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We study the Ginzburg dg algebra �T associated with the quiver with potential arising

from a triangulation T of a decorated marked surface S�, in the sense of [22]. We

show that there is a canonical way to identify all finite-dimensional derived categories

Dfd(�T), denoted by Dfd(S�). As an application, we show that the spherical twist group

ST(S�) associated with Dfd(S�) acts faithfully on its space of stability conditions.

1 Introduction

Cluster algebras and quiver mutation were introduced by Fomin and Zelevinsky [8], and

(additive) categorification of such structures, often in terms of triangulated categories,

has successfully contributed to the development of a rich theory, see for example, the

surveys by Keller [14, 17] or Reiten [25]. Derksen–Weyman–Zelevinsky [6] introduced

quivers with potential (QP) and the corresponding Jacobian algebras and studied

mutation of QP. Keller–Yang [18] studied the categorification of such mutations via

Ginzburg dg algebras [10]. One of the applications of their categorification is motivic

Donaldson–Thomas invariants, using quantum cluster algebras [16].

Additive categorification is deeply related to classical tilting theory [1, 5].

Algebras related by tilting are derived equivalent, while (Jacobian) algebras related by

mutation of QP are in general not. However, Keller–Yang constructed in [18] an equiv-
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alence between the derived category D(�(Q, W)) of the Ginzburg dg algebra �(Q, W)

of a QP (Q, W) and that of D(�(Q̃, W̃)) of a QP (Q̃, W̃), obtained by a single mutation

from (Q, W). The equivalence also restricts to the subcategories of dg modules of finite-

dimensional homology Dfd(�(Q, W)) and Dfd(�(Q̃, W̃)). Note that these subcategories

are 3-Calabi–Yau, by [15]. However, in general there is no canonical choice for such

equivalences, basically because mutation of QPs is only well defined up to a non-

canonical choice of decomposition of a QP into a trivial part and a reduced part (see

Section 2.3).

We consider a special class of QP, that is, those arising from (unpunctured)

marked surfaces S in the sense of Fomin–Shapiro–Thurston [7] and Labardini–Fragoso

[20]. When studying the 3-Calabi–Yau categories and stability conditions, it is natural

to decorate the marked surface S with a set � of decorating points (which are zeroes

of the corresponding quadratic differentials, cf. [4, 22]). The corresponding 3-Calabi–

Yau category, denoted by Dfd(S�), can be embedded into a Fukaya category of a quasi-

projective 3-folds. More details about motivation and background can be found in [22].

Building on the prequels [22, 24], we prove a class of intrinsic derived equiva-

lences that are compatible with Keller–Yang’s and are stronger in this special case. More

precisely, this class of equivalences implies the following main result.

Theorem A. (see Theorem 4.2) The triangle equivalence (up to natural isomorphism)

of the canonical 3-Calabi–Yau category Dfd(S�) associated with a decorated marked

surface S�, induced by a mutation sequence of QP, is path independent.

Given a Ginzburg dg algebra �, one can consider the spherical twist group ST(�)

of Dfd(�) in AutDfd(�). In particular, for a decorated marked surface S�, we study the

spherical twist group ST(S�) and the principal component Stab◦(S�) of the space of

stability conditions on Dfd(S�) (see Section 5 for details). We then obtain the following,

as an application of our main theorem.

Theorem B. (Theorem 5.5) The spherical twist group ST(S�) acts faithfully on the

principal component Stab◦(S�) of the space of stability conditions on Dfd(S�).

We give preliminary results and background in Section 2. We give an explicit

description of Keller–Yang’s equivalence on the finite derived category in Section 3. We

prove our main result Theorem A in Section 4, and we give background for and proof of

Theorem B in Section 5.

Throughout the paper, a composition fg of morphisms f and g means first g and

then f . But a composition ab of arrows a and b means first a then b. Any (dg) module is

a right (dg) module.
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2 Preliminaries

2.1 Decorated marked surfaces

Throughout the paper, S denotes a marked surface without punctures in the sense of

Fomin–Shapiro–Thurston [7]. That is, S is a connected compact surface with a fixed

orientation and with a finite set M of marked points on the (non-empty) boundary ∂S,

having the property that each connected component of ∂S contains at least one marked

point. Up to homeomorphism, S is determined by the following data:

• the genus g;

• the number |∂S| of boundary components;

• the integer partition of |M| into |∂S| parts describing the number of marked

points on each boundary component.

We require that

n = 6g + 3|∂S| + |M| − 6 (2.1)

is at least one. A triangulation of S is a maximal collection of non-crossing and non-

homotopic simple curves on S, whose endpoints are in M. It is well known that any

triangulation of S consists of n simple curves ([7, Proposition 2.10]) and divides S into

ℵ = 2n + |M|
3

(2.2)

triangles ([22, (2.9)]).

Definition 2.1 ([22, Definition 3.1]). A decorated marked surface S� is a marked

surface S together with a fixed set � of ℵ ‘decorating” points in the interior of S (where

ℵ is defined in (2.2)), which serve as punctures. Moreover, a (simple) open arc in S� is

(the isotopy class of) a (simple) curve in S� − � that connects two marked points in M,

which is neither isotopic to a boundary segment nor to a point.

A triangulation of T of S� is a collection of simple open arcs that divides S� into

ℵ triangles, each containing exactly one decorating point inside (cf. [22, §3]). We also

have the notion of (forward/backward) flips of triangulations of S�, cf. Figure 1. Denote

by EG(S�) the exchange graph of triangulations of S�, that is, the oriented graph whose

vertices are the triangulations and whose edges are the forward flips between them.
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Fig. 1. A forward flip.

From now on, we will fix a connected component EG◦(S�). When we say a

triangulation of S� later, we always mean that it is in this component.

2.2 QP and Ginzburg dg algebras

Let Q be a quiver without loops or oriented 2-cycles. A potential W is a linear

combination of cycles in Q. Denote by Q0 the set of vertices of Q and by Q1 the set

of arrows of Q. Denote by s(a) (resp. t(a)) the source (resp. target) of an arrow a. Denote

by ei the trivial path at a vertex i ∈ Q0.

Fix an algebraically closed field k. All categories considered are k-linear. Denote

by � = �(Q, W) the Ginzburg dg algebra (of degree 3) associated with a quiver with

potential (Q, W), which is constructed as follows (cf. [10, 18]):

• Let Q be the graded quiver whose vertex set is Q0 and whose arrows are:

1. the arrows in Q1 with degree 0;

2. an arrow a∗ : j → i with degree −1 for each arrow a : i → j in Q1;

3. a loop e∗
i : i → i with degree −2 for each vertex i in Q0.

• The underlying graded algebra of � is the completion of the graded path

algebra kQ in the category of graded vector spaces with respect to the ideal

generated by the arrows of Q.

• The differential d of � is the unique continuous linear endomorphism,

homogeneous of degree 1, which satisfies the Leibniz rule and takes the

following values:

– d a = 0 for any a ∈ Q1,

– d a∗ = ∂aW for any a ∈ Q1, and

– d
∑

i∈Q0
e∗

i = ∑
a∈Q1

[a, a∗].

Denote by D(�) the derived category of �. We will focus on studying the finite-

dimensional derived category Dfd(�) of �, which is the full subcategory of D(�)
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consisting of the dg �-modules whose total homology is finite dimensional. This

category is 3-Calabi–Yau [15], that is, for any pair of objects L, M in Dfd(�), we have

a natural isomorphism

HomDfd(�)(L, M) ∼= D HomDfd(�)(M, L[3]), (2.3)

where D = Homk(−, k).

Following [7, 20], one can associate a quiver with potential (QT, WT) to each

triangulation T of S� as follows:

• the vertices of QT are indexed by the open arcs in T;

• each clockwise angle in a triangle of T gives an arrow between the vertices

indexed by the edges of the angle;

• each triangle in T with three edges being open arcs gives a 3-cycle (up to

cyclic permutation) and the potential WT is the sum of such 3-cycles.

Then we have the corresponding Ginzburg dg algebra �T = �(QT, WT) and the 3-Calabi–

Yau category Dfd(�T).

Remark 2.2. There are possibly different (non-degenerate) potentials on QT in some

cases, whose corresponding 3-Calabi–Yau categories are most likely not equivalent to

each other (see [9, Proposition 9.9] and [21, Theorem 3.6, Remark 5.4, and Example

5.5]). However, we will only study the one in [4, 20, 22, 26], which is canonical/more

interesting as the associated 3-Calabi–Yau category can be embedded into the derived

Fuakaya category.

2.3 Mutations and Keller–Yang’s equivalences

Let (Q, W) be a QP. For a vertex k in Q, the pre-mutation μ̃k(Q, W) = (Q̃, W̃) at k is a new

QP, defined as follows. The new quiver Q̃ is obtained from Q by

Step 1 For any composition ab of two arrows with t(a) = s(b) = k, add a new arrow

[ab] from s(a) to t(b).

Step 2 Replace each arrow a with s(a) = k or t(a) = k by an arrow a′ with s(a′) =
t(a) and t(a′) = s(a).

The new potential

W̃ = W̃1 + W̃2,
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where W̃1 is obtained from W by replacing each composition ab of arrows with t(a) =
s(b) = k by [ab], and W̃2 is the sum of the 3-cycles of the form [ab]b′a′. Denote by �̃ =
�(Q̃, W̃) the corresponding Ginzburg dg algebra. Let Pi = ei� be the indecomposable

direct summand of � corresponding to a vertex i. Denote by P?
i a copy of Pi, where ? can

be an arrow or a pair of arrows.

The forward mutation of � at Pk in per � is μ
�

k(�) = ⊕
i∈Q0

P̃i, where P̃i = Pi if

i 
= k, and P̃k has the underlying graded space

|̃Pk| = Pk[1] ⊕
⊕

ρ∈Q1:t(ρ)=k

Pρ

s(ρ)

with the differential

dP̃k
=

⎛⎝dPk[1] 0

ρ dPρ
s(ρ)

⎞⎠ .

Construction 2.2 ([18]). There is a map between dg algebras

f? : �̃ → Hom�(μ
�

k(�), μ�

k(�))

constructed as follows, where
a−→ means the left multiplication by a:

(1) for an arrow α ∈ Q1 with t(α) = k,

• fα′ : Ps(α) → P̃k of degree 0 is given by

Ps(α)

⎛⎜⎝ 0

δα,ρ

⎞⎟⎠
−−−−−→ Pk[1] ⊕

⊕
ρ∈Q1:t(ρ)=k

Pρ

s(ρ),

where δα,ρ = 1 if α = ρ and 0 else;

• fα′∗ : P̃k → Ps(α) of degree -1 is given by

Pk[1] ⊕
⊕

ρ∈Q1:t(ρ)=k

Pρ

s(ρ)

(
−αe∗

k −αρ∗
)

−−−−−−−−−−−−→ Ps(α)

(2) for an arrow β ∈ Q1 with s(β) = k,
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• fβ ′ : P̃k → Pt(β) of degree 0 is given by

Pk[1] ⊕
⊕

ρ∈Q1:t(ρ)=k

Pρ

s(ρ)

(
β∗ ∂ρβW

)
−−−−−−−−−→ Pt(β)

• fβ ′∗ : Pt(β) → P̃k of degree -1 is given by

Pt(β)

⎛⎜⎝−β

0

⎞⎟⎠
−−−−→ Pk[1] ⊕

⊕
ρ∈Q1:t(ρ)=k

Pρ

s(ρ)

(3) for a pair of arrows α, β ∈ Q1 with t(α) = k = s(β),

f[αβ] : Pt(β)

−αβ−−→ Ps(α)

and

f[αβ]∗ : Ps(α)

0−→ Pt(β)

(4) for an arrow γ in Q1 not incident to k, fγ : Pt(γ )

γ−→ Ps(γ ) and fγ ∗ : Ps(γ )

γ ∗
−→ Pt(γ );

(5) for a vertex i ∈ Q0 different from k, fe′∗
i

: Pi

e∗
i−→ Pi;

(6) fe′∗
k

: P̃k → P̃k of degree -2 is given by

Pk[1] ⊕
⊕

ρ∈Q1:t(ρ)=k

Pρ

s(ρ)

⎛⎜⎝−e∗
k −ρ∗

0 0

⎞⎟⎠
−−−−−−−−−−→ Pk[1] ⊕

⊕
ρ∈Q1:t(ρ)=k

Pρ

s(ρ).

The main result in [18] is the following derived equivalence.

Theorem 2.4 ([18, Proposition 3.5 and Theorem 3.2]). The map f? is a homomorphism

of dg algebras. In this way, μ
�

k(�) becomes a left dg �̃-module. Moreover, the �̃-�-

bimodules μ
�

k(�) induces a triangle equivalence F =?
L⊗�̃ μ

�

k(�) : D(�̃) → D(�), with

inverse Hom�(μ
�

k(�), ?) : D(�) → D(�̃).

Introduced in [6], the mutation μk(Q, W) of (Q, W) at k is obtained from (Q̃, W̃)

by taking its reduced part (Q̃red, W̃red). That is, there is a right equivalence between

(Q̃, W̃) and the direct sum of QP (Q̃triv, W̃triv) ⊕ (Q̃red, W̃red) such that (Q̃triv, W̃triv)

is trivial (in the sense that its Jacobian algebra is the path algebra of the vertices) and
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(Q̃red, W̃red) is reduced (in the sense that W̃red contains no 2-cycles). Here, the direct

sum of two QP is a quiver with potential, whose quiver is the union of arrows in the

two quivers and whose potential is the sum of the two potentials. A right equivalence

between two QP is a homomorphism of path algebras of the quivers, which sends the

first potential to the second.

In general, the choice of such right equivalence is not unique. However, for the

quiver with potential (QT, WT) associated with a triangulation T of a decorated surface,

the right equivalence can be the identity, which is a canonical choice. This is because

any 2-cycle in the potential W̃ of the pre-mutation (Q̃, W̃) = μ̃k(QT, WT) contains no

common arrows with any other terms in W̃ (see Case 1 in the proof of [20, Theorem 30]).

So one can remove all of the 2-cycles from W̃ and remove the arrows in these 2-cycles

from Q̃ to get the reduced part. This means that the mutation μk(QT, WT) is a direct

summand of the pre-mutation μ̃k(QT, WT). Then there is a canonical quasi-isomorphism

between �̃ and �(μk(QT, WT)).

Moreover, by [20, Theorem 30], μk(QT, WT) is the same as (QT′ , WT′), where T′ =
f �

k (T) is the forward flip of T w.r.t. k. Then we have a canonical quasi-isomorphism

between �̃ and �T′ , which makes μ
�

k(�T) a �T′-�T-bimodules. By Theorem 2.3, we have

the following notion.

Definition 2.5 (Keller–Yang’s equivalence). Using the above notation, we call the trian-

gle equivalence

κT
T′ :=?

L⊗�T′ μ
�

k(�T) : D(�T′) → D(�T).

the Keller–Yang’s equivalence from T to T′.

3 Keller–Yang’s Equivalences on Finite-dimensionalDerived Categories

3.1 Hearts and spherical objects

A bounded t-structure [2] on a triangulated category D is a full subcategory P ⊂ D with

P[1] ⊂ P such that

• if one defines

P⊥ = {G ∈ D | HomD(F, G) = 0, ∀F ∈ P},

then, for every object E ∈ D, there is a (unique) triangle F → E → G → F[1] in

D with F ∈ P and G ∈ P⊥.

• for every object M, the shifts M[k] are in P for k � 0 and in P⊥ for k � 0.
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The heart of a bounded t-structure P is the full subcategory

H = P⊥[1] ∩ P,

and any bounded t-structure is determined by its heart.

Note that any heart of a triangulated category is abelian [2]. Let (T ,F) be a

torsion pair in a heart H, that is, HomH(T ,F) = 0, and for any object X ∈ H, there

exists a short exact sequence 0 → T → X → F → 0 with T ∈ T and F ∈ F . Then

there are hearts H� and H�, called forward/backward tiltings of H with respect to this

torsion pair (in the sense of Happel–Reiten–Smalø[11]). In particular, the forward (resp.

backward) tilting is simple if F (resp. T ) is generated by a single rigid simple in H,

see [19, §3] for details. The exchange graph EG(D) of a triangulated category D is the

oriented graph whose vertices are all hearts in D and whose edges correspond to simple

forward tiltings between them.

Let T be a triangulation in EG◦(S�). Denote by EG◦(�T) the principal component

of the exchange graph EG(Dfd(�T)), that is, the connected component containing the

canonical heart HT. Denote by

Sph(�T) =
⋃

H∈EG◦(�T)

SimH (3.1)

the set of reachable spherical objects (cf. Definition 5.1), where SimH is the set of simple

objects in H. By [23, Proposition 3.2 and (3.3)], there is an isomorphism of oriented

graphs

EG◦(S�) ∼= EG◦(�T) (3.2)

that sends T to the canonical heart HT. We denote by HT′
T the heart corresponding to

T′ ∈ EG◦(S�).

3.2 Koszul duality

Let � be the Ginzburg dg algebra associated with a quiver with potential (Q, W). Let H
be a heart obtained from the canonical heart by a sequence of simple tiltings. Denote

by S the direct sum of non-isomorphic simples in H. Consider the dg endomorphism

algebra

E(S) = Hom�(S, S). (3.3)
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Since S generates Dfd(�) (by taking extensions, shifts in both directions and direct

summands), by [12] (cf. also [13, Section 8]), we have the following triangle equivalence:

(3.4)

The homology of E(S) is the Ext-algebra

E(H) := ExtZDfd(�)(S, S) =
⊕
n∈Z

HomDfd(�)(S, S[n]).

In general, one needs to consider a certain A∞-structure on E(H) (which is induced

from the potential W, see [15, ]) such that it is derived equivalent to E(S). However,

in the surface case, only ordinary multiplication in the induced A∞-structure is non-

trivial (see [24, Lemma A.2]). So we have that for any T, T′ ∈ EG◦(S�), there is a triangle

equivalence

(3.5)

where ST′
T is the direct sum of non-isomorphic simples in the heart HT′

T .

3.3 Keller–Yang’s equivalences on simples

Let � be the Ginzburg dg algebra associated with a quiver with potential (Q, W). Denote

by Si the simple �-module corresponding to a vertex i of Q. There is a short exact

sequence of dg �-modules

where ζi is the canonical projection from Pi to Si and

ker(ζi) =
⊕

α:i→j∈Q1

αPj

with the induced differential. Therefore, Si has a cofibrant resolution (see [18, Section

2.12] for definition and properties of this notion) pSi with underlying graded vector
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space

|pSi| = Pi[3] ⊕
⊕

ρ∈Q1:t(ρ)=i

Pρ

s(ρ)[2] ⊕
⊕

τ∈Q1:s(τ )=i

Pτ
t(τ )[1] ⊕ Pi (3.6)

and with the differential

dpSi
=

⎛⎜⎝
dPi [3] 0 0 0

ρ dPs(ρ)[2] 0 0

−τ∗ −∂ρτ w dPt(τ )[1] 0

e∗
i ρ∗ τ dPi

⎞⎟⎠ . (3.7)

Note that any morphism from Si to Sj in Dfd(�) is induced by a homomorphism of dg

�-modules from pSi to Sj. Hence each arrow in Q1 starting at i or the trivial path ei at i

induces a morphism πα in Dfd(�) starting at Si as follows

• πei
: Si → Si is the identity induced by the projection from Pi to Si;

• πτ : Si → Sj[1] for τ : i → j ∈ Q1 is induced by the projection from Pt(τ )[1] to

Sj[1];

• πρ∗ : Si → Sj[2] for ρ : j → i ∈ Q1 is induced by the projection Ps(ρ)[2] to Sj[2];

• πe∗
i

: Si → Si[3] is induced by the projection from Pi[3] to Si[3].

The morphisms π? above can be extended naturally to elements in ExtZDfd(�)
(S, S).

Moreover, they form a basis.

Proposition 3.1. [18, Lemma 2.15 and its proof] The morphisms πα, where α is a trivial

path or an arrow in Q, form a basis of E(H�), where H� is the canonical heart.

Let (Q̃, W̃) be the pre-mutation of (Q, W) at a vertex k and �̃ the corresponding

Ginzburg dg algebra. Let F : D(�̃) → D(�) be the triangle equivalence given in

Theorem 2.3. Denote by S̃i the simple �̃-module corresponding to i ∈ Q̃0 = Q0.

Construction 3.2. We define objects S�

i , i ∈ Q0, in D(�) as follows. For i 
= k, define S�

i

by the triangle

Si[−1]
πρ [−1]−−−−→

⊕
ρ∈Q1
s(ρ)=i
t(ρ)=k

Sρ

t(ρ) → S�

i → Si,

where Sρ

k is a copy of Sk; for i = k, define S�

k to be Sk[1]. Note that for a vertex j ∈ Q0, if

there is no arrow from j to k then S�

j = Sj.
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By replacing Pjs by P̃js in (3.6) and (3.7), we get the cofibrant resolution pS̃i of

S̃i. For i 
= k, by Construction 2.2 (cf. also the proof of [18, Lemma 3.12]), we have that

F(pS̃i) has the underlying graded space

Pi[3] ⊕ ⊕
α∈Q1

s(α) 
=k
t(α)=i

Pα
s(α)[2] ⊕ ⊕

a,b∈Q1
t(a)=s(b)=k

t(b)=i

Pa,b
s(a)[2] ⊕ ⊕

c∈Q1
s(c)=i
t(c)=k

Pc
k[3] ⊕ ⊕

p,q∈Q1
s(p)=i

t(p)=t(q)=k

Pp,q
s(q)[2]

⊕ ⊕
β∈Q1
s(β)=i
t(β) 
=k

Pβ

t(β)[1] ⊕ ⊕
l,g∈Q1
s(l)=i

t(l)=s(g)=k

Pl,g
t(g)[1] ⊕ ⊕

h∈Q1
s(h)=k
t(h)=i

Ph
k [2] ⊕ ⊕

x,y∈Q1
t(x)=s(y)=k

t(y)=i

Px,y
s(x)[1] ⊕ Pi

with the differential

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dPi [3]

α dPα
s(α)

[2]

ab 0 d
Pa,b
s(a)

[2]

0 0 0 dPc
k [3]

δp,q 0 0 δc,pq d
P

p,q
s(q)

[2]

−β∗ −∂αβW −∂abβW 0 0 dβ

Pt(β)[1]

0 −∂αlgW 0 −δc,lg∗ −δp,l∂qgW 0 d
P

l,g
t(g)

[1]

−h 0 0 0 0 0 0 d
Ph
k [2]

0 0 −δa,xδb,y 0 0 0 0 −δh,yx d
P

x,y
s(x)

[1]

e∗
i α∗ 0 −ce∗

k −pq∗ β lg −h∗ −∂xyW dPi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

On the other hand, as a dg �-module, S�

i has a cofibrant resolution pS�

i whose

underlying graded space is

Pi[3] ⊕ ⊕
α̃∈Q1

s(̃α) 
=k
t(̃α)=i

Pα̃
s(̃α)[2] ⊕ ⊕

h̃∈Q1
s(̃h)=k
t(̃h)=i

Ph̃
k [2] ⊕ ⊕̃

β∈Q1
s(β̃)=i
t(β̃) 
=k

Pβ̃

t(β̃)
[1] ⊕ ⊕

σ∈Q1
s(σ )=i
t(σ )=k

Pσ
k [1] ⊕ Pi

⊕ ⊕
c̃∈Q1
s(̃c)=i
t(̃c)=k

Pc̃
k[3] ⊕ ⊕

p̃,̃q∈Q1
s(̃p)=i

t(̃p)=t(̃q)=k

Pp̃,̃q
s(̃q)

[2] ⊕ ⊕
l̃,̃g∈Q1

s(̃l)=i
t(̃l)=s(̃g)=k

P̃l,̃g
t(̃g)

[1] ⊕ ⊕
τ∈Q1
s(τ )=i
t(τ )=k

Pτ
k

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/17/12967/5582721 by Tsinghua U
niversity user on 29 April 2022



Decorated marked surfaces III: The derived category of a decorated marked surface 12979

with the differential⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dPi[3]

α̃ d
Pα̃
s(̃α)

[2]

h̃ 0 d
Ph̃
k [2]

−β̃∗ −∂α̃β̃W −∂h̃β̃W d
P
β̃

t(β̃)
[1]

−σ ∗ −∂α̃σ W 0 0 dPσ
k [1]

e∗
i α̃∗ h̃∗ β̃ σ dPi

0 0 0 0 0 0 d
Pc̃
k [3]

δp̃,̃q 0 0 0 0 0 δ̃c,̃pq̃ d
P

p̃,̃q
s(̃q)

[2]

0 ∂α̃̃l̃gW 0 0 0 0 −δ̃c,̃lg̃
∗ −δp̃,̃l∂̃q̃gW d

P̃
l,̃g
t(̃g)

[1]

0 0 0 0 δσ ,τ 0 δ̃c,τ e∗
k δp̃,τ q̃∗ δ̃l,τ g̃ dPτ

k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have a homomorphisms of dg �-modules ϕi : F(pS̃i) → pS�

i as follows:

ϕi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 δα,̃α 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −δh,̃h 0 0
0 0 0 0 0 δβ,β̃ 0 0 −∂xyβ̃W 0

0 0 0 −δc,σ e∗
k −δp,σ q∗ 0 δl,σ g 0 0 0

0 0 0 0 0 0 0 0 0 1
0 0 0 δc,̃c 0 0 0 0 0 0
0 0 0 0 δp,̃pδq,̃q 0 0 0 0 0
0 0 0 0 0 0 −δl,̃lδg,̃g 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similarly, for i = k, F(pS̃k) has the underlying graded space

Pk[4] ⊕
⊕
ρ∈Q1

t(ρ)=k

Pρ

s(ρ)[3] ⊕
⊕
γ∈Q1

s(γ )=k

Pγ

t(γ )[2] ⊕
⊕

w∈Q1
t(w)=k

Pw
s(w)[1] ⊕ Pk[1] ⊕

⊕
z∈Q1

t(z)=k

Pz
s(z)

with the differential ⎛⎜⎜⎜⎜⎜⎜⎝

dPk [4]

−ρ dPρ
s(ρ)

[3]

−γ ∗ −∂ργ W dP
γ
t(γ )

[2]

we∗
k wρ∗ −wγ dPw

s(w)
[1]

−e∗
k −ρ∗ γ 0 dPk [1]

0 0 0 δw,z z dPz
s(z)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then there is a homomorphism of dg �-modules ϕk : F(pS̃k) → pS�

k, where pS�

k = pSk[1]

has the underlying graded space

Pk[4] ⊕
⊕
ρ̃∈Q1

t(ρ̃)=k

Pρ̃

s(ρ̃)[3] ⊕
⊕
γ̃∈Q1

s(γ̃ )=k

Pγ̃

t(γ̃ )[2] ⊕ Pk[1]
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with the differential ⎛⎜⎜⎝
dPk [4]

−ρ̃ d
Pρ̃
s(ρ̃)

[3]

γ̃ ∗ ∂ρ̃γ̃ W d
P
γ̃
t(γ̃ )

[2]

−e∗
k −ρ̃∗ −γ̃ dPk [1]

⎞⎟⎟⎠
and the homomorphism

ϕk =
(

1 0 0 0 0 0
0 δρ,ρ̃ 0 0 0 0
0 0 −δγ ,γ̃ 0 0 0
0 0 0 0 1 0

)
.

It is straightforward to check that the above ϕi, i ∈ Q0, are quasi-isomorphisms.

Hence we have the following result.

Lemma 3.3. There are isomorphisms in D(�):

F (̃Si)
ϕi−→ S�

i .

In this subsection, we will further describe the image of morphisms between

simples under F.

Construction 3.4. For any arrow a : i → k ∈ Q1 and any arrow b : k → j ∈ Q1, define

• π
�

a′ : S�

k → S�

i [1] to be the morphism from Sk[1] to S�

i [1] given by the identity

from Sk to Sa
t(a);

• π
�

a′∗ : S�

i → S�

k[2] to be the morphism from S�

i to Sk[3] given by πe∗
k

: Sa
t(a) →

Sk[3];

• π
�

b′ : S�

j → S�

k[1] to be πb∗ : Sj → Sk[2];

• π
�

b′∗ : S�

k → S�

j [2] to be πb[1] : Sk[1] → Sj[2];

• π
�

[ab] : S�

i → S�

j [1] to be the morphism from S�

i to Sj[1] given by πb : Sa
t(a) → Sj[1];

• π
�

[ab]∗ : S�

j → S�

i [2] to be the morphism from Sj to S�

i [2] given by πb∗ : Sj →
Sa

t(a)[2].

For any other arrows c of Q, π
�
c and π

�
c∗ are given by πc and πc∗ , respectively.

Proposition 3.5. For any arrow R : s → t ∈ Q̃′
1, we have the following commutative

diagrams:
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Proof. We lift the homomorphisms in the diagrams between simples to homomor-

phisms between their cofibrant resolutions. Then we only need to show that the

difference of the two compositions in one diagram is null-homotopic.

(1) The case R = a′ for some a : i → k ∈ Q1. By definition, the morphism F(πa′)

is given by the map pπa′ : F(pS′
k) → F(pS′

i[1]), where

pπa′ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

δc,a 0 0 0 0 0
0 δp,aδρ,q 0 0 0 0
0 0 0 0 0 0
0 0 δl,aδγ ,g 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 δw,a 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

So

ϕi ◦ pπa′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−δa,σ e∗
k −δa,σ ρ∗ δa,σ γ 0 0 0

0 0 0 δa,w 0 0
δa,̃c 0 0 0 0 0
0 δa,̃pδρ ,̃q 0 0 0 0
0 0 −δ

a,̃lδγ ,̃g 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

π
�

a′ ◦ ϕk =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

δa,̃c 0 0 0 0 0
0 δa,̃pδρ ,̃q 0 0 0 0
0 0 −δ

a,̃lδγ ,̃g 0 0 0
0 0 0 0 δa,τ 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then the difference ϕi ◦ pπa′ − π
�

a′ ◦ ϕk = θ ◦ d + d ◦ θ , where

θ =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 δa,σ 0
0 0 0 0 0 δa,z
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
of degree -1, and hence this difference is null-homotopic.

(1) For the second diagram, note that

F(pπa′∗) =
⎛⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

δa,w 0 0 0 0 0 0 0 0 0
0 0 0 δa,c 0 0 0 0 0 0
0 0 0 0 δa,pδq,z 0 0 0 0 0

⎞⎟⎠
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and

pπ
�

a′∗ =
(

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 δa,̃c 0 0 0

)
.

So

ϕk[2] ◦ F(pπa′∗) =
(

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 δa,c 0 0 0 0 0 0

)

and

pπ
�

a′∗ ◦ ϕi =
(

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 δa,c 0 0 0 0 0 0

)
.

Then the difference is zero.

(2) The case R = b′ for some b : k → i ∈ Q1. Note that

pF(πb′) =

⎛⎜⎜⎝
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

δb,γ 0 0 0 0 0 0 0 0 0
0 0 δb,bδa,w 0 0 0 0 0 0 0
0 0 0 0 0 0 0 δb,h 0 0
0 0 0 0 0 0 0 0 δb,xδy,z 0

⎞⎟⎟⎠
and

pπ
�

b′ =
( 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
δb,γ̃ 0 0 0 0 0 0 0 0 0

0 0 δ
b,̃h 0 0 0 0 0 0 0

)
.

So

pϕk[1] ◦ pF(πb′) =
(

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0−δb,γ̃ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 δb,h 0 0 0

)

and

pπ
�

b′ ◦ (ϕi) =
(

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0−δb,γ̃ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 δb,h 0 0 0

)
.

Then the difference pϕk[1] ◦ pF(πb′) − pπ
�

b′ ◦ (ϕi) = 0.

(2) For the second diagram, note that

F(pπb′∗) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

δb,h 0 0 0 0 0
0 δb,xδρ,y 0 0 0 0
0 0 δb,γ 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
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and

pπ
�

b′∗ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

δ
b,̃h 0 0 0
0 ∂ρ̃bβ̃W 0 0
0 0 0 0
0 0 δb,γ̃ 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

So

(ϕi[2]) ◦ F(pπb′∗) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0

δ
b,̃h 0 0 0 0 0
0 ∂ρbβ̃W 0 0 0 0
0 0 0 0 0 0
0 0 −δb,γ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
and

pπ
�

b′∗ ◦ ϕk =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0

δ
b,̃h 0 0 0 0 0
0 ∂ρbβ̃W 0 0 0 0
0 0 0 0 0 0
0 0 −δb,γ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then the difference is zero.

(3) It is more straightforward to calculate the cases R = [ab], R ∈ Q1. �

3.4 Geometric interpretation of Keller–Yang’s equivalence

Let S� be a decorated marked surface. Denote by CA(S�) the set of simple closed arcs in

S�. Here, closed arcs mean curves in S� − � connecting different decorating points. For

an arc γ in a triangulation T ∈ EG◦(S�), its dual (w.r.t. T) is the unique closed arc (up to

homotopy) that intersects γ once and does not cross any other arcs in T. The dual of T,

denote by T∗, is defined to be the set of duals of arcs in T.

For any oriented closed arc η ∈ CA(S�), there is an associated object Xη = XT
η in

Sph(�T) constructed in [24, Construction A.3].

Proposition 3.6 ([22, Theorem 6.6], [24, Proposition 4.3]). There is a canonical bijection

X̃T : CA(S�) → Sph(�T)/[1] (3.8)
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sending η to XT
η [Z]. Moreover, this is compatible with the isomorphism (3.2) in the

following sense. Suppose that T′ is a triangulation in EG◦(S�) with its dual T′∗. Then

X̃T(T′∗) is the set of the shift orbits of simples in HT′
T .

Further, for any two oriented closed arcs η1, η2 ∈ CA(S�) having the same

starting point Z, the oriented angle θ (in clockwise direction) at Z from η1 to η2 induces

a morphism

ϕT(η1, η2) = ϕ(η1, η2) : Xη1
→ Xη2

,

see [24, Construction A.5]. We have two useful lemmas.

Lemma 3.7. [24, Corollary A.9 and Lemma 3.3] Let ηi, for i = 1, 2, 3, be oriented closed

arcs, which have the same starting point Z and whose start segments are in clockwise

order at Z. Then

ϕ(η2, η3) ◦ ϕ(η1, η2) = ϕ(η1, η3).

Moreover, this is the only way such that the composition of two ϕ(−, −)s is not zero.

Lemma 3.8 ([24, Proposition 3.1 and Theorem 4.5]). For any two closed arcs η1, η2, if

they do not cross each other in S − �, then the morphisms from Xη1
to Xη2

of the form

ϕ(−, −) form a basis of ExtZ(Xη1
, Xη2

).

We denote by Sη, η ∈ T∗′, the simples in HT′
T . Then by Proposition 3.5, we have

that Sη ∈ XT
η [Z]. Then by Lemma 3.8, we have

Lemma 3.9. {ϕ(−, −)} form a basis of the Ext-algebra

E(HT′
T ) := ExtZ

⎛⎝ ⊕
η∈T∗′

Sη,
⊕
η∈T∗′

Sη

⎞⎠ .

And the multiplication between this basis is given by Lemma 3.7.

It follows directly from the construction of ϕ(−, −) and Proposition 3.5 that this

basis gives a nice geometric model for Keller–Yang’s equivalence.

Proposition 3.10. For any two closed arcs ηi and ηj in T∗′, which have the same starting

point, the image of ϕT′
(ηi, ηj) under the Keller–Yang’s equivalence κT

T′ is ϕT(ηi, ηj).
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4 Intrinsic-derived Equivalences

In this section, we will first construct an intrinsic equivalence between the finite-

dimensional derived categories associated with two triangulations (Construction 4.1).

Then we show that this equivalence is naturally isomorphic to the composition of

any sequence of Keller–Yang’s equivalences that connects these two triangulations

(Theorem 4.2). This gives a proof of Theorem A.

4.1 The construction

Fix a triangulation T0 in EG◦(S�) and let �0 = �T0
. Let T be any triangulation in EG◦(S).

Recall that HT
0 := HT

T0
is the heart in Dfd(�0) corresponding to T, and HT is the canonical

heart in Dfd(�T).

Construction 4.1. By Lemma 3.9, there is an isomorphism between Ext algebras

ιT : E(HT
0 )

∼−→ E(HT),

which sends ϕT0(η1, η2) to ϕT(η1, η2) for any η1, η2 ∈ T∗.

As a result, we have an induced triangle equivalence �T fitting the following

commutative diagram of equivalences:

(4.1)

Consider a sequence of forward/backward flips

p : T0 −→ T1 −→ · · · −→ Tm = T

and the sequence of the associated KY’s equivalences

D(�T0
)

κ
T1
T0−−−→ D(�T1

)
κ

T2
T1−−−→ · · ·

κ
Tm
Tm−1−−−−→ D(�Tm

) = D(�T).

Restricted to Dfd, we obtain a triangle equivalence

�(p) = κ
Tm
Tm−1

◦ · · · ◦ κ
T2
T1

◦ κ
T1
T0

: Dfd(�0)
�−−−−→ Dfd(�T). (4.2)
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Fig. 2. A forward flip.

Theorem 4.2. �T and �(p) are naturally isomorphic to each other (denoted by �T ∼
�(p)), for any T ∈ EG◦(S�) and any sequence of flips p : T0 → T.

The remaining part of this section is devoted to the proof of this theorem. As a

result, we can denote the 3-CY category associated with S� by Dfd(S�).

4.2 Compatibility/Proof of Theorem 4.2

Use induction on the number m of flips in the flip sequence p, starting with the trivial

case, when m = 0 or T0 = T so that both equivalences are isomorphic to the identity.

Now suppose that �T ∼ �(p) for some p and consider a flip μk : T → T′ and the flip

sequence p′ = μk ◦ p. Without loss of generality, assume μk is a forward flip. Fix/recall

the notations as follows:

• T = {γi}, T∗ = {ηi} and T′ = {γ ′
i }, (T′)∗ = {η′

i}. Note that γ ′
i = γi for i 
= k. The

local pictures of T and T′ are shown in Figure 2, and the local mutation of

the corresponding quiver is

(4.3)
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• Note that ηi might not exist for any 1 ≤ i ≤ 4, and some vertices might

coincide.

• HT
0 and HT′

0 are the hearts with simples {Sηi
} and {Sη′

i
} in Dfd(�0) that

correspond to T and T′, respectively. Note that HT′
0 is the forward tilting of

HT
0 w.r.t. Sηk

.

• HT and HT′ are the canonical hearts with simples {Si} and {S′
i} in Dfd(�T) and

Dfd(�T′), respectively.

• Moreover, HT′
T is the forward tilting of HT w.r.t. Sk, with simples {S�

i } in

Dfd(�T) (see Construction 3.2 for the construction of S�

i ).

Note that we shall prove �T′ ∼ �(μk ◦ p) = κT′
T ◦ �(p), where the latter is κT′

T ◦ �T

by induction. By definition, it suffices to show that κT′
T ◦ �T induces the isomorphism

ιT′ , which means that κT′
T ◦ �T preserves the morphism of the form ϕT′

(−, −) induced by

any angle in T′∗. By Proposition 3.10, we have that κT′
T preserves such morphisms. So it

suffices to show that so does �T.

If there is no arrow in QT′ from k to i, that is, i 
= 2 or 4 in Figure 2, then η′
i = ηi.

Hence we only need to consider the angles between η′
2 and another arc (similarly for η′

4).

For the angles to η′
2 in T′∗, we have the following cases, up to dual (i.e., the case starting

at η′
2):

• For an angle at Y from ηk to η′
2, by [24, Proposition 3.1], we have a triangle

S′
η2

ϕ(η2,ηk)−−−−−→ S′
ηk

ϕ(ηk,η′
2)−−−−−→ S′

η′
2

→ S′
η2

[1].

As ιT (and so �T) preserves ϕ(η2, ηk), we deduce that �T preserves this

triangle and hence ϕ(ηk, η′
2).

• Note that when the number of arrows from k to 2 in QT′ is 2, that is, the

vertices 2 and 4 coincide, then we need to add another copy of S′
ηk

to the 2nd

term of the triangle. However, the rest of the deduction and conclusion are

the same.

• For the angle at Y from η3 to η′
2, by Lemma 3.7, we have ϕ(η3, η′

2) = ϕ(ηk, η′
2) ◦

ϕ(η3, ηk). As above, �T preserves ϕ(ηk, η′
2) and ϕ(η3, ηk). Hence it preserves

ϕ(η3, η′
2) too.

• For any angle to η′
2 in T′∗, which is at the other endpoint of η′

2 from Y, it

factors through η2 (i.e., decomposes). Again, we can prove it is preserved in

the same fashion.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/17/12967/5582721 by Tsinghua U
niversity user on 29 April 2022



12988 A. B. Buan et al.

5 An Application

5.1 Calabi–Yau categories and spherical objects

Definition 5.1. A triangulated k-category D is called N-Calabi–Yau (or N-CY for short)

if for any pair of objects L, M in D, we have a natural isomorphism

HomDfd(�)(L, M) ∼= D HomDfd(�)(M, L[N]), (5.1)

where D = Homk(−, k). Further, an object S in an N-CY triangulated k-category D is

(N-)spherical if HomD(S, S[i]) = k for i = 0 or N, and 0 otherwise.

The twist functor φ of a spherical object S is defined by

φS(X) = Cone
(
S ⊗ Hom•(S, X) → X

)
(5.2)

with inverse

φ−1
S (X) = Cone

(
X → S ⊗ Hom•(X, S)∨

)
[−1].

Recall that Dfd(�) is the finite-dimensional derived category of �, for a Ginzburg

dg algebra �. It is well known that this is a 3-CY category. We also know that Dfd(�)

admits a canonical heart H� generated by simple �-modules Si, for i ∈ Q0, each of

which is 3-spherical. Denote by ST(�) the spherical twist group of Dfd(�) in AutDfd(�),

generated by {φSi
| i ∈ Q0}. Further, the set of reachable spherical objects is

Sph(�) = ST(�) · SimH�, (5.3)

which is equivalent to the definition in (3.1) (cf. [22, Lemma 9.2]).

For Dfd(S�), we will use notation Sph(S�) and ST(S�) instead. Furthermore, by

(3.2), we will not distinguish EG◦(S�) and EG◦(�T).

5.2 Stability conditions

Recall the definition of stability conditions as follows.

Definition 5.2 ([3, Definition 3.3]). A stability condition σ = (Z,P) on D consists of

a group homomorphism Z : K(D) → C called the central charge and full additive

subcategories P(ϕ) ⊂ D for each ϕ ∈ R, satisfying the following axioms:

• if 0 
= E ∈ P(ϕ) then Z(E) = m(E) exp(ϕπi) for some m(E) ∈ R>0,
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• for all ϕ ∈ R, P(ϕ + 1) = P(ϕ)[1],

• if ϕ1 > ϕ2 and Ai ∈ P(ϕi) then HomD(A1, A2) = 0,

• (HN-property) for each nonzero object E ∈ D there is a finite sequence of real

numbers

ϕ1 > ϕ2 > ... > ϕm

and a collection of triangles

with Aj ∈ P(ϕj) for all j.

A crucial result about stability condition is that they form a complex manifold.

Theorem 5.3 (Bridgeland [3]). All stability conditions on a triangulated category D form

a complex manifold, denoted by Stab(D); each connected component of Stab(D) is locally

homeomorphic to a linear sub-manifold of Hom
Z
(K(D),C), sending a stability condition

(H, Z) to its central change Z.

We will study the principal component Stab◦(S�) of the space of stability

conditions on Dfd(S�), that is, the connected component containing stability conditions

whose hearts are in EG◦(S�).

5.3 Faithful actions

Lemma 5.4. An auto-equivalence ϕ ∈ AutDfd(S�) acts trivially on Stab◦(S�) if and only

if it acts trivially on Sph(S�).

Proof. As to give a stability condition is equivalent to give a heart H with a stability

function Z on H satisfying the HN-property in Definition 5.2 (see [3, Proposition 5.3]),

we have the following equivalences:

• ϕ acts trivially on Stab◦(S�);

• ϕ acts trivially on the exchange graph EG◦(S�);

• ϕ acts trivially on any vertices of EG◦(S�) and any edges of EG◦(S�).
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As a heart in EG◦(S�) is determined by its simples and the edges of EG◦(S�) are labeled

by simple of hearts, we deduce that ϕ acts on Stab◦(S�) if and only if it acts trivially on

the set ⋃
H∈EG◦(S�)

SimH.

This is Sph(S�) by (3.1). �

Theorem 5.5. The spherical twist group ST(S�) acts faithfully on Stab◦(S�).

Proof. Choose any HT ∈ EG◦(S�) that corresponds to a triangulation T. Let φ ∈ ST(S�).

By [19, Corollary 8.5], φ(HT) can be obtained from HT by a sequence of tiltings. Hence

φ(HT) = HT′ for some T′, which is obtained from T by the corresponding sequence of

flips. Hence, φ can be realized as the composition of a sequence of KY equivalences. By

Theorem 4.2, φ can be determined by HT and HT′ directly.

In the case that φ acts trivially on Stab◦(S�) or Sph(S�), we have φ(HT) = HT′ and

the corresponding equivalence from Construction 4.1 is the identity. Thus, φ is naturally

isomorphic to the identity as required. �

In [22], we have ST(S�)/ Aut0
∼= BT(S�), where BT(S�) is the braid twist group of

S� and where Aut0 is the part of AutDfd(S�) that acts trivially on Stab◦ Dfd(S�). Hence

a consequence of the theorem above is the following.

Corollary 5.6. ST(S�) = BT(S�).
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