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We study extension spaces, cotorsion pairs and their mutations
in the cluster category of a marked surface without punctures.
Under the one-to-one correspondence between the curves, valued
closed curves in the marked surface and the indecomposable
objects in the associated cluster category, we prove that the
dimension of extension space of two indecomposable objects in
the cluster categories equals to the intersection number of the
corresponding curves. By using this result, we prove that there
are no non-trivial t-structures in the cluster categories when the
surface is connected. Based on this result, we give a classification
of cotorsion pairs in these categories. Moreover we define the
notion of paintings of a marked surface without punctures and
their rotations. They are a geometric model of cotorsion pairs and
of their mutations respectively.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The notion of torsion pairs (or torsion theory) in abelian categories was introduced by Dickson [14]
(see [3] for further details). It is important in algebra and geometry [7] and plays an important role in
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representation theory of algebras, in particular in tilting theory [3]. The triangulated version of torsion
pairs was introduced by Beligiannis and Reiten [7], and the mutation of cluster tilting subcategories
was also studied by many people, see [16,23,19] for example. Cluster tilting objects (or subcategories)
appear naturally in the study on the categorification of cluster algebras [10]. They have many nice
algebraic and combinatorial properties which have been used in the categorification of cluster alge-
bras [22,21]. In particular, there is bijection between cluster tilting objects in a cluster category of an
acyclic quiver and clusters of the corresponding cluster algebra [30,22].

Cluster tilting subcategories in triangulated categories are the torsion classes of certain torsion
pairs. In general, a triangulated category (even a 2-Calabi–Yau triangulated category) may not admit
any cluster tilting subcategories [25,9]. However it always admits torsion pairs, for example, the triv-
ial torsion pair: (the whole category, the zero category). Consequently triangulated categories admit
cotorsion pairs, since in a triangulated category C with shift functor [1], (X ,Y ) is a cotorsion pair
in C if and only if (X ,Y [1]) is a torsion pair.

The geometric construction of cluster categories of type A was given by Caldero, Chapoton and
Schiffler in [12], see also [31] for type D , [17] for type A∞ , and [5] for (abelian) tube categories.
Many algebraic properties (e.g. the extension dimensions, Auslander–Reiten triangles) of these clus-
ter categories were studied in geometric terms. Torsion pairs in the cluster categories of A∞ were
classified by Ng in terms of Ptolemy diagrams of a ∞-gon [28]. By using the idea of Ng, Holm–
Jørgensen–Rubery [18] gave a classification of torsion pairs in the cluster categories of type An by
the Ptolemy diagrams of a regular (n + 3)-gon. We also note that Baur, Buan and Marsh [4] gave a
classification of torsion pairs in the (abelian) tube categories. Recently Holm, Jørgensen and Rubey
announced a classification of torsion pairs in cluster tubes.

Let (S, M) be a pair consisting of a compact oriented Riemann surface S with non-empty boundary
and a finite set M of marked points on the boundary of S , with at least one marked point on each
component of the boundary. We do not assume the surface to be connected, but we assume that S has
no component homeomorphic to a monogon, digon, or triangle. Let C(S,M) be the generalized cluster
category in the sense of Amiot [1] associated to (S, M). It is a 2-Calabi–Yau triangulated category with
cluster tilting objects. In [8] the authors proved that there is a bijection between the indecomposable
objects in C(S,M) and the curves, valued closed curves in (S, M), they also gave a geometric description
of Auslander–Reiten triangles. We note that the cluster algebras associated to a marked surface (with
or without punctures) have been studied by Fomin, Shapiro and Thurston in [15] and many others.

Let C be a 2-CY triangulated category, (X ,Y ) a cotorsion pair in C . Denote by I the core of
(X ,Y ), i.e. the intersection of X and Y . In [33], the authors defined the D-mutation of (X ,Y )

for D ⊂ I , and proved that the D-mutation of (X ,Y ) is a cotorsion pair.
In this paper, we prove that the dimension of extension spaces between two string objects in

C(S,M) equals to the intersection number of corresponding curves in (S, M). By using this result, we
show that there is no non-trivial t-structures in the cluster category C(S,M) when (S, M) is connected.
We give a classification of cotorsion pairs in the cluster category C(S,M) by using the terms of curves
and valued closed curves in (S, M). Furthermore, we define the notion of paintings of (S, M) which
serve as a geometric model of cotorsion pairs in C(S,M) . We also define the rotation of paintings,
which is proved to be compatible to the mutation of cotorsion pairs.

This paper is organized as follows: In Section 2, some basic definitions and results on cotorsion
pairs are recalled in the first subsection. In the second subsection, we recall the Brüstle–Zhang’s
bijection X (S,M)

? from the curves and valued closed curves in a marked surface (S, M) to the in-
decomposable objects in the associated cluster category C(S,M) , and the geometric construction of
Auslander–Reiten triangles in [8]. In the final subsection, we recall the Iyama–Yoshino reduction of
2-Calabi–Yau categories and its geometric interpretation given by Marsh and Palu for the cluster cat-
egories C(S,M) in [26]. We prove that the extension space of two objects in the subfactor categories
is isomorphic to the extension space of the corresponding objects in the original categories, which
will be used later. In Section 3, by using Crawley-Boevey’s description of the basis of Hom-space of
two string modules [13], we prove the main result (Theorem 3.4) in this section: the dimension of
extension space between two string objects in C(S,M) is the same as intersection number of the corre-
sponding curves in (S, M). In Section 4, the first main result is that when S is connected, the cluster
category C(S,M) has no non-trivial t-structure (Theorem 4.3). This allows us to give a classification of
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cotorsion pairs in C(S,M) (Theorem 4.5), which is the second main result in this section. We define, in
Section 5, the notion of painting of (S, M) and its rotation. Under a correspondence between cotor-
sion pairs and paintings of (S, M), we give a geometric description of the mutation of cotorsion pairs
by rotation of paintings.

Throughout this paper, k denotes an algebraic closed field.

2. Preliminaries

2.1. Triangulated categories and the abelian quotients

In this section we recall some basic notations and facts on cotorsion pairs in a triangulated cate-
gory C with shift functor [1]. By X ∈ C , we mean that X is an object of C . For a subcategory X of C ,
denoted X ⊂ C , we always assume that X is a full subcategory and closed under taking isomor-
phisms, direct summands and finite direct sums. Moreover, let

X ⊥ = {
Y ∈ C

∣∣ HomC(X, Y ) = 0 for any X ∈ X
}

and

⊥X = {
Y ∈ C

∣∣ HomC(Y , X) = 0 for any X ∈ X
}
.

For two subcategories X , Y , by HomC(X ,Y ) = 0, we mean that HomC(X, Y ) = 0 for any X ∈ X
and any Y ∈ Y . A subcategory X of C is said to be a rigid subcategory if Hom(X ,X [1]) = 0. We
denote by Extn

C(X, Y ) the space HomC(X, Y [n]). Let

X ∗ Y = {
Z ∈ C

∣∣ there exists a triangle X → Z → Y → X[1] in C with X ∈ X , Y ∈ Y
}
.

It is easy to see that X ∗Y is closed under taking isomorphisms and finite direct sums. A subcategory
X is said to be closed under extensions (or an extension-closed subcategory) if X ∗ X ⊂ X . Note
that X ∗Y is closed under taking direct summands by Proposition 2.1(1) in [19] if Hom(X ,Y ) = 0.
Therefore, in this case X ∗ Y can be understood as a subcategory of C . We recall the definition of
cotorsion pairs in a triangulated category C from [27,19].

Definition 2.1. Let X and Y be subcategories of a triangulated category C .

(1) The pair (X ,Y ) is a cotorsion pair if

Ext1
C(X ,Y ) = 0 and C = X ∗ Y [1].

(2) A t-structure (X ,Y ) in C is a cotorsion pair such that X is closed under [1] (equivalently Y
is closed under [−1]). In this case X ∩ Y [2] is an abelian category, which is called the heart of
(X ,Y ) [6,7].

(3) The subcategory X is said to be a cluster tilting subcategory if (X ,X ) is a cotorsion pair [10].
We say that a basic object T is a cluster tilting object if its additive closure add T is a cluster
tilting subcategory.

Moreover, we call the subcategory I = X ∩ Y the core of the cotorsion pair (X ,Y ).

Remark 2.2. A pair (X ,Y ) of subcategories of C is said to be a torsion pair if Hom(X ,Y ) = 0
and C = X ∗ Y . In this case, I = X ∩ Y [−1] is called the core of the torsion pair. Moreover, a pair
(X ,Y ) is a cotorsion pair if and only if (X ,Y [1]) is a torsion pair in the sense of [19].
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Recall that a subcategory X is said to be contravariantly finite in C , if any object M ∈ C admits a
right X -approximation f : X → M , which means that any map from X ′ ∈ X to M factors through f .
The left X -approximation of M and covariantly finiteness of X can be defined dually. X is called
functorially finite in C if X is both covariantly finite and contravariantly finite in C . Note that if
(X ,Y ) is a torsion pair, then X = ⊥Y , Y = X ⊥ , and it follows that X (or Y ) is a contravariantly
(covariantly, respectively) finite and extension-closed subcategory of C .

For subcategories D ⊂ X of C , the quotient category X /D of X by D has the same objects
as X , and its morphism spaces are defined by

HomX /D(X, Y ) = HomC(X, Y )/D(X, Y ),

where D(X, Y ) is the subset of HomC(X, Y ) consisting of morphisms which factor through some
object in D. In particular, we have the quotient category C/D which is an additive category.

2.2. The cluster category of a marked surface

Let (S, M) be a marked surface without punctures, i.e. S is a compact oriented Riemann surface
with ∂ S 
= ∅ and M is a finite set of marked points on the boundary of S such that there is at least
one marked point on each connected component of boundary of S . Note that the cluster algebras
associated to (S, M) have been studied by many papers, see for example, [15]. We also note that we
do not assume the surface to be connected.

By a curve γ in (S, M), we mean the image of a continuous function γ : [0,1] → S such that
γ (0), γ (1) ∈ M and γ (t) /∈ M for 0 < t < 1, which is not homotopic to a boundary segment. By a
closed curve b in (S, M), we mean the image of a non-contractible continuous function b : S1 → S \∂ S
where S

1 denotes the unit circle in the complex plane, a pair (b, λ) with λ ∈ k∗ is said to be a valued
closed curve.

We say two curves γ and δ are homotopic if they are homotopic relative to M . Two valued
closed curves (b0, λ0) and (b1, λ1) are called homotopic if b0 and b1 are homotopic and λ0 = λ1.
Each curve γ or valued closed curve (b, λ) is considered up to homotopy. For two curves γ and δ

in (S, M), we denote by Int(γ , δ) the minimal intersection number of two representatives of the ho-
motopy classes of γ and δ (the intersection at the endpoints does not count). An arc is a curve γ in
(S, M) such that Int(γ ,γ ) = 0. Two arcs γ , δ are called compatible if Int(γ , δ) = 0. A triangulation Γ

of (S, M) is any maximal collection of compatible arcs.
Recall that each triangulation Γ yields a quiver with potential (Q Γ , WΓ ):

(1) Q Γ = (Q 0, Q 1) where the set of vertices Q 0 are indexed by the arcs of Γ . Whenever there is a
triangle � having i and j in Γ as edges, with j following i in the clockwise orientation (which
is induced by the orientation of S), then there is an arrow from i to j.

(2) Each internal triangle � whose edges are all in Γ yields a unique 3-cycle α�β�γ� (up to cyclic
permutation), the potential WΓ is then defined as the sum of all 3-cycles arising from internal
triangles:

WΓ =
∑
�

α�β�γ�.

It is proved in [20,2] that the Jacobian algebra J (Q Γ , WΓ ) is a finite-dimensional string algebra
(see more details in [11] or in Section 3.1 for string algebras).

The cluster category of a marked surface is defined by [1]. In fact, since the Jacobian algebra
J (Q Γ , WΓ ) is finite-dimensional, then there is a generalized cluster category C(Q Γ ,WΓ ) associated to
(Q op

Γ , W op
Γ ) which is 2-CY, Hom-finite and admits a cluster tilting object TΓ such that

C(Q Γ ,WΓ )/TΓ
∼−→ mod J (Q Γ , WΓ )
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under the functor HomC(QΓ ,WΓ )
(TΓ [−1],−) (see [23,25]). This cluster category is in fact independent

of the choice of the triangulation Γ [24], since any two triangulations are related by flips which
correspond to mutations of the corresponding quivers with potential. We can denote it by C(S,M) .

Recall that by using the above equivalence of two categories, the indecomposable objects in C(S,M)

are indexed by curves and valued closed curves in (S, M) which are called string objects and band
objects respectively [8].

We denote the indecomposable object in C(S,M) corresponding to a curve γ or a valued closed

curve (b, λ) by X (S,M)
γ or X (S,M)

(b,λ)
, respectively. When no confusion can arise, we omit the superscript

(S, M). Since any subcategories which we consider are closed under taking isomorphisms, finite direct
sums and direct summands, so each of them is determined by its indecomposable objects. Therefore
there is a bijection V → XV from the collections V of curves and valued closed curves in (S, M) to
the subcategories XV of C(S,M) . Under this bijection, the collections I of compatible arcs correspond
to rigid subcategories XI .

The irreducible morphisms in C(S,M) are also described in [8] by elementary pivot moves: For a
curve γ in (S, M), we denote the endpoints of γ by s(γ ) and e(γ ) respectively. Note that the ori-
entation of S induces an orientation on each boundary component of S . The curve which is obtained
from γ by moving s(γ ) anticlockwise (resp. e(γ )) to the next k-th point is denoted by skγ (resp. γek )
on the same boundary (see the following picture).

We say γe or sγ is obtained from γ by elementary pivot moves. We summarize some more results
in [8] which will be mentioned in the following sections:

• The shift functor in C can be described as Xγ [1] = Xsγe , then it makes sense that we denote skγek

by γ [k]. Moreover, the AR-triangles between string objects in C(S,M) can be described as

Xsγe → Xsγ ⊕ Xγe → Xγ → Xsγe [1]

and band objects are stable under shift functor, that is X(λ,b) = X(λ,b)[1].
• For a curve γ in (S, M), γ has no self-intersections if and only if Ext1

C(S,M)
(Xγ , Xγ ) = 0 [8, Theo-

rem 5.1]. If we take two different curves γ and δ, then Int(γ , δ) 
= 0 implies Ext1
C(S,M)

(Xγ , Xδ) 
=
0 
= Ext1

C(S,M)
(Xδ, Xγ ).

2.3. Compatibility between IY subfactor triangulated categories and Cutting along arcs

Let C be a 2-CY triangulated k-category and D a functorially finite rigid subcategory of C . Denote
Z = ⊥D[1] = D[−1]⊥ . Iyama and Yoshino [19] proved that the quotient category Z/D is a trian-

gulated category. The shift functor 〈1〉 is induced by the triangle X
f−→ D X

g−→ X〈1〉 → X[1] in C
for X ∈ C , where the morphism f is a left D-approximation of X and g is a right D-approximation
of X〈1〉. This triangulated category, denoted by CD , is called subfactor triangulated category of C .

The following lemma used in the next section follows straightly from the structure of subfactor
category. We give a proof here for the convenience of the reader.
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Lemma 2.3. Keep notations above. For any two objects X, Y ∈Z ,

Ext1
C(Y , X) ∼= Ext1

CD (Y , X)

as k-vector spaces.

Proof. Applying HomC(Y ,−) to the triangle X
f−→ D X

g−→ X〈1〉 → X[1], we get an exact sequence

HomC(Y , X)
HomC(Y , f )−−−−−−−→ HomC(Y , D X )

HomC(Y ,g)−−−−−−−→ HomC
(
Y , X〈1〉) → HomC

(
Y , X[1]) → 0

where 0 = HomC(Y , D X [1]) by D X ∈D and Y ∈Z . Therefore

HomC
(
Y , X[1]) ∼= HomC

(
Y , X〈1〉)/Im

(
HomC(Y , g)

)

as k-vector spaces. Since g is a right D-approximation of X〈1〉, every morphism from Y to X〈1〉
factoring through D factors through g . Then Im(HomC(Y , g)) =D(Y , X〈1〉). So

HomC
(
Y , X[1]) ∼= HomCD

(
Y , X〈1〉)

which means that Ext1
C(Y , X) ∼= Ext1

CD
(Y , X). �

Let (S, M) be a marked surface without punctures and C = C(S,M) be the associated cluster cate-
gory. Given a rigid subcategory XI of C(S,M) where I is a collection of some compatible arcs in (S, M).
We denote by (S, M)/I the new marked surface obtained from (S, M) by cutting successively along
each arc in I and then removing components which are homeomorphic to a triangle. We denote by
V (S, M) the collection of all curves and valued closed curves in (S, M). By VI (S, M), we mean the
collection of all curves and closed curves in (S, M) which do not belong to I such that they do not
cross any arcs in I .

Proposition 2.4. (See [26].) There is an equivalence of categories

πI : CXI
∼−→ C(S,M)/I

such that

πI
(

X (S,M)
γ

) = X (S,M)/I
γ and πI

(
X (S,M)

(b,λ)

) = X (S,M)/I
(b,λ)

for any γ , (b, λ) ∈ VI (S, M).

3. Intersection number and extension dimension

We consider in this section curves in (S, M) or string objects in C(S,M) , and reveal a link between
the intersection number of two curves and extension dimension of two corresponding string objects
in C(S,M) . We first recall a construction of a basis of the Hom-space between string modules [32,13].

3.1. Maps between string modules

Recall from [11] that a finite-dimensional algebra A is a string algebra if there is a quiver Q and
an admissible ideal I such that A = kQ /I and the following conditions hold:
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(S1) At each vertex of Q start at most two arrows and stop at most two arrows.
(S2) For each arrow α there is at most one arrow β and at most one arrow δ such that αβ /∈ I and

δα /∈ I .

For each arrow β , s(β) (resp. e(β)) denotes its starting point (resp. its ending point). We denote
by β−1 the formal inverse of β with s(β−1) = e(β) and e(β−1) = s(β). A word w = αnαn−1 · · ·α1 of
arrows and their formal inverses is called a string if αi+1 
= α−1

i , e(αi) = s(αi+1) for all 1 � i � n − 1,
and no subword nor its inverse is in I . Hence, a string can be viewed as a walk in Q :

w : x1
α1

x2
α2 · · · xn−1

αn−1
xn

αn
xn+1

where xi are vertices of Q and αi are arrows in either direction. We denote its length by l(w) = n.
A band b = αnαn−1 · · ·α2α1 is defined to be a string b with e(α1) = s(αn) such that each power bm

is a string, but b itself is not a proper power of any string.
Recall in [11] that each string w defines a unique string module M(w), each band b yields a family

of band modules M(b,n, φ) with n � 1 and φ ∈ Aut(kn). We refer [11] for more definitions on sting
modules and band modules.

A string w = α1α2 · · ·αn with all αi ∈ Q 1 is called direct string, and a string of the form w−1

where w is a direct string is called inverse string. We denote by S the set of all strings. For each
arrow α ∈ Q 1, let Uα and Vα be inverse strings (as long as possible) such that Nα = UααVα is a
string, see the following figure:

For a string w ∈ S , define Sw = {(E, w ′, F ) | E, w ′, F ∈ S, w = E w ′ F }, we call (E, w ′, F ) a factor
string of w if

• l(E) = 0 or E = α1 · · ·αn with αn ∈ Q 1,
• l(F ) = 0 or F = β1 · · ·βm with β−1

1 ∈ Q 1.

Dually, (E, w ′, F ) is said to be a substring of w if the following hold:

• l(E) = 0 or E = α1 · · ·αn with α−1
n ∈ Q 1,

• l(F ) = 0 or F = β1 · · ·βm with β1 ∈ Q 1.

Denote by F(w) and S(w) the set of all factor strings and substrings of w respectively, and we define
F(0) = S(0) = ∅ for a zero module. Let w and v be two strings, a pair (E1, w0, F1) × (E2, v0, F2) ∈
F(w) × S(v) is said to be an admissible pair if w0 = v0 or w−1

0 = v0. It is easy to understand the
admissible pair if one has the following picture in mind.

Recall that each admissible pair a ∈ F(w) ×S(v) as above yields a canonical module homomorphism
fa : M(w) → M(v) by identifying factor module M(w0) of M(w) given by factor string w0 to sub-
module M(v0) of M(v) related to substring v0 of v . A basis of Hom-space of two string modules can
be described as follows:
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Theorem 3.1. (See [13].) Consider two strings w and v. Then { fa | a ∈ F(w)×S(v)} is a basis of Hom(M(w),

M(v)).

3.2. Relation between intersection number and extension dimension

Let Γ be a triangulation of (S, M) and J (Q Γ , WΓ ) be the associated string algebra defined in
Section 2.2. For each curve γ with d = ∑

δ∈Γ Int(δ, γ ), let δ1, . . . , δd be the arcs of Γ that intersect γ

in a fixed orientation of γ . See the following picture:

Then we obtain a string w(Γ,γ ) as follows

δ1 δ2 · · · δd

in J (Q Γ , WΓ ). We denote by M(Γ,γ ) the corresponding string module. Recall that the map γ →
M(Γ,γ ) gives a bijection between the homotopy classes of curves in (S, M) which are not in Γ

and the isoclasses of string modules of J (Q Γ , WΓ ) [2]. Analogously, there is a bijection between
powers bn of bands b of J (Q Γ , WΓ ) and the homotopy classes of closed curves in (S, M).

Let M(Γ,γ ), M(Γ, δ) be the corresponding string modules in mod J (Q Γ , WΓ ). We assume that
γ intersects δ at A1, . . . , Ad with d = Int(γ , δ). It is easy to imagine that most intersections yield a
common subword w for w(Γ,γ ) and w(Γ, δ) as follows:

However, by definition of triangulation, it is not true when the segment between Ai to the endpoints
of γ or δ does not cross any arcs of Γ . See for example,
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To avoid this, we add two more marked points p1, p2 lying on the same boundary for each endpoint
p ∈ {e(γ ), s(γ ), e(δ), s(δ)}. Therefore, we get a new set of marked points M ′ , then we form a new tri-
angulation Γ1 = Γ ∪Γ0 where Γ0 contains arcs in (S, M ′) which are homotopic to boundary segments
in (S, M). See the following picture for example:

Let C(S,M′) be the cluster category corresponding to (S, M ′), X ′
γ and X ′

δ be the string objects in
C(S,M′) corresponding to γ and δ. Then by Proposition 2.4, we have

C(S,M)
∼= C(S,M ′)/Γ0 .

Then Lemma 2.3 implies

Ext1
C(S,M)

(Xγ , Xδ) � Ext1
C(S,M′)

(
X ′

γ , X ′
δ

)
.

Therefore, we can study Ext1
C(S,M′) (X ′

γ , X ′
δ) instead of Ext1

C(S,M)
(Xγ , Xδ). For each endpoint p ∈

{e(γ ), s(γ ), e(δ), s(δ)}, we take an arc p1 p2 which forms a triangle with boundary arc pp1 and pp2

(see the above picture). By adding more arcs, we get a new triangulation Γ ′ of (S, M ′) where each
intersection of γ and δ induces a common subword for w(Γ ′, γ ) and w(Γ ′, δ) in mod J (Q Γ ′ , WΓ ′ ).
Moreover,

Ext1
C(S,M)

(Xγ , Xδ) � Ext1
C(S,M′)

(
X ′

γ , X ′
δ

)
� Ext1

C(Q
Γ ′ ,W

Γ ′ )
(

X ′
γ , X ′

δ

)
.

To compare the intersection number of γ and δ with the dimension of Ext1
C(S,M)

(Xγ , Xδ), we can

study C(S,M′) instead of studying C(S,M) .
Note that curves in (S, M) can be viewed as curves in (S, M ′), and their intersection numbers do

not change. For convenience, we denote F(w(Γ ′, γ )) (resp. S(w(Γ ′, γ ))) by F′(γ ) (resp. S′(γ )) for
each curve γ in (S, M).

Lemma 3.2. Let γ and δ be two curves in (S, M), then each intersection of γ and δ induces an admissible pair
either in F′(γ ) ×S′(sδe) or in F′(δ) ×S′(sγe).

Proof. We fix orientations of γ and δ, and take one intersection A of them. Note that γ and δ play
a same role to each other, we only prove the case when γ and δ can be described locally as follows
(related to A):
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In the above situation, we are going to find an admissible pair in F′(γ ) × S′(sδe) induced by A. By
the construction of the triangulation Γ ′ , we have γ , δ /∈ Γ ′ , and s � 1 which means the intersection
induces a common subword

w = j1 j2 · · · js

of w(Γ ′, γ ) and w(Γ ′, δ). Assume w(Γ ′, γ ) = E1 w F1 and w(Γ ′, δ) = E2 w F2, then l(E1) 
= 0 
= l(E2)

and l(F1) 
= 0 
= l(F2) by the construction of Γ ′ .
Note that l(E2) 
= 0 
= l(F2) implies that i3 and i1 are two arcs which induce two arrows α and α1

such that we can write w(Γ ′, δ) = E2 w F2 = E ′
2α

−1 wα1 F ′
2. Therefore w(Γ ′, sδe) = E ′′w F ′′

2 with
l(E ′′

2) � 0, l(F ′′
2 ) � 0. And l(E ′′

2) = 0 (resp. l(F ′′
2 ) = 0) if and only if E ′

2 = V (α)−1 (resp. F ′
2 = U (α1)).

Therefore (E ′′
2, w, F ′′

2 ) ∈S′(sδe). Hence the intersection A induces an admissible pair

(E1, w, F1) × (
E ′′

2, w, F ′′
2

) ∈ F′(γ ) ×S′(sδe). �
Remark 3.3. If Int(γ , δ) 
= 0 with sδe ∈ Γ ′ , then sγe /∈ Γ ′ and their intersections yield admissible pairs
in F′(δ) ×S′(sγe).

The following theorem is the main result in this section.

Theorem 3.4. Let γ , δ be curves (which are not necessarily different) in (S, M), then

dimk Ext1
C(S,M)

(Xγ , Xδ) = Int(γ , δ).

Proof. Let C′ = C(Q Γ ′ ,WΓ ′ ) , it suffices to prove that

dimk Ext1
C′(Xγ , Xδ) = Int(γ , δ).

We know that

Ext1
C′(Xγ , Xδ) = HomC′

(
Xγ , Xδ[1]) ∼= (add TΓ ′)

(
Xγ , Xδ[1]) ⊕ HomC′/TΓ ′

(
Xγ , Xδ[1])

where (add TΓ ′ )(Xγ , Xδ[1]) is the subspace of HomC′ (Xγ , Xδ[1]) consisting of morphisms factoring
through an object in add TΓ ′ , and TΓ ′ is the cluster tilting object corresponding to Γ ′ in C′ .

It follows from Lemma 3.3 in [29] that

(add TΓ ′)
(

Xγ , Xδ[1]) ∼= DHomC′/T ′
(

Xδ, Xγ [1]).

Γ
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Therefore Ext1
C′ (Xγ , Xδ) can be decomposed as k-vector space as follows

Hom J (Q Γ ′ ,WΓ ′ )
(
M

(
Γ ′, γ

)
, M

(
Γ ′, sδe

)) ⊕ DHom J (Q Γ ′ ,WΓ ′ )
(
M

(
Γ ′, δ

)
, M

(
Γ ′, sγe

))
.

Note that the definition of w(Γ ′, γ ) and w(Γ ′, δ) guarantees that different intersections of γ
and δ yield different admissible pairs in F′(γ ) ×S′(sδe) or F′(δ) ×S′(sγe).

It follows from Theorem 3.1 that

dimk Hom J (Q Γ ′ ,WΓ ′ )
(
M

(
Γ ′, γ

)
, M

(
Γ ′, sδe

)) = ∣∣F′(γ ) ×S′(sδe)
∣∣

and

dimk Hom J (Q Γ ′ ,WΓ ′ )
(
M

(
Γ ′, δ

)
, M

(
Γ ′, sγe

)) = ∣∣F′(δ) ×S′(sγe)
∣∣.

By Lemma 3.2, it suffices to show that each admissible pair in F′(γ ) × S′(sδe) or F′(δ) × S′(sγe)

can be induced by an intersection of γ and δ. Without loss of generality, we take an admissible
pair (E1, w, F1) × (E2, w, F2) ∈ F′(γ ) × S′(sδe). By the orientation of the surface, we can have the
following picture in mind.

It is easy to see that if E1 = E2 or E2 = F2, then t(γ ) = t(sδe) or s(γ ) = s(sδe) which is impossible,
since e(γ ), s(γ ) ∈ M but e(sδe), s(sδe) ∈ M ′ \ M . So E1 
= E2 and F1 
= F2, then the admissible pair is
induced by an intersection of γ and sδe which can also be viewed as an intersection of γ and δ by
definition of elementary pivot move and the structure of Γ ′ . This completes the proof. �
Remark 3.5. let γ be a curve with self-intersection in (S, M) as follows. Then Ext1

C(S,M)
(Xγ , Xγ ) =

Int(γ ,γ ) = 2,

where γ ′ is a curve in homotopy class of γ such that the intersection number of γ and γ ′ is minimal.
Note that Int(γ ,γ ) may be different from the ordinary notion of self-intersection number of γ .
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4. Classification of cotorsion pairs in C(S,M)

Let (S, M) be a marked surface without punctures and C(S,M) be the corresponding cluster cate-
gory. We show in this section that there is no non-trivial t-structures in C(S,M) when S is connected.
Moreover, we give a classification of cotorsion pairs with a fixed core in C(S,M) . Recall that we denote
by XV the subcategory of C(S,M) corresponding to a collection V of curves and valued closed curves
in (S, M).

Lemma 4.1. Let XV be a subcategory of C(S,M) closed under extensions and the shift functor [1]. Then for any
curve γ ∈ V and any positive integer m, sm γem , smγ , γem are also in V .

Proof. Since XV is closed under the shift functor [1], then for any curve γ ∈ V , Xsγe = Xγ [1] is
also in X . Then the objects Xsγ and Xγe are also in X since X is closed under extensions, and
Xsγ sγ ⊕ Xγe is the middle item of the AR-triangle ending at Xγ . By induction on m, we have the
assertion. �

For any curve γ in (S, M), we denote by B(γ ) the set of boundaries where the endpoints of γ lie
on. Set B(b, λ) := ∅ for a closed curve b. For a collection V of curves and valued closed curves, let

B(V ) =
⋃
δ∈V

B(δ).

Lemma 4.2. Let (XV ,XW ) be a t-structure in C(S,M) . Then B(V ) ∩B(W ) = ∅.

Proof. Assume that B(V ) ∩ B(W ) 
= ∅. Then there are two curves γ ∈ V , δ ∈ W and a boundary B
such that B ∈ B(γ ) ∩ B(δ). Let a0 = e(γ ),a1, . . . ,an−1 be all the marked points on B with anti-
clockwise order. Then the definition of pivot moves implies e(γei ) = ai = ai+n . Then any curve with
endpoint ai crosses γei−1 or γei+n+1 for i � 1 (see the following figure for the case i = 1).

By Lemma 4.1, both γei−1 and γei+n+1 are in V . Hence, there exists m � 0 such that Int(γem , δ) 
= 0,
where γem ∈ V . Theorem 3.4 implies Ext1

C(S,M)(Xγem , Xδ) 
= 0 which contradicts to the definition of
t-structure. �

The following theorem is the first main result in this section.

Theorem 4.3. If S is connected, then the t-structures in C(S,M) are (C(S,M),0) or (0,C(S,M)).

Proof. Suppose that (XV ,XW ) is a t-structure in C(S,M) . We first prove

Ext1(XW [1],XV
) = 0
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in the following three cases:

(1) Let Xγ and Xδ be two string objects in C(S,M) with γ ∈ V and δ ∈ W . Since Ext1(Xγ , Xδ) = 0
by the definition of t-structure, γ does not cross δ by Theorem 3.4. Then γ does not cross sδe
neither, since B(γ )∩B(δ) = ∅ by Lemma 4.2 and sδe is obtained from δ by moving the endpoints
of δ along the boundary. Then Ext1(Xδ[1], Xγ ) = 0 by Theorem 3.4.

(2) For any band object X in XV and any object Y in XW , Ext1(X, Y ) = 0 implies that

Ext1(Y [1], X
) ∼= D Ext1(X, Y [1]) ∼= D Ext1(X[−1], Y

) ∼= D Ext1(X, Y ) = 0

since the band object is invariant under [−1].
(3) For any object X in XV and any band object Y in XW , Ext1(X, Y ) = 0 implies that

Ext1(Y [1], X
) ∼= D Ext1(X, Y [1]) ∼= D Ext1(X, Y ) = 0

since the band object is invariant under [1].

Therefore Ext1(XW [1],XV ) = 0. Then any indecomposable object in C(S,M) is either in XV or
in XW [1]. Hence any curve is either in V or in W . Since B(V ) ∩ B(W ) = ∅ and S is connected, we
have that either V or W contains all curves in (S, M). Without loss of generality, we assume that V
contains all curves in (S, M). In particular, all arcs in Γ are in V . So there is a cluster tilting object
T = ⊕

γ ∈Γ Xγ in XV . Then C(S,M) = add T ∗ add T [1] ⊂ XV . This completes the proof. �
If the surface (S, M) has m connected components (S j, M j), then the corresponding cluster cat-

egory C(S,M) is equivalent to the direct sum of cluster categories C(S j ,M j) . So we have the following
corollary.

Corollary 4.4. Let (S, M) be a marked surface with m connected components (S j, M j), 1 � j � m. Then there
are 2m t-structures in C(S,M) , and they are of the form

(⊕
j∈ J

C(S j ,M j),
⊕
j /∈ J

C(S j ,M j)

)

where J ⊆ {1, . . . ,m}.

Let XI be a rigid subcategory of C(S,M) . For a subcategory XV ⊃ XI , we denote by XV = XV /XI ,
the subcategory of the triangulated category ⊥XI [1]/XI . Recall Theorem 3.5 of [33] in our setup:
a pair (XV 1 ,XV 2 ) of subcategories is a cotorsion pair with core XI in C(S,M) if and only if XI ⊂
XV i ⊂ ⊥XI [1] for i = 1,2, and (XV 1 ,XV 2 ) is a t-structure in ⊥XI [1]/XI . This theorem allows us
to give a classification of cotorsion pairs with a fixed core in C(S,M) . We recall that V (S, M) is the
collection of all curves and valued closed curves in (S, M). By VI (S, M), we mean the collection of all
curves and closed curves in (S, M) which do not belong to I such that they do not cross any arcs in I .

Theorem 4.5. Let XI be a rigid subcategory of C(S,M) such that (S, M)/I has m connected components
(S I

j, M I
j), 1 � j � m. Then there is a bijection from the power set of {1,2, . . . ,m} to the set of cotorsion pairs

in C(S,M) with core XI :

J → (XI∪⋃
j∈ J V (S I

j ,M I
j)
,XI∪⋃

j∈ J c V (S I
j ,M I

j)
) =: (X ( J ),X

(
J c))

where J ⊆ {1,2, . . . ,m} and J c = {1,2, . . . ,m} \ J . In particular, there are exactly 2m cotorsion pairs with
core XI in C(S,M) .
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Proof. Note that VI (S, M) = ⋃m
j=1 V (S I

j, M I
j) and ⊥XI [1] = XI∪VI (S,M) by definition. Therefore I ⊂

V ⊂ I ∪ ⋃m
j=1 V (S I

j, M I
j) if and only if XI ⊂ XV ⊂ ⊥XI [1]. On the other hand, the equivalent

functor in Proposition 2.4 implies a bijection between t-structures (XV 1 ,XV 2 ) in ⊥XI [1]/XI and
t-structures (XV 1\I ,XV 2\I ) in C(S,M)/I . Combine this together with Corollary 4.4 and Theorem 3.5
in [33], we get the proof. �
Example 4.6. Let (S, M) be obtained from a sphere by removing 3 disks, with two marked points on
each boundary component, and I = {γ1, γ2, γ3, γ4} be a collection of arcs in (S, M). See the following
figure.

Therefore (S, M)/I have three connected components:

The above theorem implies that there are eight cotorsion pairs with core XI in C(S,M) .

Since the two parts of a cotorsion pair have the same form, we have the following corollary.

Corollary 4.7. If (X ,Y ) is a cotorsion pair in C(S,M) , then so is (Y ,X ), and they have the same core.

Recall that a co-t-structure (X ,Y ) is a cotorsion pair with X [−1] ⊂ X and Y [1] ⊂ Y .

Corollary 4.8. There is no non-trivial co-t-structures in the cluster category of a connected marked surface.

Proof. Let (X ,Y ) be a co-t-structure. Then (X ,Y ) is a cotorsion pair which implies (Y ,X ) is also
a cotorsion pair by the above corollary. Therefore (Y ,X ) is a t-structure. By Theorem 4.3, X = 0
or C . �
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5. A geometric model of cotorsion pairs and their mutations in C(S,M)

Let (S, M) be a marked surface without punctures and C(S,M) be the corresponding cluster cate-
gory. We give in this section a geometric description of mutations of cotorsion pairs in C(S,M) .

By the structure of cotorsion pairs given in Theorem 4.5, we provide a geometric model of cotor-
sion pairs.

Definition 5.1. Let I be a collection of pairwise compatible arcs such that (S, M)/I has m components
(S I

1, M I
1), . . . , (S I

m, M I
m). For each J ⊆ {1, . . . ,m}, an I J -painting of (S, M) is obtained from (S, M) by

filling black in (S I
i , M I

i ) for each i ∈ J and leaving other components white.

Example 5.2. Let (S, M) and I be the same as in Example 4.6. Then there are 8 I J -paintings of (S, M),
see the following figure.

Note that Theorem 4.5 implies that there is a bijection between the set of I J -paintings of
(S, M) and cotorsion pairs with core XI in C(S,M) . The bijection sends the black components in
an I J -painting of (S, M) to the left part X ( J ) of a cotorsion pair (X ( J ),X ( J c)), and the white
components go to X ( J c).

Remark 5.3. When S is a disk, the definition of paintings of (S, M) is the same as the definition of
Ptolemy diagrams in [18] (see Theorem A(ii) and Remark 2.6 in [18]).

Let (XV 1 ,XV 2 ) be a cotorsion pair in C(S,M) with core XI and XD be a subcategory of C(S,M)

with D ⊂ I . Recall that the XD -mutation (μ−1((XV 1 ,XV 2 );XD) of (XV 1 ,XV 2 ), introduced in [33],
is defined as a new cotorsion pair (XD ∗ XV 1 [1]) ∩ ⊥(XD [1]), (XD ∗ XV 2 [1]) ∩ ⊥(XD [1])). In partic-
ular, 0-mutation of (XV 1 ,XV 2 ) is just the cotorsion pair (XV 1 [1],XV 2 [1]). Let

μ−1(XV i ;XD) = (
XD ∗ XV i [1]) ∩ ⊥(

XD [1]),
for i = 1,2, the pairs (XV i ,μ−1(XV i ;XD)) are called XD -mutation pairs in C(S,M) (see Definition 2.5
in [19]).

In the following, we define the rotation of I J -paintings.

Definition 5.4. Let I be a collection of pairwise compatible arcs in (S, M) such that (S, M)/I has
m components (S I

1, M I
1), . . . , (S I

m, M I
m), and D be a subcollection of I . Note that each component

(S D
j , M D

j ) of (S, M)/D inherits an orientation from the orientation of S , and contains several com-

ponents (S I
ji
, M I

ji
) of (S, M)/I where ji ∈ {1,2, . . . ,m}. The D-rotation of (S I

ji
, M I

ji
) is induced by

applying elementary pivot moves on both endpoints of each curve in (S I
ji
, M I

ji
), but along the bound-

ary of (S D
j , M D

j ).
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See the following picture:

where on the left side, the black quadrangle is (S I
ji
, M I

ji
) in (S D

j , M D
j ) denoted by the octagon, then

the D-rotation of (S I
ji
, M I

ji
) is the black quadrangle on the right side of the above figure.

Definition 5.5. The D-rotation of an I J -painting of (S, M) is defined to be a new painting of (S, M)

induced by the D-rotation of all components (S I
i , M I

i ) of (S, M)/I .

Example 5.6. We take one I J -painting in Example 4.6 where J = {1,3}. Let D = {γ2, γ4}. Then the
D-rotation of this I J -painting can be described as follows:

Finally, we show the rotations of paintings of (S, M) provide a geometric model of mutations of
cotorsion pairs in C(S,M) .

Theorem 5.7. Let XI be a rigid subcategory of C(S,M) such that (S, M)/I has m connected components
(S I

j, M I
j), 1 � j � m, and XD be a subcategory of C(S,M) with D ⊂ I . Then the XD -mutations of cotor-

sion pairs (X ( J ),X ( J c)) are compatible with the D-rotations of I J -paintings of (S, M), under the bijection
between cotorsion pairs in C(S,M) and paintings of (S, M).

Proof. Assume (X ( J ),X ( J c)) is a cotorsion pair in C(S,M) with core XI , where J ⊆ {1,2, . . . ,m}.
Then Proposition 4.9 in [19] implies that for any XD -mutation pair (X ,μ−1(X ;XD)) in C(S,M) ,

(X ,μ−1(X ;XD)) forms a 0-mutation pair in CXD = ⊥XD [1]/XD . Hence,
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μ−1
(
X ( J );XD

) = X ( J )〈1〉, μ−1
(
X

(
J c

);XD
) = X

(
J c

)〈1〉
where 〈1〉 is the shift functor in CXD . It follows from the equivalence between CXD and C(S,M)/D
(compare Proposition 2.4) that the functor 〈1〉 corresponds to the pivot elementary moves on
both endpoints in (S, M)/D . Therefore the XD -mutation of (X ( J ),X ( J c)) is compatible with the
D-rotation of the corresponding I J -painting of (S, M). �
Remark 5.8. The above theorem is a generalization of Theorem 4.4 in [33]. When S is a disk, the
rotation of paintings is the mutation of Ptolemy diagrams in [33].
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