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Abstract

We study the cluster algebras arising from cluster tubes with rank bigger than 1. Cluster tubes
are 2-Calabi–Yau triangulated categories that contain no cluster tilting objects, but maximal
rigid objects. Fix a certain maximal rigid object T in the cluster tube Cn of rank n. For any
indecomposable rigid object M in Cn, we define an analogous XM of Caldero–Chapoton’s formula
(or Palu’s cluster character formula) by using the geometric information of M . We show that
XM , XM′ satisfy the mutation formula when M, M ′ form an exchange pair, and that X? : M �→
XM gives a bijection from the set of indecomposable rigid objects in Cn to the set of cluster
variables of cluster algebra of type Cn−1, which induces a bijection between the set of basic
maximal rigid objects in Cn and the set of clusters. This yields a surprising result proved recently
by Buan–Marsh–Vatne that the combinatorics of maximal rigid objects in the cluster tube Cn

encodes the combinatorics of the cluster algebra of type Bn−1, since the combinatorics of cluster
algebras of type Bn−1 and of type Cn−1 is the same by a result of Fomin and Zelevinsky. As a
consequence, we give a categorification of cluster algebras of type C.

1. Introduction

Cluster algebras were introduced around 2000 by Fomin and Zelevinsky [15] in order to give an
algebraic and combinatorial framework for the canonical basis of quantum groups and for the
notion of total positivity for semisimple algebraic groups; see [13, 18] for a nice survey on this
topic and its background. Since they were introduced, interesting connections between such
algebras and several branches of mathematics have emerged. In the categorification theory
of cluster algebras, cluster categories [1, 4, 8, 9, 25] and (stable) module categories over
preprojective algebras [3, 20, 21] play a central role. They all have cluster tilting objects, which
model the clusters of the corresponding cluster algebras via Caldero–Chapoton’s formula [7]
in the case of cluster categories or Geiss–Leclerc–Shröer’s map [20] in the case of preprojective
algebras. This motivates the study of arbitrary 2-Calabi–Yau triangulated categories with
cluster tilting objects (subcategories). Palu defined a cluster character for any Hom-finite 2-
Calabi–Yau triangulated categories that have cluster tilting objects [31, 32] (see also [19]).
Recently, Plamondon defined cluster characters for Hom-infinite 2-Calabi–Yau triangulated
categories with some hypotheses [33, 34].

It was proved in [3, 24] that one can mutate a cluster tilting object T = ⊕n
i=1Ti (respectively,

maximal rigid object) at any indecomposable direct summand Ti to get a new cluster tilting
object μi(T ) (respectively, maximal rigid object) via exchange triangles in a 2-Calabi–Yau
triangulated category C. To any maximal rigid object T , one can associate an integer matrix AT

by using the exchange triangles (where AT is the transpose of BT defined in [5]; see Section 2).
If AT and Aμi(T ) are related by Fomin–Zelevinsky’s matrix mutation for any maximal rigid
object T and any direct summand Ti, then we say that the maximal rigid objects form a
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cluster structure in C [3, 5]. In [5], Buan–Marsh–Vatne showed that maximal rigid objects
without 2-cycles form a cluster structure in C (see also [3]). Therefore, cluster tilting objects
and maximal rigid objects are important objects in 2-Calabi–Yau triangulated categories. They
have many nice properties; see, for example, [11, 23, 24, 28, 29, 36–38]. Cluster tilting objects
are obviously maximal rigid, but the converse is not true; see [6] for the first examples. Cluster
tubes provide the second examples, in which the quivers of endomorphism algebras of maximal
rigid objects contain loops, but no 2-cycles [5]. A cluster tube of rank n, denoted by Cn, is,
by definition, the orbit category by τ−1[1] of the derived category of the hereditary abelian
category of nilpotent representations of the quiver with underlying graph Ãn−1 and with cyclic
orientation. It is a 2-Calabi–Yau triangulated category [2, 25]. In [5], a classification of maximal
rigid objects in the cluster tube Cn is given. The maximal rigid objects are proved to form a
cluster structure. Furthermore, they use the geometric description of the exchange graph of
the cluster algebra of type Bn−1 in [16] to prove that there is a bijection between the set
of indecomposable rigid objects in the cluster tube Cn and the set of cluster variables of
the cluster algebra of type Bn−1. Under this bijection, maximal rigid objects go to clusters.
Since the cluster combinatorics of the cluster algebra of type Cn−1 is the same as that of the
cluster algebra of type Bn−1 by [16, Proposition 3.15], there is a bijection between the set
of indecomposable rigid objects in the cluster tube Cn and the set of cluster variables of the
cluster algebra of type Cn−1.

The aim of the paper is to study the cluster algebras arising from cluster tubes. This is the
first attempt to answer the well-known question of how to define cluster characters with respect
to a maximal rigid object in a 2-Calabi–Yau triangulated category, in which maximal rigid
objects may have loops (cf. [33, 34]). We give an analogue of Caldero–Chapoton’s formula [7]
(or Palu’s character [31]) for cluster tubes. Fix a certain basic maximal rigid object T in the
cluster tube Cn(n > 1). Here, AT denotes the skew-symmetrizable matrix associated with T ,
which is of type Cn−1 [5] (please see the precise meaning in Section 2). For any indecomposable
rigid object M in Cn, with respect to T , we define a Laurent polynomial XM . We prove that
the formula XM satisfies the mutation formula for cluster variables: that is, if M and M∗

are indecomposable rigid objects such that M ⊕ N and M∗ ⊕ N , for some rigid object N , are
maximal rigid objects in Cn, then XM · XM∗ = XE + X ′

E , where E,E′ are the middles of the
exchange triangles: M → E → M∗ → M [1], M∗ → E′ → M → M∗[1]. We note here that the
dimension of Ext1(M,M∗) can be 2 (see the cases considered before in [7, 19, 31, 33, 34],
where the k-dimension of Ext1(M,M∗) is always 1). Thus, the map X? gives a bijection from
the set of indecomposable rigid objects in Cn to the set of cluster variables of the cluster algebra
of type Cn−1. This gives an explicit bijection parallel with that given by Buan–Marsh–Vatne [5]
for type Bn−1 (since there is a natural bijection between type Bn−1 and type Cn−1; see [16]).
The algebra generated by the XM , where M runs over all indecomposable rigid objects in Cn

is isomorphic to the cluster algebras of type Cn−1. In [10], Dupont proved the multiplication
formula for cluster characters associated to regular modules over the path algebra of any
representation-infinite quiver; Ding and Xu [12] also defined an analogous map for cluster
tubes and gave multiplication formulas. But their formulas are not the exchange formula for
cluster variables on the one hand, and their maps cannot be used to realize the cluster structure
of Cn on the other hand.

The paper is organized as follows: In Section 2, we recall some basics on cluster algebras and
2-Calabi–Yau triangulated categories. In particular, we recall the definition of cluster tubes
and basic descriptions on indecomposable rigid objects in cluster tubes from [5]. In Section 3,
for any positive number n > 1, fix a basic maximal rigid object T in Cn, we calculate the index
of any indecomposable rigid object M with respect to T (defined in [11, 31, 33, 34]) and define
the analogue XM of the CC-map or Palu’s map for an indecomposable rigid object M with
respect to T . This map X? is called cluster map. Using the structure of the cluster tube Cn

of rank n, we divide the set of indecomposable rigid objects into three disjoint subsets. Using
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the structure of endomorphism algebras of T [5, 36–38], we calculate the explicit formula of
XM according to which subset M belongs to. In Section 4, we prove that XM ,XM∗ satisfy
the mutation formula when M,M∗ form a mutation pair. Using the mutation triangles, we
explain that the matrix AT associated with T is a skew-symmetrizable matrix of type Cn−1.
We prove that the map X? gives a bijection between the set of indecomposable rigid objects
in Cn and the set of cluster variables of AT , which induces a bijection between the set of
basic maximal rigid objects and the set of clusters of AT . It follows that the cluster algebra
generated by XM , where M runs over all indecomposable rigid objects, is isomorphic to the
cluster algebra of type Cn−1. In the final section, we give an application of the cluster map
X?. We prove that the simplicial complex generated by the indecomposable rigid objects in Cn

gives a realization of the cluster complex of the root system of type Cn−1 defined in [16].

2. Preliminaries

We recall some basic notions on cluster algebras that can be found in the papers by Fomin and
Zelevinsky [15–17]. The cluster algebras we deal with in this paper are without coefficients.

Let F = Q(x1, x2, . . . , xn) be the field of rational functions in indeterminates x1, x2, . . . , xn.
Set x = {x1, x2, . . . , xn}. Let A = (aij) be an n × n skew-symmetrizable integer matrix. For any
k ∈ {1, 2, . . . , n}, the mutation μk(A) of A in direction k is, by definition, an integer matrix
A′ = (a′

ij), where

a′
ij =

⎧⎨⎩
−aij if i = k or j = k,

aij +
|aik|akj + aik|akj |

2
otherwise.

We see that A′ is a skew-symmetrizable matrix too. A seed is a pair (u,A), where u =
{u1, u2, . . . , un} is a transcendence base of F , and A is an n × n skew-symmetrizable integer
matrix. A mutation μk(u,A) of a seed (u,A) in direction k is a new seed (u′, A′), where
A′ = μk(A) and u′ = (u \ {uk})

⋃
{u′

k}, where u′
k is defined in the following mutation formula:

uku′
k =

∏
aik>0

uaik
i +

∏
aik<0

u−aik
i .

The cluster algebra AA associated to the skew-symmetrizable matrix A is by definition the
subalgebra of F generated by all ui in u such that (u,A′) is obtained from (x,A) by mutations
for some A′. Such u = (u1, u2, . . . , un) is called a cluster of the cluster algebra AA or simply of
the matrix A, and any ui is called a cluster variable. The seed (x,A) is called an initial seed.
The set of all cluster variables is denoted by χA. If the set χA is finite, then the cluster algebra
AA is called of finite type. For any skew-symmetrizable integer matrix A, one can define the
Cartan part CA of A as follows: CA = (cij)n×n, where

cij =

{
−|aij | if i �= j,

2 if i = j.

It was proved by Fomin and Zelevinsky [17] that cluster algebras are of finite type if and only
if there is a seed (u,A′) obtained from the initial seed (x,A) by mutations such that the Cartan
part CA′ of A′ is of finite type. In this case, the type of the Cartan matrix CA is called the
type of the cluster algebra AA. For example, if

CA′ =

⎛⎜⎜⎜⎜⎝
2 −1 0 · · · 0
−2 2 −1 · · · 0

· · · · · ·
0 0 · · · 2 −1
0 · · · −1 2

⎞⎟⎟⎟⎟⎠ ,
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then the cluster algebra is called of type Cn.
Now we recall some basics on 2-Calabi–Yau triangulated categories. Fix an algebraically

closed field k. A triangulated category C is called k-linear, provided all Hom-spaces in C are
k-spaces and the compositions of maps are k-linear. The k-linear triangulated categories in this
paper will be assumed Hom-finite and Krull–Remak–Schmidt, that is, dimk HomC(X,Y ) < ∞
for any two objects X and Y in C, and every object decomposes into a finite direct sum of
objects having local endomorphism rings. We fix some notation. For an object M in Cn, denote
by addM the subcategory of Cn consisting of (finite) direct sums of direct summands of M .
For two subcategories D1,D2 of Cn, denote by D1 ∗ D2 the full subcategory of Cn consisting of
object E such that there is a triangle D1 → E → D2 → D1[1], where Di ∈ Di, for i = 1, 2.

A k-linear triangulated category C is called 2-Calabi–Yau if there is a functorial isomorphism
HomC(X,Y ) ∼= DHomC(Y,X[2]) for any objects X,Y ∈ C, where D = Homk(−, k). The main
examples of 2-Calabi–Yau triangulated categories from representation theory of algebras are
the cluster categories of abelian hereditary categories with tilting objects [4, 25], the Hom-
finite generalized cluster categories of algebras with global dimension of at most 2 [1], the
stable categories of Cohen–Macaulay modules [3], cluster tubes [2] and some others, please see
the survey [26].

Cluster tilting objects are defined first in cluster categories [4], which are generalized to
arbitrary 2-Calabi–Yau triangulated categories by Keller and Reiten [28].

Definition 2.1. Let T be an object of a 2-Calabi–Yau triangulated category C. We have
the following notion:

(i) T is called basic if any two indecomposable summands of T are not isomorphic;
(ii) T is rigid, provided Ext1C(T, T ) = 0;
(iii) T is maximal rigid, provided T is rigid and is maximal with respect to this property;

that is, if Ext1C(T ⊕ M,T ⊕ M) = 0, then M ∈ add T ;
(iv) T is cluster-tilting, provided, for any M ∈ C, M ∈ add T if and only if Ext1C(M,T ) = 0.

From the definition, any cluster tilting object is maximal rigid, but the converse is not true.
It was proved in [5] that the cluster tube Cn of rank n (n > 1) has no cluster tilting objects,
but maximal rigid objects. See [6] for more such examples. The 2-Calabi–Yau triangulated
categories with cluster tilting objects are important for the categorification of cluster algebras
of skew-symmetric matrices; see the survey [27, 35] and the references therein.

Fix a basic maximal rigid object T = T1 ⊕ · · · ⊕ Tn with all Tj indecomposable. For an
i ∈ {1, . . . , n}, write T̄ = ⊕j �=iTj . Then there are two nonsplit triangles:

Ti
fi−→ Ei

gi−→ T ∗
i −→ Ti[1],

T ∗
i

f ′
i−→ E′

i

g′
i−→ Ti −→ T ∗

i [1],

where fi and f ′
i are minimal left T̄ -approximations, and gi and g′i are minimal right

T̄ -approximations. Furthermore, T ∗
i is indecomposable and T̄ ⊕ T ∗

i is maximal rigid [3, 24].
Define the mutation of maximal rigid object T in direction i to be μi(T ) = T̄ ⊕ Ti. It is easy
to see that μi ◦ μi(T ) = T . The two triangles above are called exchange triangles. We define
an integer matrix AT = (aij) as follows:

aij = αij − α′
ij ,

where αij denotes the multiplicity of Ti as a direct summand of Ej and α′
ij denotes the

multiplicity of Ti as a direct summand of E′
j . Note that aii = 0. Our definition of the matrix

AT associated to T is the transpose of the matrix BT defined in [5]. When the endomorphism
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Figure 1. The tube of rank n.

algebra of T contains no loops or 2-cycles, AT , BT are skew-symmetric matrices, and
AT = −BT . In general, the matrices AT , BT are sign-skew-symmetric (see Lemma 1.2 in [5]).

Remark 2.2. We use our definition of the matrix AT associated to T to replace the matrix
BT defined in [5] since we will use the mutation formula uku′

k =
∏

aik>0 uaik
i +

∏
aik<0 u−aik

i

for the definition of cluster algebras, where the index aik comes from the kth column of the
matrix A (see [15]).

Let C be a 2-Calabi–Yau triangulated category with maximal rigid objects. Suppose that, for
all maximal rigid objects, Ei and E′

i have no common direct summands for any i ∈ {1, . . . , n}.
Then μi(AT ) = Aμi(T ) (equivalent to μi(BT ) = Bμi(T ) proved in [5]). In this case, one can say
that the maximal rigid objects form a cluster structure in C [5].

In what follows, we will focus on cluster tubes, special 2-Calabi–Yau triangulated categories.
We will denote the tube of rank n by Tn, where n is always assumed to be greater than 1.
One realization of this category is the category of finite-dimensional nilpotent representations
over k of the cyclic quiver

−→
Δn with n vertices such that arrows are going from i to i + 1

(taken modulo n). It is a k-linear hereditary abelian category which is Hom-finite, that is,
dimHomTn

(X,Y ) < ∞ for any X,Y ∈ Tn. Each indecomposable representation is uniserial,
that is, it has a unique composition series, and hence is determined by its socle and its length
up to isomorphism. We denote by (a, b) in Tn the unique indecomposable object with socle
(a, 1) and quasi-length b, where (a, 1) is the simple representation at vertex a, a ∈ {1, . . . , n}
(see Figure 1). For convenience, (a, 0) denotes a zero object. The tube Tn has Auslander–Reiten
sequences, and the Auslander–Reiten translation τ is an automorphism of Tn:

τ(a, b) = (a − 1, b).

The cluster tube of rank n is defined in [2], as the orbit category

Cn := Db(Tn)/τ−1[1],

where [1] is the shift functor of Db(Tn). This category is a 2-Calabi–Yau triangulated category
such that the projection π : Db(Tn) → Cn is a triangle functor [2, 25]. The cluster tube Cn

has Auslander–Reiten triangles induced from the ones in Db(Tn). It is easy to see that
indecomposable objects in Tn are also indecomposable in Cn (via the composition of the
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Figure 2. Five disjoint subsets of D.

inclusion functor Tn ↪→ Db(Tn) with the projection π : Db(Tn) → Cn), and all indecomposable
objects in Cn are of this form. So we use the same (a, b) to denote the indecomposable object
in Cn induced from the object (a, b) in Tn.

By the definition of Cn, for two objects X,Y ∈ Tn,

HomCn
(X,Y ) ∼= HomTn

(X,Y ) ⊕ DHomTn
(Y, τ2X).

As in [5], the maps from HomTn
(X,Y ) are called T -maps and the maps from DHomTn

(Y, τ2X)
are called D-maps. Any map from X to Y in Cn can be written as the sum of a T -map and a
D-map. One knows that the composition of two T -maps is also a T -map, the composition of
a T -map and a D-map is a D-map, and the composition of two D-maps is zero.

The indecomposable rigid objects are classified in [5].

Proposition 2.3. The object (a, b) is rigid if and only if b � n − 1.

Define by Ti = (1, n − i), i = 1, . . . , n − 1. It is easy to see that ⊕n−1
i=1 Ti is a maximal rigid

object in Cn. We will use T to denote this maximal rigid object throughout the paper. Let
D = addT [−1] ∗ add T . Following [36, 37], the set of indecomposable objects in D[1] is the set
of indecomposable objects (a, b) satisfying either (1) (a, b) is rigid, or (2) n � b � 2n − 2 and
a + b � 2n − 1. We divide D into five subsets (see Figure 2):

O = {(a, b) | a = 1, b � n − 1},
I = {(a, b) | 2 � a � n − 1, a + b � n},

II = {(a, b) | a + b � n + 1, b � n − 1},
III = {(a, b) | a + b � 2n − 1, a �= 1, b � n},
IV = {(a, b) | a + b = 2n, a �= 1, b � n}.

Let f
(a,b)
1 be a nonzero T -map from T1[−1] to (a, b) ∈ II ∪ III ∪ IV and let g1

1 be a nonzero
D-map from T1[−1] to itself. Write

g
(a,b)
1 = f

(a,b)
1 g1

1 .
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The triangle involving g1
1 is

(3, 2n − 2) −→ T1[−1]
g1
1−→ T1[−1]

f−→ (2, 2n − 2),

where f = λf
(2,2n−1)
1 for some nonzero λ ∈ k. We know that αf = 0 for any T -map α in

HomCn
((2, 2n − 2), (a, b)) for (a, b) ∈ II ∪ III, so f

(a,b)
1 cannot factor through f , and then

g
(a,b)
1 = f

(a,b)
1 g1

1 �= 0. Computing the dimension of HomCn
(T1[−1], (a, b)), we have the following

obvious fact.

Lemma 2.4. For any indecomposable object (a, b) in D, we have that

dim HomCn
(T1[−1], (a, b)) =

⎧⎪⎨⎪⎩
0 if (a, b) ∈ O or I ;
2 if (a, b) ∈ II or III;
1 if (a, b) ∈ IV.

Moreover, f
(a,b)
1 , g

(a,b)
1 form a basis of HomCn

(T1[−1], (a, b)) for (a, b) ∈ II or III; f
(a,b)
1 forms a

basis of HomCn
(T1[−1], (a, b)) for (a, b) ∈ IV.

Let ti−1
i be a nonzero T -map from Ti[−1] to Ti−1[−1] and idi be the identity from Ti[−1] to

itself. We write
f

(a,b)
i = f

(a,b)
k idktkk+1 · · · ti−2

i−1t
i−1
i

and
g
(a,b)
i = g

(a,b)
1 f1

i ,

where k = 1 if (a, b) ∈ II; k = n − a − b + 2 and f
(a,b)
k is a nonzero T -map from Tk[−1] to (a, b)

if (a, b) ∈ I. Then we know that f
(a,b)
i (respectively, g

(a,b)
i ) is a nonzero T -map (respectively,

D-map) if there exist nonzero T -maps (respectively, D-maps) from Ti[−1] to (a, b), since any
D-map factors through the ray starting Ti [5, Lemma 2.2]. By our setting, we know that
f

(a,b)
i �= f

(a,b)
i′ if i �= i′. Computing the dimension of HomCn

(Ti[−1], (a, b)), we have the following
obvious fact.

Lemma 2.5. For any indecomposable rigid object (a, b), that is, (a, b) ∈ O ∪ I ∪ II, we have
that

dim HomCn
(Ti[−1], (a, b)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if 1 � i � n − a + 1, (a, b) ∈ II;
1 if n − a + 2 � i � 2n − a − b, (a, b) ∈ II;

or n − a − b + 2 � i � n − a + 1, (a, b) ∈ I;
0 otherwise.

Moreover, a basis of HomCn
(Ti[−1], (a, b)) is {f (a,b)

i , g
(a,b)
i } for 1 � i � n − a + 1, (a, b) ∈ II;

{g(a,b)
i } for n − a + 2 � i � 2n − a − b, (a, b) ∈ II; and {f (a,b)

i } for n − a − b + 2 � i � n − a +
1, (a, b) ∈ I, respectively.

3. Index and the cluster map

We use the same notation as in the above section. In this section, we will define the cluster map
X? from the set of indecomposable rigid objects in Cn to F = Q(x1, x2, . . . , xn) by using the
geometric information of the indecomposable rigid objects. We will give an explicit expression
of XM as a Laurent polynomial of x1, . . . , xn−1 according to which subset M belongs to (recall
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that the set of indecomposable rigid objects in Cn is divided into three disjoint subsets O, I
and II; see Figure 2).

Let Ksplit
0 (T ) be the split-Grothendieck group of addT , that is, the free abelian group

with a basis consisting of isomorphism classes [T1], . . . , [Tn−1] of indecomposable direct
summands of T .

For an object X of D[1] = addT ∗ add T [1], there exists a triangle

T ′′
X −→ T ′

X
f−→ X −→ T ′′

X [1],

where T ′′
X , T ′

X ∈ add T . It follows that f is a right addT -approximation. We define the index

indT (X) = [T ′
X ] − [T ′′

X ] ∈ Ksplit
0 (T )

as in [11, 31, 33, 34]. It was proved in [38] that any rigid object belongs to D[1] (also in D).
The next lemma tells us how to get the right addT -approximation of any indecomposable rigid
object in Cn.

Lemma 3.1. For any indecomposable rigid object (a, b) in Tn, every right add T -
approximation of (a, b) in Tn is a right add T -approximation of (a, b) in Cn.

Proof. If there are no nonzero D-maps in HomCn
(T, (a, b)), then a right addT -

approximation of (a, b) in Tn is a right addT -approximation of (a, b) in Cn. Now suppose
there are nonzero D-maps in HomCn

(T, (a, b)); then, by Lemmas 2.4 and 2.5, anyone of them
is a sum of some maps fg1

1f1
i , where f is a T -map from Ti to (a, b). Therefore, every D-map

in HomCn
(T, (a, b)) factors through T -maps from T to (a, b). Thus, we have the assertion.

We calculate the index of any indecomposable rigid object (a, b) with respect to T .

Lemma 3.2. For any indecomposable rigid object (a, b) in Cn,

indT (a, b) =

{
[T1] − [Tn−a+1] − [T2n−a−b] if a + b � n + 1,

[Tn−a−b+1] − [Tn−a+1] if a + b � n.

Proof. For a + b � n + 1, there is a minimal right add T -approximation f : T1 → (a, b) in
Tn. Then ker(f) = (1, a − 1) and coker(τ−1f) = (1, a + b − n). We get a triangle

C −→ T1
f−→ (a, b) −→ C[1]

in Cn and an exact sequence

0 −→ coker(τ−1f) −→ C −→ ker(f) −→ 0

in Tn (cf. [37]). Since Ext1Tn
((1, a − 1), (1, a + b − n)) = 0, then C ∼= (1, a − 1) ⊕ (1, a + b − n).

Hence indT (a, b) = [T1] − [Tn−a+1] − [T2n−a−b].
For a + b � n, there is a minimal right addT -approximation f : Tn−a−b+1 → (a, b) in Tn.

Then ker(f) = (1, a − 1) and coker(τ−1f) = 0. Hence indT (a, b) = [Tn−a−b+1] − [Tn−a+1].

Let B = EndCn
(T [−1]); then F := HomCn

(T [−1],−): D/add T → modB is an equivalence
of abelian categories [24, 37, 38], where modB denotes the category of finite-dimensional
right B-modules. The maps idi, 1 � i � n − 1, ti−1

i , 2 � i � n − 1, and g1
1 form a set of

generators of B.
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Definition 3.3. For any indecomposable rigid object M in Cn, we define

XM = xindT M
∑

e∈Nn−1

χ(Gre(FM))x−ι(e),

where the sum takes over all dimension vectors e such that there exists an object Y
in D ∩D[1] with e = dimFY , where ι(e) = indT Y + indT Y [1] and χ(GreFM) is the Euler
characteristic of the quiver Grassmannian of dimension vector e of FM (see [27]), where
x
∑n−1

i=1 ai[Ti] =
∏n−1

i=1 xai
i .

The definition of XM can be extended to rigid objects: for any rigid object N =
⊕m

i=1 Mi

in Cn with Mi indecomposable, we define

XN =
m∏

i=1

XMi
.

In [33, 34], a similar definition is given with respect to a fixed rigid object T in a 2-Calabi–
Yau triangulated category with infinite Hom-spaces. The definition there needs an additional
assumption that any finite-dimensional B-module can be lifted through F to an object in
D ∩D[1]. This assumption is not satisfied in our situation. For example, the simple B-module
S1 corresponding to T1 cannot lift to any object in D ∩D[1] by the functor F (see the dimension
formula in Lemma 2.4). So the definition in [33, 34] cannot apply to our case. In our definition,
we omit the B-submodules that cannot be lifted through F to D ∩D[1].

The following lemma points out that, for an indecomposable rigid object M , if a B-submodule
of FM cannot be lifted to D ∩D[1], then neither can other B-submodules of FM with the
same dimension be lifted to D ∩D[1]. So the Euler characteristic of Gre(FM) is well defined.

Lemma 3.4. Let M be an indecomposable rigid object in Cn and Y be an object in D such
that FY is a B-submodule of FM . Then Y ∈ D ∩ D[1] if and only if dim HomCn

(T1[−1], Y ) �= 1.

Proof. For an object Y in D, it is easy to see that Y ∈ D ∩ D[1] if and only if all indecom-
posable summands of Y are in O ∪ I ∪ II ∪ III; see Figure 2. Since dim Hom(T1[−1], (a, b)) � 2,
it follows that dim Hom(T1[−1], Y ) = 2 implies that dim Hom(T1[−1], (a, b)) = 2. In this
case, f

(a,b)
1 is a generator of FM as a B-module by Lemma 2.5 and f

(a,b)
1 ∈ FY . So we

have that FY ∼= FM . Then Y ∼= M ⊕ T ′, where T ′ ∈ add T . Hence Y ∈ D ∩ D[1]. When
dim Hom(T1[−1], Y ) = 1, Y has some summand in IV by the dimension formula in Lemma 2.4,
then Y /∈ D ∩ D[1]. When dim Hom(T1[−1], Y ) = 0, all summands of Y are in O or I; then
Y ∈ D ∩ D[1]. Thus, the statement holds.

We determine the submodules of F (a, b) for any indecomposable rigid object (a, b). Put

X(a, b) = {(a, k) | 0 � k � min{n − a, b}} ⊂ I

and
Y(a, b) = {(a + b − n + 1, l) | 0 � l � 2n − a − b − 1} ⊂ I.

We denote by Sub(a, b) the set of submodules of F (a, b), the first terms of whose dimension
vectors are not 1.

Lemma 3.5. Let (a, b) be an indecomposable rigid object in D. Then

Sub(a, b) =

{
{FX | X ∈ X(a, b)} if (a, b) ∈ I;
{FX ⊕ FY | X ∈ X(a, b), Y ∈ Y(a, b)} ∪ {(a, b)} if (a, b) ∈ II.
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For every dimension vector e �= dimF (a, b), whose first term is not 1, χ(GreF (a, b)) is equal
to the number of elements in the set sube(a, b), where

sube(a, b) =

{
{X ∈ X(a, b) | dim FX = e} if (a, b) ∈ I;
{(X,Y ) ∈ X(a, b) × Y(a, b) | dim(FX ⊕ FY ) = e} if (a, b) ∈ II.

Proof. (i) The case (a, b) ∈ I. By Lemma 2.5, a basis of F (a, b) is

{f (a,b)
i | n − a − b + 2 � i � n − a + 1},

which satisfies the conditions

f
(a,b)
i idj =

{
f

(a,b)
i if j = i,

0 if j �= i;

f
(a,b)
i tj−1

j =

{
f

(a,b)
i+1 if j = i + 1 � n − a + 1,

0 otherwise;

f
(a,b)
i g1

1 = 0.

For every nonzero submodule S of F (a, b), there exists the minimal i0, n − a − b + 2 � i0 �
n − a + 2 such that

f
(a,b)
i0

+ λ1f
(a,b)
i0+1 + · · · + λn−a−i0+1f

(a,b)
n−a+1 ∈ S.

By multiplying with idi0 , we have that the first term f
(a,b)
i0

is in S. Let k = n − a − i0 + 2; then
0 � k � b and a basis of S is

{f (a,b)
i | n − a − k + 2 � i � n − a + 1}.

Consider the module F (a, k) whose basis is

{f (a,k)
i | n − a − k + 2 � i � n − a + 1},

which satisfies the conditions

f
(a,k)
i idi′ =

{
f

(a,k)
i if i′ = i,

0 if j �= i;

f
(a,k)
i ti

′−1
i′ =

{
f

(a,k)
i+1 if i′ = i + 1 � n − a + 1,

0 otherwise;

f
(a,k)
i g1

1 = 0.

So there is a natural isomorphism of modules:

S −→ F (a, n − a − k + 2),

f
(a,b)
i −→ f

(a,k)
i .

Clearly, every dimension vector corresponds to one submodule and χ(GreF (a, b)) = 1. We
complete the proof in this case.

(ii) The case (a, b) ∈ II. In this case, by Lemma 2.5, there is a basis

{f (a,b)
i , g

(a,b)
j | 1 � i � n − a + 1, 1 � j � 2n − a − b}
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of F (a, b) and

f
(a,b)
i idi′ =

{
f

(a,b)
i if i′ = i,

0 if i′ �= i;

f
(a,b)
i ti

′−1
i′ =

{
f

(a,b)
i+1 if i′ = i + 1 � n − a + 1,

0 otherwise;

f
(a,b)
i g1

1 =

{
g
(a,b)
1 if i = 1,

0 if i �= 1;

g
(a,b)
j idj′ =

{
g
(a,b)
j if j′ = j,

0 if j′ �= j;

g
(a,b)
j tj

′−1
j′ =

{
g
(a,b)
j+1 if j′ = j + 1 � 2n − a − b,

0 otherwise;

g
(a,b)
j g1

1 = 0.

For a submodule S ∈ Sub(a, b), if the first term of dimension vector of S is not 0, then f
(a,b)
1 ∈ S.

Since f
(a,b)
1 is a generator of F (a, b), S = F (a, b). If f

(a,b)
1 , g

(a,b)
1 /∈ S, by a similar discussion

as above, there is a minimal i0, 2 � i0 � n − a + 2 (respectively, a minimal j0, 2 � j0 � 2n −
a − b + 1) such that f

(a,b)
i0

is in S (respectively, λf
(a,b)
j0

+ g
(a,b)
j0

is in S for some λ ∈ k). Let
k = n − a − i0 + 2, l = 2n − a − b − j0 + 1; then 0 � k � n − a, 0 � l � 2n − a − b − 1, and a
basis of S is {

f
(a,b)
i , λf

(a,b)
j + g

(a,b)
j

∣∣∣ n − a − k + 2 � i � n − a + 1,
2n − a − b − l + 1 � j � 2n − a − b

}
.

Consider the module F (a, k) ⊕ F (a + b − n + 1, l) whose basis is{
f

(a,k)
i , f

(a+b−n+1,l)
j

∣∣∣ n − a − k + 2 � i � n − a + 1,
2n − a − b − l + 1 � j � 2n − a − b

}
,

which satisfies the conditions

f
(a,k)
i idi′ =

{
f

(a,k)
i if i′ = i,

0 if i′ �= i;

f
(a,k)
i ti

′−1
i′ =

{
f

(a,k)
i+1 if i′ = i + 1 � n − a + 1,

0 otherwise;

f
(a,k)
i g1

1 = 0;

f
(a+b−n+1,l)
j idj′ =

{
f

(a+b−n+1,l)
j if j′ = j,

0 if j′ �= j;

f
(a+b−n+1,l)
j tj

′−1
j′ =

{
f

(a+b−n+1,l)
j+1 if j′ = j + 1 � 2n − a − b,

0 otherwise;

f
(a+b−n+1,l)
j g1

1 = 0.
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So there is a natural isomorphism of modules:

S −→ F (a, n − a − k + 2),

f
(a,b)
i −→ f

(a,k)
i ,

λf
(a,b)
j + g

(a,b)
j −→ f

(a+b−n+1,l)
j .

Using the same notation as given above, to get the formula of the Euler character, we only need
to prove that the Euler character of the Grassmannian associated to the submodule S above
with all values of λ chosen to be 1, since any λ offer the same submodule up to isomorphism
and χ is additive with respect to disjoint unions. If i0 � j0, then the associated Grassmannian
contains only one point, so its Euler character is 1; if i0 < j0, then the associated Grass-
mannian is P1 \ {a point}, so its Euler character is also 1. Thus, we complete the proof.

Before giving the explicit formula of X(a,b), we need to show why ι(e) does not depend on
the choice of Y . Define

ι(Y ) = indT Y + indT Y [1].

Clearly, ι(Y1 ⊕ Y2) = ι(Y1) + ι(Y2) and ι(T ′) = 0 for any T ′ ∈ add T . If there are two sub-
modules FY ∼= FY ′, then Y ⊕ T1

∼= Y ′ ⊕ T2 with T1, T2 ∈ add T . So ι(Y ) = ι(Y ′). If there are
two nonisomorphic submodules FY , FY ′ with the same dimension, by Lemma 3.5 and the
discussion above, we can write Y = (a, k) ⊕ (a + b − n + 1, l) and Y ′ = (a, k′) ⊕ (a + b − n +
1, l′). Then

dim FY =
n−a+1∑

i=n−a−k+2

ei +
2n−a−b∑

j=2n−a−b−l+1

ej = dimFY ′ =
n−a+1∑

i=n−a−k′+2

ei +
2n−a−b∑

j=2n−a−b−l′+1

ej ,

where ei is the dimension vector of the simple module of B corresponding to Ti. Note that
k = k′ implies l = l′ and FY is not isomorphic to FY ′, so k �= k′. Without loss of generality, we
assume that k > k′. Then k′ = l − n + b + 1, l′ = k + n − b − 1. By Lemma 3.2, we have that

ι((a, k) ⊕ (a + b − n + 1, l)) = [Tn−a−k+1] − [Tn−a+1] + [T2n−a−b−l] − [T2n−a−b],

and

ι((a, k′) ⊕ (a + b − n + 1, l′)) = [T2n−a−b−l] − [Tn−a+1] + [Tn−a−k+1] − [T2n−a−b].

So ι(Y ) = ι(Y ′). Combining with Lemma 3.5, we have a new form of Definition 3.3.

Lemma 3.6. For any indecomposable rigid object (a, b) in Cn, we have that

X(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xindT (a,b) if (a, b) ∈ O;
xindT (a,b)

∑
X∈X(a,b)

x−ι(X) if (a, b) ∈ I;

xindT (a,b)

⎛⎝x−ι(a,b) +
∑

X∈X(a,b),Y ∈Y(a,b)

x−ι(X⊕Y )

⎞⎠ if (a, b) ∈ II.

Now we give the explicit expression of X(a,b) for each indecomposable rigid object (a, b).
In the following expression of xm, when m = n, xm is taken to be 1. In this setting, the first
formula in Lemma 3.2 also holds in the case of a + b = n.
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Theorem 3.7. For any indecomposable rigid object (a, b), we have that

X(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn−b if (a, b) ∈ O;
b∑

k=0

xn−a−b+1xn−a+2

xn−a−k+1xn−a−k+2
if (a, b) ∈ I;

x1xK+2xL+2

(
1
x2

1

+

(
K∑

k=0

1
xK−k+1xK−k+2

)(
L∑

l=0

1
xL−l+1xL−l+2

))
if (a, b) ∈ II;

where K = n − a, L = 2n − a − b − 1.

Proof.

(i) The case of (a, b) ∈ O. We have X(a,b) = xindT (a,b) = xn−b.
(ii) The case of (a, b) ∈ I. By Lemma 3.6, we have that

X(a,b) = xindT (a,b)
∑

X∈X(a,b)

x−ι(X)

= xindT (a,b)
b∑

k=0

x−ι(a,k)

=
xn−a−b+1

xn−a+1

b∑
k=0

xn−a+1xn−a+2

xn−a−k+1xn−a−k+2

=
b∑

k=0

xn−a−b+1xn−a+2

xn−a−k+1xn−a−k+2
.

(iii) The case of (a, b) ∈ II. By Lemma 3.6, we have that

X(a,b) = xindT (a,b)

⎛⎝x−ι(a,b) +
∑

X∈X(a,b),Y ∈Y(a,b)

x−ι(X⊕Y )

⎞⎠
= xindT (a,b)

(
x−ι(a,b) +

(
b∑

k=0

x−ι(a,k)

)(
2n−a−b−l∑

l=0

x−ι(a+b−n+1,l)

))

= x1xK+2xL+2

(
1
x2

1

+

(
K∑

k=0

1
xK−k+1xK−k+2

)(
L∑

l=0

1
xL−l+1xL−l+2

))
.

4. Mutation relations

By [5, Proposition 2.6], every maximal rigid object in Cn is in some wing of (a, n − 1) and there
is a natural bijection between the set of maximal rigid objects in the wing of (a, n − 1), and the
set of tilting modules over the path algebra k 	An−1 of the linear quiver of type An−1. Hence,
using the complete description of all tilting modules of quivers of type A in [22], we can get all
maximal rigid objects by the following induction starting with an chosen object (a, n − 1): for
each chosen object (a, b), one choose two objects (a, h − 1) and (a + h, b − h) until all the new
objects are in the bottom of the tube; see Figure 3; take the direct sum of all chosen objects.

Under this construction of maximal rigid objects, we have the following fact.

Lemma 4.1. Let R be a maximal rigid object in Cn and (a, b) be an indecomposable
summand of R. Then there are (a, h − 1) and (a + h, b − h) in add R for some h, 1 � h � b
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Figure 3. The construction of maximal rigid objects.

and every indecomposable summand of R in the wing of (a, b) that is not isomorphic to (a, b)
is in the wing of (a, h − 1) or in the wing of (a + h, b − h). When b �= n − 1, there exists an i,
1 � i � n − b − 1, such that either (a, b + i) or (a − i, b + i) is in add R; see Figure 3.

By this lemma, we can give all exchange triangles in Cn.

Lemma 4.2. Given two basic maximal rigid objects T ′ ⊕ T̄ and T ′′ ⊕ T̄ in Cn such
that both T ′ and T ′′ are indecomposable. Then dim Ext1Cn

(T ′, T ′′) = 1 or 2. Moreover, if
dim Ext1Cn

(T ′, T ) = 2, then the exchange triangles have the following form:

(a, n − 1) −→ (a + h, n − h − 1) ⊕ (a + h, n − h − 1) −→ (a + h, n − 1) −→ (a, n − 1)[1],
(a + h, n − 1) −→ (a, h − 1) ⊕ (a, h − 1) −→ (a, n − 1) −→ (a + h, n − 1)[1],

where 1 � a � n, 1 � h � n − 1. If dim Ext1Cn
(T ′, T ) = 1, then the exchange triangles have the

following form:

(a, b) −→ (a, b + i) ⊕ (a + h, b − h) −→ (a + h, b − h + i) −→ (a, b)[1],
(a + h, b − h + i) −→ (a + b + 1, i − 1) ⊕ (a, h − 1) −→ (a, b) −→ (a + h, b − h + i)[1],

where 1 � a � n, b � n − 2, 1 � h � b, 1 � i � n − b − 1.

Proof. Let (a, n − 1) ⊕ R̄ be a basic maximal rigid object, 1 � a � n. Then, by Lemma 4.1,
there is an h, 1 � h � n − 1, such that (a, h − 1) and (a + h, n − h − 1) are in add R̄ and other
indecomposable summands of R̄ are in the wing of (a, h − 1) or in the wing of (a + h, n − h − 1);
see Figure 4. Now (a + h, n − 1) ⊕ R̄ is a basic maximal rigid object.

Consider a nonzero T -map f : (a + h, n − 1) → (a, n − 1)[1] = (a − 1, n − 1), we have a
triangle in Cn:

C −→ (a + h, n − 1)
f−→ (a, n − 1)[1] −→ C[1]

with an exact sequence

0 −→ coker(τ−1f) −→ C −→ ker(f) −→ 0

in Tn (cf. [37]). Since ker(f) = (a + h, n − 1 − h), coker(τ−1f) = (a + h, n − 1 − h), and (a +
h, n − 1 − h) is rigid in Tn, we have that C ∼= (a + h, n − 1 − h) ⊕ (a + h, n − 1 − h). Thus, we
get a triangle in Cn:

(a, n − 1) −→ (a + h, n − 1 − h) ⊕ (a + h, n − 1 − h) −→ (a + h, n − 1)
f−→ (a, n − 1)[1]
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Figure 4. Mutations of maximal rigid objects as in the first part of the proof of Lemma 4.2.

Figure 5. Mutations of maximal rigid objects as in the second part of the proof of Lemma 4.2.

and it is the exchange triangle starting at (a, n − 1) associated to R̄ since (a + h, n − 1) is
another complement of R̄ and (a + h, n − 1 − h) ∈ add R̄. The exchange triangle starting at
(a + h, n − 1 − h) associated to R̄ can be obtained similarly. Clearly, dim Ext1Cn

((a, n − 1), (a +
h, n − 1)) = 2.

Let (a, b) ⊕ R̄ be a basic maximal rigid object with 1 � a � n, b � n − 2. By Lemma 4.1,
we can assume that there is the minimum i, 1 � i � n − b − 1, such that (a, b + i) ∈ R̄. By the
construction of maximal objects, (a + b + 1, i − 1) ∈ R̄; see Figure 5. Then (a + h, b − h + i) ⊕
R̄ is a basic maximal rigid object. Clearly, dim Ext1Cn

((a, b), (a + h, b − h + i)) = 1.
There is an obvious nonsplit triangle in Cn:

(a, b) −→ (a, b + i) ⊕ (a + h, b − h) −→ (a + h, b − h + i) −→ (a, b)[1],

which is the exchange triangle starting at (a, b) associated to R̄. To get the other
exchange triangle, we consider a nonzero T -map f : (a, b) → (a + h, b − h + i)[1] = (a + h −
1, b − h + i). We have that ker(f) = (a, h − 1) and coker(τ−1f) = (a + b + 1, i − 1) in Tn. Since
Ext1Tn

((a, h − 1), (a + b + 1, i − 1)) = 0, we get a nonsplit triangle in Cn:

(a + h, b − h + i) −→ (a + b + 1, i − 1) ⊕ (a, h − 1) −→ (a, b) −→ (a + h, b − h + i)[1],

which is what we need.

The main result in this section is that the cluster map defined in Section 3 satisfies the
cluster structure of Cn.
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Theorem 4.3. Given two basic maximal rigid objects T ′ ⊕ T̄ and T ′′ ⊕ T̄ in Cn such that
both T ′ and T ′′ are indecomposable. Then XT ′XT ′′ = XE + XE′ , where T ′ → E → T ′′ → T ′[1]
and T ′′ → E′ → T ′ → T ′′[1] are the exchange triangles.

Proof. Since both the formulas of cluster maps in Theorem 3.7 and the exchange triangles
in Lemma 4.2 depend on the positions of objects, we can check that XT ′XT ′′ = XE + XE′ case
by case. We omit the details here.

For the fixed maximal rigid object T = ⊕n−1
i=1 Ti, where Ti = (1, n − i), from Lemma 4.1 (or

[5, Proposition 3.4]), we have that the matrix AT associated to T is

AT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
−2 0 1

−1 0
. . .

. . . . . . . . .
. . . 0 1

−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Its Cartan part is of type Cn−1.
Let indr Cn be the set of indecomposable rigid objects in Cn, and χAT

be the set of cluster
variables of the skew-symmetrizable matrix AT associated to T . Then we have the following
corollary.

Corollary 4.4. The map X? : indr Cn → χAT
: M → XM is a bijection. This bijection

induces a bijection between the set of isoclasses of basic maximal rigid objects in Cn and the
set of clusters of type Cn−1. Furthermore, the algebra generated by all XM , where M runs
through indr Cn, is isomorphic to the cluster algebra of type Cn−1.

Proof. From Theorem 3.7, we have that XTi
= xi. Then X? sends the couple

({T1, . . . , Tn−1}, AT ) to the initial seed ({x1, . . . , xn−1}, AT ) of the cluster algebra AAT
. By

Lemma 4.2, we have that the exchange graph of maximal rigid objects in Cn is connected.
Then, by Theorem 4.3 and Theorem 1.1 in [5], X?(indr Cn) ⊂ χAT

, X? : indr Cn → χAT
is

surjective and X? induces a map sending basic maximal rigid objects to clusters. It follows
from Theorem 3.7 that the denominators of XM are different for all indecomposable rigid
objects. Then X? : indr Cn → χAT

is injective. Thus, the statements hold.

5. Cluster complex of type C

In this section, we use the results proved in Sections 3 and 4 to prove that the combinatorics
of indecomposable rigid objects in Cn encodes the cluster combinatorics of the root system
of type C and type B. Cluster complexes were defined in [16] for finite root systems. They
were realized by quiver representations via decorated representations [30], and later via cluster
categories of the corresponding quivers [4, 39]. Combining with the geometric description of
the cluster complex of the root system of type B [16], Buan–Marsh–Vatne [5] give a realization
of this cluster complex via cluster tubes.

We recall the cluster complex associated to any finite root system from [16]. Let Φ be any
finite root system with simple roots α1, . . . , αn and Φ�−1 be the set of almost positive roots in
Φ, that is, the union of positive roots with negative simple roots. Fomin and Zelevinsky define
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a function
(− || −) : Φ�−1 × Φ�−1 −→ Z�0

called the compatibility degree. A pair of roots α, β in Φ�−1 are compatible if (α || β) = 0.
The cluster complex Δ(Φ) associated to Φ is a simplicial complex, the set of vertices is Φ�−1

and the simplices are mutually compatible subsets of Φ�−1. This combinatorial object has
many interesting properties and applications; we refer the reader to the survey [14] for further
reading.

For the cluster tube Cn, we call a set of indecomposable objects a rigid subset, provided the
direct sum of all indecomposable objects in this set is rigid. Now we define a simplicial complex
associated to the cluster tube Cn. We always assume n > 1 throughout this section.

Definition 5.1. Let Cn be the cluster tube of rank n. The cluster complex Δ(Cn) associated
to Cn is a simplicial complex whose vertices are the isoclasses of indecomposable rigid objects
and whose simplices are the isoclasses of rigid subsets of Cn.

Now fix a root system ΦC of type Cn−1. In [15], Fomin–Zelevinsky give a bijection from the
set of cluster variables of the cluster algebras of type Cn−1 to ΦC

�−1 (they gave this bijection
for all finite root systems). Under this bijection, when a cluster variable y is expressed as

y =
P (x)
xα

,

where P is a polynomial that is not divisible by xi for every i, the corresponding almost positive
root is α. Therefore, combining this bijection with the bijective map X? from indr Cn to χAT

in Section 3, we have a bijection from ΦC
�−1 to indr Cn. This map is denoted by MT . So, for

any α ∈ ΦC
�−1, we denote by MT (α) the object in Cn corresponding to α under this bijection.

Theorem 5.2. Let ΦC be the root system of type Cn−1. Then the map MT induces an
isomorphism from the cluster complex Δ(ΦC) to the cluster complex Δ(Cn), which sends
vertices to vertices, and simplices to simplices.

To prove the theorem, we need some preparation:

Definition 5.3. For any two almost positive roots α, β ∈ ΦC
�−1, we define the T -

compatibility degree (α || β)T of α, β by

(α || β)T =
dim Ext1(MT (α),MT (β))

dim End(MT (α))
.

As in [16], let σi be the permutation of ΦC
�−1 defined as follows:

σi(α) =

{
α if α = −αj , j �= i,

si(α) otherwise,

where si is the Coxeter generator of the Weyl group of ΦC corresponding to i. We denote by
R the Coxeter element σ1 · · ·σn−1 in the Coxeter group (cf. [39]). The function (− || −) is
determined by the following two properties [16]:

(−αi || β) = max([β : αi], 0),
(Rα || Rβ) = (α || β),
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where [β : αi] denotes the coefficient of αi in the expansion of β in the basis {α1, . . . , αn}. We
will prove that the function (− || −)T satisfies the same properties.

Lemma 5.4. For any α ∈ ΦC
�−1, MT (Rα) = τMT (α).

Proof. Owing to indr Cn = O ∪ I ∪ II (please see the definitions of O, I, II and Figure 2 in
Section 2), we divide the proof into several cases according to the position of the object MT (α).

1. When MT (α) = (a, b) ∈ O, then α = −αn−b. We have

Rα = σ1 · · ·σn−1(α) =
n−b∑
i=1

αi.

Hence MT (Rα) = (n, n − b) = τ(1, n − b) = τMT (α).
2. When MT (α) = (a, b) ∈ I, then α =

∑n−a+1
i=n−a−b+2 αi. If a �= 2, then

Rα =
n−a+2∑

i=n−a−b+3

αi.

Hence MT (Rα) = (a − 1, b) = τ(a, b) = τMT (α). If a = 2, then

Rα = −αn−b.

Hence MT (Rα) = (1, b) = τ(2, b) = τMT (α).
3. When MT (α) = (2, n − 1) ∈ II, then α = α1 + 2

∑n−1
i=2 αi. We have

Rα = −α1.

Hence MT (Rα) = (1, n − 1) = τ(2, n − 1) = τMT (α).
4. When MT (α) = (a, n − 1) ∈ II with 3 � a � n, then α = α1 + 2

∑n−a+1
i=2 αi. We have

Rα = α1 + 2
n−a+2∑

i=2

αi.

Hence MT (Rα) = (a − 1, n − 1) = τ(a, n − 1) = τMT (α).
5. When MT (α) = (a, b) ∈ II with a + b = n + 1 and 2 � b � n − 2, then α = α1 +

2
∑n−a+1

i=1 αi +
∑2n−a−b

i=n−a+2 αi. It follows that

Rα =
n−a+2∑

i=2

αi.

Hence MT (Rα) = (a − 1, b) = τ(a, b) = τMT (α).
6. When MT (α) = (n, 1) ∈ II, then α =

∑n−1
i=1 αi. It follows that

Rα = α2.

Hence MT (Rα) = (n − 1, 1) = τ(n, 1) = τMT (α).
7. When MT (α) = (a, b) ∈ II with a = n and 2 � b � n − 2, then α =

∑n−b
i=1 αi. It follows

that

Rα = α1 + 2α2 +
n−b+1∑

i=3

αi.

Hence MT (Rα) = (a − 1, b) = τ(a, b) = τMT (α).
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8. When MT (α) = (a, b) ∈ II with a < n, 1 < b < n − 1 and a + b > n + 1, then α = α1 +
2
∑n−a+1

i=2 αi +
∑2n−a−b

i=n−a+2 αi. It follows that

Rα = α1 + 2
n−a+2∑

i=2

αi +
2n−a−b+1∑
i=n−a+3

αi.

Hence MT (Rα) = (a − 1, b) = τ(a, b) = τMT (α).

The proof of this lemma is completed.

Using the dimension formulas in the proof of Theorem 3.7, we have the following fact:

Lemma 5.5. For any positive root β and any i, [β : αi] = dim Hom(Ti[−1],MT (β))/
dim End(Ti).

Lemma 5.6. The T -compatibility degree satisfies the following conditions:

(−αi || β)T = max([β : αi], 0), (1)
(Rα || Rβ)T = (α || β)T , (2)

for any α, β ∈ ΦC
�−1, with any 1 � i � n − 1.

Proof. By the definition,

(−αi || β)T =
dim Ext1(Ti,MT (β))

dim End(Ti)
=

dim Hom(Ti[−1],MT (β))
dim End(Ti)

.

Then, by Lemma 5.5 it equals [β : αi] if β is a positive root, or 0 otherwise. This proves that
(1) holds. From Lemma 5.4, we have

(Rα || Rβ)T =
dim Ext1C(MT (Rα),MT (Rβ))

dim EndC(MT (Rα))
=

dim Ext1C(τMT (α), τMT (β))
dim EndC(τMT (α))

= (α || β)T .

This proves that (2) holds.

Proof of Theorem 5.2. By Lemmas 5.5, 5.6, the compatibility degree (−||−)T is the same
as (−||−) in [16]. It follows that α, β are compatible if and only if MT (α),MT (β) form a rigid
subset. Therefore, MT induces the desired bijection from Δ(ΦC) to Δ(Cn).

Let ΦB be the root system of type Bn−1. Then ΦB
�−1 is the dual of ΦC

�−1 via α → α∨.
So (α || β) = (β∨ || α∨) [16, Proposition 3.15]. Then we have the following corollary (cf. [5,
Theorem 3.5]).

Corollary 5.7. Let ΦB be the root system of type Bn−1. Then the cluster complex
Δ(ΦB) of Φ of type Bn−1 is isomorphic to Δ(Cn).
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