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1. Introduction

Cluster categories are introduced by Buan, Marsh, Reineke, Reiten, Todorov [BMRRT] for a categori-
fied understanding of cluster algebras introduced by Fomin and Zelevinsky in [FZ1,FZ2], see also [CCS]
for type A,. We refer [FZ3] for a survey on cluster algebras and their combinatorics, see also [FR1].
Cluster categories are the orbit categories D/t~ '[1] of derived categories of hereditary categories
by the automorphism group (t~'[1]) generated by the automorphism t~'[1]. They are triangulated
categories [Ke]. Cluster categories, on the one hand, provide a successful model for acyclic cluster al-
gebras and their cluster combinatoric; see, for example, [BMRRT,BMR,CC,CK1,CK2,IR,Zh1,Zh2]; on the
other hand, they replace module categories as a new generalization of the classical tilting theory, see,
for example, [KR1,KR2,IY,KZ]. Cluster tilting theory and its combinatorics are the essential ingredients
in the connection between quiver representations and cluster algebras, and have now become a new
part of tilting theory in the representation theory of algebras; we refer to the surveys [BM,Rin,Re] and
the references there for recent developments and background on cluster tilting theory.

Let H be a finite dimensional hereditary algebra over a field K with n non-isomorphic simple
modules, and let C(H) be the corresponding cluster category. In a triangulated category, there are
three possible kinds of rigid objects: cluster tilting (maximal 1-orthogonal in the sense of Iyama [I]),
maximal rigid, and complete rigid. It is well known that they are not equivalent to each other in
general [BIKRKZ]. But in the cluster category C(H), they are equivalent [BMRRT]. Compared with
classical tilting modules, cluster tilting objects in cluster categories have nice properties [BMRRT]. For
example, any almost complete cluster tilting object in a cluster category can be completed to a cluster
tilting object in exactly two ways, but in mod H, there are at most two ways to complete an almost
complete basic tilting module. Moreover, the two complements M, M* of an almost complete basic
cluster tilting object T are connected by two triangles

M* — B — M — M*[1],

M — B’ — M* — M[1]

in C(H), where respectively, B —> M and B’ — M* are minimal right add T-approximations of
M and M* in C(H). It follows that M and M* satisfy the condition dimp,, Ext}z(H)(M,M*) =1=
dimp,,, Ext}:(H)(M*,M), where Dy (or Dy+) is the endomorphism division ring of M (resp. M*).
Conversely, if two indecomposable rigid objects M, M* satisfy the condition above, one can find an
almost complete cluster-tilting object T such that M and M* are the two complements of T. In this
case, T @ M* is called a mutation of T @ M. Any two cluster-tilting objects are connected through
mutations, provided that the ground field K is algebraically closed.

Keller [Ke] introduced d-cluster categories D/t ~![d] as a generalization of cluster categories for
d € N. They are studied recently in [Th,Zh3,BaM1,BaM2,KR1,KR2,IY,HoJ1,Ho]2,],Pa,ABST,T,Wr]. d-cluster
categories are triangulated categories with Calabi-Yau dimension d + 1 [Ke]. When d = 1, ordinary
cluster categories are recovered.

The aim of this paper is to study the cluster tilting theory in d-cluster categories. It is motivated by
two factors. First, since some properties of cluster tilting objects in cluster categories do not hold in
general in this generalized setting (for example, the endomorphism algebras of d-cluster tilting objects
are not again Goreistein algebras of dimension at most d in general [KR1]), one natural question
is to see whether other properties of cluster tilting objects hold in d-cluster categories. Second, in
[Zh3] we use d-cluster categories to define a generalized cluster complexes of the root systems of the
corresponding Kac-Moddy Lie algebras (see also [BMRRT] and [Zh1] for a quiver approach of cluster
complexes). When H is of finite representation type, these complexes are the same as those defined
by Fomin and Reading [FR2] using the combinatorics of the root systems, see also [Th]. We need the
combinatorial properties of d-cluster tilting objects for these generalized cluster complexes.

In [Zh3], the second author of this paper proved that any basic d-cluster tilting object in a d-
cluster category Cq(H) contains exactly n indecomposable direct summands, where n is the number
of non-isomorphic simple H-modules, and that the number of complements of an almost complete
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d-cluster tilting object is at least d + 1. The present article is a completion of the result from [Zh3]
mentioned above. Furthermore, it can be viewed as a generalization to d-cluster categories of (almost)
all the results for cluster categories in [BMRRT].

The paper is organized as follows: In Section 2, we recall and collect some notion and basic results
needed in this paper. In Section 3, we prove that the d-cluster tilting objects in d-cluster categories
are equivalent to the maximal rigid objects, and also to the complete rigid objects (i.e. rigid objects
containing n non-isomorphic indecomposable direct summands, where n is the number of simple
modules over the associated hereditary algebra). In the Dynkin case, this equivalence was proved in
[Th] using the fact that every indecomposable object is rigid. In Section 4, we compare two chains
of d + 1 triangles, from [Zh3] and [IY] respectively, in order to prove that a basic almost complete
d-cluster tilting object has exactly d + 1 non-isomorphic complements, which are connected by these
d+1 triangles. The extension groups between the complements of an almost complete d-cluster tilting
object are computed explicitly, and a necessary and sufficient condition for d+ 1 indecomposable rigid
objects to be the complements of an almost complete d-cluster tilting object is obtained in Section 5.
In Section 6, for an almost complete d-cluster tilting object, the middle terms of the d + 1 triangles
which are connected by the d + 1 complements are proved to contain no direct summands common
to them all. In the final section, we give an application of the results proved in these previous sections
to the generalized cluster complexes defined by Fomin and Reading [FR2], studied in [Th], and [Zh3],
and show that all the main properties of these generalized cluster complexes of finite root system in
[FR2,Th] hold also for the generalized cluster complexes of arbitrary root systems defined in [Zh3].

After completing and submitting this work, we saw Wralsen’s paper [Wr]| (arXiv:0712.2870). The
fact that maximal d-rigid objects and d-cluster tilting objects coincide and that almost complete
d-cluster tilting objects have d + 1 complements, have also been proved independently in [Wr]|, with
different proofs.

2. Basics on d-cluster categories

In this section, we collect some basic definitions and fix notation that we will use throughout the
paper.

Let H be a finite dimensional hereditary algebra over a field K. We denote by H the category of
finite dimensional modules over H. It is a hereditary abelian category [DR]. The subcategory of H
consisting of isomorphism classes of indecomposable H-modules is denoted by ind . The bounded
derived category of H will be denoted by DP(H) or D. We denote the non-isomorphic indecompos-

able projective representations in H by P1,..., Py, and the simple representations with dimension
vectors oq,...,0, by Eq,..., E;. We use D(—) to denote Homg (—, K) which is a duality operation
in H.

The derived category D has Auslander-Reiten triangles, and the Auslander-Reiten translate T is an
automorphism of D. Fix a positive integer d, and denote by Fq =t~ ![d], it is an automorphism of D.
The d-cluster category of H is defined in [Ke]; we denote by D/F, the corresponding factor category.
Its objects are by definition the Fg-orbits of objects in D, and the morphisms are given by

Hompf, (X, Y) = @D Homp (X, FyY).
ieZ
Here X and Y are objects in D, and X and Y are the corresponding objects in D/Fy (although we

shall sometimes write such objects simply as X and Y).

Definition 2.1. (See [Ke,Th].) The orbit category D/Fy is called the d-cluster category of H (or of H),
and is denoted by Cyq(H), or sometimes by Cq(H).

By [Ke], the d-cluster category is a triangulated category with shift functor [1] induced by the shift
functor in D; the projection 7w : D — D/F is a triangle functor. When d = 1, this orbit category is
called the cluster category of 7, and denoted by C(H), or sometimes by C(H).
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‘H is a full subcategory of D consisting of complexes concentrated in degree 0. Passing to Cy(H)
by the projection 7, H is a (possibly not full) subcategory of C4(H), and C(H) is also a (possibly
not full) subcategory of Cy(H). For any i € Z, we use (H)[i] to denote the copy of H under the ith
shift [i], considered as a subcategory of C4(*). Thus, (ind H)[i] = {M[i] | M € ind H}. For any object
M in C4(H), let add M denote the full subcategory of C4() consisting of direct summands of direct
sums of copies of M.

For X,Y € C4(H), we will use Hom(X,Y) to denote the Hom-space Homg,(1)(X,Y) in the d-
cluster category Cq(H) throughout the paper. We define Ext(X, Y) to be Hom(X, Y[i]).

We summarize some known facts about d-cluster categories [BMRRT,Ke], see also [Zh3].

Proposition 2.2.

1. C4(H) has Auslander-Reiten triangles and Serre functor X = t[1], where t is the AR-translate in Cq(H),
induced from the AR-translate in D.

2. C4(H) is a Calabi-Yau category of CY-dimension d + 1.

3. C4(H) is a Krull-Remak-Schmidt category.

4. indCy(H) = U}zg*](indH)[i] U{P;ld]|1<j<n}

Proof. See [Zh3]. O

Using Proposition 2.2, we can define the degree for every indecomposable object in Cy(H) as
follows [Zh3]:

Definition 2.3. For any indecomposable object X € Cy4(H), we call the non-negative integer min{k
Z>o| X = MI[k] in C4(H), for some M e ind H} the degree of X, denoted by deg X. If deg X =k, k=0,
...,d—1, we say that X is of color k + 1; if deg X =d, we say that X is of color 1.

By Proposition 2.2, any indecomposable object X of degree k is isomorphic to M[k] in Cq(H),
where M is an indecomposable representation in H, 0 < deg X < d, X has degree d if and only if
X = P[d] in C4(H) for some indecomposable projective object P € H, and X has degree 0 if and only
if X= M[0] in C4(H) for some indecomposable object M € H. Here M[0] denotes the object M of H,
considered as a complex concentrated in degree O.

Now we recall the notion of d-cluster tilting objects from [KR1,Th,Zh3,IY]. This notion is equivalent
to the “maximal d-orthogonal subcategories” of Iyama [LIY].

Definition 2.4. Let C4(7) be the d-cluster category.

1. An object X in Cq(H) is called rigid if Exti(X, X) =0, for all 1<i<d.

2. An object X in Cyq(H) is called maximal rigid if it satisfies the property: Y € add X if and only if
Ext (XY, X®Y)=0 forall 1<i<d.

3. An object X in C4(H) is called completely rigid if it contains exactly n non-isomorphic indecom-
posable direct summands.

4, An object X in Cy(H) is called d-cluster tilting if it satisfies the property that Y € add X if and
only if Ext!(X,Y)=0 for all 1<i<d.

5. An object X in Cq(H) is called an almost complete d-cluster tilting if there is an indecompos-
able object Y with Y ¢ add X such that X @ Y is a d-cluster tilting object. Such Y is called a
complement of the almost complete d-cluster tilting object.

For a basic d-cluster tilting object T in C4(H), an indecomposable object Xg € add T and its com-
plement X such that Xo @ X =T, then there is a triangle in Cy(H):

X1 -5 By -1 Xo —> Xq[11.
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where f is the minimal right add X-approximation of Xy and g is the minimal left add X-
approximation of Xi. It is easy to see that T’ := X; @ X is a basic d-cluster tilting object (com-
pare [IY]). We call T’ is a mutation of T in the direction of Xy. We call two d-cluster tilting objects T,
T’ mutation equivalent provided that there are finitely many d-cluster tilting objects T (=T), T3, ..
Tp (=T’) such that Tjy; is a mutation of T; for any 1 <i<<n—1.

From the proof of Theorem 4.6 in [Zh3], we know that every d-cluster tilting object is mutation
equivalent to a d-cluster tilting object in H[0].

The following results are proved in [Zh3].

.

Proposition 2.5.

1. Any indecomposable rigid object X in C4(H) is either of the form M[i], where M is a rigid module (i.e.
ExtL(M, M) =0)inH and 0 <i<d— 1, orof the form P;[d] for some 1 < j <n. In particular, if I' is a
Dynkin graph, then any indecomposable object in C4(H) is rigid.

2. Suppose d > 2. Then Endc, (y)(X) is a division algebra for any indecomposable rigid object X.

3. Letd > 2 and X = M[i], Y = N[j] be indecomposable objects of degree i, j respectively in Cq(H). Suppose
that Hom(X, Y) # 0. Then one of the following holds:

(1) We havei=jorj—1 (provided j > 1);
(2) Wehavei=0,i=d (and M = P) ord — 1 (provided j = 0).

4, Letd > 2 and M, N € 'H. Then any non-split triangle between M[0] and N[0] in C4(H) is induced from a
non-split exact sequence between M and N in H.

3. Equivalence of d-cluster tilting objects and maximal rigid objects

The equivalence between cluster tilting objects and maximal rigid objects in cluster categories
was proved in [BMRRT]. For d-cluster categories, in the simply laced Dynkin case, the equivalence
of d-cluster tilting objects and maximal rigid objects is easily obtained because any indecomposable
object is rigid (compare [Th]). We will now prove it for arbitrary d-cluster categories. From the proof
of Theorem 4.6 in [Zh3], we know that every d-cluster tilting object is mutation equivalent to one
in H[O]. If there is a similar result for mutations of maximal rigid objects, then we can get the
equivalence by the obvious equivalence between d-cluster tilting objects and maximal rigid objects in
‘H[0] (both are tilting modules in mod H).

Lemma 3.1. Let d > 2, T = X & Xg be a basic maximal rigid object in C4(H) and Xy an indecomposable
object. Then there are d + 1 triangles

g fi 5
Xit1 — Ti = Xi — Xip[1], (%)

where T; € add X, f; is the minimal right add X-approximation of X;, g; is the minimal left add X-
approximation of X;11, all the X & X; are maximal rigid objects, and all X; are distinct up to isomorphisms for
i=0,...,d

Proof. First we prove that there is a triangle

X1 2% 1o 1% x4 2% X111,

where Tg € add X, fo is the minimal right add X-approximation of X, g is the minimal left add X-
approximation of X, and X @ X7 is a maximal rigid object.

Let Tg ﬂ> Xo be the minimal right add X-approximation of Xg, and let

X1 2% 1o 1% xo 2% Xq11] (1)
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be the triangle into which f embeds. By the discussion in [BMRRT], one can easily check that go
is the minimal left add X-approximation of X;, X; is indecomposable and X; ¢ add X. By applying
Hom(X, —) to the triangle, we have Ext' (X, X;) =0, for 1 <i <d (for i =1, because f is the minimal
right add X-approximation of Xg). By applying Hom(Xp, —) to the triangle, we get Extl(Xo,Xg) =
Extt1(Xo, X1), for 1 <i<d—1. By applying Hom(—, X1) to the triangle, we have Exti(X1, X1) =
Extit1(Xo, X1), for 1 <i<d—1.So Ext' (X1, X1) = Ext!(Xg, Xo) =0 for 1 <i<d—1. Since C4(H) is a
Calabi-Yau category of CY-dimension d + 1, Ext?(X1, X1) = DExt!(Xy, X1) =0. We claim that X & X;
is a maximal rigid object. If not, we have an indecomposable object Y; ¢ add(X & X1), such that
X @ X1 @Y is a rigid object. Then we have a triangle

Y1 5T -2 v — X[1] )

where ¢ is the minimal left add X-approximation of Y. It is easy to prove that ¢ is the minimal
right add X-approximation of Yy, Yo ¢ add X, and Ext! (Yo, X @ Yg) =0 for 1 <i<d. We will prove
that Ext' (Yo, Xo) =0 for 1< i <d; then Yo = Xo due to the fact that X @ Xg is a maximal rigid object.
By applying Hom(—, Y1) to the first triangle, we have 0 = Ext!(X;, Y1) = Extit1(Xo, Y1) for 1 <i <
d — 1. By applying Hom(Xp, —) to the second triangle, we have Ext!(Xo, Yo) = Extit1(Xp, Y1) = 0 for
1<i<d—1.So we have Ext!(Xo, Yo) =0 for 1<i<d—1, and thus Ext!(Yg, Xo) =0 for 2 <i <d.
By applying Hom(—, X7) to the second triangle, we have 0 = Ext! (Y1, X1) = Ext?(Yo, X1). By applying
Hom(Yg, —) to the first triangle, we have Ext'(Y, Xo) = Ext?(Yg, X1) = 0. So Ext!(Yp, Xo) = 0. In
all, Exti(Yo, Xg) =0 for 1 <i < d. Therefore Yo = Xy which induces an isomorphism between the
triangles (1) and (2). Then Y; = X1, a contradiction. This proves that X @ X; is a maximal rigid
object.
Second we repeat this process to get d + 1 triangles

g fi S
X,’+1 — Tj —> X,' — X,’+1 [1], (*)

where T; € add X, f; is the minimal right add X-approximation of Xj, g; is the minimal left add X-
approximation of X;.1, and all the X & X; are maximal rigid objects.

Third it is easy to see that §4[d]8q_1[d —1]---81[1]18¢ # O (similar as that in Corollary 4.5 in [Zh3]).
In particular, Hom(X;, X;[j —i]) # 0 and X; 2 X;, YO <i < j <d. This finishes the proof. O

With the help of Lemma 3.1, one can define mutations of maximal rigid objects similar to those
of d-cluster tilting objects: Let

fi
Xit1 —> Ti — X; _> Xip1[1]

be the ith triangle in Lemma 3.1. We say that each of the maximal rigid objects X & X;j, for i =

.,d, is a mutation of the maximal rigid object X & Xp. A maximal rigid object T is mutation
equivalent to a maximal rigid object T’ provided that there are finitely many maximal rigid objects
T1 (=T),T3,...,Tyn_1, Ty (=T’) such that T; is a mutation of T;_; for any i.

Lemma3.2. Letd > 2, T = X & X be a maximal rigid object and X be an indecomposable object. Then T is
mutation equivalent to a maximal rigid object in H[0].

Proof. In the proof of Theorem 4.6 in [Zh3], we proved that any d-cluster tilting object is muta-
tion equivalent to a d-cluster tilting object in H[0]. The same proof works here (with the help of
Lemma 3.1), after replacing d-cluster tilting objects by maximal rigid objects. We omit the details and
refer to the proof of Theorem 4.6 in [Zh3]. O

Now we prove the main result in this section.
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Theorem 3.3. Let X be a basic rigid object in the d-cluster category Cq(H). Then the following statements are
equivalent:

1. X is a d-cluster tilting object.
2. X is a maximal rigid object.
3. X is a complete rigid object, i.e. it contains exactly n indecomposable summands.

Proof. We suppose that d > 1; the same statement was proved for d =1 in [BMRRT]. We prove that
the first two conditions are equivalent. A d-cluster tilting object must be a maximal rigid object by
definition. Now we assume X is a maximal rigid object. Then X is mutation equivalent to a maxi-
mal rigid object T'[0] in [0] by Lemma 3.2. We have that Ext“(T’[0], T'[0]) = Ext¥,(T'[0], T'[0]) =
Extl, (T, T'), k=1,....,d — 1, and Ext!(T’[0], T’[0]) = D Ext(T’[0], T'[0]) = D Exty((T’, T). So T’ is a
maximal rigid module in H. Hence T’ is a tilting module, and thus T'[0] is a d-cluster tilting object.
Therefore T is a d-cluster tilting object, since it is mutation equivalent to the d-cluster tilting object
T'[0].

Now we prove that the last two conditions are equivalent. In [Zh3], we know that every basic
d-cluster tilting object has exactly n indecomposable summands. Conversely, any basic rigid object
with n indecomposable summands will be a basic maximal rigid object, since otherwise it can be
extended to a basic maximal rigid object that contains at least n+ 1 indecomposable summands. This
is a contradiction. O

This theorem immediately yields the following important conclusion.

Corollary 3.4. Let X be a rigid object in C4(H). Then there exists an object Y such that X @ Y is a d-cluster
tilting object.

4. Complements of almost complete basic d-cluster tilting objects

The number of complements of an almost complete cluster tilting object in a cluster category C(H)
is exactly two [BMRRT]. From Corollary 4.5 in [Zh3], we know that the number of complements of
an almost complete d-cluster tilting object is at least d + 1. In this section, we will prove it is exactly
d+1.

Let T = X & X be a basic d-cluster tilting object in C4(), and X an almost complete d-cluster
tilting object. By Theorem 4.4 in [Zh3] and Theorem 3.10 in [IY], we have the following two chains of
d + 1 triangles:

gi fi i
Xit1 — Bi — Xi — Xiq[1], (%)

where for i=0,1,...,d, Bj € add X, the map f; is the minimal right add X-approximation of X; and
g; is the minimal left add X-approximation of X;.1.

X/ NN X{ =5 XL (1, (%)
where for i =0,1,...,d, C; eaddT, the map g; is the minimal right add T-approximation of X! (ex-
cept ag, which is the sink map of X{, in add T) and b; is the minimal left add T -approximation of X;H
(except by, which is the source map of X in add T), and Xj = Xé-H = Xo.

In [1Y], the authors show that X ¢ add(@ogigd C;) is a sufficient condition for an almost complete
d-cluster tilting object to have exactly d + 1 complements. The main aim of this section is to prove
that B; = C; for all 0 <i <d, which implies this sufficient condition. We will first study the properties
of the degree of an indecomposable object in Cq(H) which is a useful tool for studying rigid objects

in d-cluster categories.
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Lemma 4.1.
Let X, 0 < i< d, be the objects appearing in the triangles in (x). If deg Xo = 0, then

(1) degXy =0,dord —1, and
(2) degX; >d —i, forany 2 <i<d.

Proof. (1) We have the fact that Hom(Xp, X1[1]) = Ext(Xo, X1) # 0. If 0 < degX; <d — 1 (which
implies d > 3), then 2 < deg X;[1] <d — 1 and Hom(Xp, X1[1]) = 0 by Proposition 2.5(3). This is a
contradiction.

(2) If deg X1 =0, then degXy, =d or d — 1 or d — 2 (because Xp, X7, X2 cannot have the same
degree by the proof of Theorem 4.6 in [Zh3]). Now we prove the assertion that deg X;11 >d — (i+ 1)
provided that deg X; >d—i for some i (1 <i<d—1). IfdegX;;1 <d—(i+1), then 1 <degX;1[1] <
d —i, which implies d > 2, and then Hom(Xj, X;+1[1]) =0 by Proposition 2.5. This contradicts the fact
Ext(X;, Xi+1) # 0. So by induction on i, we get the statement (2). O

Lemma4.2. Letd > 2 and X = M[i], Y = N[j] be indecomposable objects of degree i, j respectively in Cq(H).
Suppose that 0 < j+k —i<d— 1. Then

(1) Hom(X, Y[k]) = Homp (X, Y[k]), and
(2) Hom(X, T~ 'Y[k]) = Homp (X, T~ 1Y[k]).

Proof. (1) Hom(X, Y[k]) = @,z Homp (X, T~'Y [k + Id]).

When [ > 1, Homp (X, T 'Y [k+1d]) = Homp (t'M, N[k+Id —i+ j]) =0, since k+Id—i+j >1d > 2.

When | < —1, Homp (X, T!Y[k+1d]) = D Homp (t "N, M[—k—Ild+i— j+1]) =0, since —[—1 >
Oand —k—ld+i—j+1>22—-(1+1)d>2.

It follows that Hom(X, Y[k]) = Homp (X, Y[k]).

(2) Hom(X, T71Y[k]) = @z Homp (X, T 7Y [k + Id]).

When [ > 1, Homp (X, T'=1Y [k + Id]) = Homp ("M, N[k +Id — i + j]) = 0, since |+ 1 >2 and
k+ld—i+j>1d>2.

When [ = —1, Homp (X, T ""1Y [k +1d]) = Homp (M, N[k —d — i + j]) =0, since k —d —i + j < —1.

When | < =2, Homp (X, T~=1Y[k + Id]) = DHomp(z"2N,M[—k — Id + i — j + 1]) = 0, since
—l—2>0and —-k—ld+i—j+1=22—(1+1)d>2.

It follows that Hom(X, t~1Y[k]) & Homp(X, T 'Y[k]). O

For convenience, we add a triangle below to the triangle chains (x):

_ _ S_
Xo 55 By I8 x 228 xor1),

where f_1 is the right add X-approximation and g_; is the left add X-approximation. Now we prove
the main theorem in this section.

Theorem 4.3. Letd > 2, T = X & X be a basic d-cluster tilting object in C4(H), and X an almost complete
d-cluster tilting object. Then there are exactly d + 1 complements {X;}o<i<d 0f X, which are connected by the
d + 1 triangles (x).

Proof. The main step in the proof is to show that Xy ¢ add C; for 0 <i <d.

For i =0 or i =d, since fy is the minimal right add X-approximation of Xy and End Xy is a division
ring, for any map h € Hom(T’, Xp) that is not a retraction, where T’ is some object in add T, there
exists h’ € Hom(T’, Bg) such that h = foh’. Therefore, fo is a sink map in add T. By the uniqueness
of the sink map, we get Co = Bo, X; = X} and, dually Cg=B_1, X_1 = Xé. So Xp ¢ addCp and
X4 ¢ add Cd.
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For 1 <i<d— 2 (this implies d > 3), if i =1, by applying Hom(Xp, —) to the triangle X, —
B1 —> X7 —> X3[1], we have the exact sequence

Hom(Xp, B1) — Hom(Xp, X1) — Ext(Xp, X2) — 0.

We need to prove Ext(Xp, X2) = 0. If not, i.e. Ext(Xp, X2) # 0, then Hom(Xp, X1) # 0. Similarly, by
applying Hom(—, X») to the triangle X; — Bg —> Xo —> X1[1], we have the exact sequence

Hom(X1, X2) — Ext(Xp, X2) — 0,

so Ext(Xp, X3) # 0 implies Hom(X1, X3) # 0. We know that Ext(Xp, X1) # 0 and Ext(Xi, X2) # 0.
We may assume that the degree of Xy is 0; then degX; =0, d or d — 1 by Lemma 4.1. But
Hom(Xp, X1) # 0 implies that the degree of X; is not d or d — 1, so it is 0. For the same reason,
deg X, = 0, which contradicts the fact that Xg, X1, and X, do not all have the same degree (refer to
the proof of Theorem 4.6 in [Zh3]).

If 2 <i<d-2, then by applying Hom(Xy, —) to the triangle X;;1 — B; — X; — X;1+1[1], we
get the exact sequence

Hom(Xp, B;) — Hom(Xp, X;) — Ext(Xo, Xi+1) — 0.

We want to prove that Hom(Xp, X;) = 0, which implies Ext(Xp, Xj+1) = 0. We also assume that
the degree of Xg is 0. Since degX; >d —i > 2 by Lemma 4.1, it follows that Hom(Xg, Xj) = 0. So
Ext(Xo, Xi+1) =0, and it follows that f; is the minimal right add T-approximation of X;. By the
uniqueness of the minimal approximation map, since X; = X/, we get C; = B; and X; ;1 = X}, for
1<i<d—2,50 Xo ¢ add(D¢icq—2 Ci)-

f

For i=d —1 > 1 (which implies d > 2), we claim that in the triangle Xq4 ad Bg_1 - Xg_1 —
Xg[1], the morphism fy 7 is the minimal right add(X & Xp)-approximation of Xy 1, which is equiva-
lent to the fact that Ext(Xo, X4) = 0. Suppose that deg Xo =0 and deg X7 # 0 (if deg Xo = deg X1 =0,
then deg X, # 0, and we can replace Xy by Xi). From Lemma 4.1(2), deg X;_1 > 1. If degXy_1 =1,
then deg X; =1 or 0 since Hom(Xy_1, Xg[1]) # 0. So we divide the calculation of Ext(Xp, Xy) into
three cases:

’
i+1

1. The case deg X4_1 > 2. Then by Proposition 2.1(3) Hom(Xg, X4_1) = 0, which implies Ext(Xo, X4) =
0.
2. The case deg X; 1 =1 and deg X3 = 1. By applying Hom(Xp, —) to the triangle X4 — Bg_1 —>

84—
Xd-1 it X4[1] we get the exact sequence

5
Hom(Xo, X4_1) —> Hom(Xo, X4[1]) —> 0,

where 851 € Hom(Xy4_1, X4[1]) = Homp(X4_1, X4[1]) by Lemma 3.2. For any ¢ € Hom(Xp,
Xd-1) = Homp(Xo, X4-1), by Lemma 4.2, we have §]_,(¢) = 84_1¢ € Homp(Xo, X4[1]) = 0. So
8;_1 =0. Thus Ext(Xo, X4) =0.

3. The case degXy_; =1 and deg Xy = 0. Consider the triangle X, — C4_1 — X_; — X][1].
Since X_1 = X} and X4 ¢ = X},_,, the triangle is X_1 — Cq_1 —> Xq_1 —> X_1[1], where
C4_1 € add(X @ Xp). Analogously, we get a triangle

Xo— Y — Xg — Xol[1],

where Y € add(X @ X;). Since deg Xg = deg X; = 0, then the degree of the indecomposable sum-
mands of Y is zero. But deg X1 #0, so X7 ¢ Y, that is, Y € add X. By applying Hom(Xg, —) to the
triangle above, we get the exact sequence
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Ext(Xp, Y) — Ext(Xg, Xq) — Extz(Xo, Xo) — Xo[1],
so Ext(Xg, Xgq) =0 since Xo @ X is a d-cluster tilting object.

Then Cy_1 = Bg_1 so Xo ¢ addCy_1.
In all, Xo ¢ add(@ogigd Ci), which satisfies the condition of Corollary 5.9 in [IY]. Therefore, X has
exactly d + 1 complements in C4(H). O

As a consequence of the proof of the theorem above, we have
Corollary 4.4. The corresponding triangles in the chains (%) and (x*) are isomorphic.

Let d > 2. For a (basic) d-cluster tilting object T = X & X in Cyq(H) with an almost complete
d-cluster tilting object X, and for any i between 0 and d, the triangle

Xiv1 -5 B L X 2 X 11]

in (x) is called the ith connecting triangle of the complements of X with respect to Xp. These d + 1
triangles form a d + 1-Auslander-Reiten triangle starting at Xg (see [IY]).

Similar to the cluster categories in [BMRRT], one can associate to C4(H) a mutation graph of d-
cluster tilting objects: the vertices are the basic d-cluster tilting objects, and there is an edge between
two vertices if the corresponding two basic d-cluster tilting objects in C4(H) have all but one in-
decomposable summand in common. Exactly as in [BMRRT], we obtain the conclusion below, which
means that over an algebraically closed field, any two d-cluster tilting objects in C4(H) can be con-
nected by a series of mutations.

Proposition 4.5. Let K be an algebraically closed field. Given an indecomposable hereditary k-algebra H, the
associated mutation graph of d-cluster tilting objects in C4(H) is connected.

5. Relations of complements

Let T = X @ Xp be a basic d-cluster tilting object in C4(H). The almost complete d-cluster object
X has exactly d + 1 complements X;, 0 <i <d, as shown in Theorem 4.3. When d = 1, the exten-
sion groups of between Xy and X; were computed in [BMRRT]. In this section we will compute
Extf(X;, X;). Throughout this section, we assume d > 2, and X is a basic almost complete d-cluster
tilting object, the d + 1 complements Xp, ..., X4 of X are connected by the d 4+ 1 triangles in (x) in
Section 4:

g fi 5
Xis1 — Bi = X; —> Xiy1[1], (%)

where for i =0,1,...,d, Bj € add X, f; is the minimal right add X-approximation of X; and g; is the
minimal left add X-approximation of X;1.

Lemma 5.1. Ext!(Xo, X;) = Ext(Xo, X1) = Endy (Xo), and Ext*(Xo, Xj) =0 for 1 <i<d,andk e {1,...,
di\{i}.

Proof. By applying Hom(Xp, —) to the triangles (x) we get the long exact sequences
Ext“(Xo, Bi) — Ext“(Xo, Xi) — Ext“*1 (X0, Xit1) — Ext“t1(Xo, B)),

where i =0,1,...,d, and k=1,2,...,d — 1. Since Ext"(Xo,B,-) =0for 0<i<dand 1<k<d,
we have Extf(Xo, X;) = Ext*t1(Xo, Xi41) for 0<i<d and 1 <k <d—1. So Ext!(Xo, Xiz1) =
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Exti(Xo, X;), for 1 <i<d—1. Hence we get the left equation by induction on i. Applying Hom(Xo, —)
to the triangle X; — Bg —> Xo ﬂ> X1[1] induces the exact sequence

5*
Hom(Xo, Xo) —> Ext(Xg, X1) —> 0.

Since Hom(Xp, Xo) is a division algebra for d > 2, it follows that §;(¢) = do¢ is non-zero for any non-
zero map ¢ in End Xo, which must therefore be an isomorphism of Xp. Then 8 is a monomorphism
and hence an isomorphism. This gives the first part of the lemma.

For the second part, if i <k, we have Ext‘(Xg, X;) = Ext*~1(Xo, Xi_1) = --- = Ext*"{(Xo, Xo) =0,
since 0(k—i < d+1, and if i)k, we have Ext*(Xo, X;) = Ext“*1(Xo, Xj41) = - - - = ExtkHd+1-1 (X X4,1) =
Extktd+1-i(x, X0) =0, since 0 <k+d+1—i<d+1. O

Lemma 5.2. End X; = End Xy as algebras, for 0 <i <d.

Proof. We only need to prove the ring isomorphism End X; = End Xy, since the others are done by
induction. It is exactly the same as the proof of the case d =1 in [BMRRT]. O

Lemma 5.3.

1 ifi+k—j=0mod (d+1),

dimgnq x, Ext* (X, Xi) =
End X; (X, X)) 0 otherwise,

for 0 < k < d. If we fix an End X;-basis {8;} of Ext!(X;, Xi41), then for any 0 <i < d and 0 < k < d,
Ext“(Xi, Xik) has an End(X;)-basis {8i4k[k]- - 8i11[116;}, where Xik = Xitk—(d+1) and 8itk = 8itk—@+1),
fori+k=>d.

Proof. The case of i =0 of the first part follows easily from the two lemmas above, and the case for
arbitrary i follows from the same proof after replacing 0 by i. For the second part, it is easy to see
that any morphisms §;x[k]---8i+1[1]8; are non-zero in Extf(X;, Xi+k), hence form a basis over End X;
of Ext“(Xi, Xipe). O

Definition 5.4. A set of d + 1 indecomposable objects Xg, X1, ..., Xg in C4(H) is called an exchange
team if they satisfy Lemma 5.3, i.e.

) X 1 ifi+k—j=0mod (d+ 1),
dimgnq x; EXt*(X;, Xj) = .
0 otherwise,

for 0 <k <d. If we fix an End X;-basis {8;} of Ext'(X;, Xi41), then for any 0 <i <d and 0 <
k <d, Eth(Xi, Xik) has an End X;-basis {8;4k[k]---8i+1[118;}, where Xiix = Xitk—@+1) and ik =
5i+k7(d+1)7 fori+k>d.

This is a generalization of the notation of exchange pairs in cluster categories, defined in [BMRRT].

Given an exchange team {Xi}?:o, by definition we can find d + 1 non-split triangles

Xi1 55 Bi L5 X —> Xipa[1] (s ),

in C4(H), where we use the same notation as before. We will now start to prove that B = @ogigd B;
is a rigid object.
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Lemma 5.5. With the notation above, we have

Ext*(B® X;, B® X;) =0,

forall1<k<dand0<i<d.
Proof. Apply Hom(Xp, —) to the triangle X; — Bg —> Xp A X1[1] to get the exact sequence

Hom(Xo, Xo) —> Ext(Xo, X1) —> Ext(Xo, Bo) —> Ext(Xo, Xo).

Since a # 0 (a(1x,) =80 # 0) and dimgpq(x,) Ext(Xp, X1) = 1, while Ext(Xo, Xo) =0 by assump-
tion, it follows that Ext(Xo, Bg) = 0. By assumption, Ext“(Xo, X1) = 0 and Ext*(Xo, Xo) = 0 for any
2 <k <d, so it follows that Ext*(Xo, Bg) = 0 for any 2 < k <d. Hence Ext*(Xo, Bg) =0, for 1 <k <d.

Apply Hom(Xp, —) to the triangle X;;q N B; i> Xi —> Xi+1[1] to get the exact sequence

—>  Ext(Xo, Xij+1) —> Ext(Xo,Bi;) —> Ext(Xo, Xj)

— Exti(Xo, Xiy1) — Exti(Xo,B;)) — Ext'(Xo, X;)

—> Extt1(Xo, Xit1) — ExtT1(Xo, Bj) — ExtT1(Xq, X;)

— Extd(Xo, Xiz1) — Extd(Xo, B)) — Extd(Xo, X)).

Ext!(Xo, X;) — Extit1(Xq, Xi41) is an isomorphism (because f € Ext'*1(Xo, Xi+1) can be decom-
posed), and Ext(Xo, Xi11) = 0 = Ext!(Xo, X;) for k#i+1 and I # i, so Ext‘(Xq, B;) = 0 for any
1 <k < d. Analogously, we get Ext"(X,-, Bj)=0forall 1<k<dand0<i,j<d

Apply Hom(B, —) to the triangles X;;; —> Bj —> X; —> Xj+1[1] to get the exact sequences

Ext“(B, Xi11) —> Ext“(B, B;) —> Ext“(B, X;).
Then Ext*(B, B;) =0 for all 0 <i<d and 1 <k<d, so Ext“(B,B)=0forall 1<k<d. O

Note that this implies that the X; cannot be direct summands of B (if X; € add B for some i, then
Ext(Xj, Xi+1) is a direct summand of Ext(B & Xi;+1, B ® Xj4+1) =0, a contradiction) and B is a rigid
object in Cq(H). Hence B can be extended to a d-tilting object by Corollary 3.4. Let T=B & T’ be a
d-cluster tilting object in Cyq(H).

Lemma 5.6. Under the same assumptions and notation as before, if N is an indecomposable summand of T and
there exists some j such that N is not isomorphic to X; for all i  j, then Ext*(N, Xj)=0forany 1 <k <d.

Proof. Assume by contradiction that Ext‘(N, X j) # 0 for some 1 <k <d, and there is some indecom-
posable summand N of T with N 2 X; for all i # j. Applying Hom(N, —) to the d 4+ 1 triangles (x x %),
we get Ext!(N, Xj—k41) = Extf(N, Xj) # 0. Without loss of generality, we may assume that j —k =0.
So we have Hom(N, X1[1]) = Ext' (N, X1) # 0 and an exact sequence

Hom(N, Xo) —> Hom(N, X1[1]) — 0,

which implies that there exists a non-zero morphism ¢t € Hom(N, Xo) # 0 such that §ot # 0. Ap-
plying Hom(N, —) to the d + 1 triangles (x % %), we get Ext{(N, Xg) = Extd~'(N, Xq_1) = -+ =
Ext!(N, X1) #0, and then 84[d]- - - 81[1]80t # 0. Denote by
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Xold] — A - Xo —> Xo[d + 1]

the AR-triangle ending at Xy in C4(H). Consider the commutative diagram

Xold] A Xo Xold + 1]
b] bz
gdld] d
Xold] Bgld] Xald] ———— Xold +1],

where the map b exists since §4[d] # O (thus gg[d] is not a section), and hence there exists a
map by such that the diagram commutes. From Definition 5.4, we know that Hom(Xg, X4[d]) has
an End Xg-basis {84[d]---81[1]180}. Since by € Hom(Xg, X4[d]) is not zero, there exists an isomorphism
¢ € End(Xp) such that by = 84[d]---81[1]80¢p. Let s = ¢_1t € Hom(N, Xp), then bys # 0. Since N 2 Xo,
there is some map s’ : N —> A, such that s =rs’. Note that bys = bors’ = fy[d]b1s’ is a non-zero map,
and consequently bis’ # 0. But this contradicts Hom(N, Bg[d]) = 0. This completes the proof of the
lemma. O

Lemma 5.7. If add(@lgigd#j Xi)NaddT = {0} for some 1< j <d, then X; is a direct summand of T.
Writing T as X;f @ T, where the X are not direct summands of T, then X; ® T is also a d-cluster tilting object
forany 0 <i<d.

Proof. The first assertion follows directly from Lemma 5.6. The second follows from Theorem 4.3 and
Lemma 5.6. O

In summary, we have the following main result:

Theorem 5.8. The d + 1 rigid indecomposable objects {X;}o<i<d form the set of complements of an almost
complete d-cluster tilting object in Cy(H) if and only if they form an exchange team.

Since the chain of d+ 1-triangles of the complements of an almost complete d-cluster tilting object
form a cycle, their distribution is uniform. In particular there are two cases: either every complement
has a different degree, or that the degree of any complement is smaller than d — 1 and only two
complements have the same degree. We can summarize the cases as follows.

Proposition 5.9. Suppose deg Xo = 0 and deg X # 0. Then there exists some k, with 0 < k < d, such that

d—i if1<i<k,

deg X; =
BTV a+1-i ifk+1<i<d

Proof. By Lemma 3.1, we know that deg X; > d —i for 1 <i < d. Since d + 1-triangle chains form a
cycle, analyzing the degree in the opposite direction from Xp, we get deg X; <d —i+1 for 1<i<d.
If deg X1 =d, then degX; =d — 1, since Hom(X7, X3[1]) # 0 forces deg X, > d — 1. By induction,
degX; =d—i+1 for 1 <i < d. This situation is equivalent to k = 0. If deg X; =d — 1, then there exists
some k such that deg Xj = deg X}.11. By the way of the case deg X; =d, we obtain the conclusion. O
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6. Middle terms of the d + 1 triangles

Throughout this section, we assume that d > 2. We assume that X is a basic almost complete
d-cluster tilting object, and that the d + 1 complements Xp, ..., Xg of X are connected by the d + 1
triangles in (%) in Section 4:

gi fi i
Xit1 — Bi — Xi — Xiql1], (%)

where for i=0,1,...,d, B; €add X, the map f; is the minimal right add X-approximation of X; and
g; is the minimal left add X-approximation of X;1.

In [BMRRT], there was a conjecture that the sets of indecomposables of B; appeared in the tri-
angles (x) are disjoint in cluster categories. That has been solved in [BMR]. We will prove the same
statement for d-cluster categories. Prior to this, we need some preparatory work. For a tilting module
T in ‘H, any two non-isomorphic summands T1, T2 of T have the following property: Hom(T1, T2) =0
or Hom(T,, T1) =0 (see [Ker]). The same property holds for d-cluster tilting objects in d-cluster cat-
egories when d > 3.

Lemma 6.1. Suppose d > 3. Let T1, To be two non-isomorphic summands of a d-cluster tilting object T in
C4(H). Then Hom(T1, T2) = 0 or Hom(T>,, T1) = 0.

Proof. If not, then Hom(Tq, T3) # 0 and Hom(T3, T1) # 0. Then deg T1 = deg T, by the fact that d > 3
and Lemma 4.7 in [Zh3]. Let k denote this common value. Then Tq, T3 are of the forms T{[k], T5[k]
respectively, where T{ and T are partial tilting modules in . Hence Hom(T1, T2) = Homp (T}, T)) #
0 and Hom(T3, T1) = Homp(T), T1) # 0 [Ker]. That is a contradiction. O

As a consequence, we get the following simple result.
Lemma 6.2. Let d > 3. Then Hom(Xj, Xj4+1) =0.

Proof. Apply Hom(X;, —) to the triangle X;11 — B; — X; —> Xj11[1] to get the exact sequence

Hom(X;, X{[—1]) — Hom(X;, Xi41) — Hom(X;, B).

In this exact sequence, Hom(X;, Xj[—1]) = 0 since d > 3. Since B; —> X; is the minimal right add X-
approximation, Hom(Y, X;) # 0 for any indecomposable direct summand Y of B;. It follows from
Lemma 6.1 that Hom(X;, B;) = 0. Thus Hom(Xj, X;+1) =0. O

Now we are able to prove the main conclusion in this section.

Theorem 6.3. Let {B;}o<i<d be as above. Then the sets of indecomposable summands of B;, fori =0, ...,d,
are disjoint.

Proof. We divide the proof into two cases:

(1) The case when d = 2. Suppose deg X, = 0. Assume by contradiction that two of By, B1, B>
have non-trivial intersection. Without loss of generality, we suppose that there exists an inde-
composable object T; € add Bg N add B1. Then Hom(X1, T1) # 0 £ Hom(T4, X1), which implies that
deg X1 # deg T1 (see [Ker]). We claim that deg X; =1, deg X, =0, and degT; = 0. If deg X; =0, then
deg T; =0 by Lemma 4.9 in [Zh3], a contradiction. If deg X; =2 and deg T{ =0, then Hom(T{, X1) =0
by Lemma 4.7 in [Zh3], a contradiction. If degX; =2 and degT; = 1, then Hom(X;y,T{) =0 by
Lemma 4.7 in [Zh3], a contradiction. So deg X1 =1, and then deg T; = 0 (otherwise, deg T = 2 which
implies Hom(T1, X1) = 0, a contradiction). From Proposition 5.9, we have deg X, = 0. Hence the de-
gree of any indecomposable summands of B; is zero. Then Hom(X3, By) = 0 = Hom(B;, Xp) (see the
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discussion in the proof of Lemma 6.2). Apply Hom(X3, —) to the triangle Xg —> By —> X3 —> Xp[1]
to get the exact sequence

Hom (X2, X2[—1]) — Hom(Xz, Xo) —> Hom(Xz, B2),

where Hom(X3, By) = 0, so Hom(X3, Xg) = 0 (for any map r € Hom(X3, Xg), there exists s €
Hom(X>, X2[—1]) = Hom(X2, T~ ' X2[1]) = Homp (X2, T~ X2[1]) = Homp (T X2[—2], X2[—1]) and ¢ €
Hom(X3[—1], Xo) = Hom(X>, Xo[1]) = Homp (X2, Xo[1]) = Homp (X3[—1], Xo) (both of the second
isomorphisms come from Lemma 4.2), such that r =ts € Homp (7t X32[—2], X¢) = 0). Write the second
triangle in (x) as

) i
X2 -5 B @ Ty %8 Xy — Xo[1],

where 8 € Hom(T1, X1) =Homp(Tq, X1). Let g be a non-zero map in Hom(T1, Xg) (such a map exists
because T7 is a direct summand of Bg). Then we get (0, g)(?) = gf € Hom(X3, Xp) =0, so there ex-
ists a map ¢ € Hom(X1, Xo) = Hom(X1, T~ Xo[2]) = Homp (X1, T~ Xo[2]) (the second isomorphism
come from Lemma 4.2) such that ¢(c, 8) = (0, g). Then g = ¢S € Homp(T1, T~ Xo[2]) = 0. This is a
contradiction.

(2) The case when d > 3. Suppose Tq is an indecomposable summand of both B; and Bj, i < j.
Define d(B;, Bj) =min{j —i,i — j+d+1}.

If d(Bj, Bj) =1, then without loss of generality we may suppose that i =0 and j =1; then
Hom(X1, T1) # 0 and Hom(Tq, X1) # 0. But X7 and T are two non-isomorphic indecomposable sum-
mands of a d-cluster tilting object X1 @& X, which is impossible by Lemma 6.1.

If d(B;, Bj) = 2, then without loss of generality we may suppose that i =1 and j = 3; then
deg X = deg X3 = degT;. Let k denote this common value. Then deg X4 =k — 1 when k > 1, and

. s
deg X4 =d — 1 when k =0. Apply Hom(X3, —) to the triangle X4 LN B3 i) X3 —> X4[1] to get an

exact sequence

Hom(X3, X4) — Hom(X>, B3) — Hom(X>, X3).

Then Hom(X», X4) —> Hom(X3, B3) is an epimorphism since Hom(X3, X3) = 0. Since Ty € add B,
there exists a non-zero morphism s € Hom(X3, T), so the morphism (é) Xy —T1 @ B/3 is
not zero, where B3 = B} @ T1. Hence there exists r € Hom(Xz, X4) such that s = gsr. Let g3 =
(,i’,) : X4 —> T1 @ B, where h € Hom(X4, T1), then s = hr. Since Hom(X2, X4) = Homp (X2, T~ X4[d])
and Hom(Xy4, T1) = Homp (t ~1X4[d], T ~'T1[d]), it follows that hr € Homp (X2, T~ !T1[d]) =0, a con-
tradiction.

If d(B;, Bj) > 3, then the degrees of the summands of B; and B; are distinct. Hence the sets of
indecomposable summands of B; are disjoint, for i =0,...,d. O

7. Cluster combinatorics of d-cluster categories

Denote by £(H) the set of isomorphism classes of indecomposable rigid modules in H. The set
E(C4(H)) of isoclasses of indecomposable rigid objects in C4(7) is the (disjoint) union of the subsets
EM)Iil, i=0,1,...,d—1, with {P;[d] | 1 < j <n} (see Section 4 in [Zh3]). A subset M of £(Cq(H))
is called rigid if for any X,Y € M, Ext'(X,Y) =0 for alli=1,...,d. Denote by £, (C4(H)) the subset
of £(C4(H)) consisting of all indecomposable exceptional objects other than P1[d], ..., P,[d].

Now we recall the definition of simplicial complexes associated to the d-cluster category C4(H)
and the root system @ from [Zh3].
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Definition 7.1. The cluster complex AY(H) of C4(H) is a simplicial complex with £(Cy(H)) as its set
of vertices, and the rigid subsets of C4(H) as its simplices. The positive part A‘i(H) is the subcomplex

of AY(H) on the subset &, (C4(H)).

From the definition, the facets (maximal simplices) are exactly the d-cluster tilting subsets (i.e. the
sets of indecomposable objects of Cq(H) (up to isomorphism) whose direct sum is a d-cluster tilting
object).

As consequences of results in Sections 3-5, we have that:

Proposition 7.2.

1. A face of the cluster complex AY(H) is a facet if and only if it contains exactly n vertices. In particular, all
facets in A%(H) are of size n.

2. Every codimension 1 face of AY(‘H) is contained in exactly d + 1 facets.

3. Any codimension 1 face in A%(H) has complements of each color.

Throughout the rest of this section, we assume that 7 is the category of finite dimensional
representations of a valued quiver (I, £2, M). For basic material about valued quivers and their rep-
resentations, we refer to [DR].

Let @ be the root system of the Kac-Moody Lie algebra corresponding to the graph I'. We as-
sume that Pq,..., P, are the non-isomorphic indecomposable projective representations in H, and
E1,..., E, are the simple representations with dimension vectors «jq,...,a,, where oq,...,q, are
the simple roots in . We use @>_ to denote the set of almost positive roots, i.e. the set of positive
roots together with the —q;.

Fix a positive integer d, for any o € @, following [FR2], we call ', ..., a? the d “colored” copies
of «.

Definition 7.3. (See [FR2].) The set of colored almost positive roots is
¢ ={a': aed.g ie{l.....d}}U{(-ap': 1<i<n}.

We now define a map yﬁl from ind Cq(H) to @‘;71. Note that any indecomposable object X of de-
gree i in Cq(H) has the form M([i], for some M € indH, and if i =d then M = P§, an indecomposable
projective representation.

Definition 7.4. Let )/7‘2 be defined as follows. Let M[i] € indCyq(H), where M €indH and i € {1, ...,d}
(note that if i =d then M = P; for some j). We set

4y (dim M) if 0<i<d—1;
M([i]) =
Vi (ML) (—ap'  ifi=d.

Note that if I" is a Dynkin diagram, then yﬂl is a bijection.
We denote by cDirO the set of real Schur roots of (I, £2), i.e.

@Yy ={dimM: M eindE(H)}.

Then the map M > dim M gives a 1-1 correspondence between £(H) and ¥ [Rin].

If we denote the set of colored almost positive real Schur roots by <1>s>r’fl (which consists by defi-

nition of d copies of the set @, together with one copy of the negative simple roots), then the map
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yﬂ gives a bijection from £(Cyq(H)) to @;rij]. @gﬂ contains a subset @irbd consisting of all colored

positive real Schur roots. The restriction of )/7‘2 gives a bijection from & (Cyq(H)) to @iréd.

Using this bijection, in [Zh3] we defined, for any root system & and H, an associated simplicial
complex A%H (@) on the set @54 which is called the generalized cluster complex of @ and is a

>0
generalization of the generalized cluster complexes defined by Fomin and Reading [FR2], see also [Th]

for finite root systems @. It was proved that 7/7‘2 defines an isomorphism from the simplicial complex

AY(H) to the generalized cluster complex A%* (), which sends vertices to vertices, and k-faces to
k-faces [Zh3].

Corollary 7.5.

1. A face of the generalized cluster complex A% (@) is a facet if and only it contains exactly n vertices. In
particular, A4 (@) is of pure dimension n — 1.

2. Any codimension 1 face of A% (@) is contained in exactly d + 1 facets.

3. For any codimension 1 face of A4™ (@), there are complements of each color.

Proof. Combining Proposition 7.2 with the fact that y4, is an isomorphism from A%(H) to A%™ (@)
[Zh3], we have all the conclusions in the corollary. O
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