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Abstract We are interested in the 3-Calabi-Yau categories D arising from quivers
with potential associated to a triangulated marked surface S (without punctures). We
prove that the spherical twist group ST of D is isomorphic to a subgroup (generated
by braid twists) of the mapping class group of the decorated marked surface S�. Here
S� is the surface obtained from S by decorating with a set of points, where the number
of points equals the number of triangles in any triangulations of S. For instance, when
S is an annulus, the result implies that the corresponding spaces of stability conditions
on D are contractible.
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1 Introduction

1.1 Calabi-Yau (CY) categories from mirror symmetry

We are interested in a class of 3-Calabi-Yau categories D arising from (homological)
mirror symmetry. These 3-CY categories are not only interesting in mathematics [17],
[22], but also in string theory ([8], cf. [2]). On the symplectic geometry side, the
category D (of type A) was first studied by Khovanov and Seidel [17]. They showed
that there is a faithful braid group action on D. Moreover, when realizing D as the
subcategory of the derived Fukaya category of theMilnor fibre of a simple singularities
of type A, such a braid group is generated by the (higher) Dehn twists along certain
Lagrangian spheres. On the algebraic geometry side, Seidel and Thomas [22] studied
the mirror counterpart of [17] (also in type A). They showed that D can be realized
as a subcategory of the bounded derived category of coherent sheaves of the mirror
variety with a faithful braid group action. Recently, Smith [23] showed that if D is
coming from triangulations of marked surfaces S, then it also can be embedded into
some derived Fukaya category. This class of cases is the one we will study. Our focus
is on the spherical twist group ST ⊂ AutD, a subgroup of the auto-equivalence group
of D generated by Khovanov-Seidel-Thomas (KST) spherical twists. The aim is to
generalize KST’s result, that ST is ‘faithful’, in the sense that ST is isomorphic to the
classical (type A) braid group (and in general, isomorphic to a subgroup of a certain
mapping class group). We need to restrict ourselves in the case when marked surfaces
are unpunctured. In the twin paper [15], we will make an effort to attack the problem
when the marked surfaces are punctured.
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Decorated marked surfaces: spherical twists versus braid. . . 597

Note that the spherical twist group ST acts freely on the space Stab◦D of Bridge-
land’s stability condition of D. This is one of our main motivations to study such a
group. In fact, Bridgeland-Smith (BS) [2] recently showed that the quotient (orbifold)
Stab◦D/Aut◦ is isomorphic to the moduli space Quad♥(S) of meromorphic quadratic
differentials with simple zeroes on the marked surfaces S, where Aut◦D is the exten-
sion of the (tagged) mapping class group of S on top of ST. And one would expect that
the faithfulness of spherical twist group actions will imply the simply connectedness
of Stab◦D. For instance, this implication holds for the (3-CY) Dynkin case (see [18]);
also, such faithfulness (and its implication of simply connectedness) was proved by
Brav and Thomas [1] for the 2-CY Dynkin case and by Ishii et al. [10] for the 2-CY
affine ˜A case.

Ourmain result says that ST is isomorphic to a subgroup of themapping class group
of some surface. As an example, we will show the contractibility of the corresponding
Stab◦D in this paper. In the sequel, we will prove that this result indeed implies the
simply connectedness of Stab◦D for any unpuncutred marked surface S.

1.2 Quivers with potential and categorification of cluster algebras

Quiver mutation was invented by Fomin-Zelevinsky (FZ) around 2000, as the
combinatorial aspect of cluster algebras. Later, mutation was developed by Derksen-
Weyman-Zelevinsky (DWZ) for quivers with potential.

The first (additive) categorification of cluster algebras (with certain associated
acyclic quivers) was due to Buan-Marsh-Reineke-Reiten-Todorov, via representations
of the corresponding quivers. Amiot introduced the generalized cluster categories via
Ginzburg dg algebras for quivers with potential. In her construction, the cluster cate-
gory C(�) is defined by the following short exact sequence of triangulated categories

0→ D f d(�)→ per�
π−→ C(�)→ 0, (1.1)

where � = �(Q,W ) is the Ginzburg dg algebra of the quiver with potential and
per� (resp. D f d(�)) are the perfect (resp. finite-dimensional) derived category of
�. Here, D f d(�) is the 3-CY category we mentioned above and it also provides a
categorification for cluster algebras.

There is an exchange graph associated to each of the categories in (1.1), namely:

• the reachable hearts/t-structures in D f d(�) as vertices and simple tilting as edges
for the exchange graph EG◦(D f d(�));
• the reachable silting sets in per� as vertices and mutation as edges for the silting
exchange graph SEG◦(per(�));
• the cluster tilting sets in C(�) as vertices and mutation as edges for the cluster
exchange graph CEG(C(�)).

They play a crucial role in categorifying cluster algebras, understanding quantum
dilogarithm identities and computing stability conditions. By simple-projective dual-
ity, there is a canonical isomorphism between the first two graphs. Moreover, they are
coverings of the third (cf. [14]) by the spherical twist group actionwementioned above.
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1.3 Triangulations of marked surfaces

A geometric aspect of cluster theory was explored by Fomin-Shapiro-Thurston (FST).
They constructed a quiver QT for each (tagged) triangulation T of a marked surface
S and showed that flipping triangulations corresponds to FZ mutation of quivers.
Here, the marked surface S is a surface with marked points on its boundaries and
punctures in its interior. Further, Labardini-Fragoso gave a rigid potentialWT for each
FST quiver QT, which is the unique ‘good’ (rigid, to be precise) one (cf. [9]), that
is compatible with DWZ mutation. Then one can construct the Ginzburg dg algebra
�T = �(QT,WT) and the associated categories, as in (1.1).

In this paper, we will deal the case when S is unpunctured and introduce a new
surface from S by decorating it with a set � of points as a topological model for
these categories. The number of points in � equals the number of triangles in any
triangulation of S. This decorating idea already appeared in various contexts (e.g.
Krammer [16] and Gaiotto et al. [8]). In the theory of BS ([2]), these decorating points
are simple zeroes of quadratic differentials (cf. Fig. 10); the boundary components of
S are the real blow-up of higher order (≥3) poles of quadratic differentials. Further,
when considering the mapping class group of S�, these decorating points are serving
as punctures in topology; however, we reserve the terminology ‘punctures’ for the
FST setting of marked surfaces.

Denote such a surface by S� and call it the decorated marked surface. A triangu-
lation of S� is a maximal collection of simple open arcs that divides S� into triangles
such that each triangle contains exactly one decorating point. One important feature
of S� is that flipping a triangulation has directions (cf. Sect. 3.2). Then we obtain a list
of correspondences, as shown in Table 1 (some of the correspondences will be given
in the second part of the paper). Simple closed arcs, i.e. the simple arcs connecting
different decorating points, play a crucial role in the construction/proof of these corre-
spondences. In the theory of BS, they should correspond to stable objects (w.r.t. some
stability conditions) and saddle connections (w.r.t. some quadratic differentials).

1.4 The project: decorated marked surfaces

This paper initiates a project: DMS = decorated marked surfaces. In the first paper,
we prove the following theorem.

Theorem 1 Suppose S is a marked surface without punctures and T a triangulation
of its decorated version S�. There is a canonical isomorphism

ι : BT(T)→ ST(�T), (1.2)

sending the standard generators (i.e. braid twists of the closed arcs η in the dual T∗)
to the standard generators (i.e. spherical twists of the corresponding spherical objects
Xη).

The topics/plan for the sequels are:
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Table 1 Correspondences

DMS (Part B) We give a geometric realization of silting objects in per(�T),
simple-projective duality for�T andAmoit’s quotientπ in (1.1) that defines cluster
categories.
DMS II We prove Conjectures 10.5 and 10.6, that the dimensions of homomor-
phisms between objects in D(�) equals the intersection numbers between the
corresponding arcs in S�. This is a joint work with Yu Zhou.
DMS III We show that there is a unique canonical way to identify D(�T), for
any triangulation T in EG◦(S�). Thus, one can associate a unique 3-Calabi-Yau
category D f d(S�) to S�. As an application, we show that the spherical twist
groupST(S�) acts faithfully on the corresponding spaceStab◦D f d(S�)of stability
conditions. This is a joint work with Aslak Buan.

We will prove the simply connectedness of Stab◦D f d(S�) by calculating the funda-
mental group of the space Quad(S) of quadratic differentials in [15].

2 Preliminaries

2.1 Quivers with potential and Ginzburg algebras

Fix an algebraically closed field k and all categories are k-linear. Denote by � =
�(Q,W ) the Ginzburg dg algebra (of degree 3) associated to a quiver with potential
(Q,W ), which is constructed as follows (cf. [13]):
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• Let Q3 be the graded quiver whose vertex set is Q0 and whose arrows are:
– the arrows in Q1 with degree 0;
– an arrow a∗ : j → i with degree −1 for each arrow a : i → j in Q1;
– a loop e∗i : i → i with degree −2 for each vertex i in Q0.

• The underlying graded algebra of �(Q,W ) is the completion of the graded path
algebra kQ3 in the category of graded vector spaces w.r.t. the ideal generated by
the arrows of Q3.
• The differential of �(Q,W ) is the unique continuous linear endomorphism, homo-
geneous of degree 1, which satisfies the Leibniz rule and takes the following values
– da = 0 for any a ∈ Q1,
– da∗ = ∂aW for any a ∈ Q1 and
– d

∑

e∈Q0
e∗ =∑

a∈Q1
[a, a∗].

Example 2.1 Let Q be a 3-cycle with edges a, b, c and the potential W = abc. Then
the (graded) quiver Q3 is

(2.1)

and the (non-trivial) differentials are

d(a∗) = bc, d(b∗) = ca, d(c∗) = ab,
d( f1) = cc∗ − b∗b, d( f2) = bb∗ − a∗a, d( f1) = aa∗ − c∗c. (2.2)

In this paper, the quivers with potential we are considering are rigid (and hence
non-degenerated), which basically means that they behave nicely under mutation, in
the sense of DWZ. For details about these notions, see, e.g. [13] and [9].

2.2 The 3-Calabi-Yau categories

A triangulated category D is called N-Calabi-Yau (N -CY) if, for any objects X, X ′
in D we have a natural isomorphism

S : Hom•D(X, X ′) ∼−→ Hom•D(X ′, X)∨[N ]. (2.3)

Note that the graded dual of a graded k-vector space V = ⊕k∈ZVk[k] is

V∨ =
⊕

k∈Z
V ∗k [−k].
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Further, an object S is N-spherical if Hom•(S, S) = k ⊕ k[−N ] and (2.3) holds
functorially for X = S and X ′ inD. Denote byD f d(�) the finite-dimensional derived
category of �. It is well-known that this is a 3-CY category. We also know that (see,
e.g. [12]) D f d(�) admits a canonical heart H� generated by simple �-modules Se,
for e ∈ Q0, each of which is 3-spherical. Recall that the twist functor φ of a spherical
object S is defined by

φS(X) = Cone
(

S ⊗ Hom•(S, X)→ X
)

(2.4)

with inverse

φ−1S (X) = Cone
(

X → S ⊗ Hom•(X, S)∨
) [−1]

Denote by ST(�) the spherical twist group of D f d(�) in AutD f d(�), generated by
{φSe | e ∈ Q0}. By [22, Lemma 2.11], we have the formula

φψ(S) = ψ ◦ φS ◦ ψ−1 (2.5)

for any spherical object S and ψ ∈ AutD f d(�).
Denote by Sph(�) the set of reachable spherical objects in D f d(�), that is,

Sph(�) = ST(�) · SimH�, (2.6)

where SimH denotes the set of simples of an abelian category H.
We have the following observations.

• The the twist functor is well-defined on Sph(�)/[1], i.e. φS = φS[1].
• Clearly, for any φ ∈ ST(�) and X ∈ Sph(�), φ(X) is still in Sph(�).
• By (2.5), ST(�) is also generated by all φX for X ∈ Sph(�) (cf. [14]).

Remark 2.2 Two elements ψ and ψ ′ in AutD f d(�) are isotopic, denote by ψ ∼ ψ ′,
if ψ−1 ◦ ψ ′ acts trivially on Sph(�). In this paper, we will only consider the auto-
equivalences up to isotopy, i.e. we will consider ST(�) as a subgroup of

Aut◦D f d(�) = AutD f d(�)/∼. (2.7)

However, we will show in the sequel that: the identity is the only spherical twist which
acts trivially on Sph(�) in our case.

2.3 Triangulations of marked surfaces

Throughout the paper, S denotes a marked surface without punctures in the sense of
[7], that is, a connected surface with a fixed orientation and a finite set M of marked
point on the (non-empty) boundary ∂S satisfying that each connected component of
∂S contains at least one marked point. Up to homeomorphism, S is determined by the
following data
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602 Y. Qiu

Fig. 1 The exchange graph of triangulations of a pentagon

• the genus g;
• the number |∂S| of boundary components;
• the integer partition of |M| into |∂S| parts describing the number of marked points
on its boundary.

As in [7, p5], we will exclude the case when there is no triangulation or there is no
arcs in the triangulation. In other words, we require n ≥ 1 in (2.8).

An (open) arc in S is a curve (up to homotopy) that connects two marked points in
M, which is neither isotopic to a boundary segment nor to a point. The intersection
number is defined to be

Int(γ1, γ2) = min{|γ ′1 ∩ γ ′2 ∩ (S−M)|
∣

∣

∣γi ∼ γ ′i }.

An (ideal) triangulation T of S is a maximal collection of compatible simple arcs.
Here, compatible means any two arcs in T that do not intersect.

Moreover, it is well-known that any triangulation T of S consists of

n = 6g + 3|∂S| + |M| − 6 (2.8)

(simple) arcs and divides S into

ℵ = 2n + |M|
3

(2.9)

triangles. Denote by EG(S) the exchange graph of triangulations of S, that is, the
unoriented graph whose vertices are triangulation of S and whose edges correspond to
flips (see the lower pictures in Fig. 3 for a flip). It is known that EG(S) is connected.
If S is an (n + 3)-gon, then EG(S) is the associahedron of dimension n (cf. Fig. 1).

Let S be a marked surface and T a triangulation of S. Then there is an associated
quiver QT with a potential WT, constructed as follows (See, e.g. [9] or [20] for the
precise definition):

• the vertices of QT are (indexed by) the arcs in T;
• for each triangle T in T, there are three arrows between the corresponding vertices
as shown in Fig. 2;
• these three arrows form a 3-cycle in QT and WT is the sum of all such 3-cycles.
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Fig. 2 The (sub-)quiver associated to a triangle (with a potential)

3 Triangulations of decorated marked surfaces

3.1 Decorated marked surfaces

Recall that any triangulation of S consists of ℵ triangles, where ℵ is given by the
formula (2.9).

Definition 3.1 The decorated marked surface S� is a marked surface S together with
a fixed set� of ℵ ‘decorating’ points (in the interior of S, where ℵ is defined in (2.9)),
which serve as punctures. Moreover,

• An open arc in S� is (the isotopy class of) a curve in S� − � that connects two
marked points inM, which is neither isotopic to a boundary segment nor to a point.
• a closed arc in S� is (the isotopy class of) a curve in S�−� that connects different
decorating points in �. Denote by CA(S�) the set of simple closed arcs.
• An L-arc η in S� is (the isotopy class of) a curve in S� −� such that its endpoints
coincide at a decorating point in � and it is not isotopic to a point.
• A general closed arc in S� is either a closed arc or an L-arc; denote by CA(S�)

the set of simple general closed arcs.

The intersection numbers between arcs in S� are defined as follows:

• For an open arc γ and any arc η, their intersection number is the geometric inter-
section number in S� −M:

Int(γ, η) = min{|γ ′ ∩ η′ ∩ (S� −M)|
∣

∣

∣γ
′ ∼ γ, η′ ∼ η}.

• For two general closed arcs α, β in CA(S�), their intersection number is an half
integer in 1

2Z and defined as follows (following [17]):

Int(α, β) = 1
2 Int�(α, β)+ IntS−�(α, β),

where

IntS�−�(α, β) = min{|α′ ∩ β ′ ∩ S� − �|
∣

∣

∣α
′ ∼ α, β ′ ∼ β} (3.1)
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and

Int�(α, β) =
∑

Z∈�
|{t | α(t) = Z}| · |{r | β(r) = Z}|.

3.2 Triangulations and flips (after Krammer)

Definition 3.2 A triangulation T of S� is a maximal collection of open arcs such that

• for any γ1, γ2 ∈ T, Int(γ1, γ2) = 0;
• T is compatible with � in the sense that the open arcs in T divide S� into ℵ
triangles, each of which contains exactly one point in �.

Let T be a triangulation of S� (consisting of n open arcs). The dual triangulation
T∗ of T is the collection of n closed arcs in CA(S�), such that every closed arc only
intersects one open arc in T and with intersection one. See the left picture of Fig. 15
for an example. More precisely, for γ in T, the corresponding closed arc in T∗ is the
unique open arc s that is contained in the quadrilateral A with diagonal γ , connecting
the two decorating points in A and intersecting γ only once. We will call s and γ the
dual of each other, w.r.t. T (or T∗), cf. left picture of Fig. 15.

There is a canonical map, the forgetful map

F : S� → S,

forgetting the decorating points. Clearly, F induces a map from the set of open arcs in
S� to the set of open arcs in S. And the image of a triangulationT is still a triangulation
T = F(T). The (FST) quiver QT associated to T is defined to be the (FST) quiver QT

associated to T = F(T). We proceed to introduce the notion of forward/backward flip
of triangulations (after [16] and cf. [15]).

Definition 3.3 Let γ be an open arc in a triangulation T of S�. The arc γ � = γ �(T) is
the arc obtained from γ by anticlockwise moving its endpoints along the quadrilateral
in T whose diagonal is γ (cf. upper pictures of Fig. 3), to the next marked points. The
forward flip of a triangulation T of S� at γ ∈ T is the triangulation T�

γ obtained from
T by replacing the arc γ with γ �. Similarly, we can define arc γ 
 = γ 
(T) to be the
arc obtained from γ by clockwise moving its endpoints, and the backward flip T


γ of

T at γ ∈ T is the triangulation T

γ obtained from T by replacing the arc γ with γ 
.

Clearly, these two flips are inverse operations. Also note that under the forgetful
map F , a forward/backward flip in S� becomes a normal flip (without direction) of
S, cf. Fig. 3, which is an involution.

Definition 3.4 The exchange graph EG(S�) is the oriented graph whose vertices are
triangulations of S� and whose edges correspond to forward flips between them.

Remark 3.5 Recall that π1EG(S) is generated by squares and pentagons ([7, Theo-
rem 3.10]). By [16], forward flips also satisfy the square and pentagon relations (cf.
Fig. 4). We believe that π1EG(S�) is also generated by squares and pentagons.
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Fig. 3 The flip

Fig. 4 The pentagon relation for forward flips

3.3 The braid twists

The mapping class group MCG(S�) is the group of isotopy classes of (orientation
preserving) homeomorphisms of S�, where all homeomorphisms and isotopies are
required to: (i) fix ∂S�(⊃M) pointwise; (ii) fix the decorating points set� (but allow
to permutate points in it). Note that the mapping class groupMCG(S) of Swill require
only the first condition and thus there is a canonical map

F∗ : MCG(S�) � MCG(S) (3.2)
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η

+

•◦ •◦ Bη η•◦ •◦

Fig. 5 The Braid twist

Fig. 6 Intersecting one half

induced by the forgetful map F . AsMCG(S) is generated by Dehn twists along simple
closed curves (which misses the decorating points), F∗ is clearly surjective.

For any closed arc η ∈ CA(S�), there is the (positive) braid twist Bη ∈ MCG(S�)

along η, which is shown in Fig. 5.
Further, there is the following well-known formula

B�(η) = � ◦ Bη ◦�−1, (3.3)

for any � ∈ MCG(S�).

Definition 3.6 The braid twist group BT(S�) of the decorated marked surface S� is
the subgroup of MCG(S�) generated by the braid twists Bη for η ∈ CA(S�).

Example 3.7 If Int(α, β) = 1
2 , there is a closed arc η (cf. Fig. 6) such that

η = Bα(β) = B−1β (α), α = Bβ(η) = B−1η (β), β = Bη(α) = B−1α (η). (3.4)

Note that η is the closed arc such that the interior of the triangle bounded by α, β, η is
contractible. In fact, there is exactly one more such closed arc (dashed arc in Fig. 6),
namely

η′ = B−1α (β) = Bβ(α),

satisfying the triangle bounded by these three arcs is contractible.

We have the following straightforward observation:
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Fig. 7 Composition of forward flips as a negative braid twist

Lemma 3.8 Let γ be a open arc inT and s be its dual inT∗. Then in the triangulation
T�

γ , the dual of γ � is still s. Moreover, let T�
γ and T


γ be the two flips of T at γ . Then

γ 
 = Bs(γ
�) and T


γ = Bs(T�
γ ).

Proof The first claim follows from the upper pictures in Fig. 3 and the equations
follow from Fig. 7. ��

As a consequence, we obtain a map between exchange graphs.

Lemma 3.9 As graphs, we have the following surjective map induced by the forgetful
map F:

F∗ : EG(S�)/BT(S�) � EG(S). (3.5)

Proof Recall that there is a canonical surjection F∗ : MCG(S�) � MCG(S) in (3.2).
By definition, it is straightforward to see that

BT(S�) ⊂ ker F∗. (3.6)

Thus, F induces a quotient map F∗ : EG(S�)/BT(S�)→ EG(S) between sets. Next,
the F∗ preserves the edges (cf. Fig. 3), in the sense that the forward and backward
flips of a triangulation T at some closed γ both become the flip of T = F(T) at
F(γ ). Thus, F∗ is a map between graphs. Finally, by definition, EG(S�) is an oriented
(n, n)-regular graph (that is, every vertex has n arrows in and n arrow out) and EG(S)

is an unoriented n-regular graph. Therefore we deduce that F is surjective. ��
Remark 3.10 In fact, if we take any connected component EGχ (S�) of EG(S�), then
F∗ induces an isomorphism

F∗ : EGχ (S�)/BT(S�) ∼= EG(S)

since EG(S) is connected and both graphs are n-regular.

3.4 The initial triangulation

Remark 3.11 For technical reasons, wewill exclude two special cases for themoment:
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I). an annulus with one marked point on each of its boundary components;
II). a torus with only boundary component and one marked point.

These cases will be discussed independently in Sect. 7.

Lemma 3.12 There exists a triangulation T of S� such that any two triangles share
at most one edge. In other words, the quiver QT has no double arrows.

Proof The second statement, which is equivalent to the first one, follows from [9,
Proposition 7.13], noticing that we have excluded the two special cases (a torus with
one marked point and an annulus with two marked points). ��
Notations 3.13 We will fix a triangulation T0 such that its image T0 = F(T0) (a
triangulation of S) satisfies the condition in Lemma 3.12. Let

T0 = {γ1, . . . , γn} and T∗0 = {s1, . . . , sn},

where si is the dual of γi w.r.t. T0. Denote by EG◦(S�) the connected component of
EG(S�) that contains T0.

We say a curve is in a minimal position w.r.t. T0, if it has minimal intersections
with (arcs in) T0. Let Int(T0, η) = ∑n

i=1 Int(γi , η). Then a representative η is in a
minimal position if it intersects T0 exactly Int(T0, η) times.

We will repeatedly use induction on Int(T0, η) later. The next lemma is the basic
idea of those inductions.

Lemma 3.14 Suppose that a general closed arc η in CA(S�) is not a closed arc s in
T∗0. Then there are two closed arcs α, β in CA(S�) such that

1◦. Int(T0, η) = Int(T0, α)+ Int(T0, β) and
2◦. α, β, η form a contractible triangle in S�.

In the case when η ∈ CA(S�), 2◦ is equivalent to
˜2◦ Int(α, β) = 1

2 and η = Bα(β).

Proof Recall that we require that any two triangles inT0 share at most one edge. Thus
if η only intersects two triangles of T0, then η = s j ∈ T0 for some j which we will
exclude. Now suppose that η intersects at least three triangles of T0. Then one of the
decorating points in these triangles is not an endpoint of η. Denote the triangle by �0
with the decorating point Z0 inside. Choose a representative of η, also denoted by η,
when there is no confusion, such that it is in a minimal position w.r.t. T0. One can
draw a line segment l from Z0 to some point Y of η within �0 such that l doesn’t
intersect η except at the endpoints (cf. Fig. 8).

Let Z1 and Z2 be the endpoints of η such that l is in the left side when we pass
from Z2 to Z1. Consider two closed arcs α and β which are isotopic to l ∪ η |Z1Y

and l ∪ η |Z2Y respectively (cf. Fig. 9). Clearly, 2◦ is satisfied. Since η is in a minimal
position (w.r.t. T0), so are α and β. Thus 1◦ is also satisfied.

Moreover, η is one of Bα(β) and B−1α (β) when the endpoints of η do not coincide
(i.e. η ∈ CA(S�)). Thus, by choosing α and β in some order we will obtain˜2◦ as
required. ��
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Fig. 8 The line segment l

Fig. 9 Decomposing η

4 On the braid twist groups

4.1 Generators

Recall that we have the braid twist group for S�. Now we define the braid twist group
for T0.

Definition 4.1 Let T be a triangulation of S�. The braid twist group BT(T) of the
triangulation T is the subgroup of MCG(S�) generated by the braid twists Bs for the
closed arcs s in T∗.

In fact, these two groups are the same.

Lemma 4.2 BT(S�) = BT(T0).

Proof Use induction on Int(T0, η) to show that Bη is in BT(T0). If so, then BT(S�) ⊂
BT(T0). Clearly, BT(S�) ⊃ BT(T0) and therefore the lemma follows.

If Int(T0, η) = 1, then η ∈ T∗0 and the claim is trivial. Suppose that the claim
holds for any η′ with Int(T0, η

′) < m. Consider a closed arc η ∈ CA(S�) with
Int(T0, η) = m. Applying Lemma 3.14, we have η = Bα(β) for some α, β. By the
inductive assumption, Bα and Bβ are in BT(T0). By formula (3.3), we have

Bη = BBα(β) = Bα ◦ Bβ ◦ B−1α ∈ BT(T0),

which completes the proof. ��
Proposition 4.3 BT(S�) = BT(T) for any T ∈ EG(S�).

Proof First, if T1 and T2 are related by a flip, then their dual graphs are related by a
Whitehead move, with respect to the corresponding closed arc η (which is unchanged
under the flip), see Fig. 10. Notice that the changes of closed arcs in T∗i are given by
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Fig. 10 The Whitehead move, as the flip of the dual triangulations (red)

the braid twist B±1η . Then by (3.3) it is straightforward to see that BT(T1) = BT(T2).
By Lemma 4.2, the proposition holds for any T ∈ EG◦(S�).

As for T in other connected components of EG(S�), we can always find one trian-
gulation in that component satisfying the condition in Lemma 3.12. Then Lemma 4.2
would apply to that triangulation and thus the proposition holds for any T ∈ EG(S�).

��
Besides, the closed arcs are ‘reachable’, in the following sense.

Proposition 4.4 Let T ∈ EG(S�). For any η ∈ CA(S�), there exists s ∈ T∗ and
b ∈ BT(S�) such that η = b(s), i.e.

CA(S�) = BT(S�) · T∗.

Proof Consider the case when T = T0 first. Then this follows easily by induction on
Int(T0, η), using Lemma 3.14. Second, by the Whitehead move (cf. Fig. 10), if T1
and T2 are related by a flip, then

BT(S�) · T∗1 = BT(S�) · T∗2.

Therefore the proposition holds for T ∈ EG◦(S�). Finally, as in the last paragraph of
the proof of Proposition 4.3, we deduce that the proposition holds for anyT ∈ EG(S�).

��

4.2 Centers

We recall the definition of the braid groups (a.k.a. Artin groups) of type A and ˜A.

Definition 4.5 Suppose that Q is a quiver or a diagram as in (4.1):

(4.1)
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Fig. 11 The full dual of a triangulation

Denote by Br(Q) the braid group associated to Q, generated by b = {bi | i ∈ Q0}
subject to the relations

{

b jbi b j = bib j bi , there is exactly one arrow between i and j in Q,

bib j = b jbi , otherwise.

Let ZBT
0 be the center of BT(S�) and BT∗(S�) = BT(S�)/ZBT

0 .

• If S� is a polygon, then BT(S�) ∼= Br(An) and ZBT
0 is the infinite cyclic group

generated by D∂S� .
• If S� is an annulus, then BT(S�) ∼= Br(˜An) and ZBT

0 = 1 ([5]).

Wewill show that ZBT
0 = 1 holds for all other cases. Denote the boundary components

of S� by ∂ j , 1 ≤ j ≤ |∂S|.
Lemma 4.6 By cutting along the (initial) closed arcs in T∗0, S� will be divided into
m annuli Ai , 1 ≤ i ≤ m, such that ∂i is a boundary component of Ai .

Proof For each boundary segmentγ ⊂ ∂S� that is in a triangle T inT0 with decorating
point Z , denote by γ ∗ its dual, which is the simple arc in T (unique up to isotopy)
connecting Z and the midpoint of γ . Call the union ofT∗0 and the arcs γ ∗ as above (for
all segments γ in ∂S�) the full dual of T0. Denote it by ̂T∗0, see Fig. 11 for example. ��

Then the surface S�−̂T∗0 obtained from S� by cutting along all arcs in ̂T∗0 satisfies
the following:

• it consists of |M| connected components, each ofwhich contains exactly onemarked
point inM;
• each component is a disk, since it can be obtained by gluing many quadrilaterals
(cf. the shaded area in Fig. 11) along some segment containing the marked point in
that component.

Further, by gluing back along the arcs dual to boundary segments in S�, we deduce
that the surface S� −T∗0 obtained from S� by cutting along all arcs in T∗0 satisfies the
following:
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• it consists of |∂| connected components;
• each component Ai is an annulus, such that one of the boundary components of Ai

is a boundary component of S�.

Thus the lemma follows. ��
Proposition 4.7 If S� is neither a polygon nor an annulus, then ZBT

0 = 1.

Proof Denote by D(∂S�) the subgroup of MCG(S�) generated by the Dehn twist
{D∂i } of its boundary components.

We claim that ZBT
0 ⊂ D(∂S�). Let z ∈ ZBT

0 . Then z ◦ Bη = Bη ◦ z for any
η ∈ CA(S�). Hence by (3.3) we have

Bz(η) = z ◦ Bη ◦ z−1 = Bη. (4.2)

Thus z(η) = η for any η ∈ CA(S�), which in particular implies that z preserves �
pointwise (note that |�| = ℵ ≥ 3 in our situation) andT∗0.ByLemma4.6, cutting along
closed arcs in T∗0 divides S� into m annuli Ai , such that ∂i is a boundary component
of Ai . Since z preserves all such closed arcs, it can be realized as composition of
some element zi ∈ MCG(Ai ) (where the order of the composition does not matter
since they commute with each other). Note that MCG(Ai ) is generated by D∂i , which
implies z ∈ D(∂S�). Thus the claim holds.

There is also the subgroup D(∂S) ofMCG(S) generated by the Dehn twist along its
boundary components and the obvious induced map F∗

(

D(∂S�)
) = D(∂S), which

sends D∂i to D∂i . Since S is not a polygon, {D∂i } are non-trivial in both MCG(S�)

and MCG(S). Further, since S is not an annulus, {D∂i } are distinct (and commute with
each other). Therefore, F∗ : D(∂S�)→ D(∂S) is an isomorphism.

Now combining ZBT
0 ⊂ D(∂S�) and (3.6), we deduce that F∗(ZBT

0 ) = 1 in
MCG(S) and hence ZBT

0 = 1 in MCG(S�). ��

5 From closed arcs to perfect objects

5.1 The Koszul dual and minimal model

Let �T = �(QT,WT) be the Ginzburg dg algebra obtained from a triangulation T.
Recall that there is a canonical heart HT in D f d(�T) and let

ST =
⊕

S∈SimHT

S

be the direct sum of the simples in HT. Consider the (dg) endomorphism algebra
ET = RHom(ST, ST). By [12], we have the following derived equivalence:

(5.1)
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In particular, {S}S∈H�
in D f d(�T) become (indecomposable) projectives in perET.

By [11, Sect. A.15], the multiplications in the A∞-structure of the homology of ET
are induced from differentials of �T. In particular, whenm ≥ 3, them-multiplications
are induced from the (m + 1)-cycle in the potential WT, which vanish in our case
(since we only have 3-cycles in the potential). This means that ET is formal and hence
is quasi-isomorphic to its homology (the minimal model), denoted by

ET = Hom•(ST, ST). (5.2)

which is just a graded algebra. We will identify D f d(�T) with perET when there is
no confusion. Recall that the Ext quiver Q(H) of a finite heart H is the (positively)
graded quiver whose vertices are the simples ofH and whose graded edges correspond
to a basis of End>0(

⊕

S∈SimH S).

Example 5.1 The Ext quiver of the canonical heart (in the corresponding 3-CY cate-
gory) of the quiver with potential in Example 2.1 is shown as follows.

(5.3)

Moreover, the differentials in (2.2) become the following multiplications:

Hom1(Si−1, Si )⊗ Hom1(Si , Si+1) ∼= Hom2(Si−1, Si+1),
Homk(Si , Si+k)⊗ Hom3−k(Si+k, Si ) ∼= Hom3(Si , Si ),

(5.4)

for i = 1, 2, 3 and k = 0, 1, 2, 3, where Si+3 = Si for i ∈ Z.

Notations 5.2 Recall that we have fixed an initial triangulation T0.

• We will write �0 for �T0 and similar for ET0 , HT0 and so on.
• Let the �i = ei�0 be the indecomposable projective summands of �0.
• Let S1, . . . , Sn be the simples in H0 which correspond to the projectives above.
Under the derived equivalence (5.1), the Si become the (projective) summands of
the silting objects E0 in perE0 ∼= D f d(�0).

5.2 The string model

Definition 5.3 A dg E0-module X is minimal perfect if its underlying graded module
(denoted by |X |) is of the form

|X | =
l

⊕

k=1
Xk, (5.5)
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Fig. 12 A digon intersected by some γ and η

where each Xk is a finite direct sum of shifted copies of direct summands of E0 (i.e.
copies of S j ) whose differential, as a degree 1 map from X to itself, is a strictly upper
triangularmatrixwhose entries are in the ideal of E0 generated by the arrows inQ(H0).

Let η be a general closed arc in S� such that it is in aminimal positionw.r.t.T0. This
is equivalent to saying that there is no digon shown as in Fig. 12. One can associate a
minimal perfect dg E0 module Xη as follows

• its underlying graded module |Xη| has the form as in (5.5).
• Let the endpoints of η be Z and Z ′. Suppose that from Z to Z ′, η intersects T0 at

V1, . . . , Vm accordingly, where Vi is in the arc γ ji ∈ T0 for 1 ≤ i ≤ m and some
1 ≤ ji ≤ n (cf. Fig. 13). Note that since when choose η in a minimal position w.r.t.
T0, ji are independent of the choice of η (only depend the isotopy class of η).
• Each line segment ViVi+1 in η induces a graded arrow ai between Vi and Vi+1
(clockwise within the corresponding triangle). See Fig. 14 for how an edge a in the
Ext quiver Q(H0) induces such a graded arrow a between V and W respectively.
Then we obtain a string Hη, whose vertices are Vi ’s and whose (graded) arrows are
those induced arrows.

Hη : V1
a1

V2
a2 · · · Vm−1

am−1
Vm

• Each intersection Vi corresponds to a summand S ji [δi ] in some Xδi for some integer
δi . So we have

l
⊕

k=1
Xk =

m
⊕

i=1
S ji [δi ].

• For the arrow ai , we have two cases:
1◦. If its orientation is Vi → Vi+1, then the degrees δi satisfy

δi+1 = δi + degai − 1. (5.6)

Moreover, the map S ji → S ji+1 [degai ] corresponding to ai induces a degree
1 map

dai : S ji [δi ] 1−−−→ S ji+1[δi+1].
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Fig. 13 The intersections between η and T0

Fig. 14 Inducing graded arrows

2◦. If its orientation is Vi ← Vi+1, then the degrees δi satisfy

δi = δi+1 + degai − 1. (5.7)

Moreover, the map S ji+1 → S ji [degai ] corresponding to ai induces a degree
1 map

dai : S ji+1 [δi+1] 1−−−→ S ji [δi ].

• Finally, the differential dη of Xη is given by the degree 1 map

dη =
m−1
∑

i=1
dai .

Lemma 5.4 The complex Xη above is well-defined.

Proof We only need to check d2η = 0, i.e. dai+1dai = 0 and dai dai+1 = 0 for any i

(when they make sense in d2η).
On one hand, since η is in a minimal position w.r.t. T0 and any two triangles in T0

share at most one edge, we deduce that for any i , Vi−1, Vi and Vi+1 are not in a single
triangle of T0.
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Fig. 15 An initial triangulation and two closed arcs in a 6-gon

On the other hand, if dai+1dai �= 0, then there is a non-zero multiplication in

Hom•(S ji−1[δi−1], S ji [δi ])
⊗Hom•(S ji [δi ], S ji+1 [δi+1])→ Hom•(S ji−1[δi−1], S ji+1 [δi+1]).

As such a multiplication is induced from terms in the potential ([11, Sect. A.15]),
which are 3-cycles, we deduce that Vi1 , Vi and Vi+1 are in a single triangle of T0. This
contradicts the fact mentioned above. The case when dai dai+1 = 0 is similar.

Now we deduce that d2η = 0 as required. ��
Remark 5.5 As we are flexible about the choice of δ1 and t1, Xη is well-defined up to
shifts. In other words, we obtain a map

˜X : CA(S�)→ perE0/[1],
η �→ ˜X(η). (5.8)

We will use the convention that Xη will be a representative in the shift orbits ˜X(η)

and the X [Z] denotes the shift orbit that contains X .
Example 5.6 By construction, ˜X(si ) = Si [Z], where the si are the ‘initial’ closed arcs
in T∗0 and Si are the simples in the canonical heart H0. Let us have a look at some
non-trivial case. Take an initial triangulation of a 6-gon as shown in the left picture in
Fig. 15.

The Ext-quiver of H0 is as shown in Example 5.1. Then we have

˜X(η1) = Cone(S1→ S2[1])[Z], ˜X(η2) = Cone(X → S3[3])[Z],

where

X = Cone(S1[−2] → S3).

Here, the maps in the Cone are the unique maps (up to scaling) between the corre-
sponding objects.
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Lemma 5.7 Let Xη be a complex associated to a closed arc η as above. Then

dimHom•(�i , Xη) = Int(γi , η), (5.9)

dim Hom•(�0, Xη) =
n

∑

i=1
dimHom•(�i , Xη) = Int(T0, η). (5.10)

Proof First, the projective-simple duality implies

Hom j (�i , Sk[l]) = δik · δ jl · k, 1 ≤ i, k ≤ n; ∀ j, l ∈ Z. (5.11)

Second, the differential dη is generated by the morphisms ς : Si → S j [δ] in (5.2),
which satisfy Hom•(�i , ς) = 0, 1 ≤ i ≤ n. Thus the lemma follows. ��

In particular, we have the following immediate consequence as the si are the only
closed arcs that intersect once with T.

Corollary 5.8 If Xη[Z] = Si [Z] for some initial closed arc si ∈ T∗0, then η = si .

We will prove the following key proposition in Sect. 9.

Proposition 5.9 Let η1 and η2 be two general closed arcs in CA(S�). Choose any
representative Xk in ˜X(ηk) = Xk[Z]. Then we have

1◦. If ηk is a closed arc, i.e. is in CA(S�), then Xηk is in Sph(�0).
2◦. If Int(η1, η2) = 0, then

Hom•(Xη1 , Xη2) = 0. (5.12)

3◦. If Int(η1, η2) = 1
2 , then

dimHom•(Xη1 , Xη2) = 1. (5.13)

An immediate consequence of Proposition 5.9 and Proposition 9.2 is as follows.

Corollary 5.10 Let α, β ∈ CA(S�) with Int(α, β) = 1
2 and η = Bα(β). Then

˜X(η) = φ
˜X(α)(

˜X(β)). (5.14)

6 Braid twists versus spherical twists

6.1 Two twist group actions

We start with a generalization of Corollary 5.10.

Lemma 6.1 For any s ∈ T∗0 and η ∈ CA(S�), we have

φε
˜X(s)

(

˜X(η)
) = ˜X

(

Bε
s (η)

)

, (6.1)

where ε ∈ {±1}.
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Proof Without loss of generality, we only deal the case for ε = 1. Use induction on
Int(T0, η) starting with the trivial case when Int(T0, η) = 1, or equivalently, η ∈ T∗0.
Now, for the inductive step, consider η with Int(T0, η) = m while the lemma holds
for any η′ with Int(T0, η) < m. Applying Lemma 3.14, we have η = Bα(β) for
some α, β with Int(α, β) = 1

2 . Twisted by Bs , we have Int(Bs(α),Bs(β)) = 1
2 and

Bs(η) = BBs (α)(Bs(β)). By (5.14), we have

˜X (Bs(η)) = φ
˜X(Bs (α))

(

˜X (Bs(β))
)

. (6.2)

By the inductive assumption,

φ
˜X(s)

(

˜X(α)
) = ˜X (Bs(α)) , φ

˜X(s)

(

˜X(β)
) = ˜X (Bs(β)) . (6.3)

So

φ
˜X(s)

(

˜X(η)
) = φ

˜X(s)

(

φ
˜X(α)(

˜X(β))
)

= φ
˜X(s) ◦ φ

˜X(α) ◦ φ−1
˜X(s)

(

φ
˜X(s)(

˜X(β))
)

= φφ
˜X(s)(˜X(α))

(

φ
˜X(s)(

˜X(β))
)

= φ
˜X(Bs (α))

(

˜X (Bs(β))
)

= ˜X (Bs(η)) ,

where the first equality follows from (5.14), the third equality follows from (2.5),
the fourth equality follows from (6.3) and the last equality follows from (6.2), which
completes the proof. ��
Remark 6.2 Let ZST

0 = ST(�0) ∩ Z[1] and

ST∗(�0) = ST(�0)/Z
ST
0 ⊂ Aut◦D f d(�0)/Z[1].

Note that ST∗(�0) also acts on Sph(�0)/[1]. By [3, Theorem 4.4], ZST
0 = 1 unless S

is a polygon, in which case, ZST
0 = Z[n + 3].

Recall that the initial triangulation consists of closed arcs si , whose braid twists
bi = Bsi generate BT(T0) = BT(S�) by Lemma 4.2. Moreover, the canonical heart
H0 in D f d(�0) has simples Si satisfying Si [Z] = ˜X(si ), whose spherical twists
φi = φSi generate BT(S�).

Proposition 6.3 There is a canonical group homomorphism

ι : BT(T0)→ ST∗(�0), (6.4)

sending the generator bi to the generator φi .

Proof Consider first the case when S is not a polygon. We only need to prove that, if

b = bε1
i1
◦ · · · ◦ bεk

ik
(6.5)
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equals 1 in MCG(S�), for some i j ∈ {1, . . . , n}, ε j ∈ {±1}, 1 ≤ j ≤ k and k ∈ N,
then

φ = φ
ε1
i1
◦ · · · ◦ φ

εl
il

(6.6)

equals 1 in Aut◦D f d(�0).
First, b = 1 implies b(si ) = si for any 1 ≤ i ≤ n. By (repeatedly using) Lemma6.1,

we have

˜X (b(si )) = φ
(

˜X(si )
)

.

Thus, Si [Z] = ˜X (si ) = φ (Si [Z]), i.e. φ(Si ) = Si [ti ] for some integer ti . Since φ is
an equivalence, we deduce that all ti must be the same. Therefore φ = [t] for some
integer t . However, we have φ ∈ ZST

0 = 1 in this case, which implies t = 0 and φ = 1
in Aut◦D f d(�0), as required.

In the case when S� is a polygon, b = 1 still implies φ = [t] for some t ∈ Z and
thus the proposition holds too. ��

A consequence of the existence of ι is that the braid twist group actions BT(S�)

on CA(S�) are compatible with the spherical twist group actions ST∗(�0) on
Sph(�0)/[1], under the map ˜X in (5.8). More precisely, we have the commutative
diagram below, where the commutativity is in the sense of (6.9) in the following
corollary.

(6.7)

Corollary 6.4 For any b ∈ BT(S�) and η ∈ CA(S�), we have

ι(Bε
η) = φε

˜X(η)
, ε ∈ {±1} (6.8)

˜X (b(η)) = ι(b)
(

˜X(η)
)

. (6.9)

Proof Again, we will only deal with the case when ε = 1. By Proposition 4.4, η =
b(s j ) for some s j ∈ T∗ and b ∈ BT(S�) with the form (6.5). Let φ be as in (6.6) and
by (repeatedly using) (6.1), we have

˜X(η) = ˜X(b(s j )) = φ(˜X(s j )) = φ(S j ).

Then using formulae (3.3), (2.5) and the equality above we have

ι(Bη) = ι(Bb(s))

= ι
(

bε1
i1
◦ · · · ◦ bεk

ik
◦ Bs j ◦ b−ε1

i1
◦ · · · ◦ b−εk

ik

)
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= ι(bε1
i1

) ◦ · · · ◦ ι(bεk
ik

) ◦ ι(b j ) ◦ ι(b−ε1
i1

) ◦ · · · ◦ ι(b−εk
ik

)

= φ
ε1
i1
◦ · · · ◦ φ

εk
ik
◦ φ j ◦ φ

−ε1
i1
◦ · · · ◦ φ

−εk
ik

= φ ◦ φ j ◦ φ−1

= φφ(S j ) = φ
˜X(η),

i.e. (6.8). A similar calculation gives (6.9), as the generalization of (6.1). ��
When specifying b = Bε

s in (6.9) and using (6.8), we see that (6.1) holds for any
s, η ∈ CA(S�).

Corollary 6.5 (6.1) holds for any s, η ∈ CA(S�).

Now, we are ready to prove the main theorem of this paper.

6.2 The main result

We start to show that ˜X is bijective.

Theorem 6.6 The map ˜X in (5.8) induces a bijection

˜X : CA(S�)
1-1−→ Sph(�0)/[1].

Proof First we prove the injectivity. Suppose ˜X(η) = ˜X(η′) for η, η′ ∈ CA(S�). Let
η = b(si ) for some b ∈ BT(S�) and initial closed arc si ∈ T

∗
0. Then by (6.9) we have

Si [Z] = ˜X(si ) = ˜X(b−1(η)) = ι(b)−1
(

˜X(η)
) = ι(b)−1

(

˜X(η′)
) = ˜X(b−1(η′)).

By Corollary 5.8, si = b−1(η′) or η = η′ as required.
Second, we prove the surjectivity. Let η be a closed arc in CA(S�) and ˜X(η) =

Xη[Z] for some representative Xη. We only need to show that Xη is in Sph(�0). Use
induction on I = Int(T0, η). If I = 1, then η is some si ∈ T0 and Xη = Si [δ] for
some integer δ, which is in Sph(�0). Now suppose that the claim is true for I ≤ r for
some r ≥ 1 and consider the case when I = r + 1. Apply Lemma 3.14, we find α and
β with Int(α, β) = 1

2 and (3.4). By Corollary 5.10, we have representatives Xα and
Xβ with (9.3). By the inductive assumption, we know that Xα and Xβ are in Sph(�0).
On the other hand, we have φXα ∈ ST(�0) by (2.5) and the theorem follows from
(2.6). ��

Weproceed to show that the bijectivity above implies isomorphism between twisted
groups.

Theorem 6.7 Let S be an unpunctured marked surface and T0 a triangulation of
S� such that the corresponding FST’quiver has no double arrows. Then there is a
canonical isomorphism

ι : BT(T0)→ ST(�0), (6.10)
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sending the generator bi to the generator φi , where �0 is the Ginzburg dg algebra
associated to T0.

Proof When S is a polygon, this follows from [17] and [22]. Now suppose S is not
a polygon. We first prove the case for the initial triangulation T0 (whose FST quiver
has no double arrows). Then ST∗(�0) = ST(�0). In this case, we have the surjective
homomorphism ι in (6.4) and only need to show that it is injective.

Let b ∈ BT(S�) with ι(b) = 1 in ST(�0). By (6.9), we have

˜X (b(η)) = ι(b)
(

˜X(η)
) = ˜X(η),

which implies b(η) = η by Theorem 6.6, for any closed arc η. By (4.2), this implies
b ◦ Bη = Bη ◦ b and thus b is the center ZBT

0 of BT(S�). But ZBT
0 = 1 in this case.

So b = 1 and ι is injective. ��

Remark 6.8 We can generalize Theorem 6.7 to any triangulations T ∈ EG◦(S�), i.e.
as Theorem 1. This follows by a standard induction, on the number of flips from T0
to T; so we only need to prove the case when T is a flip of T0.

On one hand, T∗ and T∗0 are related by a Whitehead move as in Fig. 10. Thus, the
standard generators of BT(T) are conjugates of standard generators of BT(T0). It is
straightforward to write down the formula of the conjugates. On the other hand, this
is also true for ST(�T) and ST(�0). Namely,

• by [13], there is a (canonical) derived equivalence

� : D f d(�T) ∼= D f d(�0),

such that the canonical heart H�T becomes a tilt H′ (cf. [14, Definition 3.7]) of
the canonical heart H0;
• [[14], Proposition 5.4] provides a formula for how simples change under tilting
(i.e. each simple in H′ is a twist or a shift of some simple in H);
• then we deduce that under the induced isomorphism �∗ : ST(�T) ∼= ST(�0), the
standard generators of ST(�T) become the conjugates of the standard generators
of ST(�0).

By comparing the two formulae of the conjugates, we deduce that (6.10) implies (1.2).
Wewill use the same trick again in Sect. 7 to prove the special cases in Remark 3.11,

which completes the generalization from Theorem 6.7 to Theorem 1.

7 Special cases

In this section, we first deal with the two special cases in Remark 3.11. Thenwe discuss
the affine ˜A case in more detail.
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Fig. 16 The Kronecker case

7.1 The Kronecker case

Wefirst discuss the special case I) inRemark 3.11.Note that in case I), all triangulations
of S or S� look the same, cf. Fig. 16. Choose any triangulation T0 of S� as the initial
triangulation. Keep all the notations as above.

The dynamic of proof here is the reverse compared with the previous cases: we will
show the relation between the twist groups first; then the relations between closed arcs
and spherical objects.

First, we claim that (6.10) also holds in this case.

Proposition 7.1 Let S be an annulus with two marked points and T0 a triangulation
of S�. There is a canonical isomorphism

ι : BT(T0)→ ST(�0), (7.1)

sending the generator bi to the generator φi , where �0 is the Ginzburg dg algebra
associated to T0.

Proof Consider an annulus S′� with triangulationT′0 (cf. left picture in Fig. 17), whose
FST quiver is the affine quiver Q′ of type Ã1,2:

We can choose another triangulationT′, as shown in the right picture in Fig. 17, whose
FST quiver is

By Remark 6.8, we have (1.2) for T′. On the other hand, we have the following two
facts:

• the subcategory D0 of D f d(�
′) generated by X ′1 and X ′2 is equivalent to the 3-CY

category for a Kronecker quiver, where X ′i is the spherical object corresponding
to s′i ;
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Fig. 17 Ã1,2 case: T′ on the left and T′0 on the right

• there is a subsurface Y� of S′�, with inherited triangulation from T′ (whose dual
consists of s′1 and s′2), that is isomorphic to any triangulation of an annulus with
two marked points.

Therefore, by identifying D f d(�0) with D0 and S� with Y�, we have

ST(�0) ∼= 〈φX ′1 , φX ′2〉 ∼= 〈Bs′1 ,Bs′2〉 ∼= BT(T0),

which implies the proposition. ��

7.2 The one marked point torus case

In this section, we give the analogue of Proposition 7.1 for the special case II) in
Remark 3.11. The proof is almost the same, by considering a torus with one boundary
component and two marked points on it for instance.

Proposition 7.2 Let S be a torus with one marked point andT0 a triangulation of S�.
There is a canonical isomorphism

ι : BT(T0)→ ST(�0), (7.2)

sending the generator bi to the generator φi , where �0 is the Ginzburg dg algebra
associated to T0.

7.3 Example: annulus case

When S is an annulus, Theorem 6.7, (together with Proposition 7.1) can be stated as
follows.

Theorem 7.3 Let S be an annulus and T be a triangulation of S� with associated
Ginzburg dg algebra�T. Suppose there are p andq marked points on the two boundary
components of S, respectively. Then the spherical twist group ST(�T) is (canonically)
isomorphic to the braid group Br( Ã p,q) of affine Ãp,q .
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Proof The case p = q = 1 is Proposition 7.1, noticing that the braid group Br( Ã1,1)

is a rank 2 free group. The other case follows from Theorem 6.7, noticing that BT(S�)

is (canonically) isomorphic to Br( Ã p,q) by the geometric description of the affine
braid group in [5]. ��

8 On the space of stability conditions

8.1 Stability conditions

First recall Bridgeland’s notion of stability conditions.

Definition 8.1 (cf. [2]) A stability condition σ = (Z ,P) on a triangulated category
D consists of a group homomorphism (the central charge) Z : K (D) → C and full
additive subcategories P(ϕ) ⊂ D for each ϕ ∈ R, satisfying the following axioms:

• if 0 �= E ∈ P(ϕ) then Z(E) = m(E) exp(ϕπ i) for some m(E) ∈ R>0;
• P(ϕ + 1) = P(ϕ)[1], for all ϕ ∈ R;
• if ϕ1 > ϕ2 and Ai ∈ P(ϕi ) then HomD(A1, A2) = 0;
• for each nonzero object E ∈ D there is a finite sequence of real numbers

ϕ1 > ϕ2 > ... > ϕm

and a collection of triangles (the Harder-Narashimhan filtration)

(8.1)

with A j ∈ P(ϕ j ) for all j .

Let I be an interval in R and define P(I ) to be the subcategory generated by
{P(ϕ) | ϕ ∈ I }. The heart of a stability condition σ = (Z ,P) on D is P[0, 1).

An important result by Bridgeland is that all stability conditions on a triangulated
category D form a space Stab(D) that has the structure of a complex manifold. We
are interested in the stability conditions on the 3-CY category D f d(�) for a Ginzburg
dg algebra � arising from quivers with potential. Note that for the stability conditions
on D f d(�) whose heart is the canonical heart H� form a half open half closed n-cell
U (H�) in StabD f d(�) (see [18]). Denote by Stab◦D f d(�) the connected component
of StabD f d(�) that contains U (H�).

8.2 Quadratic differentials

Recall that S is a marked surface with initial triangulation T0, associated Ginzburg dg
algebra �0 and Aut◦D f d(�0) is defined as in (2.7). Denote by Quad♥(S) is the moduli
space of quadratic differentials on S, in the sense of [2, Sect. 6]. The main result there
is as follows.
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Theorem 8.2 [2, Theorem 1.2] As complex manifolds, Stab◦D f d(�0)/Aut◦ ∼=
Quad♥(S).

For our purpose, we prefer to deal with the space Quad(S) of quadratic differentials
on a fixedmarked surface S instead of the moduli space. These two spaces of quadratic
differentials differ by the symmetry of the marked mapping class group MMCG(S),
i.e.

Quad♥(S) = Quad(S)/MMCG(S).

Here, MMCG(S) of a marked surface S is the group of isotopy classes of (orientation
preserving) homeomorphisms of S, where all homeomorphisms and isotopies are
required to fix the set M of marked points as a set.

By [2, Theorem 9.9], there is the short exact sequence

1→ ST(�0)→ Aut◦D f d(�0)→ MMCG(S)→ 1 (8.2)

and the theorem above can be alternatively stated as: Stab◦D f d(�0)/ST ∼= Quad(S).

Thus there is a short exact sequence

1→ π1Stab
◦D f d(�0)→ π1Quad(S)

π−→ ST(�0)→ 1. (8.3)

8.3 On the contractibility

In this subsection, let S be an annulus with p and q marked points on its boundary
components respectively.

Suppose first p �= q. It is straightforward to calculate MMCG(S) in this case: it is
generated by the two rotations along the two boundary components. More precisely,
MCG(S) is the infinite cyclic group generated by the Dehn twist DC along the only (up
to isotopy) non-trivial simple closed curve in S. The two rotations are the p-th and q-th
roots of DC , denoted by r0 and r1, respectively. Then MMCG(S) is the abelian group
with generators r0 and r1 and with relation r

p
0 = rq1 , which fits into the following short

exact sequence

1→ Z〈r0〉 → MMCG(S)→ Zq〈r1〉 → 1.

Besides ξ = r0 · r1 is the universal rotation that corresponds to [1].
Next, as shown in [2, Sect. 12.3],

Quad♥(S) ∼= Confn(C∗)/Zq , (8.4)

where Confn(C∗) denotes the configuration space of n distinct points in C
∗ and Zq

acts by multiplication by a q-th root of unity. By the description of Br( Ã p,q) in [5],
there is short exact sequence

1→ Br( Ã p,q)→ π1Conf
n(C∗)→ Z→ 1. (8.5)
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As Quad♥(S) consists of differentials of the form

�(z) =
n

∏

i=1
(z − zi )

dz⊗2

z p+2
, zi ∈ C

∗, zi �= z j

and considered modulo the action of C rescaling z. Note that zi corresponds to the
decorating points in S�, the rotation rq becomes the Zq symmetry at the origin and
the rotation rp becomes the Zp symmetry at the infinity.

Thus, combining the short exact sequences above and the calculation of fundamental
groups of spaces in (8.4), we have the commutative diagram (8.6), which implies the
dashed short exact sequence.

(8.6)

Therefore we have π1Quad(S) = Br( Ã p,q) and hence π1Quad(S) ∼= ST(�0) by
Theorem 7.3. Further, by examining the generators, we deduce that the surjective map
π in (8.3) gives the isomorphism above. Thus, Stab◦D f d(�0) is simply connected.

In the case when p = q, MMCG(S�) contains one more Z2 symmetry. In the same

way, we will have π1Quad(S) = Br( Ã p,q) and simply connectedness.

Theorem 8.3 Let S be an annulus (without punctures) and D f d(�0) be the 3-CY
category associated to some triangulation of S. Then Stab◦D f d(�0) is the universal
cover of Confn(C∗).

By [4, Theorem 2.7], the universal cover of Confn(C∗) is contractible. So we have:

Corollary 8.4 Stab◦D f d(�0) is contractible.

9 Proof of Proposition 5.9

9.1 Preparation

See [21, Appendix A] for the details of homological algebra calculations for the string
model in § 5.2. The key results are the following two.
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Proposition 9.1 [21, Corollary A.9] Let η1, η2 be two closed arcs in S� that share
an endpoint. Fix orientations of them and suppose that they share the starting end-
point Z ∈ �. Then there is a unique non-zero homomorphism ζ Z

12 ∈ Hom•(Xα, Xβ)

induced by Z. Moreover, suppose there is another closed arc η3 starting at Z, such
that η1, η3, η2 are in a clockwise order at Z. Then ζ Z

12 is the composition of ζ Z
13 with

ζ Z
23.

Proposition 9.2 [21, PropositionA.11] Let α, β and η be three closed arcs inCA(S�)

such that at least one of them is in CA(S�). Moreover, we require that α, η, β are in a
clockwise order to form a contractible triangle in S�. Then there are representatives
X? in ˜X(?) for ? = α, β, η such that there is a non-trivial triangle

Xβ → Xη → Xα → Xβ [1], (9.1)

where the homomorphisms are of the form in Proposition 9.1.

Remark 9.3 Note that, in the setting of Lemma 3.14, the line segment l, from Z0 to
some point Y in η (cf. Fig. 8), plays an important role. We will say η decomposes into
α and β w.r.t. l.

Also note that the condition Int(η1, η2) = 1
2 in 3◦ forces that η1, η2 are closed arcs

in CA(S�).

9.2 The first induction

Use double induction, the first on

I = Int(T0, η1)+ Int(T0, η2). (9.2)

The starting case is when I = 2. Then both η1 and η2 are in T∗0, since the only
general closed arcs that have exactly one intersection with T0 are the arcs in T∗0. It is
straightforward to check the proposition in this case. Now suppose that the proposition
holds for any (η1, η2) with I ≤ r and consider the case when I = r + 1.

First, let us prove 1◦ for Xη (where η = η1 or η = η2 in CA(S�)). Apply
Lemma 3.14 to decompose η into α and β in CA(S�) with Int(α, β) = 1

2 (cf.
Fig. 8). Then by Proposition 9.2, there is a non-trivial triangle (9.1) By the induc-
tive assumption, the proposition holds for α and β. Then α, β ∈ CA(S�) implies
Xα, Xβ ∈ Sph(�0) and Int(α, β) = 1

2 implies

dim Hom•(Xα, Xβ) = 1.

Hence (9.1) implies

Xη = φXα (Xβ) = φ−1Xβ
(Xα), (9.3)

and thus Xη is also in Sph(�0).
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Fig. 18 The three cases for possible position of α and β

9.3 The second induction

Next, we prove 2◦ and 3◦. Use the second induction on

min{Int(T0, η1), Int(T0, η2)}.

Without loss of generality, suppose that

Int(T0, η1) ≤ Int(T0, η2). (9.4)

The starting case is when Int(T0, η1) = 1, which implies that η1 = si for some i .
Note that we have Int(T0, η2) > 1. Applying Lemma 3.14 to decompose η2 into α

and β, w.r.t. some decorating point Z0. As above, we get a non-trivial triangle (9.1)
by Proposition 9.2. There are two cases.

Case i If Z0 is not an endpoint η1.

Then the inductive assumption holds for (η1, α) and (η1, β). For 2◦, we have
Int(η1, α) = 0 = Int(η1, β) and hence

Hom•(Xη1 , Xα) = 0 = Hom•(Xη1 , Xβ). (9.5)

Applying Hom(Xη1 , ?) to triangle (9.1), we obtain (5.12). For 3◦, we have

{Int(η1, α), Int(η1, β)} = { 12 , 0},

and hence one of Hom•(Xη1 , Xα) and Hom•(Xη1 , Xβ) is zero while the other one has
dimension one. Applying Hom(Xη1 , ?) to triangle (9.1), we obtain (5.13).

Case ii If Z0 is an endpoint η1.

For 2◦, we have Int(η1, α) = 1
2 = Int(η1, β) and thus (by the inductive assumption)

dim Hom•(Xη1 , Xα) = 1 = dimHom•(Xη1 , Xβ). (9.6)

There are three cases (as shown inFig. 18) for the possible positions ofα andβ in the tri-
angle�0 that contains Z0. Since η1 does not intersect η2, the line segments of η1, α, β
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in�0 are in a clockwise order. By Proposition 9.1, when applying Hom(Xη1 , ?) to the
triangle (9.1), there will be an isomorphism

Homt (Xη1 , α)
�−→ Homt (Xη1 , β[1]) (9.7)

in the long exact sequence for some t ∈ Z, which implies (5.12) by (9.6).
For 3◦, without loss of generality, suppose that α and η1 do not intersect in S� −�

but share both endpoints, and Int(η1, β) = 1
2 . Then dimHom•(Xη1 , Xβ) = 1. If α is

in T∗0, then we have α = si = η1. Applying the inductive assumption to (η1, β), we
have η2 = Bη1(β) and Xη2 = φXη1

(Xβ). Then

dimHom•(Xη1 , Xη2) = dimHom•(Xη1 , Xβ) = 1,

as required. Otherwise, apply Lemma 3.14 to decompose α into closed arcs α′ and β ′.
By applying the inductive assumption to (η1, α

′) and (η1, β
′), we deduce that

dimHom•(Xη1 , Xα′) = 1 = dimHom•(Xη1 , Xβ ′).

and hence dimHom•(Xη1 , Xα) is 0 or 2.Moreover, Proposition 9.1 implies an isomor-
phism between a subspace of Hom•(Xη1 , α) and Homt (Xη1 , β[1]) (cf. (9.7)), which
implies

dim Hom•(Xη1 , Xη2) ≤ dimHom•(Xη1 , Xα)+ dimHom•(Xη1 , Xβ)− 2 = 1.

One the other hand,

dim Hom•(Xη1 , Xη2) ≡ dimHom•(Xη1 , Xα)+ dimHom•(Xη1 , Xβ) ≡ 1(mod2).

Therefore (5.13) holds as required.

9.4 Inductive step of the second induction

To finish the proof, we only need to show that if 2◦ and 3◦ hold for I ≤ r or I = r +1
with Int(T0, η1) ≤ r1, then they hold for I = r + 1 with Int(T0, η1) = r1 + 1 (recall
that I is defined in (9.2) and we assume (9.4)).

Apply Lemma 3.14 to decompose η = η1 into α, β w.r.t. some decorating point Z0
and some line segment l (see Fig. 8).

Case i The line segment l does not intersect η2 in S� − �.
Then neither α nor β intersect η2 in S�−�. Since η1 and η2 don’t share two endpoints,
without loss of generality, suppose that the common endpoint of η1 and β is not an
endpoint of η2. Consider

η′1 = Bβ(η1) = α and η′2 = Bβ(η2).
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Fig. 19 η′1 = α and η′2

See Fig. 19 for the two possibilities, where Z ′ and Z ′′ could coincide.
As in (9.3), we have

Xη1 = φ−1Xβ
(Xα) = φ−1Xβ

(Xη′1) and Xη2 = φ−1Xβ
(Xη′2),

which implies

Hom•(Xη1 , Xη2) � Hom•(Xη′1 , Xη′2) (9.8)

Moreover, we have

Int(T0, η
′
1) = Int(T0, α) = Int(T0, η1)− Int(T0, β);

Int(T0, η
′
2) = Int(T0,Bβ(η2)) ≤ Int(T0, η2)+ Int(T0, β).

Thus 2◦ or 3◦ hold for (η′1, η′2) by the inductive assumption, which implies that they
also hold for (η1, η2) by (9.8).

Case ii The line segment l intersects η2.

Let Y ′ be their nearest intersection to Z0. Then we can decompose η2 to α and β,
using the line segment l ′ = Y Z0(⊂ l) as in Lemma 3.14. There is a small difference
here, that Z0 might be an endpoint of η2, so α and β are in CA(S�) (i.e. they might
be L-arc instead of closed arc). Since Z0 is not an endpoint of η1, we deduce that

1
2 ≥ Int(η1, η2) = Int(η1, α)+ Int(η1, β).

As Int(T0, α)+ Int(T0, β) = Int(T0, η2), the inductive assumption applies to (η1, α)

and (η1, β). Then dimHom•(Xη1 , Xα) and dimHom•(Xη1 , Xβ) are both zero (for
2◦) and are {0, 1} for 3◦. Either way, we will have Hom•(Xη1 , Xη2) = 2Int(η1, η2) as
required.

10 Further studies

10.1 Algebraic twist group of quivers with potential

Let (Q,W ) be a rigid quiver with potential such that there is no double arrow in Q
and W is the sum of some cycles in Q.
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Definition 10.1 The algebraic twist group AT(Q,W ) of such a quiver with potential
(Q,W ) is the group generated by {ti | i ∈ Q0} subject to the relations

1◦. ti t j = t j ti if there is no arrow between i and j in Q,
2◦. ti t j ti = t j ti t j if there is exactly one arrow between i and j in Q,
3◦. Ri = R j for any i, j (cyclic relation), if there is a cycle Y : 1→ 2→ · · · →
m → 1 in Q (or a term in W by definition), where Ri = ti ti+1 · · · t2m+i−3 with
convention k = m + k here.

First, we show that any cyclic relations in Definition 10.1, that correspond to the
same cycle Y , are equivalent to each other.

Lemma 10.2 Let m ≥ 3 and suppose that t1, t2, · · · , tm satisfy the relations

{

t j ti t j = ti t j ti , | j − i | = 1 or {i, j} = {1,m},
ti t j = t j ti , otherwise.

(10.1)

Let k = m + k and Ri = ti ti+1 · · · t2m+i−3. Then the relation R1 = R2 is equivalent
to R1 = Ri for any 3 ≤ i ≤ m.

Proof By the relations in (10.1), it is straightforward to check the following

ti R1 = R1ti−2, i = 2, · · · ,m − 1.
ti Ri+1 = Ri ti−2, i = 3, · · · ,m.

Then we have

R1 = Ri ⇐⇒ R1ti−2 = Ri ti−2
⇐⇒ t1R1 = ti Ri+1
⇐⇒ R1 = Ri+1

for any i = 2, · · · ,m − 1, which implies the lemma. ��
A consequence of Lemma 10.2 is

Ri = R j ⇐⇒ Rk = Rl

provided i �= j and k �= l.
The following result was originally in [15] for type A and D, which is also inde-

pendently obtained by Grant-Marsh for all Dynkin types.

Proposition 10.3 If (Q,W ) is mutation-equivalent to a Dynkin diagram Q, then the
algebraic twist group AT(Q,W ) is isomorphic to the corresponding braid group
Br(Q).

Remark 10.4 We believe that the proposition above also holds for the affine Dynkin
case, as long as Q does not have double arrows. The point is, one should be able to
define an algebraic twist group for a (good) quiver with potential, which provides a
presentation of the corresponding spherical twist group (or/and Dehn twist group). ��
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10.2 Intersection formulae

Interpreting the intersection formulae between open (resp. closed) arcs as dimension
of Hom (resp. Ext) play a crucial role in many proofs (e.g. in [17] and in [20]). We
have the following conjecture.

Conjecture 10.5 Let α, β ∈ CA(S�). We have

dimHom•(˜X(α), ˜X(β)) = 2Int(α, β). (10.2)

Moreover, we have another conjectured formula.

Conjecture 10.6 Denote by OA◦(S�) the set of open arcs that appear in triangu-
lations in EG◦(S�). Then there is a map ρ : OA◦(S�) → per�0, such that any
η ∈ CA(S�),

dimHom•(ρ(γ ), ˜X(η)) = Int(γ, η). (10.3)

We will prove these two intersection formulae in [21].
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