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In this paper, we give a complete classification of cotorsion 
pairs in a cluster category C of type A∞

∞ via certain config-
urations of arcs, called τ -compact Ptolemy diagrams, in an 
infinite strip with marked points. As applications, we classify 
t-structures and functorially finite rigid subcategories in C , 
respectively. We also deduce Liu–Paquette’s classification of 
cluster tilting subcategories of C and Ng’s classification of 
torsion pairs in the cluster category of type A∞.
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1. Introduction

Torsion theory is a fundamental and central topic in the representation theory of 
algebras. Torsion pairs for abelian categories, introduced by Dickson [8], are intimately 
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related to tilting theory. The idea of torsion theory for a triangulated category was intro-
duced by Iyama and Yoshino [14] to study cluster tilting subcategories in a triangulated 
category.

Cluster categories, constructed by Buan, Marsh, Reineke, Reiten and Todorov [3] (also 
by Caldero, Chapoton and Schiffler [4] for type An), give a categorical model for Fomin 
and Zelevinsky’s cluster algebras. The cluster tilting subcategories of a cluster category 
correspond to the clusters of the corresponding cluster algebra and their mutations are 
compatible. Further, the torsion pairs in the cluster category correspond to certain pairs 
of cluster subalgebras of the cluster algebra (cf. [6,7]).

Cotorsion pairs in a triangulated category were used by Nakaoka [20] to unify the 
abelian structures arising from t-structures and from cluster tilting subcategories. Torsion 
pairs and cotorsion pairs in a triangulated category can be transformed into each other by 
shifting the torsion-free parts. Hence classifying torsion pairs is equivalent to classifying 
cotorsion pairs in a triangulated category. Note that this is not true for abelian categories.

Torsion/cotorsion pairs have been classified for many cluster categories (or more gen-
erally, 2-Calabi–Yau categories with maximal rigid subcategories):

(1) Ng [21] classified torsion pairs in the cluster category of type A∞ (introduced in [9]) 
via certain configurations of arcs of the infinity-gon.

(2) Holm, Jørgensen and Rubey [10–12] classified torsion pairs in the cluster category 
of type An, in the cluster tube and in the cluster category of type Dn via Ptolemy 
diagrams of a regular (n +3)-gon, periodic Ptolemy diagrams of the infinity-gon and 
Ptolemy diagrams of a regular 2n-gon, respectively.

(3) Zhang, Zhou and Zhu [23] classified cotorsion pairs in the cluster category of an 
unpunctured marked surface via paintings of the surface.

(4) Zhou and Zhu [25] classified torsion pairs in an arbitrary 2-Calabi–Yau triangulated 
category with cluster tilting objects via decompositions of the triangulated category 
w.r.t. rigid objects.

(5) Chang and Zhu [5] classified torsion pairs in finite 2-Calabi–Yau triangulated cate-
gories with maximal rigid objects via periodic Ptolemy diagrams of a regular polygon.

Notice that the works above only deal with 2-Calabi–Yau categories having cluster 
tilting subcategories or maximal rigid subcategories, which contain finitely many inde-
composable objects except Ng’s work. Recently, Liu and Paquette [19] (cf. also Igusa and 
Todorov’s work [13]) studied another 2-Calabi–Yau category, the cluster category C of 
type A∞

∞, which admits cluster tilting subcategories having infinitely many indecompos-
able objects. They gave a geometric realization of C , via an infinite strip with marked 
points B∞ in the plane. Parameterizing the indecomposable objects in C by the arcs 
in B∞, they showed that there is a bijection between the cluster tilting subcategories 
of C and the compact triangulations of B∞.

In this paper, we introduce the definition of τ -compact Ptolemy diagrams of B∞, 
which can be regarded as a generalization of compact triangulations of B∞. We show 
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that there is a bijection between the cotorsion pairs in C and the τ -compact Ptolemy 
diagrams of B∞. A criterion for a Ptolemy diagram to be τ -compact is also given. As 
applications, we get geometric descriptions of t-structures and functorially finite rigid 
subcategories in C , respectively. We also deduce Liu–Paquette’s classification of cluster 
tilting subcategories of C and Ng’s classification of torsion pairs in the cluster category 
of type A∞.

The paper is organized as follows. In Section 2, we review background materials con-
cerning cotorsion pairs in a triangulated category and the cluster category of type A∞

∞. 
In Section 3, we introduce the notion of τ -compact Ptolemy diagrams of B∞ and give 
a criterion for a Ptolemy diagram to be τ -compact. Section 4 is devoted to proving the 
main result (Theorem 4.4) of this paper. Many applications are given in the last section.

1.1. Conventions

Throughout this paper, k stands for an algebraically closed field, and all categories are 
assumed to be Hom-finite, Krull–Schmidt and k-linear. Any subcategory of a category 
is assumed to be full and closed under taking isomorphisms, finite direct sums and 
direct summands. For a subcategory X of a category D, we denote by X ⊥ (resp. 
⊥X ) the subcategory whose objects are M ∈ D satisfying HomD(X, M) = 0 (resp. 
HomD(M, X) = 0) for any X ∈ X . For two subcategories X , Y of D, Hom(X , Y ) = 0
means HomD(X, Y ) = 0 for any X ∈ X and any Y ∈ Y . For two subcategories X , Y of 
a triangulated category D, denote by X ∗Y the subcategory of D whose objects are M

which fits into a triangle

X → M → Y → X[1]

with X ∈ X and Y ∈ Y . In a triangulated category, we use Ext1(X, Y ) to denote 
Hom(X, Y [1]), where [1] is the shift functor of the triangulated category.

2. Preliminaries

2.1. Cotorsion pairs in triangulated categories

We recall some (equivalent) definitions and results concerning cotorsion pairs in a 
triangulated category.

Definition 2.1. Let X , Y be subcategories of a triangulated category D.

(1) The pair (X , Y ) is called a torsion pair [14] if

HomD(X ,Y ) = 0, and D = X ∗ Y .
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(2) The pair (X , Y ) is called a cotorsion pair [20] if

Ext1D(X ,Y ) = 0, and D = X ∗ Y [1].

The subcategory I := X
⋂

Y is called the core [26] of (X , Y ).
(3) The pair (X , Y ) is called a t-structure [2] if and only if it is a cotorsion pair and 

X is closed under shift (or equivalently, Y is closed under [−1]). The subcategory 
X [−1] ∩ Y [1] is called the heart of (X , Y ).

(4) The subcategory X is called rigid if Ext1(X , X ) = 0.
(5) The subcategory X is called a cluster tilting subcategory [3,14,16,18] if it satisfies 

the following:
(a) X is contravariantly finite [1], i.e. for any M ∈ D, there is a morphism X → M

such that any morphism X ′ → M with X ′ ∈ X factors through it.
(b) X is covariantly finite [1], i.e. for any M ∈ D, there is a morphism M → X

such that any morphism M → X ′ with X ′ ∈ X factors through it.
(c) X ∈ X if and only if Ext1(X, X ′) = 0 for any X ′ ∈ X if and only if 

Ext1(X ′, X) = 0 for any X ′ ∈ X .
(6) The subcategory X is called functorially finite if it is contravariantly finite and 

covariantly finite.

Proposition 2.2 ([14,26]). Let X , Y be subcategories of a triangulated category D.

(1) The pair (X , Y ) is a torsion pair if and only if the following hold.
(a) X ⊥ = Y ;
(b) ⊥Y = X ;
(c) X is contravariantly finite or Y is covariantly finite.

(2) The pair (X , Y ) is a cotorsion pair if and only if (X , Y [1]) is a torsion pair.
(3) The pair (X , Y ) is a t-structure if and only if it is a cotorsion pair whose core is 0.
(4) The subcategory X is functorially finite rigid if (X , X ⊥) and (⊥X , X ) are torsion 

pairs.
(5) The subcategory X is cluster tilting if and only if (X , X ) is a cotorsion pair.

Definition 2.3. A triangulated category D is called 2-Calabi–Yau (shortly 2-CY) provided 
there is a functorial isomorphism

HomD(X,Y ) � DHomD(Y,X[2]),

for any X, Y ∈ D, where D = Homk(−, k).

2.2. Geometric description of the cluster category of type A∞
∞

In this subsection, we recall from [19] a geometric description of the cluster category 
of type A∞

∞.
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Fig. 1. Marked points and arcs in B∞.

Let Q be a quiver of type A∞
∞ without infinite path, and rep(Q) the category of 

finite dimensional k-linear representations of Q. Let Db(rep(Q)) be the bounded derived 
category of rep(Q) with shift functor [1] and the Auslander–Reiten translation τ . The 
cluster category C is defined to be the orbit category

C = C (Q) = Db(rep(Q))/τ−1[1].

By [15], C is a Hom-finite Krull–Schmidt 2-Calabi–Yau triangulated k-category.
Following [19], denote by B∞ the infinite strip in the plane of the marked points (x, y)

with 0 ≤ y ≤ 1. The points li = (i, 1), i ∈ Z, are called upper marked points, and the 
points ri = (−i, 0), i ∈ Z, are called lower marked points. An upper or lower marked 
point will be simply called a marked point. For any two distinct marked points p and q
in B∞, there exists a unique (up to isotopy) simple curve in B∞ joining them, which is 
written as [p, q] or [q, p]. A simple curve [p, q] in B∞ is called an edge if {p, q} = {li, li+1}
or {p, q} = {ri, ri+1} for some i ∈ Z, and otherwise, an arc. An arc in B∞ joining two 
upper marked points is called an upper arc; an arc in B∞ joining two lower marked points 
is called a lower arc; and an arc joining one upper marked point and one lower marked 
point is called a connecting arc. See Fig. 1.

There is a translation τ on the set of arcs in B∞ given by

τ [p, q] = [τp, τq]

where the translation τ acting on a marked point is given by τ li = li+1 and τri = ri+1
for any i ∈ Z.

Let u, v be arcs in B∞. One says that u crosses v, or (u, v) is a crossing pair, if every 
curve isotopic to u crosses each of the curves isotopic to v. By definition, an arc does not 
cross itself, two crossing arcs do not share a common endpoint, and an upper arc does 
not cross any lower arc. The following lemma from [19] gives an explicit criterion for two 
arcs in B∞ to form a crossing pair, which will be frequently used without a reference.

Lemma 2.4 (Lemma 4.2 in [19]). Let (u, v) be a crossing pair of arcs in B∞.

(1) If u = [li, lj ] with i < j, then v = [lp, rq] with i < p < j; or v = [lp, lq] with 
i < p < j < q or p < i < q < j.
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Fig. 2. Crossing arcs in B∞.

(2) If u = [ri, rj ] with i > j, then v = [lp, rq] with i > q > j; or v = [rp, rq] with 
i > p > j > q or p > i > q > j.

(3) If u = [li, rj ], then v = [lp, lq] with p < i < q; or v = [rp, rq] with p > j > q; or 
v = [lp, rq] with i > p and j > q or i < p and j < q.

We illustrate in Fig. 2 the different cases in the above lemma.
The infinite strip B∞ with marked points gives a geometric model for the cluster 

category C in the following sense.

Proposition 2.5 (Theorem 5.3 and Corollary 5.4 in [19]). There is a bijection from the 
set of (isoclasses of) indecomposable objects in C to the set of (isotopy classes of) arcs 
in B∞. Moreover, let u, v be arcs in B∞ and Mu, Mv the corresponding indecomposable 
objects in C . Then

(1) (u, v) is a crossing pair if and only if Ext1C (Mu, Mv) 	= 0; and
(2) Mu[1] = Mτu.

The bijection in the above proposition induces a bijection between the subcategories 
of C and the sets of arcs in B∞. For a subcategory X of C , we denote the corresponding 
set of arcs in B∞ by X̃ .

We shall use the following notions, which is essentially from [19].

Definition 2.6. Let P be a set of arcs in B∞.

(1) A marked point p is called upper left P-bounded if there is an integer j such that 
[p, li] /∈ P for any i < j.
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Fig. 3. Linear order on the set [p,−].

(2) A marked point p is called upper right P-bounded if there is an integer j such that 
[p, li] /∈ P for any i > j.

(3) A marked point p is called lower left P-bounded if there is an integer j such that 
[p, ri] /∈ P for any i > j.

(4) A marked point p is called lower right P-bounded if there is an integer j such that 
[p, ri] /∈ P for any i < j.

3. Compact Ptolemy diagrams of B∞

In this section, we introduce and study τ -compact Ptolemy diagrams of B∞, which 
will be a geometric model for cotorsion pairs in C in the next section.

For any marked point p in B∞, set

[p,−] = {[p, q] | q is a marked point in B∞}.

We define a linear order on [p, −], that [p, i] >p [p, j] if and only if [p, j] follows [p, i] in 
the clockwise orientation. More explicitly,

• when p is an upper marked point, say p = lp, we have

[lp, lf ] >p [lp, le] >p [lp, rd] >p [lp, rc] >p [lp, lb] >p [lp, la]

for any b < a < p < f < e and d < c (see the upper picture in Fig. 3);
• when p is a lower marked point, say p = rp, we have

[rp, rf ] >p [rp, re] >p [rp, ld] >p [rp, lc] >p [rp, rb] >p [rp, ra]

for any b < a < p < f < e and d < c (see the lower picture in Fig. 3).

Note that this order is not compatible with that given in [19].
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Fig. 4. Condition (Pt).

3.1. Definition of compact Ptolemy diagrams

The following definition of a Ptolemy diagram is an analogue of that in [10].

Definition 3.1. A set P of arcs in B∞ is called a Ptolemy diagram of B∞ if the following 
condition holds.

(Pt) For any two crossing arcs [p, q] and [i, j] in P, those of [p, i], [p, j], [q, i], [q, j] which 
are arcs are in P. (See Fig. 4.)

For any set P of arcs in B∞, denote by

ncP = {u | u does not cross any arcs in P}.

A large class of Ptolemy diagrams can be obtained in the following way.

Lemma 3.2. For any set P of arcs in B∞, the set ncP is a Ptolemy diagram.

Proof. Let [p, q] and [i, j] be two crossing arcs in ncP. We shall prove that if [p, i] is an 
arc in B∞, then it is in ncP. Assume conversely that there is an arc u in P crossing [p, i]. 
Then u crosses either [p, q] or [i, j], a contradiction. �

Let u1 and u2 be crossing arcs in B∞. An arc or an edge u3 is called a middle term 
from u2 to u1 if u2 <p1 u3 <p2 u1 for some marked points p1 and p2 in B∞. It is easy to 
see that there are exactly two middle arcs from u2 to u1 and they are a pair of opposite 
sides of the quadrangle whose diagonals are u1 and u2. See Fig. 5.
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Fig. 5. Middle terms from u2 to u1.

Definition 3.3. Let Ω be a set of arcs in B∞.

(1) A subset Σ of Ω is called a τ -basis if for any arc u1 ∈ Ω, there is an arc u2 ∈ Σ such 
that τu2 crosses u1 and any middle term from u2 to u1 is in Ω when u2 crosses u1.

(2) A subset Σ of Ω is called a τ−1-basis if for any arc u1 ∈ Ω, there is an arc u2 ∈ Σ
such that τ−1u2 crosses u1 and any middle term from u1 to u2 is in Ω when u2
crosses u1.

The following easy lemma is helpful for understanding the notion of τ -basis.

Lemma 3.4. Let u1 and u2 be two arcs in B∞ with τu2 crossing u1. Then precisely one 
of the following situations occurs:

• u1 ≥p u2 for some marked point p,
• u1 crosses u2.

Proof. If u1 and u2 share an endpoint p, then τu2 crosses u1 if and only if u1 ≥p u2. If 
u1 and u2 do not share any endpoint, then τu2 crosses u1 if and only if u1 crosses u2. �

Let P be a set of arcs in B∞. For each arc u in B∞, denote by Pu the subset of P
consisting of the arcs crossing u.

Definition 3.5. A set P of arcs in B∞ is called τ -compact (resp. τ−1-compact) if Pu admits 
a finite τ -basis (resp. τ−1-basis) for every arc u in B∞. A set P of arcs in B∞ is called 
compact if it is both τ -compact and τ−1-compact.

3.2. A criterion for a Ptolemy diagram to be compact

This subsection is devoted to showing the following criterion for a Ptolemy diagram 
of B∞ to be τ -compact.

Theorem 3.6. A Ptolemy diagram P of B∞ is τ -compact if and only if P satisfies the 
following conditions.

(Pt2) Any marked point which is lower right P-bounded is upper right P-bounded, and 
any marked point which is upper left P-bounded is lower left P-bounded.

(Pt3) P ∪ ncP contains connecting arcs.



128 H. Chang et al. / Journal of Combinatorial Theory, Series A 156 (2018) 119–141
Fig. 6. Ptolemy diagrams of B∞.

We also give the dual of (Pt2) as follows.

(Pt2′) Any marked point which is lower left P-bounded is upper left P-bounded, and 
any marked point which is upper right P-bounded is lower right P-bounded.

One can prove dually that a Ptolemy diagram of B∞ is τ−1-compact if and only if it 
satisfies (Pt2′) and (Pt3).

Example 3.7. Using Theorem 3.6, we show the following Ptolemy diagrams to be 
τ -compact or τ−1-compact.

(1) Any Ptolemy diagram of B∞ consisting of finitely many arcs is τ -compact, e.g. 
P1 = {[l−2, l1], [l−2, r2], [l−2, r−2], [l1, r2], [l1, r−2], [r2, r−2]} shown in (1) of Fig. 6. This 
is because, any marked point in B∞ is P1-bounded in any of the four directions and 
ncP1 contains connecting arcs.

(2) P2 = P1∪{[l1, lp] | p ≥ 3}, see (2) in Fig. 6. Note that l1 is lower right P2-bounded but 
not upper right P2-bounded. Hence P2 is not τ -compact. (But P2 is τ−1-compact.)

(3) P3 = P1 ∪ {[l1, rq] | q ≤ −5}, see (3) in Fig. 6. All marked points in B∞ are upper 
right P3-bounded and lower left P3-bounded. This, together with ncP3 containing 
connecting arcs, implies that P3 is τ -compact. (But P3 is not τ−1-compact since it 
does not satisfy (Pt2′).)
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To prove Theorem 3.6, we shall need some lemmas.

Lemma 3.8. Let P be a set of arcs in B∞ satisfying (Pt2). Then Pu also satisfies (Pt2), 
for every arc u in B∞.

Proof. We shall only prove that if an upper marked point lp is lower right Pu-bounded, 
then it is upper right Pu-bounded.

• If lp is lower right P-bounded, then by (Pt2) for P, lp is upper right P-bounded. In 
particular, lp is upper right Pu-bounded.

• If lp is not lower right P-bounded, then u is neither a connecting arc with an endpoint 
lq with q > p nor an upper arc [li, lj ] with i < p < j. Hence there are only finitely 
many arcs [lp, lt] in P, with t > p and crossing u. So lp is upper right Pu-bounded. �

Lemma 3.9. Let P be a set of arcs in B∞ satisfying (Pt2). For every arc u and every 
marked point p, if Pu ∩ [p, −] is nonempty, then it contains a (unique) minimal element 
for ≥p.

Proof. We shall only consider the case where p is an upper marked point, say p = lp. By 
Lemma 3.8, Pu satisfies (Pt2).

• If there is an upper arc [lp, la] ∈ Pu with a < p, we may take a to be maximal with 
respective to this property. Then [lp, la] is the minimal element in Pu ∩ [p, −].

• If there are no such upper arcs, then lp is upper left Pu-bounded. By (Pt2), lp is 
lower left Pu-bounded.
– If there are connecting arcs in Pu ∩ [p, −], then there is a maximal integer c such 

that [lp, rc] ∈ Pu. Then [lp, rc] is the minimal element in Pu ∩ [p, −].
– If there are no connecting arcs in Pu ∩ [p, −], then lp is lower right Pu-bounded. 

By (Pt2), lp is upper right Pu-bounded. So there is a maximal integer e > p such 
that [lp, le] ∈ Pu. Then [lp, le] is the minimal element in Pu ∩ [p, −]. �

We are ready to prove that (Pt2) and (Pt3) form a sufficient condition for a Ptolemy 
diagram to be τ -compact.

Proof of the ‘if’ part of Theorem 3.6. Suppose both (Pt2) and (Pt3) hold for P. We need 
to prove Pu admits a finite τ -basis, for every arc u in B∞. Consider first the case where 
u is an upper arc in B∞, say u = [lp, lq] with p < q. Then any arc crossing u has an 
endpoint lm with p < m < q. So Pu = ∪p<m<q(Pu ∩ [lm, −]). By Lemma 3.9, each 
nonempty Pu ∩ [lm, −] contains a unique minimal element. Then all of such minimal 
elements form a finite τ -basis of Pu.

The case u is a lower arc is similar. Consider now the case where u is a connecting 
arc, say u = [lp, rq]. If there is a connecting arc in ncP, say [li, rj ], then any arc in Pu
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has an endpoint, which is either an upper marked point between lp and li, or a lower 
marked point between rq and rj . So there is a finite set S of marked points in B∞ such 
that Pu = ∪p∈SPu ∩ [p, −]. Then the set of minimal elements in Pu ∩ [p, −] for p ∈ S is 
a finite τ -basis of Pu.

If there are no connecting arcs in ncP, then by (Pt3) there is a connecting arc in P. 
Note that Pu = A1 ∪ A2, where A1 = ∪p′>pPu ∩ [lp′ , −] and A2 = ∪q′<qPu ∩ [rq′ , −]. 
It suffices to find finite subsets Zi ⊆ Ai, i = 1, 2, such that Zi is a τ -basis of Ai

(since then Z1 ∪ Z2 is a τ -basis of Pu). We shall only find Z1. By Lemma 3.9, each 
nonempty Pu ∩ [lp′ , −] has a minimal element. We denote by q(p′) the other endpoint of 
the minimal element. Since [lp′ , q(p′)] crosses u, we have that q(p′) is an upper marked 
point left to lp or a lower marked point left to rq. We claim that for any p′′ > p′ > p, 
[lp′ , q(p′)] and [lp′′ , q(p′′)] do not cross each other. Indeed, if they cross then by (Pt) we 
have [lp′ , q(p′′)] ∈ Pu, which is smaller than [lp′ , q(p′)], a contradiction. Let Z1 be the set 
of minimal elements in Pu∩ [q(p′), −] for p′ > p. We claim that Z1∪Z2 is a τ -basis of Pu. 
In fact, suppose u1 is an arc in Pu. Without lose of generality, we suppose u1 = [lp′ , a] is 
in A1 for some marked point a. We have [lp′ , q(p′)] ∈ Pu∩ [q(p′), −]. Suppose the minimal 
element in Pu ∩ [q(p′), −] with p′ > p is u2 = [q(p′), qq(p′)], i.e., u2 is in Z1. If q(p′) = a

or lp′ = qq(p′), then u1 does not cross u2, and u1 crosses τu2. So we consider the case 
q(p′) 	= a and lp′ 	= qq(p′). Then u1 crosses u2, [lp′ , q(p′)] and [a, qq(p′)] are two middle 
terms from u2 to u1. Obviously, they are in Pu. Next we show that the set {q(p′) | p′ > p}
is finite, which implies that Z1 is finite and we are done.

(1) If there is an integer p′ > p such that q(p′) is a lower marked point, then for any 
p′′ > p′, q(p′′) is a lower marked point between q(p′) and rq. This is because [lp′ , q(p′)]
and [lp′′ , q(p′′)] do not cross each other. Hence, {q(p′) | p′ > p} is finite.

(2) Consider now the case where all of q(p′) are upper marked points. Note that there 
exists an arc v = [li, rj ] ∈ P. If v does not cross any upper arcs [lp′ , q(p′)] with p′ > p, 
then any q(p′) is between li and lp and hence {q(p′) | p′ > p} is finite. If v crosses an 
upper arc [lp′ , q(p′)] for some p′ > p, by (Pt), we have [q(p′), rj ] ∈ P for some p′ > p. 
Then by (Pt) again, we have [lp′′ , q(p′)] ∈ Pu for any p′′ > p′, which implies that 
q(p′′) = q(p′). So the set {q(p′) | p′ > p} is also finite and we complete the proof the 
claim. �

The next result shows that (Pt2) is a necessary condition for a set of arcs (not neces-
sarily a Ptolemy diagram) to be τ -compact.

Proposition 3.10. Any τ -compact set P of arcs in B∞ satisfies condition (Pt2).

Proof. We shall only show that any upper marked point which is lower right P-bounded 
is upper right P-bounded, and any upper marked point which is upper left P-bounded is 
lower left P-bounded.
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(1) Let lp be an upper marked point which is lower right P-bounded. Then there is an 
integer s such that [lp, rs′ ] /∈ P for any s′ < s. Let u = [lp+1, rs]. So Pu ∩ [lp, −]
consists only of arcs [lp, lt] ∈ P with t > p + 1. If lp is not upper right P-bounded, 
then Pu ∩ [lp, −] is infinite. Since P is τ -compact, Pu admits a finite τ -basis Σ. By 
the finiteness of Σ, there is an arc u1 ∈ Pu ∩ [lp, −], which is smaller than any arc in 
Σ ∩ [lp, −]. On the other hand, denoting by lq the other endpoint of u1, any arc in 
[lq, −] which is smaller than u1 does not crosses u. Hence by Lemma 3.4, for any arc 
u2 ∈ Σ satisfying τu2 crosses u1, we have that u1 crosses u2. So u2 has an endpoint 
of the form lr with p < r < q. Then the arc [lr, lq] is a middle term from u2 to u1. 
However, [lr, lq] does not cross u. This contradicts that Σ is a τ -basis of Pu.

(2) Let lp be an upper marked point which is upper left P-bounded. Let s be the minimal 
integer such that [lp, ls] is in P or is an edge and let u = [ls, rt] an arbitrary connecting 
arc having ls as an endpoint. So Pu∩[lp, −] consists only of connecting arcs [lp, rt′ ] ∈ P

with t′ > t. If lp is not lower left P-bounded, then Pu ∩ [lp, −] is infinite. Since P is 
τ -compact, Pu admits a finite τ -basis Σ. By the finiteness of Σ, there is an integer 
m such that rn is not an endpoint of any arc in Σ for any n > m. Then by the 
infiniteness of Pu ∩ [lp, −], there exists a connecting arc u1 = [lp, rq] ∈ Pu ∩ [lp, −]
with q > max{m, t}. It follows that any arc in [rq, −] or [lp, −], which is smaller than 
u1 for the respective order, is not in Σ. Then by Lemma 3.4 for any arc u2 ∈ Σ with 
τu2 crossing u1, u1 crosses u2. Using the fact that any lower marked point left to rq
is not an endpoint of any arc in Σ, we have that u2 has an endpoint, which is an 
upper marked point lr with r < p. Then [lr, lp] is a middle term from u2 to u1. But 
if r ≥ s, [lr, lp] does not cross u; if r < s, [lr, lp] is not in P by the minimality of s. 
Therefore [lr, lp] /∈ Pu, which contradicts that Σ is a τ -basis of Pu. �

An upper marked point lp is said to be covered by an upper arc [li, lj ] if i < p < j; 
and a lower marked point rq is said to be covered by a lower arc [ra, rb] if a > q > b. Now 
we can complete the proof of Theorem 3.6 with the following result.

Proposition 3.11. Any τ -compact Ptolemy diagram P of B∞ satisfies (Pt3).

Proof. Assume that P is a τ -compact Ptolemy diagram. Showing that P satisfies (Pt3) is 
equivalent to proving that if ncP does not contain any connecting arcs, then P contains 
connecting arcs. Then either every upper marked point is covered by an upper arc in P, 
or every lower marked point is covered by a lower arc in P. Without loss of generality, we 
assume that the former occurs. Let lp be an upper marked point and u an arbitrary con-
necting arc having lp as an endpoint. Since P is τ -compact, Pu admits a finite τ -basis Σ. 
By the finiteness of Σ, there are integers m < p < n such that for any m′ < m and n′ > n

there are no upper arcs in Σ which have lm′ or ln′ as an endpoint. Assume that there 
exists an upper arc [li, lj ] ∈ P with i < p < j such that min{|p − i|, |p − j|} is maximal. 
Since li is an upper marked point, there is an upper arc [la, lb] ∈ P with a < i < b. By 
the maximality of min{|p − i|, |p −j|}, we have that b < j. By (Pt) we have [la, lj ] is in P. 
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However [la, lj ] covers lp and min{|p − a|, |p − j|} > min{|p − i|, |p − j|}, a contradiction. 
Hence there are integers m′ < m and n′ > n such that [lm′ , ln′ ] ∈ P covers lp. So [lm′ , ln′ ]
is in Pu and it does not cross any upper arcs in τΣ. Therefore, there are connecting arcs 
in Σ. As Σ is a subset of P, it follows that P contains connecting arcs. �
3.3. A crucial property of compact Ptolemy diagrams

For any set P of arcs in B∞, denote by P the set obtained from P by adding all edges 
in B∞.

Lemma 3.12. Let P be a Ptolemy diagram and let p be a marked point in B∞. For any 
two elements [p, i] >p [p, j] in P ∩ [p, −], if there is no [p, q] in P ∩ [p, −] with [p, i] >p

[p, q] >p [p, j], then [i, j] is in ncP.

Proof. If [i, j] is an arc but not in ncP, then there is an arc u in P crossing [i, j]. Note 
that the arc [i, j] divides the infinite strip B∞ into two regions. Let q be the endpoint 
of u that is in the different region from p. It follows that [p, i] >p [p, q] >p [p, j]. So p is 
not an endpoint of u. But this implies that u crosses one of [p, i] and [p, j]. By (Pt), we 
have [p, q] ∈ P, a contradiction. �

Let u be an arc in B∞ and p an endpoint of u. Denote by [p, −]>pu the subset of [p, −]
consisting of the elements bigger than u.

Lemma 3.13. Let P be a set of arcs in B∞, satisfying (Pt2). Then there is a minimal 
element in P ∩ [p, −]>pu for any arc u in B∞, where p is an endpoint of u.

Proof. If there is not a minimal element in [p, −]>pu, then one of the following situations 
occurs.

(1) p is upper left P-bounded but is not lower left P-bounded.
(2) p is lower right P-bounded but is not upper right P-bounded.

This contradicts condition (Pt2). �
We shall need the following lemma.

Lemma 3.14. Let P be a τ -compact Ptolemy diagram of B∞. If there is a connecting arc u

in ncP, which is not in P, then there is another connecting arc in ncP crossing u.

Proof. Let lp and rq be the two endpoints of u. Using Lemma 3.13, there are minimal 
elements [lp, p] and [rq, q] in P ∩ [lp, −]>u and P ∩ [rq, −]>u, respectively. It is clear that 
the arc [p, q] crosses u. To complete the proof, we only need to prove [p, q] is in ncP. 
Indeed, if there is an arc v = [i, j] ∈ P crossing [p, q], then neither lp nor rq is an endpoint 
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of v by u /∈ P and the minimality of [lp, p] and [rq, q]. So [i, j] crosses either [lp, p] or [rq, q]. 
Without loss of generality, we assume that [i, j] crosses [lp, p]. Since [i, j] does not cross u, 
both [lp, i] and [lp, j] are bigger than u. By (Pt), both [lp, i] and [lp, j] are in P. But we 
have either [lp, i] >lp [lp, p] >lp [lp, j] or [lp, j] >lp [lp, p] >lp [lp, i]. Both cases contradict 
the minimality of [lp, p]. �

We have the following important property of a τ -compact Ptolemy diagram.

Proposition 3.15. Any τ -compact Ptolemy diagram P satisfies P = ncncP.

Proof. The inclusion P ⊆ nc ncP is clear. So it suffices to show that any arc u in nc ncP
is in P. By Theorem 3.6, P satisfies (Pt2) and (Pt3).

Consider first the case where u is an upper arc, say u = [lp, lq] with p < q. Let s > p

be the minimal integer such that [lq, ls] ∈ P. So s ≤ q − 1. By Lemma 3.13 there is a 
minimal element in P ∩ [lq, −]>lq [lq,ls], say [lq, p]. By the minimality of s, p is not an 
upper marked point lt with p < t ≤ q. Hence if p 	= lp then [p, ls] crosses u. This is a 
contradiction because by Lemma 3.12 [p, ls] ∈ ncP. The proof in case u is a lower arc is 
similar.

Consider now the last case that u is a connecting arc, say u = [lp, rq]. We claim that 
P contains a connecting arc. Indeed, if P does not contain any connecting arc, then by 
(Pt3) there are connecting arcs in ncP. Let v = [li, rj ] be a connecting arc in ncP such 
that |p − i| + |q − j| is minimal. By Lemma 3.14, there is an arc w ∈ ncP crossing v. 
It follows that v 	= u and one of the endpoints of w, say p, is either an upper marked 
point between lp and li not equaling li, or a lower marked point between rq and rj not 
equaling rj . By Lemma 3.2, ncP satisfies (Pt). So both [li, p] and [rj , p] are in ncP. But 
one of them is a connecting arc, which is nearer to u than v, a contradiction. Thus, there 
are connecting arcs in P.

Let [lm, rn] be a connecting arc in P with |m − p| + |n − q| minimal. We need to prove 
|m − p| + |n − q| = 0.

(1) If n < q, then there is a minimal integer r such that q > r ≥ n and [rq, rr] ∈ P. 
Using Lemma 3.13 there is a minimal element [rq, p] in P ∩ [rq, −]>rq [rq,rr]. By the 

minimality of r, we have [rq, p] >rq [rq, rn]. By Lemma 3.12, [rr, p] is in ncP. It follows 
that [rr, p] does not cross [lp, rq]. Hence p is either an upper marked point la with 
a ≥ p or a lower marked point rb with b < n. If [rq, p] crosses [lm, rn], then by (Pt), 
we have [lm, rq] ∈ P with |m −p| + |q−q| < |m −p| + |n −q|, a contradiction. If [rq, p]
does not cross [lm, rn], then p = la with a ≤ m. It follows that we have [la, rq] ∈ P

with |a − p| + |q − q| < |m − p| + |n − q|, a contradiction.
(2) The case m < p can be proved similarly as (1).
(3) If n > q and m ≥ p, by Lemma 3.13, there is a minimal element [lm, p] in P ∩

[lm, −]>[lm,rn]. Then by Lemma 3.12, [rn, p] is in ncP. It follows that p = rb for some 
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n > b ≥ q. So we have [lm, rb] ∈ P with |m − p| + |b − q| < |m − p| + |n − q|, a 
contradiction.

(4) The case that n ≥ q and m > p can be proved similarly as (3). �
4. Geometric realization of cotorsion pairs

We shall use the following lemmas to prove the main result in the paper.

Lemma 4.1. For any two arcs u1 and u2 in B∞ sharing an endpoint p, we have that 
u2 ≥p u1 if and only if Hom(Mu1 , Mu2) 	= 0.

Proof. It is easy to see that u2 ≥p u1 if and only if u2 crosses τu1. By Proposition 2.5, 
the lemma follows. �
Lemma 4.2. Let v1 and v2 be two arcs in B∞ with v2 ≥p v1, for some marked point p. 
Then for any arc u with τu crossing v1, any morphism from Mu to Mv2 factors through 
an arbitrary nonzero morphism from Mv1 to Mv2 .

Proof. Let M = Mu, N = Mv1 and L = Mv2 . Since τu crosses v1 and τv1 crosses v2, 
there are nonzero morphisms f : M → N and g : N → L. Moreover, we have 
Hom(N, L[1]) = 0 because v1 does not cross v2. Using the dual of [19, Lemma 5.6], 
Hom(Mu, Mv2) is generated by gf . In particular, any map from Mu to Mv2 factors 
through an arbitrary morphism from Mv1 to Mv2 . �
Lemma 4.3. Let Y be a subcategory of C and u an arc in B∞. Then there is a left 
Y -approximation of Mu if and only if Ỹτu admits a finite τ -basis.

Proof. To prove the ‘if’ part, let Σ be a finite τ -basis of Ỹτu. For each arc v ∈ Σ, there 
is a non-zero morphism fv : Mu → Mv since v crosses τu. We claim that f = ⊕v∈Σfv :
Mu → ⊕v∈ΣMv is a left Y -approximation of Mu. Indeed, for any non-zero morphism 
g : Mu → Mu1 where u1 is an arc in Ỹ , we have τu crosses u1. So u1 ∈ Ỹτu and hence 
there is an arc u2 ∈ Σ such that τu2 crosses u1 and any middle term from u2 to u1
is in Ỹτu. It suffices to prove that g factors through fu2 . By Lemma 3.4, there are the 
following two cases.

(1) u1 ≥p u2 for some marked point p. By Lemma 4.2, we have that g factors through fu2 .
(2) u1 crosses u2. Then by definition, there exists a middle term u3 with u2 <p1 u3 <p2 u1

for some marked points p1 and p2. Since u3 ∈ Ỹτu, using Lemma 4.2 repeatedly, we 
have that g factors through fu2 .

We now prove the ‘only if’ part. Let f : Mu → X be a minimal left Y -approximation. 
We may write X = ⊕v∈ΣMv, where Σ is a finite set of arcs in B∞. It follows that Σ is a 
subset of Ỹτu. Let u1 be an arc in Ỹτu. Then for any nonzero morphism g : Mu → Mu1 , 
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there is a morphism h : ⊕v∈ΣMv → Mu1 such that g = h ◦ f . Denote by fv : Mu → Mv

(resp. hv : Mv → Mu1) the restriction of f (resp. h) to Mv. Since h ◦ f 	= 0, we have 
fu2 	= 0 and hu2 	= 0 for some u2 ∈ Σ. So by Proposition 2.5 τu2 crosses u1. Let u3 be a 
middle term from u2 to u1. We need to show u3 ∈ Ỹτu, which will complete the proof. 
Indeed, if u3 does not cross τu, then Hom(Mu, Mu3) = 0. But on the other hand, by 
Lemma 4.1 Hom(Mu2 , Mu3) 	= 0 and Hom(Mu3 , Mu1) 	= 0. By Lemma 4.2 it follows that 
hu2 : Mu2 → Mu1 factors through Mu3 . So hu2 ◦ fu2 = 0, which is a contradiction. �

The main result of this paper is the following classification of cotorsion pairs in C by 
compact Ptolemy diagrams of B∞.

Theorem 4.4. Let X , Y be subcategories of C , and X̃ and Ỹ the corresponding sets of 
arcs in B∞, respectively. Then the following statements are equivalent.

(1) (X , Y ) is a cotorsion pair in C .
(2) X̃ is a τ−1-compact Ptolemy diagram of B∞ and Ỹ = nc X̃ .
(3) Ỹ is a τ -compact Ptolemy diagram of B∞ and X̃ = nc Ỹ .
(4) X̃ satisfies conditions (Pt), (Pt2′) and (Pt3) and Ỹ = nc X̃ .
(5) Ỹ satisfies conditions (Pt), (Pt2) and (Pt3) and X̃ = nc Ỹ .

Proof. We only show the equivalences between (1), (3) and (5). The other equivalences 
can be proved dually.

“(1) ⇐⇒ (3)”: Assume that (X , Y ) is a cotorsion pair in C . By Proposition 2.2, 
we have that Y is covariantly finite, X ⊥ = Y and ⊥Y = X . Then by Lemma 4.3, 
for any arc u ∈ B∞, Ỹu admits a finite τ -basis, which implies that Ỹ is τ -compact. 
By Proposition 2.5, X ⊥ = Y and ⊥Y = X imply that Ỹ = nc X̃ and X̃ = nc Ỹ , 
respectively. Hence by Lemma 3.2, Ỹ is a Ptolemy diagram. So (3) holds.

Conversely, assume that (3) holds. By Lemma 4.3, Y is covariantly finite. By Propo-
sition 3.15, we have that Ỹ = nc nc Ỹ = nc X̃ . So by Proposition 2.5, we have that 
X ⊥ = Y and ⊥Y = X . Then by Proposition 2.2, (X , Y ) is a cotorsion pair in C .

“(3) ⇐⇒ (5)”: This is Theorem 3.6. �
5. Applications

5.1. Classification of functorially finite rigid subcategories and cluster tilting 
subcategories in C

A partial triangulation of B∞ is a collection of non-crossing arcs in B∞; and a trian-
gulation of B∞ is a maximal collection of non-crossing arcs in B∞. Clearly, any (partial) 
triangulation satisfies (Pt), and hence it is a Ptolemy diagram.
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Definition 5.1 (Definition 4.9 and Definition 4.11 in [19]). A (partial) triangulation P
of B∞ is called compact if for every arc u ∈ B∞, Pu admits a finite subset Σ such that 
every arc in Pu crosses some arc of τΣ as well as some arc of τ−1Σ.

This compactness is compatible with ours in the following sense.

Lemma 5.2. A (partial) triangulation of B∞ is compact if and only if it is both τ -compact 
and τ−1-compact as a Ptolemy diagram.

Proof. This follows directly from Lemma 3.4. �
By Proposition 2.2, X is functorially finite rigid if and only if (X , X [−1]⊥) and 

(⊥X [1], X ) are cotorsion pairs. Thus, we have the following classification of functorially 
finite rigid subcategories of C .

Proposition 5.3. Let X be a subcategory of C . Then the following statements are equiv-
alent.

(1) The subcategory X is functorially finite rigid.
(2) X̃ is a compact partial triangulation of B∞.
(3) X̃ is a partial triangulation satisfying (Pt2), (Pt2′) and (Pt3).

Proof. By Proposition 2.5, a subcategory X of C is rigid if and only if X̃ is a partial 
triangulation of B∞. Then this proposition follows by Theorem 4.4 and Lemma 5.2 �

As a direct consequence, we classify cluster tilting subcategories; compare [19, The-
orem 5.7]. Note that by [24], the cluster tilting subcategories of C are the functorially 
finite maximal rigid subcategories.

Corollary 5.4 (Theorem 5.7 in [19]). Let X be a subcategory of C . Then the following 
statements are equivalent.

(1) The subcategory X is cluster tilting.
(2) X̃ is a compact triangulation of B∞.
(3) X̃ is a triangulation of B∞ containing connecting arcs, and every marked point 

in B∞ which is upper left (resp. right) X̃ -bounded is also lower left (resp. right) 
X̃ -bounded and vice versa.

Proof. The only fact we should point out is that (3) is equivalent to that X̃ is a trian-
gulation satisfying (Pt2), (Pt2′) and (Pt3). �
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5.2. Classification of t-structures in C

Recall that a t-structure is a cotorsion pair (X , Y ) such that X is closed under [1]
or equivalently Y is closed under [−1].

For any integer p, denote by L≤p (resp. R≤p) the set of upper arcs [li, lj ] (resp. lower 
arcs [ri, rj ]) in B∞ with i, j ≤ p; denote by L≥p (resp. R≥p) the set of upper arcs [li, lj ]
(resp. lower arcs [ri, rj ]) in B∞ with i, j ≥ p. For convenience, take L≤−∞, R≤−∞, L≥+∞
and R≥+∞ to be the empty set. We now give a classification of t-structures in C as an
application of our main result.

Theorem 5.5. Let X and Y be subcategories of C and X̃ and Ỹ the corresponding sets 
of arcs in B∞. Then (X , Y ) is a t-structure in C if and only if

(1) X̃ = L≥p ∪R≥q for p, q integers or −∞ and Ỹ = nc X̃ ; or
(2) Ỹ = L≤p ∪R≤q for p, q integers or +∞ and X̃ = nc Ỹ .

Moreover, in each case, the heart of (X , Y ) is the subcategory of C corresponding to 
the set {[lp−1, lp+1], [rq−1, rq+1]}, where [lp−1, lp+1], [rq−1, rq+1] need to be omitted if p, q
are not integers, respectively.

Proof. To prove the ‘only if’ part, suppose that (X , Y ) is a t-structure in C . By The-
orem 4.4, X̃ = nc Ỹ , Ỹ = nc X̃ , X̃ satisfies (Pt), (Pt2′) and (Pt3), and Ỹ satisfies 
(Pt), (Pt2) and (Pt3). By (Pt3), there is a connecting arc in X̃ ∪ Ỹ . Consider first 
the case where X̃ contains connecting arcs. Let p (resp. q) be the minimal integer such 
that lp (resp. rq) is an endpoint of some arc in X̃ if it exists, or p = −∞ (q = −∞) 
otherwise. Since X is closed under [1], by Proposition 2.5, X̃ is closed under τ . Using 
the action of τ and (Pt) repeatedly, we have that any marked point li (resp. rj) with 
i ≥ p (resp. j ≥ q) is an endpoint of some connecting arc in X̃ . It follows that there are 
no connecting arcs in Ỹ . Therefore, by the minimality of p and q and by Ỹ = nc X̃ , 
we have Ỹ = L≤p ∪ R≤q. Thus, we show that if X̃ contains connecting arcs, then (2) 
holds. Similarly, we can prove that if Ỹ contains connecting arcs, then (1) holds.

To show the ‘if’ part, it is easy to see that X̃ in case (1) satisfies (Pt), (Pt2′) and (Pt3)
and that Ỹ in case (2) satisfies (Pt), (Pt2) and (Pt3). Hence by Theorem 4.4, (X , Y ) is 
a cotorsion pair. Moreover, in both cases, X̃ ∩ Ỹ = ∅. Then by Proposition 2.2, (X , Y )
is a t-structure. �

We illustrate the two types of t-structures in Theorem 5.5 in Fig. 7 and Fig. 8, re-
spectively. The diagram in Fig. 7 corresponds to the left part of a t-structure and the 
diagram in Fig. 8 corresponds to the right part of a t-structure. Note that when p or q
is +∞ or −∞, some arcs in the figures will disappear.

Remark 5.6. By Theorem 5.5, each pair (p, q) gives two t-structures in C . Hence there is 
a canonical bijection from (Z ∪ {∞}) × (Z ∪ {∞}) × Z2 to the set of t-structures in C .
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Fig. 7. The first type of t-structures.

Fig. 8. The second type of t-structures.

An immediate corollary of Theorem 5.5 is the following.

Corollary 5.7. The heart of any non-trivial t-structure in C is equivalent to the module 
category of the algebra k or k ⊕ k.

5.3. Relationship with the cluster category of type A∞

In this subsection, we use our classification of cotorsion pairs in C to recover the main 
result in [21] which gives a classification of cotorsion pairs in the cluster category of 
type A∞.

Let u = [lp, rq] an arbitrary connecting arc in B∞. Set

ncMu = add(⊥Mu[1]).

Let Cu be the quotient category ncMu/[addMu], whose objects are the same as the ob-
jects of ncMu with morphisms given by the morphisms of ncMu modulo those morphisms 
factoring through addMu. For any object M of ncMu, denote by M the corresponding 
object of Cu. By [14, Section 4], Cu is a 2-Calabi–Yau triangulated category and for any 
cluster tilting subcategory D of C containing Mu, the subcategory of Cu generated by 
the objects M , M ∈ D, is a cluster tilting subcategory of Cu.

By Proposition 2.5, there is a bijection

nc{u} 1−1−−−→ {the (isoclasses of) indecomposable objects of ncMu}

sending v to Mv. This induces a bijection

nc{u} \ {u} 1−1−−−→ {the (isoclasses of) indecomposable objects of Cu} (1)
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sending v to Mv. For any subcategory D of Cu, we use D̃ to denote the subset of 
nc{u} \ {u} consisting of v with Mv ∈ D.

Let D1 and D2 be the subcategories of C such that D̃1 and D̃2 consist of the arcs in 
nc{u} \ {u} left to u and right to u, respectively. We have the following result.

Theorem 5.8. Let u be a connecting arc in B∞. Using the notation above, we have that 
D1 and D2 are triangulated subcategories of Cu such that Cu = D1 ⊕ D2. Moreover, Di

are equivalent to the cluster category of type A∞.

Proof. By the bijection (1), any indecomposable object in Cu is either in D1 or in D2. 
On the other hand, for any two arcs vi ∈ Di, we have

Ext1Cu
(Mv1 ,Mv2) ∼= Ext1C (Mv1 ,Mv2) = 0

where the first isomorphism follows from [14, Lemma 4.8] and the second one from 
Proposition 2.5. Hence the first assertion of the theorem follows.

To show the second assertion, let Ti be the subcategory of Di such that

T̃1 = {[lp−i, rq+i], [lp−i, rq+i−1] | i > 0},

T̃2 = {[lp−i, rq+i], [lp−i−1, rq+i] | i < 0}.

Then the union T̃1 ∪ T̃2 ∪{u} is a compact triangulation of B∞ (cf. the following figure), 
where u = [lp, rq]. It follows that Ti is a cluster tilting subcategory of Di.

Since Ti is acyclic of type A∞, by [22, Theorem 3.2], mod Ti is hereditary. By [17], it 
follows that Di is equivalent to the cluster category of type A∞. �

Let us recall some notion from [21]. Let L∞ be an ∞-gon, whose vertices are labeled 
by the integers in order. A set {m, n} of two integers with |n −m| ≥ 2 is called an arc 
in L∞. Let V be the set of arcs in L∞. Two arcs {m1, n1} and {m2, n2} are said to 
cross if either m1 < m2 < n1 < n2 or m2 < m1 < n2 < n1. A set of arcs U is said to 
satisfy condition (i) if, for each pair of crossing arcs {m1, n1} and {m2, n2} in U , those 
of the pairs {m1, m2}, {m1, n2}, {n1, m2} and {n1, n2} which are arcs belong to U . A set 
of arcs U is said to satisfy condition (f) provided that for any integer m, if there are 
infinitely many arcs in U of the form {m, n} with n > m then there are infinitely many 
arcs in U of the form {m, n} with n < m.
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Consider the bijection ϕ from the set {lp−i, rq+i | i ≥ 0} to the set of integers, sending 
lp−i to i + 1 and sending rq+i to −i. Then ϕ induces a bijection from the set D̃1 to V , 
sending v = [p, q] to ϕ(v) := [ϕ(p), ϕ(q)]. This bijection, together with Theorem 5.8, gives 
a one-to-one correspondence between the set V and the set of (isoclasses of) indecom-
posable objects in CA∞ . Hence for any subcategory X of CA∞ , there is a corresponding 
subset X̃ of V . Then we have the following corollary of Theorem 4.4.

Corollary 5.9 (Theorem 3.18 in [21]). Let X be a subcategory of CA∞ and let X̃ be the 
corresponding subset of V . Then (X , X ⊥) is a torsion pair if and only if X̃ satisfies 
condition (i) and condition (f).

Proof. It is straightforward to see that X̃ satisfies condition (i) if and only if ϕ−1(X̃ ) ∪
{u} is a Ptolemy diagram of B∞. It is also easy to see that X̃ satisfies condition (f) 
if and only if ϕ−1(X̃ ) ∪ {u} satisfies condition (Pt2′). Since (Pt3) always holds for 
ϕ−1(X̃ ) ∪{u}, by Theorem 4.4, we have that X̃ satisfies condition (i) and condition (f) 
if and only if (X ′, X ′[−1]⊥) is a cotorsion pair in C , where X ′ is the subcategory of C
whose indecomposable object corresponds to an arc in ϕ−1(X̃ ) ∪{u}. On the other hand, 
by [26, Theorem 3.5], (X ′, X ′[−1]⊥) is a cotorsion pair in C if and only if (X , X [−1]⊥)
is a cotorsion pair in Cu. Hence we are done. �
Remark 5.10. The subcategory of C , whose corresponding set of arcs in B∞ is the set 
of all upper arcs, is equivalent to the cluster category CA∞ of type A∞. There is clearly 
a canonical bijection between the set of upper arcs in B∞ and the set V . However, this 
bijection does not gives a one-to-one correspondence between the τ−1-compact Ptolemy 
diagrams of B∞ which only contains upper arcs and the subsets of V satisfying condi-
tion (i) and condition (f). Hence one can not deduce Ng’s classification of torsion pairs 
in CA∞ in this way.
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