if there are arrows from ¢ to 7 in Q,
d7(S) =4 5;[1]  ifi=7,

S; otherwise.
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On the other hand, note that the indexing of s} is induced by the indexing of s; via
the Whitehead move (see [I7, Figure 10]). It is straightforward to see that

o By, (s;) if there are arrows from 4 to j in QT,
Si otherwise.

Taking b = BS_J_1 with ¢o(b) = ¢ and n = s;, (B8] becomes

—1
o(s5)
-1 T e\ ¥ (m=l(..
(12) 032, (Fols1)) = Ko(BL (51).
Then by [@J), we have
eN(SIZ) = ¢, (Si)[Z]

— 41 e )

= Can(X(s)) (‘IiT( 0(81)))
(4.3) = o (63, (Ko(s)

=& )N(O(st(é‘i)))

— o (Ro(s1))
if there are arrows from ¢ to j in @rT. Note that for other i, the equation above

also holds automatically. Thus, S;[Z] = ® o @T()?O(s;)) and & = ® o O is the
required equivalence. (Il

Recall that there is a bijection X: CA(Sa) — Sph(Iy)/[1], and we proceed to
discuss X.

Proposition 4.3. Xt induces a bijection X1: CA(SA) — Sph(I'r)/[1] that fits
into the following commutative diagram:

(4.4) CA(SA)

yo &

o Sph(I'r)/[1]

Sph(I'o)/[1]
where @ 1is the bijection in Proposition 1.2l

Proof. Since )?0 and @1 are bijections, we need to prove only that
(4.5) X (n) = & o Xo(n).

Use induction on lo(n) = Int(n, T). The starting step (lo(n) = 1) is covered by
Proposition Now let us deal with the inductive step for some 1 with ly(n) > 1
while assuming that (@H) holds for any 1’ with lo(n") < lo(n). By Lemma[22] there
are o and # with the corresponding conditions there. Without loss of generality,
assume that 7 = B, (). By inductive assumption, we have

(4.6) Xr(a) = ®rpoXo(e) and Xp(B) = @1 o Xo(B).
Since by Corollary B:6l we have

(4.7) dim Hom”(Xo(a), Xo(8)) = 2Int(a, 8),

the triangles in Proposition B.J]imply that

(4.8) Ro(n) = 65,0y (Ko(8)).
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650 YU QIU AND YU ZHOU
Notice that by (E6), equalities [@7) and (X) also hold for Xr. Hence

Xr(n) = QS)N(T(Q) (XT(ﬂ))

= bun(Fote) (T Ko(8))

= O é(ls)?o(a) (XO(ﬂ)))

= @ o Xo(n),

as required. O
Remark 4.4. By the proposition above, one can identify all sets Sph(I't) of reach-
able spherical objects, for any T in EG°(Sa), using the canonical exact equiva-
lences in Proposition between Dyq(I't). Hence, such equivalences also allow us

to identify all of the spherical twist groups ST(I't). Note that here we will consider
ST(I't) as a subgroup of Aut® Dyq(I'r).

4.2. The first formula revisit.

Theorem 4.5 ([I7, Conjecture 10.5]). For any triangulation T and n; € CA(SA),
we have

(4.9) dimHomZ()N(T(m),)N(T(ng)) = 2Int(n1,n2)-

Proof. If Assumption holds, the theorem is equivalent to Corollary since
one can identify all bijections X7 as in Remark 44l For the special cases in which
S does not satisfy Assumption [3.2] that is,

e cither S is an annulus with one marked point in each boundary component
e or S is a torus with one boundary component and one marked point,

one can apply the same method in [17, Section 7]. More precisely, the formula holds
for a higher rank surface (e.g., the surface obtained from S by adding a marked
point) and hence also holds for S. ]

4.3. Independence revisit. We use intersection formula ([@9) to prove (€2 for T.

Proposition 4.6. For any 0,7 € CA(SA) with Ints_a (0,7) = 0, we have

(4.10) Xr (B(0) = 0%, ) (Rn(0)), ez}

Proof. Without lose of generality, we prove the formula only for € = 1. On the one
hand, by ([@3), we have
dim Hom? (X (n), X1 (7)) = Inta (0, 7).

On the other hand, there is a triangle, i.e., B3) or (82), in Proposition Bl with
1 = By (7). Then X1(n) = ¢3{T(U) (XT(71)), as required. O

Proposition 4.7. For any S and initial triangulation Ty (without AssumptionB.2),
Propositions and [A.3] hold.

Proof. Basically, we follow the same proof there. Note that (2] in the proof of
Proposition is now covered by the proposition above, which enables us do the
generalization. (Il
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4.4. Intersection between open and closed arcs. Let I' be the Ginzburg dg
algebra of some quiver with potential. A silting set P in a triangulated category
D is an Ext”°-configuration, i.e., a maximal collection of nonisomorphic indecom-
posables such that Ext’(P,T) = 0 for any P,T € P and integer i > 0. The silting
object associated to P is @,.p T By abuse of notation, we will not distinguish a
silting set and its associated silting object. For example, I" is the canonical silting
object/set in perT".

Moreover, one can forward/backward mutate a silting object to get new ones
(see [1] for details). A silting set P in perT is reachable if it can be obtained by
repeated mutations from I'. Denote by SEG®(T") the set of reachable silting sets in
perI', and denote by

RR(perl") = U P
PeSEG®(T)
the set of reachable rigid objects in perI'. Recall a result from [I§].

Lemma 4.8 ([I8, Theorem 3.6]). There is a canonical bijection
Mry: OA°(Sa) — RR(per'y)

where OA°(SA) is the subset of OA(SA) consisting of the open arcs in some trian-
gulation in EG°(Sa).

We finish the paper by proving another conjecture in [17].

Theorem 4.9 (|17, Conjecture 10.6]). For any triangulation T, v € OA°(Sa), and
ne€ CA(Sa), we have

(4.11) dim Hom”(Mr(v), Xt(n)) = Int(7, 7).

Proof. First, for any two triangulations T and T, we actually have a canonical
identification ®: Dyq(I't) — Dyq(I'r), as shown in Proposition 7 Note that
there is a simple-projective duality between a silting set in perI’ and the set of
simples of the corresponding heart in Dfq(I'). Thus, as ® preserves reachable
spherical objects up to shift, ® preserves reachable rigid objects up to shift. Second,
by [I7, Lemma 5.13], the theorem holds for v € T and any n € OA(S). Now, choose
any 7 € OA°(Sa). Let T’ be a triangulation in EG°(Sa) that contains . Then
we have

dim Hom%fd(rT)(MT(W)v)zT(ﬁ)) = dim HomZDfd(rT,)(MT/(V)’XT/(H)) = Int(y,n).
([l

APPENDIX A. THE STRING MODEL

A.1. Homological preparation. Let (Q,W) = (Qr,Ws) be the quiver with
potential associated to a triangulation T of an unpunctured marked surfaces S.
Recall from Section that there is an associated graded quiver Q and an asso-
ciated Ginzburg dg algebra I'tr whose underlying graded algebra is the completion
of the graded path algebra kQ.

For each vertex i of @, denote by S; the corresponding simple module of I'y.

There is a canonical heart Hr in ’Dfd(FT) whose simples are Sp,...,5S,. Let
St = @ S;
i=1
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be the direct sum of the simples in H. Consider the differential graded endomor-
phism algebra &t = RHom(ST, ST). By [12], we have the following exact equiva-
lence:

RHOI‘IIFT (ST,?)

(Al) Dfd(FT> per €T .
?@[;T St

In particular, the simples in Ht become the indecomposable direct summands of
¢r. Then the Ext-algebra £t = @iez Extind(FT)(ST,ST) is isomorphic to the
homology algebra of &r. A basis of £t is indexed by the arrows and trivial paths
in Q as follows.

Lemma A.1 ([I3, Lemma 2.15]). Let i,j be vertices of Q, and let r be an integer.
Then Homp 1y (Si, Sj[r]) has a basis

(A2) {m|b:i—jeQ, withdegb=1—1}uU {m, =idg,

if i =j and r = 0},
where e; 1s the trivial path at 1.

There is an Ay structure on Er, induced by the differential of I'r (see [11
Appendix A.15]). In our case, this structures is as follows.

Lemma A.2. The dg algebra Ex is formal and hence is quasi-isomorphic to Er.
Moreover, for any trivial paths e; and e; and any arrows x and y in Q, we have

the following.
(1)
(A.3) e, O Me, = e 1=1J,
’ ' 0 otherwise.

0 otherwise.

(A.4) My 0o, = {ﬂ-y if s(y) =1,

otherwise.

o — Ty th(l’):j,
o0

o if zya (up to cyclical equivalence) is a term in W,
(A.6) myomy =1, ify=1c*orz=y*
0 otherwise.

Here s(a) denotes the starting point of an arrow «, and t(a) denotes the ending
point of .

By Lemma [A.2] there is an exact equivalence per & ~ per 1 which, together
with equivalence (A.J)), gives an exact equivalence Dyy(I'r) ~ perEr. We will
identify Dyq(I't) with per 1 when there is no confusion. In particular, Si,..., S,
become the indecomposable direct summands of E1 as dg Ep-modules. Since the
differential of £t is 0, morphisms in ([A2) become homomorphisms of dg E-
modules, and in particular maps.
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Convention. Let a: i — j € Q,. By abuse of notation, m,[m] in
Hompfd(FT)(Si[m], Si[m +1—degal)

will all be denoted by 7, for short. In particular, 7,7, makes sense whenever ba # 0.
The approach is similar for other morphisms.

A.2. The string model. To each internal point A in an arc v; € T, we associate
a vertex v4 := i. Let [ be a segment in a triangle A of T whose endpoints are
internal points in sides of A and which is not isotopic to a segment of any side of
A. Let A, B be the endpoints of [ such that from A to B the decorating point in A
is to the right of I. We associate a graded arrow «(l) to be the unique arrow from
v4 to vp in Q induced from A. See Figure [7

a(ll)=a:vas —vp a(l)

Il
Q

1 V4 — VB a(l) =t; :va > vp
FIGURE 7. Segments inducing graded arrows

Construction A.3. Let o be an oriented general closed arc such that it is in a
minimal position w.r.t. T (i.e., there are no digons shown, as in Figure []).

FIGURE 8. A digon intersected by ¢ and T

Licensed to Uppsala University. Prepared on Tue Jun 25 08:02:47 EDT 2019 for download from IP 130.238.188.239.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



654 YU QIU AND YU ZHOU

e Suppose that o intersects T at Vj,..., V), accordingly, from its starting
point to its ending point, where V; is in the arc v, € T for 0 < ¢ < p and
some 1 < k; < n (see Figure [d). Moreover, denote by V_; and V,11 the
starting and ending points of o, respectively, by o(a,b) the segment of o
between V,, and V4 for 0 < a < b < p+1, and by A; the triangle containing
the segment o(i — 1,4) for 0 <i < p+ 1.

FIGURE 9. The intersections between ¢ and T

e Each segment o(i — 1,4) (1 < i < p) of o corresponds to a graded arrow
a; = ao(i—1,i)) between k;_; and k; in Q. Then we obtain a walk in Q,
called a string:

az ap

(A7) w(o) : ko ks

kp .

We define €(a;) = + if a; points to the right, and €(a;) = — otherwise.
e The string w(o) induces a graded Er-module | X, | and a map d, on | X,|
of degree 1 as follows.

— | Xo| = @®_(Sk;[0i], where o9 = 0 and o; = 0;—1 — €(a;) dega; for
1<i<p.

— For each a;, if €(a;) = +, then the map 7y, : Sk,_, — Sk,[1 — dega;]
induces a component Sy, ,[0i—1] — Sk,[0i] of dy; if €(a;) = —, then

the map mq, : Sk, — Sk,_,[1 — dega;] induces a component S, [0;] —
Sk;_|0i—1] of dy. The other components of d, are 0.

Proposition A.4. X, := (|X,|,d,) is a perfect dg E-module in per(ET).

Proof. We need to prove only that d2 = 0. By Lemma [A2] this follows from the
fact that any two neighboring arc segments of o are from different triangles. |

By construction, for any oriented general closed arc o', if ¢/ ~ o, then X, =
X,. Let @ be the oriented general closed arc obtained from ¢ by conversing the
orientation. It is easy to see that Xz =~ X,[I] for some . Denote by X (o) the shift
orbit X,[Z] of X,. Then

o X(o)

is a well-defined map from the set CA(SA) to the set of objects in the orbit category
per &t /[1].
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A.3. Homomorphisms between strings. Let o be an oriented general closed arc
as in Construction [AZ3] with the string (A7) and the associated dg Er-modules
X,, whose underlying graded module is @Y_, Sk, [0:].

Now, take another oriented general closed arc 7 with Intg_a (o,7) = 0 which is
in a minimal position w.r.t. T and o. Note that 7 may be isotopic to o. Suppose
that 7 intersects T at Wy, ..., W, in order, where W; is in the arc v;, € T, with
starting point W_; and ending point Wy41. Then there is the associated string

. by . ba bg .
w(T) : jo 1 Jq s

where b; is the arrow in Qr induced by the segment 7(i — 1,1), and the associated
dg Er-module X, whose underlying graded module is @7_, S, [x:]-

Construction A.5. Suppose that V_; = W_;. Then there is an angle 6(o, 1)
from o to 7 clockwise at this decorating point (see Figure [[0]). We will construct
an element (o, 7) in Hom"(X,, X,[v]) induced by 6(c, 7). Here the value of v =
v(o, ) is determined by the relative position of the segments o(—1,0) and 7(—1, 0).
There are four cases shown in Figure [[Q] where v = 0, 1,2, 3, respectively.

F1GURE 10. The four cases for the starting segments of o and 7

Note that there is a unique s = 0 with a unique segment [(c, 7) in the triangle A
connecting Vy and W such that i(o, 7), 0(—1, s), and 7(—1, s) enclose a contractible
triangle having 0(o, 7) as an internal angle. (A degenerate case is that when o ~ 7,
I(o,7) is the decorating point in A,11.) It is clear that s = 0 for the last three cases
in Figure [I0] and s > 0 for the first case. We show in Figure [I1] all of the possible
subcases for A; when s > 0.

When the associated graded arrow « (I(o, 7)) exists and is from vy, to vy, let
Ps = Ta((o,r)) * Sk, — Sj.[deg ps]. By construction, for i < s, we have S, = Sj,
and let ¢; = id : Sy, — Sj,. We construct ¢(o,7) in Hom®(X,, X,[v]), whose
nonzero components are ;[o;]. That is, when s = 0 (i.e., the last three cases in
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Figure [I0)), ¢(c, 7) has the following form,

‘ﬂ'al

(A.8) Sko Sk, [01]
Wol
(~1)0e% %0,
Sjo[deg o] Sji[k1 + deg o]
and when s > 0 (i.e., the first case in Figure [[0)), ¢ (o, 7) has the following form:
(A.9)
Tag [es—1] Tag [o:]
Sko T ‘87%»71[98—1] Sks [QS] = ks+1[‘QS+1]
I
H | ¥s [Qs]
™ s[K/sf ] v o [KS]
S = Sjoalmem] === 8 [ks] = Sj, s [e11]

where @;[0s] exists if and only if one of the cases in (a) or (b) in Figure [T occurs.

Lemma A.6. ¢(o,7) is in Z° Hom(X,, X, [v]).

Proof. Tt suffices to prove that the components of ¢(o,7) commute with the dif-
ferentials of X, and X,. Since ¢, is not from the same triangle as m,_,, or m__,,
their compositions (if they exist) are 0. Hence we need to prove only that when
s >0, ¢, commutes with 7, and 7, in a suitable way. Consider the cases for As:
e Figure [I}(a): €las) = €bs) = 4+ and m, = @,

so ¢(o,7) € Z°Hom(X,, X,);

e Figure [MI(b): e€(as) =

so ¢(o,7) € Z°Hom(X,, X,);

e Figure [[Il(c), (d), (e), or (f): e(mq,) = +,€(m,) = — (if it exists) and ¢

does not exist, so ¢(o,7) € Z°Hom(X,, X, ). O

elbs) = — and w,, = T, Ps

Lemma A.7. (o, 7) is not null-homotopic.

Proof. For the first case in Figure [T, the identities in the form of (AX9) do not
factor through 7, for any graded arrow « in Q. Hence ¢(a, 7) is not null-homotopic.

For the second and third cases in Figure [0} since ¢q in the form of (ALY) is
of degree 1 or 2 and is not from the same triangle as a; or b1, it does not factor
through m,, or m,, . Hence ¢(o, 7) is not null-homotopic.

Assume that ¢(o, 7) is null-homotopic in the last case in Figure Then there
exist morphisms ¥, ., : Sk, — Sj, [Fv + 2] such that ¢g = 121 07, + T, 01,2 and
Ta; O WVit1,6 + Viir1 © Mo, + Wit 2,i41 0 Tazey + T,y ©Vig1442 = 0 for i > 1. Let ¢ be
the maximal integer such that a; = b; for ¢ < ¢. Since degyo = 3, by Lemma
repeatedly, the morphisms 7y, 01; 415 +v; ;41 0 Tp, are also nonzero and of degree 3
for i < t. Note that a; and b; are from the triangle A;. All possible cases for A; are
shown in Figure [[1] where s should be replaced by t and o, 7 should be switched for
each other. It is checked case by case in the following that there is a contradiction.
Hence ¢(o, 7) is not null-homotopic.

e Figure [[Ila) or (b): We have e(m,,) = €(mp,), but degm,, # degm,. By
Lemma[A2] we have that 74, 0941, + 1141 07, 1S nonzero and of degree
less than 3. Since a;y; and byy; are not from Ay, by Lemma[A.2] there are
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FIGURE 11. Relative positions of o(s —1,s) and 7(s — 1, s) in the
triangle Ag

N0 Pyyoy1 and Pyyq 4o satisfying ma, o i1t + V41 © T, + Yey2,e41 ©
a1 + Toepy © Yig1,642 = 0. This is a contradiction.

e Figure [[dl(c), (d), (e), or (f): We have e(m,,) = — and e(mp,) = +, if it
exists. Then m,, , 09141 + ¢1—1,4 0, , does not factor through =,, or
mp, because of the directions of the maps. This is a contradiction. (]

Combining the above two lemmas, we have the following result.

Proposition A.8. Let o,7 be oriented general closed arcs in Sa with
Ints_a(o,7) = 0 whose starting points coincide. Then (the homotopy class of)
(o, 7) is a nonzero morphism in Homper g1 (X0, X7 [v]).
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In particular, p(o,7) can be regarded as a morphism in

~

Homper Er /[1] (X(U)a 2(7))

Corollary A.9. Let 01,092,035 be oriented general closed arcs in Sa with
Ints_n(0i,05) = 0 for any i,j which share the same starting point. If the start
segments of 01,02, and o3 are in clockwise order at the starting point, then

(A.10) ¢(02,03) 0 p(01,02) = p(01,03).

@ 03 :
g3 g1
o
o 2

03 02 01 2

02 03 01 03 01
g3 g1
02
02

FIGURE 12. The relative position of o;

Proof. Consider the relative position of the first segments of o;. See Figure
for all essential cases (up to mirror). Then it is straightforward to check that
(02, 03) 0 (01, 02) is of the type in Construction [AZ5l Hence we are done. O

A.4. The induced triangles. Throughout this subsection, let o,7 be oriented
general closed arcs in SA with Intg_a(0,7) = 0. Suppose that o and 7 share the
same starting point and do not coincide in CA(SA).

Definition A.10. The (positive) extension T A o of 7 by o (w.r.t. the common
starting point) is defined in Figure

FIGURE 13. The extension
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Proposition A.11. There exists a nontrivial triangle in per Er whose image in
per &t /[1] is

X(r Ano) #lrack?) X(o) #loi) X(7) #ETAT), X(1 A o).

Proof. Keep the notations for ¢ and 7 in the previous subsection. Using homological
algebra, the mapping cone of ¢(o, 7) is the dg Er-module associated to the string
arising from 7 A 0. Hence we have the required triangle. O
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