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Abstract

We study cluster categories arising from marked surfaces (with punctures and non-
empty boundaries). By constructing skewed-gentle algebras, we show that there is a
bijection between tagged curves and string objects. Applications include interpreting
dimensions of Ext1 as intersection numbers of tagged curves and Auslander–Reiten
translation as tagged rotation. An important consequence is that the cluster(-tilting)
exchange graphs of such cluster categories are connected.

1. Introduction

1.1 Overall
Cluster algebras were introduced by Fomin and Zelevinsky [FZ02] around 2000, with quiver
mutation as the combinatorial aspect. Derksen et al. [DWZ08] further developed quiver mutation
to mutation of quivers with potential. During the last decade, the cluster phenomenon was
spotted in various areas in mathematics, as well as in physics, including geometric topology and
representation theory. On one hand, the geometric aspect of cluster theory was explored by Fomin
et al. [FST08] after the pioneering work of Fock and Goncharov [FG06, FG09]. They constructed
a quiver QT (and later, Labardini-Fragoso [Lab09a, IL12] gave a corresponding potential WT)
from any (tagged) triangulation T of a marked surface S. Moreover, they showed that mutation
of quivers (with potential) is compatible with flip of triangulations. There are a lot of known
results about cluster algebras in the surface case:

– Felikson et al. [FST12] classified cluster algebras of finite mutation type, and established
that they are all from marked surfaces except for a few cases;

– Musiker et al. [MSW13] constructed two canonical bases by two types of collections of
curves;

– Musiker et al. [MSW11], Musiker and Williams [MW13], and Canakci and Schiffler [CS13,
CS15a, CS15b] gave combinatorial formulae for cluster variables and relations;

– Mills [Mil16] showed that there exist maximal green sequences for quivers with potential
associated with triangulated marked surfaces except for once-punctured closed surfaces
(cf. [ACCERV13]).
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On the other hand, the categorification of cluster algebras leads to representations of quivers,
due to Buan et al. [BMRRT06]. Later, Amiot [Ami09] introduced generalized cluster categories
via Ginzburg dg algebras associated with quivers with potential. Then there is an associated
cluster category C(T) for each triangulation T of S.

Several works have been done concerning the cluster categories associated with triangulations
of surfaces. Namely, for some special cases:

– Caldero et al. [CCS06] realized the cluster category of type An by a regular polygon with
n+ 3 vertices (i.e. a disk with n+ 3 vertices on its boundary);

– Schiffler [Sch08] realized the cluster category of type Dn by a regular polygon with n vertices
and one puncture in the center (i.e. a disk with n vertices on its boundary and one puncture
in its interior).

In the unpunctured case:

– Assem et al. [ABCP12] proved that the Jacobian algebra of such a quiver with potential
is a gentle algebra and gave a bijection between arcs that are not in the triangulation and
string modules of the associated gentle algebras;

– Brüstle and Zhang [BZ11] generalized the bijection of [ABCP12] to a bijection between
the set of curves and valued closed curves and the set of indecomposable objects in the
associated cluster category. Under this bijection, they described irreducible morphisms, the
Auslander–Reiten (AR) translation and AR-triangles in the cluster category by geometric
terms in the surface. They also gave a bijection between triangulations of the surface and
cluster tilting objects in the cluster category such that flip of an arc is compatible with
mutation;

– based on Brüstle and Zhang’s work, Zhang et al. [ZZZ13] proved that the intersection
number of two curves is equal to the dimension of Ext1 of the corresponding objects and
gave a geometric model of torsion pairs and their mutations;

– Canakci and Schroll [CS14] described a basis for Ext1 in the cluster category and also
computed a basis for Ext1 in the module category of the corresponding Jacobian algebra
by distinguishing different types of crossings between curves;

– Marsh and Palu [MP14] showed that Calabi–Yau reduction (introduced in [IY08]) can be
interpreted as cutting along curves without self-intersections in the surface;

– the present authors [Qiu16, QZ14] also investigated other categories, which are used to
define cluster categories, see the formula (3.1), and obtained similar structures/formulae.

For general cases:

– for each ideal triangulation without self-folded triangles, Labardini-Fragoso [Lab09b]
associated a representation of the quiver with potential (QT,WT) to each curve without
self-intersections and proved that mutation of representations is compatible with flip of
triangulations;

– Brüstle and Qiu [BQ15] made an effort to understand a basic functor in the cluster category,
i.e. the shift (or the AR-translation in this case), in terms of an element, the tagged rotation,
in the tagged mapping class group of the marked surface. Their motivation lies in the study
of the Seidel–Thomas braid group.

Notice that most of the above works deal only with the unpunctured case. This is because:
(i) the usual flip does not work for self-folded triangles (cf. Figure 5) and (ii) the associated
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Cluster categories for marked surfaces: punctured case

quivers with potential are much more complicated in the punctured case and their Jacobian

algebras are not gentle (cf. [IL12]). Fomin et al. solved (i) by introducing the notion of tagging.

In this paper, we aim to study the cluster categories associated to marked surfaces with

punctures and with non-empty boundaries. The main tool is skewed-gentle algebras (a special

kind of clannish algebras), which were developed in [Bon92, Cra89, Den00, Gei99, GdlP99]. The

essential results are summarized as follows.

Theorem 1.1 (Theorems 4.16, 4.19, 5.2, 5.5 and 5.7). Let S be a marked surface with punctures

and with non-empty boundary. Given an admissible triangulation T of S (see Definition 3.7), let

C(T) be the associated cluster category. Then there is a bijection

XT : C×(S) → S(T)

(γ, κ) 7→ XT
(γ,κ)

from the set C×(S) of tagged curves in the surface S to the set S(T) of string objects in the

category C(T) (see Definitions 3.1 and 4.6), satisfying the following.

(i) For every admissible triangulation T′ of S, there is an equivalence Θ: C(T) ' C(T′), such

that Θ ◦XT = XT′ .

(ii) For any tagged curve (γ, κ) ∈ C×(S), we have XT
ρ(γ,κ)

∼= XT
(γ,κ)[1], where ρ is the tagged

rotation (see Definition 3.2).

(iii) For any two tagged curves (γ1, κ1), (γ2, κ2) (not necessarily distinct), we have

Int((γ1, κ1), (γ2, κ2)) = dimk Ext1
C(T)(X

T
(γ1,κ1), X

T
(γ2,κ2)),

where Int denotes the intersection number (see Definition 3.3).

(iv) The exchange graph CEG(C(T)) of cluster tilting objects in C(T) is isomorphic to the

exchange graph EG×(S) of tagged triangulations of S and hence it is connected.

1.2 Context

In § 2 we recall notions and notation about skewed-gentle algebras that we will use throughout

the paper. In § 3, we recall the background of cluster categories associated with triangulated

marked surfaces. In § 4, we study the skewed-gentle algebra associated with an admissible

triangulation and give a correspondence between tagged curves and string objects. The relation

between such correspondences from different admissible triangulations is also studied. In § 5,

we give homological interpretations of geometric objects from marked surfaces, namely tagged

rotation, intersection numbers, and exchange graphs of tagged triangulations. An example is

presented in § 6 to demonstrate some of the notions/results in the paper. The technical proof of

the main theorem, Theorem 5.5, is given in § 7. In Appendix A we discuss some properties

of admissible triangulations and in Appendix B we recall Derksen et al.’s mutation of decorated

representations.

1.3 Conventions

Throughout this article, k denotes an algebraically closed field. For any k-algebra A,

an A-module means a finitely generated left A-module and we denote by modA the category of

all A-modules. For a finite set I, we denote by |I| the number of elements in I. For an object X

in a triangulated category C, we denote:
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– by addX the full subcategory of C consisting of direct summands of direct sums of copies
of X;

– by X⊥ the full subcategory of C consisting of objects Y with HomC(X,Y ) = 0;

– by C/(X) the additive quotient category of C by addX.

2. Preliminaries on skewed-gentle algebras

We recall from [Bon92, Cra89, Den00, Gei99, GdlP99] some notions, notation and results about
skewed-gentle algebras used in this paper.

2.1 Skewed-gentle algebras
A biquiver is a tuple (Q0, Q1, Q2), where Q0 is the set of vertices, Q1 is the set of solid arrows,
and Q2 is the set of dashed arrows. Let s, t : Q1 ∪ Q2 → Q0 be the start/terminal functions of
arrows. We call an arrow α in Q1 ∪Q2 a loop if s(α) = t(α).

In this paper, we always assume that a biquiver Q = (Q0, Q1, Q2) satisfies:

– each arrow in Q2 is a dashed loop;

– there is at most one loop in Q2 at each vertex;

– there is no loop in Q1.

Let QSp
0 be the subset of Q0 consisting of vertices where there is a dashed loop in Q2.

Skewed-gentle algebras, modeled on gentle algebras, were introduced in [GdlP99] as a certain
class of clannish algebras defined in [Cra89].

Definition 2.1. A pair (Q,Z) of a biquiver Q and a set Z of compositions ab of arrows a, b in
Q1 is called skewed-gentle if the following conditions hold.

– For each vertex p ∈ QSp
0 , there is at most one arrow α ∈ Q1 ending at p and at most one

arrow β ∈ Q1 starting at p, with βα ∈ Z (if both exist).

– For each vertex p /∈ QSp
0 , there are at most two arrows α1, α2 ∈ Q1 ending at p and at most

two arrows β1, β2 ∈ Q1 starting at p, and they can be labeled in such a way that β1α1 ∈ Z,
β2α2 ∈ Z, β1α2 /∈ Z, and β2α1 /∈ Z.

An algebra Λ is called a skewed-gentle algebra if Λ is Morita equivalent to kQ/(R) for a
skewed-gentle pair (Q,Z), where R = Z ∪ {ε2 − ε | ε ∈ Q2}.

Example 2.2. Let Q be the following biquiver with Z = {ba, cb, ac}.

2
b

��
1ε1 99

a
@@

3c
oo d // 4 ε4ee

Then (Q,Z) is a skewed-gentle pair and hence kQ/(R) is a skewed-gentle algebra, where
R = Z ∪ {ε2

1 − ε1, ε
2
4 − ε4}.

2.2 Letters
Let (Q,Z) be a skewed-gentle pair. Following [Cra89, Gei99], we associate a new biquiver
Q̂ = (Q̂0, Q̂1, Q̂2) with Q = (Q0, Q1, Q2) by adding two new vertices i+ and i− and two new
solid arrows ai± : i → i± for each vertex i ∈ Q0. That is:
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Cluster categories for marked surfaces: punctured case

– Q̂0 = Q0 ∪ {i± | i ∈ Q0};
– Q̂1 = Q1 ∪ {ai± : i → i± | i ∈ Q0};
– Q̂2 = Q2.

For example, the biquiver Q̂ associated with the biquiver Q in Example 2.2 is as shown by

the following diagram.

2+OO
a2+

2

b

!!

1+ 2−
��
a2−

3+OO
a3+

4+

1ε1 99

a

==

a1+
OO

3c
oo d // 4 ε4ee

a4+
OO

1−
��

a1−

3−
��
a3−

4−
��

a4−

For any arrow α in Q̂, we define a direct letter α and an inverse letter α−1, which are

mutually inverse. Let L be the set of all letters. The functions s, t can be extended to L by

setting s(α−1) = t(α) and t(α−1) = s(α). For each i ∈ Q0 ⊂ Q̂0, let L(i) := {l ∈ L | s(l) = i}.
We divide L(i) into two disjoint subsets L+(i) and L−(i) with linear orders such that the subset

Lθ(i) has one of the following forms:

– {aiθ};
– {aiθ > α};
– {β−1 > aiθ};
– {β−1 > aiθ > α};
– {ε−1 > aiθ > ε},

for θ ∈ {±}, some solid arrows α and β in Q1 ⊂ Q̂1 and some dashed arrow ε in Q2 = Q̂2,

satisfying that:

– for any two solid arrows γ and δ in Q1 ⊂ Q̂1 with t(δ) = s(γ) = k, we have that γδ ∈ Z if

and only if γ and δ−1 are both in L+(k) or L−(k).

Observe that in the set Lθ(i), the inverse of an arrow in Q is always greater than the arrow

aiθ , and an arrow in Q is always smaller than the arrow aiθ . Notice that if L(i) 6= {ai+ , ai−},
then there are exactly two possible choices for the pair (L+(i), L−(i)).

Example 2.3. In Example 2.2, one possible choice of the subsets Lθ(i) is:

– L+(1) = {c−1 > a1+ > a} and L−(1) = {ε−1
1 > a1− > ε1};

– L+(2) = {a−1 > a2+ > b} and L−(2) = {a2−};
– L+(3) = {b−1 > a3+ > c} and L−(3) = {a3− > d};
– L+(4) = {d−1 > a4+} and L−(4) = {ε−1

4 > a4− > ε4}.
Note that the inverse letters a−1

iθ
are not listed here because they are not in any set Lθ(i).

However they can still appear as first letters in words (see below).
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2.3 Words
A word m is a sequence ωm · · ·ω2ω1 of letters in L satisfying that for any 1 6 j 6 m − 1,
ω−1
j ∈ Lθ(i) and ωj+1 ∈ Lθ′(i) for different θ, θ′ ∈ {±} and some i ∈ Q0 ⊂ Q̂0. We call ω1 the

first letter of m and ωm the last letter of m. Since both Lθ(i) and Lθ′(i) are subsets of L(i),
we have t(ωj) = s(ωj+1) = i. The functions s, t can be generalized to the set of words by
s(m) := s(ω1) and t(m) := t(ωm). The inverse of a word m = ωm · · ·ω2ω1 is defined as m−1 :=
ω−1

1 ω−1
2 · · ·ω−1

m . The product nm of two words m = ωm · · ·ω2ω1 and n = ωm+r · · ·ωm+2ωm+1 is
defined to be ωm+r · · ·ωm+2ωm+1ωm · · ·ω2ω1 if this is again a word.

A letter is called punctured if it is of the from aiθ or a−1
iθ

such that Lθ(i) = {ε−1 > aiθ > ε}
for some dashed arrow ε. A word m is called left inextensible (respectively right inextensible) if
there is no letter l such that lm (respectively ml) is again a word. A word is called maximal if it
is both left and right inextensible. It is obvious that a word m = ωm · · ·ω1 is right (respectively
left) inextensible if and only if ω1 (respectively ωm) is of the form a−1

iθ
(respectively aiθ). In a

word, except for its first letter (respectively last letter), there are no letters of the form a−1
iθ

(respectively aiθ). In particular, each word contains at most two punctured letters.

Example 2.4. In Example 2.2 with the disjoint subsets given in Example 2.3, the punctured
letters are a1− , a−1

1−
, a4− , and a−1

4−
. The sequence m = a3+d

−1ε−1
4 dc−1 is a word with s(m) = 1

and t(m) = 3+, which is left inextensible but not right inextensible.

2.4 Orders

The linear orders in the sets L±(i), i ∈ Q0 ⊂ Q̂0, induce a partial order > on the set of words,
such that m > r if and only if m = ωm · · ·ω2ω1 and r = νr · · · ν2ν1 satisfy ωj · · ·ω1 = νj · · · ν1 and
ωj+1 > νj+1 for some j > 0.

For each vertex i ∈ Q0, let W±(i) be the set of left inextensible words whose first letter
is in L±(i). By construction, W±(i) are linearly ordered. For each word m in Wθ(i), we use
[+]m to denote its successor (if it exists) and use [-]m to denote its predecessor (if it exists).
So we have [-]m > m > [+]m. In case m is right inextensible, we set m [+] := ([+]m−1)−1 and
m [-] := ([-]m−1)−1.

Let m be a maximal word. By [Gei99], [+](m [+]) = ([+]m) [+] provided both of them exist;
denote by [+]m [+] one (or both) of them.

Example 2.5. In Example 2.2 with the disjoint subsets given in Example 2.3, any word in the
set W+(2) starts with one of the letters b, a−1, or a2+ . A word in W+(2) starting with a2+ has
to be a2+ since it is already left inextensible. Moreover, any word in W+(2) that starts with
a−1 is bigger than a2+ and any word that starts with b is less than a2+ . Furthermore, we have
[+] a2+ = a3−b and [-] a2+ = a2−aε1a

−1.

2.5 Admissible words
For technical reasons, we introduce a special letter ε∗ for each dashed loop ε and a map F on
letters which sends the elements in {ε−1 > aiθ > ε} to ε∗ and preserves the other letters.

A maximal word m = ωm · · ·ω1 is called admissible if the following conditions hold.

(A1) For each ωi = ε with ε a dashed loop, we have that ω−1
1 · · ·ω−1

i−1 > ωm · · ·ωi+1, and for

each ωi = ε−1 with ε a dashed loop, we have that ω−1
1 · · ·ω−1

i−1 < ωm · · ·ωi+1.

(A2) If m contains two punctured letters, then F (m) is not a proper power of F (m′) for any
maximal word m′ containing two punctured letters, where

F (m) := F (ωm) · · ·F (ω1)F (ω−1
2 ) · · ·F (ω−1

m−1).
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Let X be the set of admissible words. Note that if m is in X then so is its inverse m−1. Let X be

the set of all equivalence classes in X with respect to m ' m−1. But when we say an element m

in X, we always mean that m is a representative in an equivalence class.

Example 2.6. In Example 2.2 with the disjoint subsets given in Example 2.3, consider the word

m = a3−c
−1ε−1

1 cd−1a−1
4−
. It is clear that m is maximal. Since a4−dc

−1 < a3−c
−1, m satisfies (A1).

Moreover, m contains only one punctured letter a−1
4−

, so (A2) holds automatically. Hence m is

admissible, i.e. m ∈ X.

2.6 Known results

In this subsection, we collect some results on indecomposable modules of skewed-gentle algebras

and homomorphism spaces between them.

Let m ∈ X. Associate an indeterminate with each punctured letter in m and let Am be the

k-algebra generated by these indeterminates x with relations x2 = x. A one-dimensional module

N of Am is an algebra homomorphism N : Am → k. It is determined (up to isomorphism) by the

values N(x) ∈ {0, 1}. More precisely:

– if m contains no punctured letters, then Am = k and there is one one-dimensional module

N = k;

– if m contains one punctured letter, then Am = k[x]/(x2 − x) and there are two one-
dimensional modules: N = ka with ka(x) = a, for a ∈ {0, 1}. Moreover, we have

dimk HomAm(ku,kv) = δu,v ∀u, v ∈ {0, 1}; (2.1)

– if m contains two punctured letters, then Am = k〈x, y〉/(x2 − x, y2 − y) and there are four
one-dimensional modules: N = ka,b with ka,b(x) = a and ka,b(y) = b, for a, b ∈ {0, 1}.
Moreover, we have

dimk HomAm(ku,u′ ,kv,v′) = δu,vδu′,v′ ∀u, v, u′, v′ ∈ {0, 1}. (2.2)

Construction 2.7. For each pair (m, N) with m = ωm · · ·ω1 ∈ X and a one-dimensional Am-

module N , the associated representation M = M(m, N) of Q bounded by R is constructed as

follows.

– For each vertex i ∈ Q0, let Ii = {1 6 j 6 m− 1 | t(ωj) = i}.
– Let Mi be a vector space of dimension |Ii|, say with base vectors zj , j ∈ Ii.
– If ωj+1 = α an arrow in Q1, define Mα(zj) = zj+1, if ωj+1 = α−1, with α an arrow in Q1,

define Mα(zj+1) = zj .

– If ωj+1 = ε an arrow in Q2, define Mε(zj) = Mε(zj+1) = zj+1, if ωj+1 = ε−1, with ε an

arrow in Q2, define Mε(zj+1) = Mε(zj) = zj .

– If ω1 (respectively ωm) is punctured with indeterminate x, define Mεt(ω1)
(z1) = N(x)z1

(respectively Mεs(ωm)
(zm−1) = N(x)zm−1), where εi denotes the dashed loop at i.

– All other components of Mβ are zero, for any β ∈ Q1 ∪Q2.

Example 2.8. Let m = a3−c
−1ε−1

1 cd−1a−1
4−

be the admissible word in Example 2.6. Since m

contains one punctured letter a−1
4−

, we have Am = k[x]/(x2 − x) and there are two different

one-dimensional Am-modules ku for u = 0, 1. By Construction 2.7, the associated representations
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M(m,ku) are as shown by the following diagram.

0
0

��
k2( 1 1

0 0 ) 88

0

??

k2

( 1 0
0 1 )

oo ( 1 0 ) // k uee

Theorem 2.9 [Bon92, Cra89, Den00]. Let Λ = kQ/(R) be a skewed-gentle algebra. Then
(m, N) 7→ M(m, N) is an injective map from the set of pairs (m, N), with m ∈ X̄ and N a
one-dimensional Am-module (up to isomorphism), to the set of indecomposable representations
M(m, N) (up to isomorphism) of Q bounded by R.

Remark 2.10. In fact, Bondarenko [Bon92], Crawley-Boevey [Cra89], and Deng [Den00] proved
the result above for general clannish algebras, where the map can be upgraded to a bijection by
enlarging the set X̄ and taking N to be an arbitrary indecomposable Am-module. Furthermore,
any indecomposable module M , which is not in the image of the injective map in the above
theorem, is in a homogeneous tube or in a tube of rank 2 and does not sit in the bottom of the
tube. So in particular Hom(M, τM) 6= 0 for such an indecomposable module M .

The Auslander–Reiten translation τ can be interpreted by the order of words.

Theorem 2.11 [Gei99]. For any m = ωm · · ·ω1 ∈ X and any one-dimensional Am-module N , if
M(m, N) is not projective, then

τM(m, N) =


M([+]m [+],k) if m contains no punctured letters and N = k,

M([+]m,k1−a) if only ω1 is punctured and N = ka,

M(m,k1−a,1−b) if both ω1 and ωm are punctured and N = ka,b.

For technical reasons, we also consider a trivial word 1i corresponding to each vertex
i ∈ Q0 ⊂ Q̂0. Let m = ωm · · ·ω1 be a word in X. For any integers i, j with 0 6 i < j 6 m+ 1, we
consider the subword m(i,j) of m between i and j defined as

m(i,j) =

{
ωj−1 · · ·ωi+1 if i < j − 1,

1t(ωi) if i = j − 1,

where 1t(ω0) := 1s(ω1).
Let m = ωm · · ·ω1 and r = νr · · · ν1 be two words in X̄. A pair ((i, j), (h, l)) of pairs of integers

i, j, h, l with 0 6 i < j 6 m+ 1 and 0 6 h < l 6 r + 1 is called an int-pair from m to r if one of
the following conditions holds:

– m(i,j) = r(h,l), ω
−1
i < ν−1

h and ωj < νl;

– m(i,j) = (r(h,l))
−1, ω−1

i < νl and ωj < ν−1
h ;

where if an inequality contains at least one of ω0, ωm+1, ν0 and νr+1 then we assume that it
holds automatically. Let Hm,r be the set of int-pairs from m and r.

Example 2.12. Let m = a4+a
−1
4− and r = a3−c

−1ε−1
1 cd−1a−1

4−
be two admissible words for the

skewed-gentle pair in Example 2.2 with the disjoint subsets given in Example 2.3. Then Hm,r

contains only one element ((0, 2), (0, 2)) for which m(0,2) = a−1
4− = r(0,2) with ω−1

0 < ν−1
0 and

ω2 = a4+ < d−1 = ν2.
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Cluster categories for marked surfaces: punctured case

Notation 2.13. Let (m, N1) and (r, N2) be two pairs, where m, r ∈ X and N1 (respectively N2) is
a one-dimensional module of Am (respectively Ar). For each int-pair J = ((i, j), (h, l)) in Hm,r,
denote by AJ the k-algebra generated by the indeterminates associated with punctured letters
contained in m(i,j) (or equivalently in r(k,l)). Then AJ is a subalgebra of Am and Ar and hence
both N1 and N2 can be regarded as AJ -modules.

Theorem 2.14 [Gei99]. Under Notation 2.13, we have

dimk HomΛ(M(m, N1),M(r, N2)) =
∑

J∈Hm,r

dimk HomAJ (N1, N2).

3. Background on cluster categories for marked surfaces

3.1 Jacobian algebras and Ginzburg dg algebras
Let Q be a finite quiver and W a potential on Q, that is, a sum of cycles in Q. The Jacobian
algebra of the quiver with potential (Q,W ) is the quotient

P(Q,W ) := k̂Q/∂W,

where k̂Q is the complete path algebra of Q, ∂W = 〈∂aW : a ∈ Q1〉 and ∂W is the closure of

∂W in k̂Q (cf. [DWZ08]).
The Jacobian algebra is the 0th cohomology of its refinement, the Ginzburg dg algebra

Γ = Γ(Q,W ) of (Q,W ) (see the construction in [Kel12, § 7.2]). There are three categories
associated with Γ, namely:

– the finite dimensional derived category Dfd(Γ) of Γ, which is a 3-Calabi–Yau category;

– the perfect derived category per(Γ) of Γ, which contains Dfd(Γ);

– the cluster category C(Γ) of Γ, which is the (triangulated) 2-Calabi–Yau quotient category

C(Γ) := per(Γ)/Dfd(Γ). (3.1)

Furthermore there is a canonical cluster tilting object TΓ in C(Γ) induced by the silting object
Γ in per Γ such that

C(Γ)/(TΓ) ' mod EndC(Γ)(TΓ)op ∼= modP(Q,W ). (3.2)

See [Ami09, Theorem 3.5] and [KR07, § 2.1, Proposition (c)].
For a vertex i of Q, let µi(Q,W ) be the mutation of (Q,W ) at i in the sense of [DWZ08],

see also Appendix B. By [KY11], there exists a canonical triangulated equivalence

µ̃i : C(Γ(Q,W )) ' C(Γ(µi(Q,W ))). (3.3)

3.2 Quivers with potential from marked surfaces
Throughout the article, S denotes a marked surface with non-empty boundary in the sense
of [FST08], that is, a compact connected oriented surface S with a finite set M of marked points
on its boundary ∂S and a finite set P of punctures in its interior S\∂S such that the following
conditions hold:

– each connected component of ∂S contains at least one marked point;

– S is not closed, i.e. ∂S 6= ∅;
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Figure 1. The completions of curves.

– the rank
n = 6g + 3p+ 3b+m− 6 (3.4)

of the surface is positive, where g is the genus of S, b the number of boundary components,
m = |M| the number of marked points and p = |P| the number of punctures.

Definition 3.1 (Curves and tagged curves). Let S be a marked surface with non-empty
boundary.

– An (ordinary) curve in S is a continuous function γ : [0, 1] → S satisfying:

∗ both γ(0) and γ(1) are in M ∪P;

∗ for any 0 < t < 1, γ(t) is in S\(∂S ∪P);

∗ γ is not null-homotopic or homotopic to a boundary segment.

– The inverse of a curve γ is defined as γ−1(t) := γ(1− t) for t ∈ [0, 1].

– For two curves γ1, γ2, γ1 ∼ γ2 means that γ1 is homotopic to γ2 relative to {0, 1} (i.e. fixing
the endpoints). Define an equivalence relation ' on the set of curves in S that γ1 ' γ2 if
and only if either γ1 ∼ γ2 or γ−1

1 ∼ γ2. Denote by C(S) the set of equivalence classes of
curves in S with respect to '.

– Let γ be a curve in C(S) such that at least one of its endpoints is a puncture. Then define
its completion γ̄ as in Figure 1.

– A tagged curve is a pair (γ, κ), where γ is a curve in S and κ : {t | γ(t) ∈ P}→ {0, 1} is a
map, satisfying the following conditions:

(T1) γ does not cut out a once-punctured monogon by a self-intersection (including
endpoints), cf. Figure 2;

(T2) if γ(0), γ(1) ∈ P, then the completion γ̄ is not a proper power of a closed curve in
the sense of the multiplication in the fundamental group of S.

Note that κ(t) ∈ P implies t ∈ {0, 1}. Moreover, write κ = ∅ when {t | γ(t) ∈ P} = ∅ by
convention.
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Figure 2. Once-punctured monogons.

Figure 3. The tagged rotations of three tagged curves in S.

– The inverse of a tagged curve (γ, κ) is defined as (γ, κ)−1 := (γ−1, κ−1), where κ−1(t) :=
κ(1− t).

– For two tagged curves (γ1, κ1), (γ2, κ2), (γ1, κ1) ∼ (γ2, κ2) means that γ1 ∼ γ2 and κ1 = κ2.
Define an equivalence relation ' on the set of tagged curves in S that (γ1, κ1) ' (γ2, κ2) if
and only if either (γ1, κ1) ∼ (γ2, κ2) or (γ1, κ1) ∼ (γ2, κ2)−1. Denote by C×(S) the set of
equivalence classes of tagged curves in S with respect to '.

Definition 3.2 (Tagged rotation [BQ15]). The rotation ρ(γ) of a curve γ in C(S) is the curve
obtained from γ by moving every endpoint of γ that is in M along the boundary anticlockwise
to the next marked point. The tagged rotation (γ′, κ′) = ρ(γ, κ) of a tagged curve (γ, κ) ∈ C×(S)
consists of the curve γ′ = ρ(γ) and the map κ′ defined by κ′(t) = 1 − κ(t) for t with γ(t) ∈ P,
cf. Figure 3.

Definition 3.3 (Intersection numbers). For any two curves γ1, γ2 ∈ C(S):

– let γ1 ∩ γ2 = {(t1, t2) | γ1(t1) = γ2(t2) /∈ P∪M} ⊂ (0, 1)2 be the set of interior intersections
between γ1 and γ2;

– the intersection number between them is defined to be

Int(γ1, γ2) := min{|γ′1 ∩ γ′2| | γ′1 ∼ γ1, γ
′
2 ∼ γ2}.

For any two tagged curves (γ1, κ1) and (γ2, κ2) ∈ C×(S):

– let P(γ1, γ2) = {(t1, t2) | γ1(t1) = γ2(t2) ∈ P} ⊂ {0, 1}2 be the set of intersections between
γ1 and γ2 at P;

– A pair (t1, t2) in P(γ1, γ2) is called a tagged intersection between (γ1, κ1) and (γ2, κ2) if:

∗ κ1(t1) 6= κ2(t2); and

∗ when γ1|t1→(1−t1) ∼ γ2|t2→(1−t2), we have γ1(1 − t1) = γ2(1 − t2) belongs to P and
κ1(1− t1) 6= κ2(1− t2), where γ|0→1 = γ and γ|1→0 = γ−1;
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Figure 4. The punctured intersections.

let T((γ1, κ1), (γ2, κ2)) be the set of tagged intersections between (γ1, κ1) and (γ2, κ2);

– the intersection number between them is defined to be

Int((γ1, κ1), (γ2, κ2)) := Int(γ1, γ2) + |T((γ1, κ1), (γ2, κ2))|.

We explain the intersection number of two tagged curves in some special cases.

Example 3.4. Let (γ1, κ1) and (γ2, κ2) be two tagged curves in C×(S).

– If all the endpoints of γ1 and γ2 are in M, then

Int((γ1, κ1), (γ2, κ2)) = Int(γ1, γ2).

– If γ1 and γ2 are not in the same equivalence class in C(S) (i.e. γ1 � γ2 and γ1 � γ−1
2 ), then

Int((γ1, κ1), (γ2, κ2)) = Int(γ1, γ2) + |{(t1, t2) | γ1(t1) = γ2(t2) ∈ P, κ1(t1) 6= κ2(t2)}|.

– If γ1 ∼ γ2 whose endpoints are two different punctures, then

|T((γ1, κ1), (γ2, κ2))| =
{

2 if κ1(0) 6= κ2(0) and κ1(1) 6= κ2(1),

0 otherwise.

– If the two tagged curves are as in Figure 4 where γ1 ∼ γ−1
2 and

κa(t) =

{
1 if a = 1 and t = 0,

0 otherwise,

then (0, 0) ∈ T((γ1, κ1), (γ2, κ2)). This is because κ1(0) = 1 6= κ2(0) = 0 and γ1|0→1 �
γ2|0→1. For the pair (0, 1), we also have κ1(0) = 1 6= κ2(1) = 0. But since γ1|0→1 ∼ γ2|1→0,
we need to compare the values of κ1(1) and κ2(0). Because κ1(1) = 0 = κ2(0), the pair
(0, 1) /∈ T((γ1, κ1), (γ2, κ2)). It is easy to see that neither (1, 0) nor (1, 1) is in T((γ1, κ1),
(γ2, κ2)). Hence in this case we have

Int((γ1, κ1), (γ2, κ2)) = 1.

We also mention that
Int((γ1, κ1), (γ1, κ1)) = 2.

Since (γ1, κ1) has self-intersections, it is not a tagged arc in the sense of [FST08] but it is
in C×(S).

Remark 3.5. Note that we have less restriction for curves and tagged curves than Fomin et al.,
that is, we allow self-intersections. More precisely:
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Figure 5. The self-folded triangle and the corresponding tagged version.

– the curves γ in C(S) without self-intersections (i.e. Int(γ, γ) = 0) are precisely the arcs
in the sense of [FST08, Definition 2.2];

– the tagged curves (γ, κ) in C×(S) without self-intersections (i.e. Int((γ, κ), (γ, κ)) = 0) are
precisely the tagged arcs in the sense of [FST08, Definition 2.4];

– for two curves γ1 and γ2 in C(S) without self-intersections, we have that Int(γ1, γ2) = 0 if
and only if they are compatible in the sense of [FST08, Definition 7.1];

– for two tagged curves (γ1, κ1) and (γ2, κ2) in C×(S) without self-intersections, we have
that Int((γ1, κ1), (γ2, κ2)) = 0 if and only if they are compatible in the sense of [FST08,
Definition 7.4].

By Remark 3.5, the following definitions of ideal triangulations and tagged triangulations
are equivalent to the original ones in [FST08].

Definition 3.6 (Ideal triangulations and tagged triangulations [FST08]). Let S be a marked
surface with non-empty boundary.

– An ideal triangulation is a maximal collection T of curves in C(S) such that Int(γ1, γ2) = 0
for any γ1, γ2 ∈ T.

– A tagged triangulation is a maximal collection T of tagged curves in C×(S) such that
Int((γ1, κ1), (γ2, κ2)) = 0 for any (γ1, κ1), (γ2, κ2) ∈ T.

Any ideal/tagged triangulation T of S consists of n ordinary/tagged curves (see [FST08,
Proposition 2.10, Theorem 7.9]), where n is the rank of S (cf. (3.4)). We require n > 0 and
exclude the case of a once-punctured monogon (where n = 1) in the proofs. However, all the
results hold in this case by direct checking and thus we will not exclude this case in the statements.

A triangle in T has three distinct sides unless it is a self-folded triangle as in the left picture
of Figure 5, where we call α the folded side and β the remaining side.

The flip of an ideal triangulation T, with respect to a curve α in T, is the unique ideal
triangulation T′ (if it exists) that shares all curves in T but α. One can always flip an
ideal triangulation with respect to a curve unless it is the folded side of a self-folded triangle.
To overcome this shortcoming, Fomin et al. [FST08] introduced tagged triangulations, with
tagged flips, so that every tagged triangulation can be flipped with respect to any tagged curve
in it. The exchange graph of tagged triangulations with tagged flips is denoted by EG×(S),
that is, the graph whose vertices are tagged triangulations and whose edges are tagged flips.

For each curve γ in C(S) with Int(γ, γ) = 0, we define its tagged version γ× to be (γ,∅) unless
γ is a loop enclosing a puncture, as β in the left picture of Figure 5. In that case β×, as in the right
picture of Figure 5, is defined to be (α, κ), where α is the unique curve without self-intersections
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Figure 6. The quiver associated with a non-self-folded triangle.

enclosed by β and κ(t) = 1 for t with α(t) ∈ P. In this way, each ideal triangulation T induces
a tagged triangulation T× consisting of the tagged versions of all curves in T.

For each ideal triangulation T, there is an associated quiver with potential (QT,WT)
(cf. [FST08, IL12]). In the paper, we only study (QT,WT) in the case when T is an admissible
triangulation in the following sense (see Figure 14 for example).

Definition 3.7. An ideal triangulation T is called admissible if every puncture in P is contained
in a self-folded triangle in T.

In particular, in such a triangulation, the folded side of each self-folded triangle connects a
marked point in M and a puncture in P.

In an admissible triangulation T, for a curve α ∈ T, let πT(α) be the curve defined as follows:
if α is the folded side of a self-folded triangle in T (see the left picture of Figure 5), then πT(α)
is the corresponding remaining side (i.e. β in the left picture of Figure 5); if there is no such
triangle, set πT(α) = α. The associated quiver with potential (QT,WT) is given by the following
data (see Figure 6):

– the vertices of QT are labeled by the curves in T;

– there is an arrow from i to j whenever there is a non-self-folded triangle in T having πT(i)
and πT(j) as edges with πT(j) following πT(i) in the clockwise orientation (which is induced
by the orientation of S). For instance, the quiver for a non-self-folded triangle is shown in
Figure 6;

– each subset {i, j, k} of T with πT(i), πT(j), πT(k) forming an interior non-self-folded
triangle in T yields a unique three-cycle up to cyclic permutation. The potential WT is
the sum of all such three-cycles.

Then by § 3.1, there is an associated cluster category, denoted by C(T).

3.3 Correspondence
The objects and morphisms in C(T) are expected to correspond to curves and intersection
numbers, respectively. A cluster tilting object T =

⊕n
j=1 Tj in a cluster category C is an object

satisfying Ext1
C(T,X) = 0 if and only if X ∈ addT . The mutation µi at the ith indecomposable

direct summand acts on a cluster tilting object T =
⊕n

j=1 Tj , by replacing Ti with the unique
indecomposable object T ′i � Ti satisfying that (T\Ti)⊕ T ′i is a cluster tilting object.

In the unpunctured case, we have the following known results.

Theorem 3.8 [BZ11]. If S is unpunctured, then there is a bijection between the set of curves
and valued closed curves in S and the set of indecomposable objects in C(T). Under such a
bijection:
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– rotation of curves is compatible with shift of objects;

– triangulations of S one-to-one correspond to cluster tilting objects in C(T) while flip
of triangulations is compatible with mutation of cluster tilting objects.

Theorem 3.9 [ZZZ13]. If S is unpunctured, then for any two curves γ, δ, we have

Int(γ, δ) = dimk Ext1
C(T)(Xγ , Xδ),

where X : η 7→ Xη is the bijection in Theorem 3.8.

In the punctured case, we also know the following. Recall that a rigid indecomposable object
in C(T) is reachable if it is a summand of some cluster tilting object, which is obtained from the
canonical cluster tilting object by a sequence of mutations.

Theorem 3.10 [BQ15]. Let A×(S) be the set of tagged curves in C×(S) without self-
intersections and I×(S) the set of reachable rigid indecomposable objects in C(T). Under a
canonical bijection

ε : A×(S) → I×(S),

the tagged rotation ρ on A×(S) becomes the shift [1] on I×(S).

3.4 Cluster(-tilting) exchange graphs
The cluster(-tilting) exchange graph CEG(C) of a cluster category C is the graph whose vertices
are cluster tilting objects and whose edges are mutations. There are the following known results
about connectedness of cluster exchange graphs.

Theorem 3.11 [BMRRT06]. If C is the cluster category of an acyclic quiver, then CEG(C) is
connected.

Theorem 3.12 [BZ11]. If C is the cluster category from an unpunctured marked surface, then
CEG(C) is connected.

4. Strings and tagged curves

4.1 Skewed-gentle algebras from admissible triangulations
Let T be an admissible triangulation of S, i.e. every puncture is in a self-folded triangle (see
Lemma A.1 for the existence of T), with the associated quiver with potential (QT,WT) and the
cluster category C(T).

Let To be the subset of T consisting of curves whose endpoints are in M. Now we associate
a biquiver QT = (QT

0 , Q
T
1 , Q

T
2 ) with potential WT as follows:

– QT
0 = To, i.e. curves in T which are sides of non-self-folded triangles correspond to vertices

in QT
0 ;

– there is a solid arrow from i to j in QT
1 whenever there is a non-self-folded triangle ∆ in T

such that ∆ has sides i and j with j following i in the clockwise orientation;

– there is a dashed loop at i in QT
2 , denoted by εi, whenever i is the remaining side of a

self-folded triangle;

– each non-self-folded triangle in T induces a unique three-cycle up to cyclic permutation.
The potential WT is the sum of all such three-cycles.

See the example in § 6. By construction, there are no loops in QT
1 , any arrow in QT

2 is a loop
and there is at most one loop in QT

2 at each vertex. Hence the biquiver QT satisfies the conditions
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Figure 7. Non-self-folded triangles with the corresponding quivers.

Figure 8. Self-folded triangles with the corresponding quivers.

on biquivers in § 2.1. Let Z = ∂WT = {∂aWT : a ∈ QT
1 }. We have the following straightforward

observation.

Lemma 4.1. The set Z consists of βα for each pair α, β ∈ QT
1 such that they are from the same

non-self-folded triangle in T.

Proposition 4.2. The pair (QT, Z) is skewed-gentle and the algebra ΛT := kQT/(R) is a
skewed-gentle algebra, where R = Z ∪ {ε2 = ε | ε ∈ QT

2 }.

Proof. By Lemma 4.1, each element in Z is of the form βα for some α, β in QT
1 . Since every

vertex i ∈ QT
0 is a side of a non-self-folded triangle in T, there are two possible cases.

(1) The curve i is a common side of two non-self-folded triangles in T, see Figure 7. Then
there is no dashed loop at i and there are at most two solid arrows α1, α2 ending at i and at
most two solid arrows β1, β2 starting at i. By Lemma 4.1, β1α1 ∈ Z, β2α2 ∈ Z, β1α2 /∈ Z and
β2α1 /∈ Z (if they exist).

(2) The curve i is a common side of a non-self-folded triangle and a self-folded triangle in T,
see Figure 8. Then there is a dashed loop at i and there is at most one solid arrow α ending at
i and at most one solid arrow β starting at i. By Lemma 4.1, βα ∈ Z (if they exist).

Hence by Definition 2.1, (QT, Z) is skewed-gentle and the algebra ΛT = kQT/(R) is a
skewed-gentle algebra. 2

Let QSp
0 be the subset of QT

0 consisting of vertices where there are dashed loops.

Remark 4.3. Comparing the constructions of (QT,WT) and (QT,WT), one can obtain

(QT,WT) (up to isomorphism) from (QT,WT) by splitting each vertex in QSp
0 into two vertices

and removing all the dashed loops. More precisely:
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– vertices in QT are indexed by elements in QT
0 ∪ {i′ | i ∈ QSp

0 };
– arrows from i to j in QT are indexed by jαi induced by arrows α : π(i) → π(j) in QT

1 ,

where π is the map on QT
0 ∪ {i′ | i ∈ QSp

0 } sending i′ to i and being the identity on QT
0 ;

– the potential WT is the sum of cycles that are obtained from cycles in WT by replacing
each α with jαi for possible i and j.

See the example in § 6.

Now we prove that the Jacobian algebra P(QT,WT) is isomorphic to the skewed-gentle
algebra ΛT.

Proposition 4.4. There is an algebra isomorphism

ϕ : P(QT,WT) ∼= ΛT.

Proof. For each quiver, denote by ei the trivial path associated with a vertex i. Noticing that
ε2
i − εi ∈ R for each i ∈ QSp

0 , a complete set of primitive orthogonal idempotents of kQT/(RSp)
is

{ei + (RSp) | i ∈ Q0\QSp
0 } ∪ {εi + (RSp), ei − εi + (RSp) | i ∈ QSp

0 },

where RSp = {ε2
i − εi | i ∈ QSp

0 }. Then using the recovery of (QT,WT) from (QT,WT) in
Remark 4.3, there is an isomorphism ϕ of algebras from kQT to kQT/(RSp) that sends jαi to
ϕ(ej)αϕ(ei), where

ϕ(ei) =


ei + (RSp) if i ∈ QT

0 \QSp
0 ,

ei − εi + (RSp) if i ∈ QSp
0 ,

εk + (RSp) if i = k′ for k ∈ QSp
0 .

By [IL12, Theorem 5.7], the Jacobian algebra P(QT,WT) is isomorphic to kQT/∂WT. Then
what is left to show is that ϕ(∂WT) = ∂WT, which follows directly from the recovery of WT

from WT in Remark 4.3. 2

Remark 4.5. Note that Propositions 4.2 and 4.4 imply that the Jacobian algebra P(QT,WT) is
a skewed-gentle algebra for any admissible triangulation T of a marked surface. This result was
first announced by Labardini-Fragoso (cf. [Lab16]) and was first proved in [GLS16].

4.2 Correspondence
Denote by rep(QT,WT) the category of finite dimensional k-linear representations of Q bounded
by R = ∂WT ∪ {ε2 = ε | ε ∈ QT

2 }. By the equivalence (3.2) and Proposition 4.4, we have an
equivalence

FT : C(T)/(TT) ' rep(QT,WT), (4.1)

where TT denotes the canonical cluster tilting object in C(T) (cf. § 3.1). So one can regard the set
of indecomposable objects in C(T) as the union of the set of indecomposable representations in
rep(QT,WT) and the set of indecomposable direct summands of TT. Note that indecomposable
direct summands of TT are indexed by curves in T and hence also by tagged curves in T× (which
is the tagged version of T). Thus, we can write

TT =
⊕

(γ,κ)∈T×
T(γ,κ). (4.2)
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Y. Qiu and Y. Zhou

Figure 9. The arc segments associated with letters.

Definition 4.6. We call an indecomposable object X in C(T) a string object if either X is
a direct summand of the canonical cluster tilting object TT, or FT(X) is an indecomposable
representation in rep(QT,WT) which is in the image of the injective map in Theorem 2.9.
Denote the set of string objects in C(T) by S(T).

To describe indecomposable representations in rep(QT,WT), we shall use notions and
notation stated in § 2. Recall that from the biquiver QT, in § 2.2, we constructed a new biquiver
Q̂ = (Q̂0, Q̂1, Q̂2) by adding two new solid arrows ai± (whose terminal vertices are also new

vertices) for each vertex i ∈ QT
0 . Recall that a letter is an arrow in Q̂ or its inverse. For each

i ∈ QT
0 ⊂ Q̂0 the set L(i) = {l ∈ L | s(l) = i} is divided into two disjoint subsets Lθ(i), θ ∈ {±},

with linear orders satisfying certain conditions.

Construction 4.7. We associate an arc segment a(l) with each letter l as follows.

– For l = α with α an arrow from i to j in QT
1 ⊂ Q̂1, α is induced from a triangle ∆ in T

having i and j as sides with j following i in the clockwise orientation. Then we associate the
arc segment (which is unique up to homotopy) in ∆ starting at (a point in) i and ending
at (a point in) j.

– For l = ε with ε a dashed loop at i, we associate the arc segment in the self-folded triangle
whose remaining side is i with the clockwise orientation.

– For l = aiθ with aiθ an arrow in Q̂1\QT
1 , its associated segment is in the same triangle as

the associated arc segments of other letters in Lθ(i). It starts at (a point in) i and ends at
a point in M ∪P.

– The arc segment a(l−1) is the same as a(l) but with the opposite orientation.

See Figure 9 (cf. Figures 7 and 8), where the disjoint subsets Lθ(i) are given by L+(i) =
{α−1

1 > ai+ > β1} and L−(i) = {α−1
2 > ai− > β2} for the left picture and by L+(i) = {α−1 >

ai+ > β} and L−(i) = {ε−1 > ai− > ε} for the right picture. Note that α, β, α1, β1, α2, β2 might
not exist.

By Construction 4.7, any arc segment associated with a letter in L(i) starts at i. The following
lemma gives some basic topological interpretation of notions about letters.
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Cluster categories for marked surfaces: punctured case

Figure 10. The orders.

Lemma 4.8. For any two letters l1, l2 ∈ L(i):

(1) l1 and l2 are in the same subset Lθ(i) if and only if a(l1) and a(l2) are in the same triangle;

(2) l1 > l2 if and only if they are of one of the forms in Figure 10(i) with a(li) being the segment
of γi cut out by the triangle;

(3) l = li is punctured if and only if one of the endpoints of a(l) is a puncture.

Proof. For (1), recall that if γ, δ−1 ∈ L(i) for two solid arrows γ and δ then γ and δ−1 are in the
same subset Lθ(i) if and only if γδ ∈ Z. Then by Lemma 4.1, γ and δ are from the same triangle.
By Construction 4.7, a(γ) and a(δ−1) are in the same triangle. Also by Construction 4.7, a(ε)
and a(ε−1) are in the same triangle for a dashed loop ε and a(aiθ) is in the same triangle as the
arc segments associated with other letters in Lθ(i). Hence we are done.

For (2), by definition we know two letters l1 and l2 are comparable if they are in the same
subset Lθ(i). Then by (1) this is equivalent to a(l1) and a(l2) being in the same triangle and
starting at the same curve i. Note that the forms in Figure 10(i) correspond to α−1 > β for
βα ∈ Z, α−1 > aiθ , aiθ > β, ε−1 > ε, aiθ > ε, and ε−1 > aiθ , respectively. These give all the
possible cases for the order.

For (3), l is punctured by definition if and only if l is of the form aiθ or a−1
iθ

such that

Liθ = {ε−1 > aiθ > ε}. Then by Construction 4.7, a(l) is in a self-folded triangle and hence it
has to connect the puncture in this triangle. 2

Recall that a word is a sequence m = ωm · · ·ω1 of letters in L such that for any 1 6 j 6m−1,
ω−1
j ∈ Lθ(i) and ωj+1 ∈ Lθ′(i) for different θ, θ′ ∈ {±} and some i ∈ QT

0 . By Lemma 4.8(1), this

condition is equivalent to a(ω−1
j ) and a(ωj+1) starting at the same curve in T, but being in the

two triangles adjacent to this curve, respectively. Hence we can glue the two arc segments a(ωj)
and a(ωj+1) together to get a curve segment.
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Construction 4.9. For each word m = ωm · · ·ω1, we glue the corresponding arc segments
a(ω1), . . . , a(ωm) together in order to get a curve segment, denoted by a(m).

Recall that for two words m = ωm · · ·ω2ω1 and r = νr · · · ν2ν1, m > r if and only if there is j
such that ωj · · ·ω1 = νj · · · ν1 and ωj+1 > νj+1.

Lemma 4.10. Let m1, m2 be two words and γ1 = a(m1), γ2 = a(m2). Then m1 > m2 if and only if
γ1 and γ2 separate as in one of the forms in Figure 10 after they share the same curve segments
from the start. The equality holds if and only if one of the forms in Figure 10(ii) occurs, and in
this case γ1 ∼ γ2.

Proof. By definition, m1 = ωm · · ·ω1 > m2 = ω′r · · ·ω′1 if and only if there is a maximal integer
j > 0 such that the first j letters (from right to left) of m1 and m2 are the same pointwise
and ωj+1 > ω′j+1. By Lemma 4.8(2), this is equivalent to a(m1) and a(m2) sharing the first j
arc segments and their (j + 1)th arc segments having one of the forms in Figure 10(i). Clearly
m1 = m2 if and only if one of the forms in Figure 10(ii) occurs and hence γ1 ∼ γ2. Thus the
lemma holds. 2

Recall that a word m = ωm · · ·ω1 is maximal if and only if ω1 = a−1
iθ

and ωm = ajθ′ for some

i, j ∈ QT
0 and some θ, θ′ ∈ {±}.

Lemma 4.11. The map m 7→ a(m) is a bijection from the set of maximal words to the set of
curves (up to homotopy) in S that are not in T. Moreover, a(m−1) = a(m)−1.

Proof. Let m = ωm · · ·ω1. Since m is maximal, we have ω1 = a−1
iθ

and ωm = ajθ′ for some i, j ∈QT
0

and some θ, θ′ ∈ {±}. By Construction 4.7, the endpoints of a(m) are in M ∪ P. Because by
Lemma 4.8(1), among the arc segments a(ω1), . . . , a(ωm), no two adjacent arc segments are in the
same triangle, the curve a(m) has minimal intersections with the curves in To. In particular,
the intersection number of a(m) with T is not zero. Hence a(m) is a curve in S which is not in T.

On the other hand, for a curve γ in C(S)\T, since we consider it up to homotopy, we can
assume γ has minimal intersections with the curves in T. Take the product, denoted by mγ , of
letters corresponding to the arc segments of γ divided by its intersections with To in order. Then
by Lemma 4.8(1), mγ is a word and clearly it is maximal. Moreover, the correspondence between
arc segments and letters implies that ma(m) = m and a(mγ) = γ up to homotopy. Therefore,
m 7→ a(m) is the required bijection with a(m−1) = a(m)−1. 2

Recall from § 2.5 that a maximal word m = ωm · · ·ω1 is called admissible if the following
hold.

(A1) For each ωi = ε with ε a dashed loop, we have that ω−1
1 · · ·ω−1

i−1 > ωm · · ·ωi+1, and for each

ωi = ε−1 with ε a dashed loop, we have that ω−1
1 · · ·ω−1

i−1 < ωm · · ·ωi+1.

(A2) If m contains two punctured letters then F (m) is not a proper power of F (m′) for any
maximal word m′ containing two punctured letters, where

F (m) := F (ωm) · · ·F (ω1)F (ω−1
2 ) · · ·F (ω−1

m−1).

On the other hand, recall from Definition 3.1 that a pair (γ, κ) is called a tagged curve if the
following hold.
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Cluster categories for marked surfaces: punctured case

Figure 11. A once-punctured monogon from a curve.

(T1) The curve γ does not cut out a once-punctured monogon by a self-intersection (including

endpoints), cf. Figure 2.

(T2) If γ(0), γ(1) ∈ P, then the completion γ̄ is not a proper power of a closed curve in the sense

of the multiplication in the fundamental group of S.

Lemma 4.12. Let m be a maximal word. Then m satisfies (A1) if and only if a(m) satisfies (T1);

m satisfies (A2) if and only if a(m) satisfies (T2).

Proof. Let m = ωm · · ·ω1. Note that the curve a(m) does not satisfy (T1) if and only if it cuts out

a once-punctured monogon as in Figure 2. This is equivalent to there being an arc segment a(ωi)

of a(m) with ωi = ε or ε−1 (for some dashed loop ε) which has the form as in Figure 11 with the

right part being one of the forms in Figure 10. Let γ1 := a(ωm · · ·ωi+1) and γ2 := a(ω−1
1 · · ·ω−1

i−1).

If ωi = ε, then the orientation of γ is as shown in Figure 11.

By Lemma 4.10, ωm · · ·ωi+1 > ω−1
1 · · ·ω−1

i−1. Similarly, if ωi = ε−1 then ωm · · ·ωi+1 6
ω−1

1 · · ·ω−1
i−1. This implies that (T1) does not hold for a(m) if and only if (A1) does not hold

for m.

Now consider the condition (A2). Note that by Lemma 4.8(3) both of the endpoints of

a(m) are punctures if and only if m has two punctured letters ω1 and ωm. In this case, F (m)

(as a cycle) corresponds to the completion of a(m). Hence a(m) satisfies (T2) if and only if m

satisfies (A2). 2

Let C0(S) be the subset of C(S)\T consisting of curves satisfying the conditions (T1)

and (T2). That is, C0(S) consists of curves γ in C(S)\T such that there exists a tagged curve

(γ, κ) for some κ.

By Lemmas 4.11 and 4.12, we have the following.

Lemma 4.13. The map m 7→ a(m) is a bijection

a : X −→ C0(S), (4.3)

where X is the set of admissible words up to inverse.

For each γ ∈ C0(S), we denote by mγ the preimage of γ under the bijection (4.3). Recall

from § 2.6 that the algebra Amγ is generated by the indeterminates x associated with punctured

letters in mγ with x2 = x. So by Lemma 4.8(3) indeterminates of Amγ are indexed by endpoints

of γ that are punctures.

Construction 4.14. The one-dimensional Amγ -modules are classified in § 2.6. Using the

notation there, each map κ gives a one-dimensional Amγ -module N(γ, κ) as follows.
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(i) If neither of the endpoints of γ is a puncture, then Amγ = k. Let N(γ,κ) = k.

(ii) If exactly one endpoint of γ is a puncture, then Amγ = k[xa]/(x
2
a − xa), where a ∈ {0, 1}

with γ(a) ∈ P. Let N(γ,κ) = kκ(a).

(iii) If both of the endpoints of γ are punctures, then Amγ = k〈x0, x1〉/(x2
0 − x0, x

2
1 − x1). Let

N(γ,κ) = kκ(0),κ(1).

Thus, for each tagged curve (γ, κ) ∈ C×(S)\T×, where T× is the tagged version of T
(see § 3.2), there is an associated indecomposable representation

MT
(γ,κ) := MT(mγ , N(γ,κ)) (4.4)

in rep(QT,WT) by Construction 2.7 and Theorem 2.9. For (γ, κ) ∈ T×, let MT
(γ,κ) = 0.

Definition 4.15. Define a map XT from C×(S) to the set S(T) of string objects in C(T) by

XT
(γ,κ) =

{
MT

(γ,κ) if (γ, κ) ∈ C×(S)\T×,
T(γ,κ) if (γ, κ) ∈ T×.

Theorem 4.16. The map XT is a bijection.

Proof. It is sufficient to prove that XT is a bijection from the set C×(S)\T× to the set of
indecomposable representations MT(m, N) with m ∈ X and dimkN = 1. This follows from
the bijection (4.3) in Lemma 4.13 and the description of the one-dimensional Amγ -modules in
Construction 4.14. 2

4.3 Flips and mutations
We study ♦-flips of an admissible triangulation T in this subsection. Recall that the function πT
on T is defined as follows: if γ is the folded side of a self-folded triangle in T, then πT(γ) is the
corresponding remaining side; otherwise, πT(γ) = γ.

Definition 4.17 [FST08, Definition 9.11]. Let T be an admissible triangulation of S. The ♦-flip
fi(T) associated with a curve i ∈ To is the unique admissible triangulation that shares all curves
with T except for the curves j satisfying πT(j) = i.

Note that there are two types of ♦-flips: when i is not a side of a self-folded triangle, the
corresponding ♦-flip is an ordinary flip, and when i is the remaining side of a self-folded triangle,
the corresponding ♦-flip is a combination of two ordinary flips occurring inside a once-punctured
digon (see Figure A.1). Recall that an ordinary flip of a triangulation T′ is a new triangulation
T′′ which shares all curves with T′ except for one.

The ♦-flips of an admissible triangulation T are indexed by the vertices of the quiver
QT. Define the mutation (Q′,W ′) = µi(Q

T,WT) at a vertex i ∈ QT
0 to be (Q′0, Q

′
1,W

′)
= µi(Q0, Q1,W ) in the sense of [DWZ08] with Q′2 = Q2. By [FST08, Lab09a],

µi(Q
T,WT) ' (Qfi(T),W fi(T))

for each i ∈ To = QT
0 , where fi is the ♦-flip associated with i. Then by [KY11], there is an

equivalence µ̃i : C(T) ' C(T′).
For each tagged curve (γ, κ), the corresponding object XT

(γ,κ) in C(T) is given by the

associated representation MT
(γ,κ) in rep(QT,WT) through the equivalence FT : C(T)/(TT) →

rep(QT,WT). Then the equivalence µ̃i should be compatible with some mutation of
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representations. However, there is not a well-defined mutation on rep(QT,WT). Instead, we

shall use decorated representations and their mutations introduced in [DWZ08]. A decorated

representation of (QT,WT) is a pair (M,V ), where M ∈ rep(QT,WT) is a usual representation

of (QT,WT) and V is a representation of (QT
0 , Q

T
2 ) bounded by {ε2 − ε | ε ∈ QT

2 }.

Construction 4.18. Let (γ, κ) be a tagged curve in C×(S). If (γ, κ) /∈ T×, define V T
(γ,κ) = 0; if

(γ, κ) ∈ T×, define V T
(γ,κ) by:

– Vj = 0 and Vεj = 0, for j 6= πT(γ);

– VπT(γ) = k;

– VεπT(γ)
= 1− κ(a) if there exists a (unique) a with γ(a) ∈ P.

This construction, together with (4.4), gives a decorated representation (MT
(γ,κ), V

T
(γ,κ))

associated with each tagged curve (γ, κ).

Let (γ, κ) be a tagged curve in C×(S) and (MT
(γ,κ), V

T
(γ,κ)) the corresponding decorated

representation. Construct µi(M
T
(γ,κ), V

T
(γ,κ)) as in Appendix B. Now we prove that the map

XT from tagged curves to string objects is independent of the choice of the admissible

triangulation T.

Theorem 4.19. For any two admissible triangulations T and T′, there is an equivalence

Θ: C(T) ' C(T′) such that Θ(XT
(γ,κ))

∼= XT′

(γ,κ), for every tagged curve (γ, κ) ∈ C×(S).

Proof. By Lemma A.2, any two admissible triangulations are connected by a sequence of ♦-flips.

Then using induction, it is sufficient to consider the case of T′ = fi(T), a ♦-flip of T. Recall that

there is an equivalence µ̃i : C(T) ' C(T′).
We claim that for any tagged curve (γ, κ) ∈ C×(S),

µi(M
T
(γ,κ), V

T
(γ,κ))

∼= (MT′

(γ,κ), V
T′

(γ,κ)). (4.5)

Indeed, since MT
(γ,κ) and V T

(γ,κ) are constructed locally, we only need to prove that for each

segment of γ crossing i, the corresponding decorated representations (M,V ) of (QT,WT)

and (M ′, V ′) of (Qfi(T),W fi(T)) satisfy µi(M,V ) ∼= (M ′, V ′). We list all the possible cases in

Tables B.1 and B.2 in Appendix B for the first and second types of ♦-flips, respectively, up to

symmetry. And in the same row of each case, we list the corresponding decorated representations,

using Constructions 2.7 and 4.18. Then one can check (4.5) on a case by case basis.

Let FT denote the equivalence (4.1). Consider the map ΦT from the set of (isoclasses of)

objects in C(T) to the set of (isoclasses of) decorated representations of (QT,WT) defined as

follows. For any indecomposable object X ∈ C(T) which is not isomorphic to a direct summand of

TT, define ΦT(X) ∼= (FT(X), 0); for any tagged curve (γ, κ) ∈ T×, define ΦT(T(γ,κ)) = (0, V T
(γ,κ)).

By definition, for any tagged curve (γ, κ) ∈ C×(S), ΦT(XT
(γ,κ))

∼= (MT
(γ,κ), V

T
(γ,κ)). Hence by (4.5),

we have

µi(ΦT(XT
(γ,κ))) = ΦT′(X

T′

(γ,κ)).

By [Pla11, Proposition 4.1], ΦT is a bijection and µiΦT(X) ' ΦT′ µ̃i(X) for any indecomposable

object X in C(T). Hence µ̃i(X
T
(γ,κ))

∼= XT′

(γ,κ), as required. 2
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5. Homological interpretation of marked surfaces

5.1 AR-translation and AR-triangles

Note that we have chosen an admissible triangulation T and have a bijection XT : C×(S) →

S(T) from the set of tagged curves to the set of string objects in the cluster category C(T). The

tagged rotation (cf. Definition 3.2 and Figure 3) ρ is a permutation on C×(S) while the shift

functor [1] in C(T) gives a permutation on the set S(T). We will give a straightforward proof of

Theorem 3.10, with a slight generalization to tagged curves.

For a curve γ in C(S) with γ(1) ∈M, denote by [+] γ the curve obtained from γ by moving

γ(1) along the boundary anticlockwise to the next marked point; dually, for a curve γ in C(S)

with γ(0) ∈M, denote by γ [+] the curve obtained from γ by moving γ(0) along the boundary

anticlockwise to the next marked point. We first show the following lemma, where mγ is the word

associated with γ defined by the bijection (4.3) and [+]m and m [+] are defined in § 2.4. Recall

that the set C0(S) consists of curves γ in C(S)\T such that there exists a tagged curve (γ, κ)

for some κ.

Lemma 5.1. If γ is a curve in C0(S) with γ(1) ∈M such that [+] γ is in C0(S), then [+]mγ exists

and [+]mγ = m[+] γ . Dually, if γ is a curve in C0(S) with γ(0) ∈M such that γ [+] is in C0(S),

then mγ [+] exists and mγ [+] = mγ [+].

Proof. We only prove the first assertion. By construction, γ and [+] γ start at the same point, go

through the same way at the beginning and then separate in a triangle as one of the following

two forms, where δ is the boundary segment from γ(1) to [+] γ(1) anticlockwise:

By Lemma 4.10, mγ > m[+] γ . Moreover, since by construction γ, [+] γ and δ enclose a contractible

triangle in the surface (i.e. a triangle which is homotopic to a point), by Lemma 4.10 again there

is no curve γ′ ∈ C0(S) starting at γ(0) = [+] γ(0) such that mγ > mγ′ > m[+] γ . Therefore, the

bijection (4.3) between curves in C0(S) and words in X implies that m[+] γ is the successor of

mγ , i.e. [+]mγ = m[+] γ . 2

Theorem 5.2. Under the bijection XT : C×(S) → S(T), the tagged rotation ρ on C×(S)

becomes the shift [1] on the set S(T), i.e. we have the following commutative diagram.

C×(S)
XT

//

ρ

��

S(T)

[1]

��
C×(S)

XT
// S(T)

In particular, restricting to A×(S), we get Theorem 3.10.
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Cluster categories for marked surfaces: punctured case

Proof. Let (γ, κ) ∈ C×(S) such that neither (γ, κ) nor ρ(γ, κ) is in T×. So both γ and ρ(γ) are

in C0(S). Using Theorem 2.11, we show that τMT
(γ,κ) = MT

ρ(γ,κ), where there are three cases, as

follows.

(1) If both γ(0) and γ(1) are in M, then at least one of [+] γ and γ [+] is in C0(S). This is

because when they are both in T, one of (γ, κ) and ρ(γ, κ) is forced to be in T, which contradicts

our assumption. Then we deduce that mρ(γ) = [+]mγ [+] by Lemma 5.1. On the other hand, mγ

contains no punctured letters by Lemma 4.8(3). Therefore,

τMT
(γ,κ) = MT([+]mγ [+],k) = MT

ρ(γ,κ),

where κ = ∅.

(2) If exactly one of γ(1) and γ(0) is a puncture, assume that γ(0) ∈ P and γ(1) ∈M without

loss of generality. Then ρ(γ) = [+] γ, mρ(γ) = [+]mγ , and

τMT
(γ,κ) = MT([+]mγ ,k1−κ(0)) = MT

ρ(γ,κ).

Note that the part k1−κ(0) is constructed in Construction 4.14, which is determined by the

tagging.

(3) If both γ(0) and γ(1) are in P, then ρ(γ) = γ and

τMT
(γ,κ) = MT(mγ ,k1−κ(0),1−κ(1)) = MT

ρ(γ,κ).

By [KR07, Lemma in § 3.5], the shift [1] in the triangulated category C(T) gives the AR-
translation τ in rep(QT,WT). Then we have

XT
(γ,κ)[1] = XT

ρ(γ,κ), (5.1)

for (γ, κ) /∈T×∪ρ−1(T×). Furthermore, MT
(γ,κ) is a projective representation for (γ, κ) ∈ ρ−1(T×)

and P(γ,κ)[1] = T(γ,κ) for any (γ, κ) ∈ T×, where P(γ,κ) is the projective representation associated

with the primitive idempotent indexed by (γ, κ). In particular,

{XT
(γ,κ)[1] | (γ, κ) ∈ ρ−1(T×)} = {XT

(γ,κ) | (γ, κ) ∈ T×}.

To finish the proof, we only need to show that Xρ±1(γ,κ) = T(γ,κ)[±1] for (γ, κ) ∈ T×. There

are two cases and we only deal with ρ−1(γ, κ). Note that ρ(γ, κ) intersects (γ, κ) and the following

diagrams show the local situation near this intersection.

This enables us to deduce that MT
ρ−1(γ,κ) is not a projective presentation different from P(γ,κ).

So MT
ρ−1(γ,κ) = P(γ,κ) and Xρ−1(γ,κ)[1] = T(γ,κ). 2
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Figure 12. Cutting: five cases.

Remark 5.3. Using the description of AR-sequences in [Gei99, § 5.4] and their relation with

AR-triangles in [KZ08, Proposition 4.7], we can describe the AR-triangle ending at XT
(γ,κ), where

(γ, κ) is a tagged curve in C×(S) that does not connect two punctures. In the case when (γ, κ)

does connect two punctures, the middle term of the AR-triangle is not a string object (and hence

we do not have a description).

In the following, let δ̄ be the completion of a curve δ which connects a marked point

in M and a puncture in P (see the top picture of Figure 1 for the induced orientation). Let

X = XT and

X(δ̄,∅) := X(δ,∅) ⊕X(δ,κ′),

where κ′(t) = 1 for t with δ(t) ∈ P.

– If both γ(0) and γ(1) are in M (which implies κ = ∅), the AR-triangle ending at X(γ,∅) is

Xρ(γ,∅) → X(γ [+],∅) ⊕X([+] γ,∅) → X(γ,∅) →.

– If exactly one of γ(0) and γ(1) is in P, the AR-triangle ending at X(γ,κ) is

Xρ(γ,κ) → X([+] γ̄,∅) → X(γ,κ) →.

5.2 Cutting and Calabi–Yau reductions

Given a tagged curve (γ, κ) ∈ C×(S) without self-intersections (i.e. Int((γ, κ), (γ, κ)) = 0), let

S/(γ, κ) be the marked surface obtained from S by cutting along γ. More precisely, there are

five cases as listed below.

(1) If γ connects two different marked points M1,M2 ∈M, then the resulting surface is shown

as in the first column of Figure 12.
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Cluster categories for marked surfaces: punctured case

Figure 13. The non-trivial bijections for cutting.

(2) If γ is a loop based on a marked point M ∈M, then the resulting surface is shown as in

the second column of Figure 12.

(3) If γ connects a marked point M ∈M and a puncture P ∈ P, then the resulting surface is

shown as in the third column of Figure 12.

(4) If γ connects two different punctures P1, P2 ∈ P, then the resulting surface is shown as in

the fourth column of Figure 12.

(5) If γ is a loop based on a puncture P ∈ P, then the resulting surface is shown as in the fifth

column of Figure 12.

There is a canonical bijection between the tagged curves in S that do not intersect

(γ, κ) and the tagged curves in S/(γ, κ). This bijection is straightforward to see for cases (1),

(2), and (5), while there are several non-obvious correspondences between the tagged curves in

the cases (3) and (4), which have been shown in Figure 13 (up to tagging). It is easy to check

that this bijection preserves the intersection numbers.

Let R be a subset of an admissible triangulation T. We define S/R to be the marked surface

obtained from S by cutting successively along each tagged curve in R. Clearly the new marked

surface is independent of the choice of orders of tagged curves in R and it inherits an admissible

triangulation T\R from S. Denote by C×(S)R the set of tagged curves (γ, κ) in C×(S)\R that

do not intersect the tagged curves in R. By induction, there is a canonical bijection from C×(S)R
to C×(S/R). For each tagged curve (γ, κ) ∈ C×(S)R, we still use the notation (γ, κ) to denote

its image under this bijection.

One the other hand, the object R =
⊕

(γ,κ)∈RX
T
(γ,κ) is a direct summand of the canonical

cluster tilting object TT (cf. (4.2)) in C(T). Then the Calabi–Yau reduction ⊥R[1]/(R) is a

2-Calabi–Yau category with a cluster tilting object TT\R (see [IY08, § 4]). The following lemma

will be used in the proof of the main result in the next subsection. Indeed, this generalizes a

result in [MP14] on the relation between Calabi–Yau reduction and cutting to the punctured

case.
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Lemma 5.4. Let R be a subset of an admissible triangulation T and R =
⊕

(γ,κ)∈RX
T
(γ,κ). Then

there is a canonical triangle equivalence ξ : ⊥R[1]/(R) ' C(T\R) satisfying

ξ(XT
(γ,κ))

∼= X
T\R
(γ,κ) (5.2)

for each (γ, κ) ∈ C×(S)R.

Proof. Notice that the corresponding biquiver with potential (QT\R,WT\R) can be obtained

from the biquiver with potential (QT,WT) by deleting the vertices corresponding to the tagged

curves in R. By [Kel13, Theorem 7.4], the canonical projection π : ΛT
→ ΛT\R induces

the required equivalence ξ : ⊥R[1]/R ' C(S/R). Furthermore, for each tagged curve (γ, κ) ∈
C×(S)R, the support of the representation MT

(γ,κ) does not contain the vertices corresponding

to tagged curves in R. Hence it is preserved by the projection π. Thus we deduce that (5.2)

holds. 2

5.3 Intersection numbers

Theorem 5.5. Let (γ1, κ1) and (γ2, κ2) be two tagged curves in C×(S). Then

Int((γ1, κ1), (γ2, κ2)) = dimk Ext1
C(T)(X

T
(γ1,κ1), X

T
(γ2,κ2))

for any admissible triangulation T of S.

Proof. The proof is given in § 7. 2

5.4 Connectedness of cluster exchange graphs

We apply our main result to study the exchange graph CEG(C(T)) of the cluster category C(T).

Corollary 5.6. The correspondence XT in Theorem 4.16 induces bijections:

(i) between tagged curves without self-intersections in S and indecomposable rigid objects in

C(T);

(ii) between tagged triangulations of S and cluster tilting objects in C(T).

Moreover, under the last bijection, flip of tagged triangulations is compatible with mutation of

cluster tilting objects.

Proof. By Remark 2.10, for any indecomposable representation M of (QT,WT), if there is

no tagged curve (γ, κ) such that M ∼= MT
(γ,κ), then HomΛT(M, τM) 6= 0. This implies that

Ext1
C(T)(M,M) 6= 0. Hence M is not a rigid object in C(T). Thus, all rigid objects are string

objects and hence the proposition follows from Theorem 5.5. 2

Theorem 5.7. The cluster exchange graph CEG(C(T)) is connected and CEG(C(T))∼= EG×(S).

In particular, each rigid object in C(T) is reachable.

Proof. The isomorphism EG×(S) ∼= CEG(C(T)) of graphs follows directly from Corollary 5.6.

The connectedness of EG×(S) is proved in [FST08, Proposition 7.10]. 2
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Cluster categories for marked surfaces: punctured case

Figure 14. An example.

6. An example

Let S be a disk with three marked points on the boundary and two punctures in the interior.
The corresponding cluster category C(T) is the classical cluster category of type D̃5. Let T be the
admissible triangulation shown in the top left picture of Figure 14.

Then the associated biquiver with potential (QT,WT) introduced in § 4.1 is as shown in the
following diagram with WT = cba.

2
b

��
1ε1 99

a
@@

3c
oo d // 4 ε4ee

And the associated quiver with potential (QT,WT) introduced in § 3.2 is as shown in the following
diagram with WT = c3→1ba1→2 + c3→1′ba1′→2 (where the terms c3→1′ba1→2 and c3→1ba1→2 do
not appear in WT because they are not cycles).

2
b

��
1′

a1
′
→2

77

1

a1→2

@@

3

c3→1′

ii c3→1oo d3→4
//

d3→4′

554 4′

1807

https:/www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X17007229
Downloaded from https:/www.cambridge.org/core. Columbia University Libraries, on 22 Jun 2017 at 09:28:16, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X17007229
https:/www.cambridge.org/core


Y. Qiu and Y. Zhou

We have Z = ∂WT = {ba, cb, ac}. Then the biquiver QT with Z is precisely the one in
Example 2.2. Use the choice of disjoint subsets given in Example 2.3:

– L+(1) = {c−1 > a1+ > a} and L−(1) = {ε−1
1 > a1− > ε1};

– L+(2) = {a−1 > a2+ > b} and L−(2) = {a2−};
– L+(3) = {b−1 > a3+ > c} and L−(3) = {a3− > d};
– L+(4) = {d−1 > a4+} and L−(4) = {ε−1

4 > a4− > ε4}.
Using Construction 4.7, the arc segments corresponding to direct letters are shown in the

top pictures of Figure 14, and the inverse of letters corresponds to the reverse of direction of arc
segments.

Consider the tagged curves (γ1, κ1) and (γ2, κ2) shown in the bottom left figure of Figure 14,
where κ1(0) = 0 and κ2(0) = 1. The rotations ρ(γ1, κ1) and ρ(γ2, κ2) are shown in the bottom
right picture of Figure 14. The intersection number between (γ1, κ1) and (γ2, κ2) is

Int((γ1, κ1), (γ2, κ2)) = 1.

On the representation side, since ρ(γ1, κ1) ∈ T×, we have MT
ρ(γ1,κ1) = 0 by Construction 4.14.

Hence

dim Ext1
C(T)(X

T
(γ1,κ1), X

T
(γ2,κ2)) = dim HomΛT(MT

(γ1,κ1),M
T
ρ(γ2,κ2))

+ dim HomΛT(MT
(γ2,κ2),M

T
ρ(γ1,κ1))

= dim HomΛT(MT
(γ1,κ1),M

T
ρ(γ2,κ2)).

The words corresponding to γ1 and ρ(γ2) are

mγ1 = a4+a
−1
4− and mρ(γ2) = a3−c

−1ε−1
1 cd−1a−1

4−
,

respectively. These two admissible words are precisely the two given in Example 2.12 and we
have Hmγ1 ,mρ(γ2) contains only one element, which is J = ((0, 2), (0, 2)) containing one punctured
letter a−1

4−
. Thus, we have

dim Ext1
C(T)(X

T
(γ1,κ1), X

T
(γ2,κ2)) = dimk HomΛT(MT

(γ1,κ1),M
T
ρ(γ2,κ2))

= dimk HomAJ (kκ1(0),k1−κ2(0))

= 1.

7. Proof of Theorem 5.5

7.1 Adding marked points
Recall that we fix an admissible triangulation T of S and two tagged curves (γ1, κ1) and (γ2, κ2)
in C×(S).

For technical reasons, we add some new marked points on the boundary of S as follows. Let
E be the set of marked points P in M that are endpoints of γ1 or γ2. For each P ∈ E, we add two
marked points on each side of P on the boundary component containing P , denoted by P ′l , P

′′
l ,

and P ′r, P
′′
r , respectively, see Figure 15.

Let S′ be the new marked surface obtained from S by adding these new marked points. For
each P ∈ E, let RP be the set of tagged curves as in Figure 15, where the right picture is for
the case that P is a unique marked point on a boundary component. Take R to be the disjoint
union of RP for P ∈ E. Note that no two tagged curves in R cross each other and the cutting
S′/R is canonically homeomorphic to S. Hence T ∪R is an admissible triangulation of S′.
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Figure 15. Adding marked points.

Figure 16. A partial triangulation associated with new marked points.

Lemma 7.1. Under the notation above, we have

dimk Ext1
C(T)(X

T
(γ1,κ1), X

T
(γ2,κ2)) = dimk Ext1

C(T∪R)(X
T∪R
(γ1,κ1), X

T∪R
(γ2,κ2)).

Proof. Let R =
⊕

(γ,κ)∈RX
T∪R
(γ,κ) , a direct summand of TT∪R in C(T∪R). By Lemma 5.4, there is

an equivalence ξ : ⊥R[1]/(R) ' C(T) sending XT∪R
(γi,κi)

to XT
(γi,κi)

, i = 1, 2 (noting that any tagged

curve in R does not cross (γi, κi)). Hence,

Ext1
C(T)(X

T
(γ1,κ1), X

T
(γ2,κ2))

∼= Ext1
⊥R[1]/(R)(X

T∪R
(γ1,κ1), X

T∪R
(γ2,κ2)).

By [IY08, Lemma 4.8], for any two objects X1, X2 ∈ ⊥R[1], there is an isomorphism

Ext1
⊥R[1]/(R)(X1, X2) ∼= Ext1

C(T∪R)(X1, X2).

Therefore, we get the equality, as required. 2

Now we consider another admissible triangulation of S′. For each P ∈ E, let R′P be the
set of tagged curves as in Figure 16 and R′ the disjoint union of R′P . By Lemma A.1, we can
extend R′ to an admissible triangulation T′ of S′. Due to Theorem 4.19, there is an equivalence
Θ: C(T ∪R) ' C(T′) such that Θ(XT∪R

(γi,κi)
) ∼= XT′

(γi,κi)
, for i = 1, 2.

Therefore, this equivalence together with Lemma 7.1 implies that it is sufficient to prove
Int((γ1, κ1), (γ2, κ2)) = dimk Ext1

C(T′)(X
T′

(γ1,κ1), X
T′

(γ2,κ2)).
Without loss of generality, fix representatives of γ1 and γ2 with minimal intersections with

T′ and with each other. We further require that any intersection γ1 ∩ γ2 does not intersect T′.

7.2 Normal intersections in the interior
We will use the notion of int-pairs from § 2.6. Recall that for any two admissible words m
and r, we use Hm,r to denote the set of int-pairs from m to r. For v = 0, 1, 2, let Hm,r

v be the subset
of Hm,r consisting of int-pairs that contain v punctured letters. Then Hm,r = Hm,r

0 ∪Hm,r
1 ∪Hm,r

2 .
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Figure 17. An interior intersection.

Lemma 7.2. Let (γ1, κ1) and (γ2, κ2) be the two tagged curves in the theorem. There is a bijection

between γ1 ∩ γ2 and the disjoint union H
mγ1 ,mρ(γ2)
0 ∪Hmγ2 ,mρ(γ1)

0 .

Proof. Consider the triangle ∆I that contains an intersection I in γ1∩γ2. Since the triangulation
T′ contains R′ which is constructed as in Figure 16, the following situations do not occur:

Therefore, we can deduce that γ1 and γ2 share at least one curve in T′. Hence the curve segments
of γ1 and γ2 near I has the form in Figure 17 with four possible right (respectively left) parts,
where {a, b} = {1, 2}.

We will prove that such an intersection induces an int-pair in H
mγb ,mρ(γa)
0 . Let

m = mγb = ωm · · ·ω1 and r = mγa = νr · · · ν1.

Set r′ = mρ(γa). We say that an arc segment is in R′ if it is in a triangle formed by curves in R′

and boundary segments, and we say that a letter is from R′ if its corresponding arc segment is
in R′. Note that γa and ρ(γa) intersect the triangulation T′ in the same way except for the parts
near endpoints of γa in M, where ρ(γa) intersects one more curve in R′ than γa as in Figure 18.
Then r′ = xνr−1 · · · ν2y, where

x =

{
νr, γa(1) ∈ P

ν ′r+1ν
′
r, γa(1) ∈M

and y =

{
νr, γa(0) ∈ P

ν ′1ν
′
0, γa(0) ∈M,

where ν ′0, ν ′1, ν ′r, and ν ′r+1 are letters corresponding to arc segments of ρ(γa) in R′. By
Lemma 4.8(1) a letter in (r′)±1 from R′ is not smaller than any letter in m±1 or r±1 from
R′ (cf. also Figure 18). In particular, (r′)±1 and m±1/r±1 do not share letters from R′.

Without loss of generality, we assume that both of the orientations of γa and γb are from right
to left in Figure 17. Then the curve segments in the middle part correspond to the subwords
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Figure 18. The rotation of γa.

m(i,j) and r(h,l) for some 0 < i < j < m, 0 < h < l < r and the arc segments in the left
(respectively right) part correspond to ωj and νl (respectively ωi and νh). By Lemma 4.8(2), we
have ω−1

i < ν−1
h and ωj < νl. Thus JI := ((i, j), (h, l)) is an int-pair in Hm,r

0 . Moreover, it is clear
that any arc segment of γa which connects a marked point in M does not appear in Figure 17.
Therefore νlr(h,l)νj does not have letters from R′ and thus it is also a subword of r′. Hence JI is

also an int-pair in Hm,r′

0 and we obtain a map

J : γ1 ∩ γ2 → H
mγ1 ,mρ(γ2)
0 ∪Hmγ2 ,mρ(γ1)

0

I 7→ JI .

Clearly, different intersections correspond to different int-pairs. Hence the map J is injective. So
what is left to show is that the map J is surjective.

Let J0 = ((i, j), (h, l)) be an int-pair in Hm,r′

0 . Without loss of generality, we assume that

m(i,j) = r′(h,l) with ω−1
i < ν ′−1

h and ωj < ν ′l , where ν ′a = νa if 1 < a < r. Since m and r′ do not

share letters from R′ and m(i,j) = r′(h,l) contains no punctured letters, we have r′(h,l) = r(h,l) and

the letters ωi, ν
′
h, ωj , and ν ′l exist. Since ω−1

i and ν ′−1
h are comparable, by Lemma 4.8(1) their

corresponding arc segments are in the same triangle. Hence if ν ′h
−1 is from R′, then so is ω−1

i .

This is a contradiction because ν ′h
−1 is a letter in (r′)−1 and ω−1

i is in m−1. Hence neither ν ′h
nor ωi is from R′. Similarly, neither ν ′l nor ωj is from R′. In particular, their corresponding arc
segments do not connect to a marked point in M and we have ν ′h = νh and ν ′l = νl. Then the
curve segments corresponding to ωjm(i,j)ωi and νlr(h,l)νh = ν ′lr

′
(h,l)ν

′
h are of the form in Figure 17

(note that the left/right parts are the cases in Figure 10(1), where neither γi connect to marked
points in M). By construction, we see that J0 is in the image of the map J above, as required. 2

For an int-pair J without punctured letters, since AJ ∼= k, the unique one-dimensional
AJ -module is k. Then N(γi,κi)

∼= k as AJ -modules (cf. Notation 2.13). So we have the following
consequence:

Int(γ1, γ2) =
∑

{a,b}={1,2}

∑
J∈H

mγa ,mρ(γb)
0

dimk HomAJ (N(γa,κa), Nρ(γb,κb)). (7.1)

7.3 Tagged intersections at the ends
Recall that P = P(γ1, γ2) = {(t1, t2) ∈ {0, 1}2 | γ1(t1) = γ2(t2) ∈ P} is the set of intersections
between γ1 and γ2 at P. Let

P1 = {(t1, t2) ∈ P | γ1|t1→(1−t1) � γ2|t2→(1−t2)}
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Figure 19. A punctured intersection.

and
T1 = {(t1, t2) ∈ P1 | κ1(t1) 6= κ2(t2)}.

There is an analogue result of Lemma 7.2 for P1.

Lemma 7.3. There is a bijection between P1 and the disjoint union H
mγ1 ,mρ(γ2)
1 ∪Hmγ2 ,mρ(γ1)

1 .

Proof. Each intersection in P1 has the form in Figure 19 with four possible right parts and
{a, b} = {1, 2}. Then the required bijection follows from a proof similar to that of Lemma 7.2. 2

For an intersection I = (t1, t2) ∈ P1, let JI be the corresponding int-pair in H
mγ1 ,mρ(γ2)
1 ∪

H
mγ2 ,mρ(γ1)
1 . Then we have the associated algebra AJI = k[x]/(x2−x) and N(γa,κa)

∼= kκa(ta) and
Nρ(γb,κb)

∼= k1−κb(tb) as AJI -modules (cf. Notation 2.13), for {a, b} = {1, 2}. Using the formula
(2.1), we have

dimk HomAJI
(N(γa,κa), Nρ(γb,κb)) =

{
1 for (t1, t2) ∈ T1,

0 for (t1, t2) /∈ T1.

Hence, we obtain a consequence of Lemma 7.3:

|T1| =
∑

{a,b}={1,2}

∑
J∈H

mγa ,mρ(γb)
1

dimk HomAJ (N(γa,κa), Nρ(γb,κb)). (7.2)

Let

P2 = {(t1, t2) ∈ P | γ1|t1→(1−t1) ∼ γ2|t2→(1−t2), γ1(1− t1) = γ2(1− t2) ∈ P}.

Observe that for each (t1, t2) ∈ P2, (1− t1, 1− t2) is also in P2. We call them twin intersections
(at punctures). Clearly, there is at most one pair of twin intersections in P2. Let

T2 = {(t1, t2) ∈ P2 | κ1(t1) 6= κ2(t2), κ1(1− t1) 6= κ2(1− t2)}.

Suppose that there is a (unique) pair of twin intersections (t1, t2) and (1 − t1, 1 − t2) in P2.
Then both the endpoints of γi are in P and thus γi = ρ(γi). Reversing one of γi if necessary,
assume that γ1 ∼ γ2. So mγ1 = mγ2 = mρ(γ1) = mρ(γ2). Then this pair of twin intersections

induces the int-pairs J1,2 = (mγ1 ,mρ(γ2)) in H
mγ1 ,mρ(γ2)
2 and J2,1 = (mγ2 ,mρ(γ1)) in H

mγ2 ,mρ(γ1)
2 ,
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which are the only ones with two punctured letters. In this case, for any {a, b} = {1, 2} we have
AJa,b

∼= k〈x, y〉/(x2 − x, y2 − y) and N(γa,κa)
∼= kκa(ta),κa(1−ta) and Nρ(γb,κb)

∼= k1−κb(tb),1−κb(1−tb)
as AJa,b-modules (cf. Notation 2.13). Using the formula (2.2), we have

dimk HomAJa,b
(N(γa,κa), Nρ(γb,κb)) =

{
1 for (t1, t2) ∈ T2,

0 for (t1, t2) /∈ T2,

and hence
|T2| =

∑
{a,b}={1,2}

∑
J∈H

mγa ,mρ(γb)
2

dimk HomAJ (N(γa,κa), Nρ(γb,κb)). (7.3)

7.4 Summary
By definition, we have

|T((γ1, κ1), (γ2, κ2))| = |T1|+ |T2|. (7.4)

Combining (7.1), (7.2), (7.3), and (7.4), we have

Int((γ1, κ1), (γ2, κ2)) =
∑

{a,b}={1,2}

∑
J∈Hmγa ,mρ(γb)

dimk HomAJ (N(γa,κa), Nρ(γb,κb))

=
∑

{a,b}={1,2}

dimk HomΛT′ (M
T′

(γa,κa),M
T′

ρ(γb,κb)
)

=
∑

{a,b}={1,2}

dimk HomΛT′ (M
T′

(γa,κa), τM
T′

(γb,κb)
)

= dimk Ext1
C(T′)(X

T′

(γ1,κ1), X
T′

(γ2,κ2)).

Here, the second equality follows from Theorem 2.14, the third one follows from the fact that
M ′ρ(γb,κb)

= τM ′γb,κb (Theorem 5.2), and the last one follows from [Pal08, Lemma 3.3]. This
finishes the proof. 2
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Appendix A. Admissible triangulations

In this section, we give some results about admissible triangulations which will be used in the
paper.

Lemma A.1. There is an admissible triangulation, i.e. every puncture is in a self-folded triangle,
of any marked surface with non-empty boundary.

Proof. If the surface S does not admit any puncture, then any triangulation is admissible. Now
let P be a puncture in S. Use induction on the rank n, starting from the trivial case when
n = 1 and S is a once-punctured monogon. Now suppose n > 2. Consider the curve α with
Int(α, α) = 0 and α(0) = α(1) = M , which encloses a disk with the puncture P . Cutting along α
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Figure A.1. A ♦-flip.

we obtain a surface S/α (cf. the second column of Figure 12) whose rank is n− 1. By inductive
assumption we deduce that S/α, and hence S admits an admissible triangulation. 2

Lemma A.2. Any two admissible triangulations are connected by a sequence of ♦-flips.

Proof. Let Ti, i = 1, 2, be two admissible triangulations. Use induction on the rank n of the
marked surface S, starting with the trivial case when n = 1.

Consider a puncture P , which is connected to exactly one marked point Mi in Ti. If PM1 ∼
PM2, we can delete the self-folded triangles containing P from Ti and reduce to the case with
a smaller rank.

Now suppose that PM1 � PM2. Freeze the self-folded triangle in T1 containing PM1. By
inductive assumption for the remaining surface, we can flip T1 to a triangulation T′1, with local
picture as in the left picture of Figure A.1 with A = M2, B = M1, and the curve PA ∼ PM2.
Then by one ♦-flip we can locally flip T′1 to another triangulation T′′1 such that it contains the
curve PM2 in T2, which becomes the PM1 ∼ PM2 case above. 2

Appendix B. Explicit version of Derksen et al.’s mutations of decorated
representations for biquivers with potential

Let (γ, κ) be a tagged curve in C×(S) and (M,V ) = (MT
(γ,κ), V

T
(γ,κ)) be the corresponding

decorated representation of (QT,WT), defined in Construction 4.18. For a vertex i ∈ QT
0 ,

construct µi(M,V ) = (M ′, V ′) as follows, where we use ↪→ to denote the canonical inclusion
and � the canonical projection.

If there is no dashed loop at i, the subquivers of QT and µi(Q
T) consisting of all arrows

adjacent to i are shown in the second row in Table B.1. Construct µi(M,V ) = (M ′, V ′) as follows.

– For any j 6= i, set M ′j = Mj and V ′j = Vj .

– Define

M ′i =
kerMγ1 ⊕ kerMγ2

Im
(
Mβ1
Mβ2

) ⊕ ImMγ1 ⊕ ImMγ2 ⊕
ker(Mα1 Mα2 )

ImMγ1 ⊕ ImMγ2

⊕ Vi

and

V ′i =
kerMβ1 ∩ kerMβ2

kerMβ1 ∩ kerMβ2 ∩ (ImMα1 + ImMα2)
.

– For any arrow a ∈ QT
1 not incident with i, set M ′α = Mα.

– For any arrow ε ∈ QT
2 , set M ′ε = Mε and V ′ε = Vε.
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Table B.1. The first type of ♦-flips.

– Define M ′[β2α1] = Mβ2Mα1 and M ′[β1α2] = Mβ1Mα2 .

– The map M ′α∗x : M ′i → M ′s(αx), is given by the canonical inclusion ImMγx ↪→ Ms(αx), and

the composition

ker(Mα1 Mα2)

ImMγ1 ⊕ ImMγ2

a−→ ker(Mα1 Mα2) ↪→ Ms(α1) ⊕Ms(α2) �Ms(αx),

where a is a right inverse of the canonical projection

ker(Mα1 Mα2)� (ker(Mα1 Mα2))

(ImMγ1 ⊕ ImMγ2)
.
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Table B.2. The second type of ♦-flips.

– The map M ′β∗x : M ′t(βx) → M ′i , is given by the map Mt(βx)

Mγx−−→ ImMγx and the composition

Mt(βx) ↪→ Mt(β1) ⊕Mt(β2)
b−→ kerMγ1 ⊕ kerMγ2 �

kerMγ1 ⊕ kerMγ2

Im
(
Mβ1
Mβ2

) ,

where b is a left inverse of the inclusion kerMγ1 ⊕ kerMγ2 ↪→ Mt(β1) ⊕Mt(β2).

If there is a dashed loop εi at i, the subquivers of QT and µi(Q
T) consisting of all arrows

adjacent to i are shown in the second row in Table B.2. Construct µi(M,V ) = (M ′, V ′)

as follows.
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– For any j 6= i, set M ′j = Mj and V ′j = Vj .

– Define

M ′i =
kerMγ

ImMβMεi

⊕ kerMγ

ImMβ(1−Mεi)
⊕ Im(Mγ)⊕2 ⊕ kerMεiMα ⊕ ker(1−Mεi)Mα

ImMγ
⊕ Vi

and

V ′i =
kerMβMεi

kerMβMεi ∩ ImMεiMα
⊕ kerMβ(1−Mεi)

kerMβ(1−Mεi) ∩ Im(1−Mεi)Mα
.

– The map V ′εi is given by the identity on the first summand.

– For any arrow a ∈ QT
1 not incident with i, set M ′α = Mα.

– For any arrow ε ∈ QT
2 not incident with i, set M ′ε = Mε and V ′ε = Vε.

– Define M ′[βα] = MβMεiMα.

– The map M ′α∗ : M ′i → M ′s(α) is given by the map (ImMγ)⊕2 (ι ι)−−→ Ms(αx) and the
composition

kerMεiMα ⊕ ker(1−Mεi)Mα

ImMγ

a−→ kerMεiMα ⊕ ker(1−Mεi)Mα ↪→ Ms(α) ⊕Ms(α),

where ι is the inclusion and a is a right inverse of the projections kerMεiMα ⊕
ker(1−Mεi)Mα � (kerMεiMα ⊕ ker(1−Mεi)Mα)/(ImMγ).

– The map M ′β∗ : M ′t(β) → M ′i is given by the map Mt(β)
(Mγ Mγ)t−−−−−−→ (ImMγ)⊕2 and the

composition

M(t(β))
b−→ kerMγ

(π,π′)−−−→ kerMγ

ImMβMεi

⊕ kerMγ

ImMβ(1−Mεi)
,

where b is a left inverse of the inclusion kerMγ ↪→ M(t(β)) and π, π′ are the projections.

– The map M ′εi is given by the identity on (kerMγ)/(ImMβMεi), the identity on
(kerMεiMα)/(ImMγ), the map

(
1 0
0 0

)
: Im(Mγ)⊕2

→ Im(Mγ)⊕2, and Vεi : Vi → Vi.

By [DWZ08, Corollary 10.12], µi(M,V ) is a decorated representation of µi(Q
T,WT) in both

cases.

Remark B.1. The first mutation formula above for (M,V ) is an explicit version of Derksen
et al.’s mutation of decorated representations [DWZ08]. The second mutation formula above is
the composition of two Derksen et al.’s mutations of decorated representations.
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