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We study the functorially finite maximal rigid subcategories in
2-CY triangulated categories and their endomorphism algebras.
Cluster tilting subcategories are obviously functorially finite and
maximal rigid; we prove that the converse is true if the 2-CY
triangulated categories admit a cluster tilting subcategory. As a
generalization of a result of Keller and Reiten (2007) [KR], we prove
that any functorially finite maximal rigid subcategory is Gorenstein
with Gorenstein dimension at most 1. Similar as cluster tilting
subcategory, one can mutate maximal rigid subcategories at any
indecomposable object. If two maximal rigid objects are reachable
via simple mutations, then their endomorphism algebras have the
same representation type.
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1. Introduction

In the categorification theory of cluster algebras [FZ], cluster categories [BMRRT,Ke1,Am], (stable)
module categories over preprojective algebras [GLS1,GLS2,BIRS], and more general 2-Calabi–Yau trian-
gulated categories with cluster tilting objects [FuKe,Pa1] play a central role. We refer the reader to
the nice surveys [GLS2,Ke2,BM,Rin] and the references there for the recent developments.

Cluster tilting objects (subcategories) in 2-CY categories have many nice properties. For exam-
ples, the endomorphism algebras are Gorenstein algebras of dimension at most 1 [KR]; cluster tilt-
ing objects have the same number of non-isomorphic indecomposable direct summands [DK,Pa2].
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Importantly, in the categorification of cluster algebras, cluster tilting objects categorify clusters of the
corresponding cluster algebras, and the combinatorics structure of cluster tilting objects is the same
as the combinatorics structure of the corresponding cluster algebras [CC,CK].

Cluster tilting objects (subcategories) are maximal rigid objects (subcategories), the converse is
not true in general. The first examples of 2-Calabi–Yau categories in which maximal rigid objects are
not cluster tilting were given in [BIKR] (see also the example in Section 5 of [KZ] for the example
of triangulated category in which maximal rigid objects are not cluster tilting). Cluster tubes intro-
duced in [BKL] serves as another type of such examples. It was proved recently by Buan–Marsh–Vatne
in [BMV] that cluster tubes contain maximal rigid objects, none of them are cluster tilting. Buan–
Marsh–Vatne also proved that the set of maximal rigid objects in 2-CY triangulated categories forms
cluster structure satisfying the definition in [BIRS] by allowing loops, and the combinatorial structure
of maximal rigid objects in a cluster tube models the combinatorics of a type B cluster algebra. In
[V,Y], the authors studied the endomorphism algebras of maximal rigid objects in cluster tubes, in
particular, they proved that the endomorphism algebras are Gorenstein of Gorenstein dimension at
most 1.

The aim of this paper is to give a systematic study of functorially finite maximal rigid subcategories
in 2-CY triangulated categories and endomorphism algebras of maximal rigid objects. For any functori-
ally finite maximal rigid subcategory R in a 2-CY triangulated category C , one considers the extension
subcategory R ∗ R[1] (compare [Pla]). It is in general not equal to C . Note that under the condition
that R is cluster tilting, we have C = R ∗ R[1] [KR]. We observe that any rigid object belongs to
R ∗ R[1]. Using this fact, we prove that if a 2-CY triangulated category contains a cluster tilting
subcategory, then any functorially finite maximal rigid subcategory is cluster tilting. This generalizes
Theorem II.1.8 in [BIRS] from algebraic 2-CY triangulated categories to arbitrary 2-CY triangulated cat-
egories. Then we consider 2-CY triangulated categories with maximal rigid subcategories. It is proved
that some results in [DK,Pa2] also hold in this setting. Namely, we prove that the representatives of
isomorphic classes of indecomposable objects of a functorially finite maximal rigid subcategory form
a basis in the split Grothendieck group of another functorially finite maximal rigid subcategory. In
particular, all maximal rigid objects have the same number of non-isomorphism indecomposable di-
rect summands. Using a recent result of Nakaoka [Na], we prove that functorially finite maximal rigid
subcategories in 2-CY triangulated categories are Gorenstein of dimension at most 1. This is a gener-
alization of the same results in cluster tubes [V,Y]. And it also generalizes the same results on cluster
tilting subcategories of [KR] to functorially finite maximal rigid subcategories. Finally, we study the
endomorphism algebras of maximal rigid objects in 2-CY triangulated categories. If two maximal rigid
objects are reachable via simple mutations, then the corresponding endomorphism algebras of them
have the same representation type.

The paper is organized as follows. In Section 2, we prove that the functorially finite maximal rigid
subcategories are cluster tilting in 2-CY triangulated categories with a cluster tilting subcategory. In
Section 3, the notion of index of a rigid object with respect to a cluster tilting subcategory is gener-
alized by replacing cluster tilting subcategory with functorially finite maximal rigid subcategory with
respect to maximal rigid subcategory (compare [Pla]). The representatives of isomorphism classes of
indecomposable objects of a functorially finite maximal rigid subcategory form a basis in the split
Grothendieck group of another functorially finite maximal rigid subcategory. As a direct consequence,
the numbers of indecomposable direct summands of functorially finite maximal rigid objects are the
same. In the last section, we prove that any functorially finite maximal rigid subcategory is Goren-
stein of dimension at most 1. Finally, for two reachable maximal rigid objects, the corresponding
endomorphism algebras have same representation type.

2. Relations between cluster-tilting subcategories and maximal rigid subcategories

Throughout this paper, k denotes an algebraically closed field and C denotes a k-linear triangulated
category whose shift functor is denoted by [1]. We assume that C is Hom-finite and Krull–Remak–
Schmidt, i.e. dimk Hom(X, Y ) < ∞ for any two objects X and Y in C , and every object decomposes
into a finite direct sum of objects having local endomorphism rings. For basic references on represen-
tation theory of algebras and triangulated categories, we refer to [H].
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For X, Y ∈ C and n ∈ Z, we put

Extn(X, Y ) = Hom
(

X, Y [n]).

When we say that a subcategory T of C , we mean that T is a full subcategory which is closed
under taking isomorphisms, direct sums and direct summands. T ⊥ denotes the subcategory consisting
of Y ∈ C with Hom(T , Y ) = 0 for any T ∈ T , and ⊥T denotes the subcategory consisting of Y ∈ C with
Hom(Y , T ) = 0 for any T ∈ T . For an object T ∈ C , add T denotes the subcategory consisting of direct
summands of direct sums of finite copies of T .

For two subcategories D ⊂ T of C , the quotient category T /D of T by D has the same objects
as T , and its morphism spaces are defined by HomT /D(X, Y ) = Hom(X, Y )/D(X, Y ), where D(X, Y )

denotes the set of morphisms which factor through some object in D.
For two subcategories X,Y, we denote Ext1(X,Y) = 0 if Ext1(X, Y ) = 0 for any X ∈ X, Y ∈ Y.

X ∗ Y denotes the extension category of X by Y, whose objects are by definition the objects E with
triangle X → E → Y → X[1], where X ∈ X, Y ∈ Y. By the octahedral axiom, we have (X ∗ Y) ∗ Z =
X ∗ (Y ∗ Z). We call X extension closed if X ∗ X = X.

For X ∈ C , a morphism f : T → X is called right T -approximation of X if Hom(−, f )|T is sur-
jective. If any object X ∈ C has a right T -approximation, we call T contravariantly finite in C . Left
T -approximation and covariantly finiteness are defined dually. We say that T is functorially finite if
it is both covariantly finite and contravariantly finite. It is easy to see that add T is functorially finite
for any object T ∈ C , since C is Hom-finite and add T contains finitely many indecomposable objects
up to isomorphism.

A triangulated category C is called 2-CY provided that there are bifunctorial isomorphisms

Ext1(X, Y ) = D Ext1(Y , X)

for X, Y ∈ C , where D = Homk(−,k) is the duality of k-spaces.
Throughout this paper, we assume that C is 2-CY.
An exact category is called stably 2-CY [BIRS] if it is Frobenius, that is, it has enough projectives

and injectives, which coincide, and the stable category is 2-CY triangulated. If a triangulated cate-
gory is triangulated equivalent to the stable category of a stably 2-CY exact category, then we call it
algebraic 2-CY triangulated category [Ke3].

Examples of stably 2-CY categories are the categories of Cohen–Macaulay modules over an isolated
hypersurface singularity [BIKR]; the module categories of preprojective algebras of Dynkin quivers
[GLS1]. Basic examples of 2-CY triangulated categories are the cluster categories of abelian hereditary
categories with tilting objects [BMRRT,Ke1]; the Hom-finite generalized cluster categories of algebras
with global dimension of at most 2 [Am]; the stable categories of stably 2-CY categories [BIRS] and
cluster tubes [BKL,BMV].

We recall some basic notions [BMRRT,I1,KR,GLS1,BIRS].

Definition 2.1. Let T be a subcategory of C which is closed under taking direct summands and finite
direct sums.

1. T is called rigid provided Ext1(T , T ) = 0.
2. T is called maximal rigid provided T is rigid and is maximal with respect to this property, i.e. if

Ext1(T ∪ add M, T ∪ add M) = 0, then M ∈ T .
3. T is called cluster-tilting provided T is functorially finite and T = ⊥T [1].
4. An object T is called rigid, maximal rigid, or cluster tilting if add T is rigid, maximal rigid, or

cluster tilting respectively.
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Remark 2.2.

1. Any 2-CY triangulated category C admits rigid subcategories (0 is viewed as a trivial rigid object),
and also admits maximal rigid subcategories if C is skeletally small.

2. There are 2-CY triangulated categories which contains no cluster tilting subcategories [BIKR,BMV].
3. Cluster tilting subcategories are functorially maximal rigid subcategories. But the converse is not

true in general. It was observed by Buan–Marsh–Vatne [BMV] that the cluster tubes contain max-
imal rigid objects, none of them are cluster tilting objects.

If C admits a cluster-tilting subcategory T , we know that C = T ∗ T [1], i.e. for any object X in C
there is a triangle T1 → T0 → X → T1[1] with Ti ∈ T , i = 1,2 [KR,KZ]. In fact, the converse is also
true.

Remark 2.3. If C = T ∗ T [1] with T a rigid subcategory of C , then T is a cluster-tilting subcategory.

Proof. Clearly, T is functorially finite. Given an object X in C with Ext1(X, T ) = 0, there is a triangle
T1 → T0 → X → T1[1]. Then this triangle splits. Hence X ∈ T . This proves that T is cluster-tilting. �

In general, for a maximal rigid subcategory R, R ∗ R[1] is smaller than C , but all rigid objects
belong to R ∗ R[1] [BIRS]. The following lemma was proved for preprojective algebras in [BMR,GLS1],
it holds for any 2-CY triangulated category.

Lemma 2.4. Let R be a contravariantly finite maximal rigid subcategory in a 2-CY triangulated category C .

For any rigid object X ∈ C , if Y
f→ R0

g→ X
h→ Y [1] is a triangle such that R0 ∈ R and g is a right R-

approximation of X , then Y ∈ R. Furthermore, there is a left R-approximation f1 : X → R1 , which extends to

a triangle X
f1→ R1

g1→ R2
h1→ X[1] with R2 ∈ R.

Proof. Since g is a right R-approximation of X and Ext1(R, R0) = 0 for any objects R in R, we have
that Ext1(R,add Y ) = 0, in particular, we have Ext1(R0, Y ) = 0.

By applying Hom(−, X) and Hom(Y ,−) to the triangle Y
f→ R0

g→ X
h→ Y [1] we have two exact

sequences:

Hom(R0, X)
Hom( f ,X)−→ Hom(Y , X) −→ Ext1(X, X) = 0

and

Hom(Y , R0)
Hom(Y ,g)−→ Hom(Y , X) −→ Ext1(Y , Y ) −→ Ext1(Y , R0) = 0.

Let α be an element of Hom(Y , X). By the first exact sequence there is a β ∈ Hom(R0, X) such
that α = β f . Since g is a right R-approximation of X , there is a γ ∈ Hom(R0, R0) such that β = gγ .
Then α = gγ f . This shows that Hom(Y , g) is surjective. Hence Ext1(Y , Y ) = 0 by the second exact
sequence. It follows that Y ∈ R.

For the second part, we apply the first part to the rigid object X[1]. There is a triangle R1
f1→ R2

g1→
X[1] h1→ R1[1]. Then we have a triangle X

−h1[−1]→ R1 → R2 → X[1]. It is easy to see −h1[−1] is a left
R-approximation of X . �

There is a dual statement for covariantly finite maximal rigid subcategory R, we leave it to the
reader.

By Lemma 2.4, we have the following result which is the second part of Proposition I.1.7 in [BIRS].
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Corollary 2.5. Let R be a functorially finite maximal rigid subcategory. Then every rigid object belongs to
R ∗ R[1].

One can see that any cluster-tilting subcategory is maximal rigid, but the converse is not true
[BIKR,BMV]. The main result of this section is the following theorem which tells us that if one of
functorially finite maximal rigid subcategories of C is cluster-tilting, then so are all of them. This is a
generalization of Theorem II.1.8 in [BIRS], where the same conclusion was proved for algebraic 2-CY
triangulated categories.

Theorem 2.6. Let C be a 2-CY triangulated category admitting a cluster-tilting subcategory T . Then every
functorially finite maximal rigid subcategory is cluster-tilting.

Proof. Assume that R is a functorially finite maximal rigid subcategory in C . Given an object X ∈ C
satisfying Ext1(add X, R) = 0, we have a triangle

T1
f−→ T0

g−→ X −→ T1[1]

where T0 and T1 belong to T . Since R is functorially finite in C , there is a left R-approximation of
T0 which extends to a triangle by Lemma 2.4,

R0[−1] −→ T0
α−→ R −→ R0,

where R, R0 ∈ R.

Let α1 = α f . For any object Z in R, by applying Hom(−, Z) to the triangle T1
f→ T0

g→ X → T1[1],
we have the exact sequence

Hom(T0, Z)
Hom( f ,Z)−→ Hom(T1, Z) −→ Ext1(X, Z) = 0.

Given an element ϕ1 ∈ Hom(T1, Z), there is a ϕ0 ∈ Hom(T0, Z) such that ϕ1 = ϕ0 f . Since α is a
left R-approximation of T0, there is a ψ such that ϕ0 = ψα. Then ϕ1 = ψα f = ψα1. So α1 is a left
R-approximation of T1. It follows from the dual of Lemma 2.4 that the triangle which α1 is a part is
of the form:

R1[−1] −→ T1
α1−→ R −→ R1,

where R, R1 ∈ R.
Starting with α1 = α f , we get the following commutative diagram by the octahedral axiom:

X[−1] X[−1]

R1[−1] T1
α1

f

R R1

R0[−1] T0

g

α
R R0

X X
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But Hom(R0[−1], X) = Ext1(R0, X) = 0, so the first column is a split triangle and then X ∈ R. Thus
we have proved this theorem. �
Remark 2.7. The same conclusion is not true in arbitrary triangulated categories (which are not 2-CY).
See the example in Section 2 in [BMRRT], where the derived category of the quiver Q : 1 → 2 → 3
contains a functorially finite maximal rigid subcategory which is not cluster tilting. It is well known
that the derived category of Q contains cluster tilting subcategories, see for example the example in
Section 5 of [KZ], or [I2].

3. Mutations and basis of Grothendieck groups of maximal rigid subcategories

Mutations in arbitrary triangulated categories were defined in [IY]. We recall them in the setting
of 2-CY triangulated categories.

Let C be a 2-CY triangulated category and D a functorially finite rigid subcategory of C which is
closed under taking finite direct sums and direct summands. For a subcategory X of C containing D,
put

μ−1(X, D) := (
D ∗ X[1]) ∩ ⊥(

D[1]).

Dually, for a subcategory Y of C containing D, put

μ(Y, D) := (
Y[−1] ∗ D

) ∩ (
D[−1])⊥

.

Definition 3.1. (See [IY].) The pair (X,Y) of subcategories X,Y is called D-mutation pair if X =
μ(Y, D) and Y = μ−1(X, D).

It is not difficult to see that: for subcategories X,Y containing D, (X,Y) forms a D-mutation if
and only if for any X ∈ X, Y1 ∈ Y there are two triangles:

X
f→ D

g→ Y → X[1],
X1

f1→ D1
g1→ Y1 → X1[1]

where D, D1 ∈ D, Y ∈ Y, X1 ∈ X, f and f1 are left D-approximations; g and g1 are right D-
approximations.

The following result is analogous to the first part of Theorem 5.1 in [IY], where the arguments are
stated for cluster tilting subcategories. We give a proof here for the convenience of the reader.

Proposition 3.2. Let R be a functorially finite maximal rigid subcategory containing D. Then its mutation
R′ = μ−1(R, D) is a functorially finite maximal rigid subcategory, and (R, R′) is a D-mutation pair.

Proof. Let Z = ⊥D[1] = D[−1]⊥ , and U := Z/D the quotient triangulated category, whose shift
functor is denoted by 〈1〉 (for details of the triangulated structure of the quotient triangulated cate-
gory, see Section 4 of [IY]). The images of the morphism f and the subcategory R in the quotient U
are denoted by f and R respectively.

We first sketch the proof of the fact R is a functorially finite maximal rigid subcategory in C if
and only if so is R in U.

It is easy to see that R is functorially finite if and only if so is R.
We will prove that R is maximal rigid in U provided R is maximal rigid in C . Let M ∈ U satisfy

that Hom(M, X〈1〉) = 0,Hom(X, M〈1〉) = 0,Hom(M, M〈1〉) = 0, for any X ∈ R. For X ∈ R, we have a
triangle in C :
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X
f−→ D

g−→ X〈1〉 h−→ X[1],
which is from the definition of the functor 〈1〉. Now suppose that α ∈ Hom(M, X[1]). Since
Hom(M, D[1]) = 0, α factors through h by β : M → X〈1〉. Since Hom(M, X〈1〉) = 0 in U, we have that
β factors through g . Then α factors through h ◦ g , and then α = 0. This proves that Hom(M, X[1]) = 0.
One can prove that Hom(X[1], M) = 0,Hom(M, M[1]) = 0 in a similar way. Then R is maximal rigid
in U. The converse implication that R is maximal rigid in C provided R is maximal rigid in U can
be proved in a similar way. We omit the details here.

It follows from the fact (R, R′) is a D-mutation in C that (R, R′) is a 0-mutation in U. Then
R′ = R〈1〉 in U, and then R ′ is maximal rigid in U. It follows that R′ is maximal rigid in C . �

We call a subcategory R1 an almost complete maximal rigid subcategory if there is an inde-
composable object R which is not isomorphic to any object in R1 such that R = add(R1 ∪ {R}) is
a functorially finite maximal rigid subcategory in C . Such R is called a complement of an almost
complete maximal rigid subcategory R1. It is easy to see that any almost complete maximal rigid
subcategory is functorially finite. Combining the proposition above with Corollary 2.5, we have the
following corollary, which was indicated in [BIRS].

Corollary 3.3. Let R1 be an almost complete maximal rigid subcategory of C . Then there are exactly two com-
plements of R1 , say R and R∗ . Denote by R = add(R1 ∪ {R}), R′ = add(R1 ∪ {R∗}). Then (R, R′), (R′, R)

are R1-mutations.

Proof. This follows from [IY, 5.3]. Note that the arguments there are stated only for cluster tilting
subcategories, but work also for functorially finite maximal rigid subcategories with the help of Corol-
lary 2.5. �
Definition 3.4. Let R1 be an almost complete maximal rigid subcategory of C with the complements
R and R∗ . Denote R = add(R1 ∪ {R}), R′ = add(R1 ∪ {R∗}). If dimk Ext1(R, R ′) = 1 (equivalently
dimk Ext1(R ′, R) = 1), then the mutation (R, R′) is called a simple mutation [Ke2,Pla].

There are mutations of some maximal rigid objects in cluster tubes which are not simple [Y]. It
was proved in [Pla] that for a simple mutation of maximal rigid subcategories R, R′ , R ∗ R[1] =
R′ ∗ R′[1].

Let R be a functorially maximal rigid subcategory of 2-CY triangulated category C . Let K split
0 (R) be

the (split) Grothendieck group, which by definition, the free abelian group with a basis [R], where R
runs through the representatives of isomorphism classes of indecomposable objects in R. Let X be a
rigid object of C . By Corollary 2.5 above, there is a triangle R1 → R0 → X → R1[1]. So we can define
the index indR(X) = [R0] − [R1] ∈ K split

0 (R) as in [Pa1,DK,Pla].

Proposition 3.5. Let R be a functorially finite maximal rigid subcategory.

(1) If X and Y are rigid objects in C such that indR(X) = indR(Y ), then X and Y are isomorphic.
(2) Let X be a rigid object of C and let Xi , i ∈ I , be a finite family of pairwise non-isomorphic indecomposable

direct summands of X . Then the elements indR(Xi), i ∈ I , are linearly independent in K split
0 (R).

Proof. All conclusions follow from Sections 2.1, 2.2, 2.3, 2.5 in [DK]. Note that the arguments there
are stated only for cluster-tilting subcategories, but work also for functorially finite maximal rigid
subcategories by Corollary 2.5 above. �
Theorem 3.6. Let R and R′ be two functorially finite maximal rigid subcategories in C . Then the elements
indR(R ′), where R ′ runs through a system of representatives of the isomorphism classes of indecomposables

of R′ , form a basis of the free abelian group K split
0 (R).
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Proof. The proof of Theorem 2.4 in [DK, 2.6] works also in this setting. �
Corollary 3.7.

1. The category C has a maximal rigid object if and only if all functorially maximal rigid subcategories have
a finite number of pairwise non-isomorphic indecomposable objects.

2. All maximal rigid objects have the same number of indecomposable direct summands (up to isomorphism).

4. Gorenstein property of maximal rigid subcategories

Let R be a functorially finite maximal rigid subcategory of C and A the quotient category of
D = R[−1] ∗ R by R. Let mod R denote the category of finitely presented R-modules where a R-
module means a contravariantly functor from R to the category of k-vector spaces. We know that A
is an abelian category whose abelian structure is induced by the triangulated structure of C and there
is an equivalence F : A → mod R [IY]. As in Section 2, we put

R⊥ := {
X ∈ C

∣∣ Hom(R, X) = 0
}

and ⊥R := {
X ∈ C | Hom(X, R) = 0

}
.

By 2-CY property of C , ⊥R[1] = R[−1]⊥ , which is denoted by S . Clearly, both (R, S ) and (S, R) are
cotorsion pairs in the sense in [Na] (equivalently, (R, S[1]) and (S[−1], R) are torsion pairs in the
sense in [IY]).

For the convenience of the reader we recall briefly the abelian structure of A from [Na]. Let f ∈
HomA(X, Y ) with X, Y ∈ D and f ∈ HomC (X, Y ) where f is a part of the triangle Z [−1] h→ X

f→
Y

g→ Z . Let f1 : X → R0 be a left R-approximation of X which extends to a triangle R1[−1] →
X

f→ R0 → R1. Then R1 ∈ R by Lemma 2.4. We have the following commutative diagram which is
constructed from the octahedral axiom:

Z [−1]
h

Z [−1]

R1[−1] X

f

R0 R1

(∗)

R1[−1] Y

g

m f
M f R1

Z Z

The map m f is the cokernel of f [Na] (note that M f ∈ (R[−1] ∗ R)∗ R = R[−1] ∗ (R ∗ R) = R[−1] ∗
R).

The kernel of f is obtained similarly. Since (R, S[1]) is a torsion pair, we have a triangle S ′
0 →

R ′
0 → Y → S ′

0[1], where R ′
0 ∈ R and S ′

0 ∈ S . Using the octahedral axiom, we have the first diagram
of the following two commutative diagrams. Since (R[−1], S) is a torsion pair, we have a triangle

R[−1] ψ→ L f → S → R with R ∈ R and S ∈ S . Since (R, S[1]) is also a torsion pair, we have another

triangle S ′ →
R

′→ S → S ′[1] with R ′ ∈ R and S ′ ∈ S . Using the octahedral axiom, we have the second
diagram of the following two commutative diagrams:
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Z [−1] Z [−1]
h

S ′
0 L f

f

l f

X S ′
0[1]

(∗∗)

S ′
0 R ′

0 Y

g

S ′
0[1]

Z Z

and

S ′ S ′

R[−1] ϕ
KL

kL

R ′ R

(∗∗∗)

R[−1] ψ
L f S R

S ′[1] S ′[1]

The composition l f kL is the kernel of f .

Remark 4.1. (See [Na, Remark 4.5].) For any X ∈ R[−1] ∗ R and any y ∈ HomC/R(X, L f ), there exists
a unique morphism x ∈ HomA(X, KL) such that y = kL x.

KL

kLX

x

y
L f

Thus KL is determined uniquely up to a canonical isomorphism in A.

The following lemma is a suitable version of Proposition 6.1 in [Na] in our setting. We include a
proof for the convenience of the reader.

Lemma 4.2. Let f : X → Y be a morphism in C which is a part of triangle Z [−1] h→ X
f→ Y

g→ Z . Then f is
an epimorphism if and only if M f ∈ R; f is a monomorphism if and only if L F ∈ S .

In particular, if Z is in R, then f is an epimorphism; if Z [−1] is in S , then f is a monomorphism.
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Proof. (1) f : X → Y is an epimorphism in A if and only if M f
∼= 0 in A, i.e. M f ∈ R.

(2) f : X → Y is a monomorphism in A if and only if KL ∼= 0 in A, i.e. KL ∈ R. We claim that
KL ∈ R if and only if L F ∈ S . If KL ∈ R, then ϕ = 0 by Hom(R[−1], R) = 0. So ψ = kLϕ = 0, and
hence L F ∈ S . If L F ∈ S , then ψ = 0. So kLϕ = 0 that implies that kL factors through R ′ . Then kL = 0,
and then KL ∈ R by Remark 4.1.

(3) If Z is in R, then the third column in (∗) is a splitting triangle. So M f ∈ R. Dually, if Z [−1] is
in S , then the second column in (∗∗) is a splitting triangle. So L f ∈ S . �

Now we determine the projective objects and injective objects in A.

Proposition 4.3. An object M of A is a projective object if and only if M ∈ R[−1]. An object N of A is an
injective object if and only if N ∈ R[1].

Proof. (1) Given R ∈ R. For any epimorphism f : X → Y in A, and any morphism α : R[−1] → Y ,
m f α = 0 by M f ∈ R and Hom(R[−1], R) = 0. So gα = 0. Then α factors through f , hence α factors
through f . This proves that R[−1] is projective in A.

Conversely assume M is a projective object in A. Since M ∈ R[−1] ∗ R, there is a triangle

R0[−1] σ→ M → R1 → R0 with R0, R1 ∈ R. Then σ is an epimorphism in A by Lemma 4.2. So the
epimorphism σ : R0[−1] → M splits. Hence M ∈ R[−1].

(2) Note that R[1] ∈ R[−1] ∗ R, for all R ∈ R, by Corollary 2.5.
Given R ∈ R. For any monomorphism f : X → Y in A, and any morphism β : X → R[1], βl f = 0

by L f ∈ S . So βh = 0. Then β factors through f , hence β factors through f . This proves that R[1] is
injective in A.

Conversely assume M is an injective object in A. Since M ∈ C = S ∗ R[1], there is a triangle

S → M
τ→ R[1] → S[1] with R ∈ R and S ∈ S . Then τ is a monomorphism in A by Lemma 4.2. So τ

splits, hence M ∈ R[1]. �
The main result in this section is the following theorem which is a generalization of Proposition 2.1

in [KR], Theorem 4.3 in [KZ]. This has been proved in [V,Y] for C being cluster tubes.

Theorem 4.4. Let C be a 2-Calabi–Yau triangulated category with a functorially finite maximal rigid subcate-
gory R and let A be the abelian quotient category of R[−1] ∗ R by R. Then

(1) The abelian category A has enough projective objects.
(2) The abelian category A has enough injective objects.
(3) The abelian category A is Gorenstein of Gorenstein dimension at most one.

Proof. (1) Given X ∈ R[−1] ∗ R . There is a triangle R1[−1] → R0[−1] f→ X → R1 with R0, R1 ∈ R.
Then f : R0[−1] → X is an epimorphism with R0[−1] a projective object.

(2) Given X ∈ R[−1] ∗ R . Since X ∈ C = S ∗ R[1]. There is a triangle S → X
g→ R[1] → S[1] with

R ∈ R and S ∈ S . Then g : X → R[1] is a monomorphism with R[1] an injective object.

(3) For an injective object R[1] in A, since R[1] ∈ R[−1] ∗ R, then there is a triangle R1[−1] h→
R0[−1] f→ R[1] → R1 with R0, R1 ∈ R. Then f is an epimorphism by Lemma 4.2 and h is the kernel

of f by the structure of kernel. So we have an exact sequence 0 → R1[−1] h→ R0[−1] f→ R[1] → 0
which is a projective resolution of the injective object R[1] in A. Therefore proj.dim.R[1] � 1.

For a projective object R[−1] in A, since R[−1] ∈ R ∗ R[1] by Corollary 2.5, there is a triangle

R0 → R[−1] f→ R1[1] g→ R0[1] with R0, R1 ∈ R. Then f is a monomorphism in by Lemma 4.2 and

g is the cokernel of f by the structure of cokernel. So we have an exact sequence 0 → R[−1] f→
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R1[1] g→ R0[1] → 0 which is an injective resolution of the projective object R[−1] in A. Therefore
inj.dim.R[−1] � 1.

Therefore A is Gorenstein of Gorenstein dimension at most one. �
As in [KZ], we have the following corollary.

Corollary 4.5. Let C be a 2-Calabi–Yau triangulated category and R a functorially finite maximal rigid sub-
category. Then A is a Frobenius category if and only if R = R[2].

Proof. A is Frobenius if and only if the sets of projective objects and of injective objects of A coin-
cide, i.e. R[−1] = R[1] if and only if R = R[2]. �

In the last part of this section, we assume that the 2-CY triangulated category C admits a maximal
rigid object. It follows from Corollary 3.7 that all maximal rigid subcategories are of form add R , where
R is a maximal rigid object. The numbers of indecomposable direct summands of all basic maximal
rigid objects are the same. Two maximal rigid objects are called reachable via simple mutations if one
of them can be obtained from another by finite steps of simple mutations.

The 2-CY tilted algebras [BIRS] which by definition the endomorphism algebras of cluster tilting
objects in a 2-CY triangulated category are a special case of endomorphism algebras of maximal rigid
objects in a 2-CY triangulated category. The converse is not true in general since the endomorphism
algebras of maximal rigid objects in a 2-CY triangulated category may contain loops [BIKR,BMV].

Now we collect the representation theoretic properties of endomorphism algebras of maximal rigid
objects in a 2-CY triangulated category.

Proposition 4.6.

1. All endomorphism algebras of maximal rigid objects in a 2-CY triangulated category are Gorenstein alge-
bras of dimension at most 1.

2. Let R and R ′ form a simple mutation pair. Then End R and End R ′ are nearly Morita equivalent, i.e.
mod End R/add Si ≈ mod End R ′/add S ′

i (where the symbol ≈ means the categories on its both sides
are equivalent).

3. If R and R ′ are reachable via simple mutations, then End R and End R ′ have the same representation type.

Proof. 1. This is direct consequence of Theorem 4.4.
2. This was proved in [Y].
3. Denote A = End R and A′ = End R ′ . From the assumption, we have that R[−1] ∗ R = R ′[−1] ∗

R ′ by [Pla], which is denoted by D. By Theorem 4.4, A-mod ≈ D/add R and A′-mod ≈ D/add R ′ .
Therefore A-mod/add R ′

≈ D/add(R ∪ R ′) ≈ A′-mod/add R . Hence, ind A is a finite set if and only
if ind D is a finite set. Thus A is of finite type if and only if A′ is so. Moreover, by the proof in [Kr],
A-mod is wild if and only if A′-mod is wild. Therefore, by tame-wild dichotomy, A and A′ have the
same representation type. �
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