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Abstract In this paper, we present a discontinuous Galerkin method with staggered
hybridization to discretize a class of nonlinear Stokes equations in two dimensions. The
utilization of staggered hybridization is new and this approach combines the features of tra-
ditional hybridization method and staggered discontinuous Galerkin method. The main idea
of our method is to use hybrid variables to impose the staggered continuity conditions instead
of enforcing them in the approximation space. Therefore, our method enjoys some distinctive
advantages, including mass conservation, optimal convergence and preservation of symme-
try of the stress tensor. We will also show that, one can obtain superconvergent and strongly
divergence-free velocity by applying a local postprocessing technique on the approximate
solution. We will analyze the stability and derive a priori error estimates of the proposed
scheme. The resulting nonlinear system is solved by using the Newton’s method, and some
numerical results will be demonstrated to confirm the theoretical rates of convergence and
superconvergence.
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1 Introduction

This paper is devoted to the design and analysis of a newdiscontinuousGalerkin (DG)method
based on a staggered hybridization technique for a class of nonlinear Stokes problems. We
will present our ideas in the two-dimensional case for the simplicity of presentation, but
our method can be applied to the three-dimensional case. Let Ω be a bounded and simply
connected domain in R

2 with polygonal boundary ∂Ω , where ∂Ω = ∂ΩD ∪ ∂ΩN such that
∂ΩD �= ∅ and ∂ΩD ∩ ∂ΩN = ∅. We denote u(x) = (u1(x), u2(x))T as the velocity and μ

as the viscosity of a given fluid. In general, μ = μ(x, u(x),∇u(x)) ≥ μ0 > 0 is a positive
scalar function, where μ0 is a positive constant. Given a source term f (x) ∈ [L2(Ω)]2
and boundary data gD(x) ∈ [H1/2(∂ΩD)]2 and gN (x) ∈ [H− 1

2 (∂ΩN )]2, we study the
following nonlinear Stokes system problem:

−div (μ ε(u) − p I2) = f inΩ,

div u = 0 inΩ,

u = gD on ∂ΩD,

(μ ε(u) − p I2)n = gN on ∂ΩN ,

(1)

where ε(u(x)) = ∇u(x) + ∇u(x)T

2
is the strain tensor, p(x) is the pressure, n is the outward

unit normal vector on ∂Ω , I2 is the identity matrix and div denotes the row-wise divergence.
To ensure the existence of a unique solution, we assume that the zero average condition for the

pressure
∫

Ω

p dx = 0 and the boundary data gD and gN satisfy the following compatibility

conditions (see [2] for details):
∫

∂ΩD

gD · n ds = 0 and
∫

Ω

f dx +
∫

∂ΩN

gN ds = 0.

In this paper, we assume that μ = μ(x, ε(u)) is a variable function depends on the strain
tensor ε(u).

For solving fluid flow problems, many variants of discontinuous Galerkin (DG) methods
with different features have been developed [15,17,18,25,27,30].Among them, the staggered
discontinuous Galerkin (SDG) method is developed for the Stokes equations in [21] and the
Navier–Stokes equations in [5,11] which combines some good properties of finite element
methods and standard DGmethods through the use of staggered grid. This edge-based (face-
based in 3D) staggered grid used in the SDG method is different from the vertex based
dual grid used in finite difference method (see [1]), as staggered continuities are given to
the approximate variables when the edge-based staggered grid is used. In particular, normal
component of velocity is continuous on a subset of edges and the pressure is continuous on
the rest of the edges. This staggered continuity property naturally gives the interelement flux
terms, so it is distinctive that, when compared to most of the other DGmethods, no numerical
flux or penalty parameter is needed. Besides the above advantages, the SDG method enjoys
an optimal order of convergence and, for a variety of applications, some other nice properties
including local and global conservation, energy conservation, low dispersion error, mass
conservation and suitability for adaptive refinement (see [7–9,21] formore details).Moreover,
a relationship between the SDGmethod and the hybridizable discontinuous Galerkin (HDG)
method has been shown in [6]. From this point of view, the SDG method shares some
good properties with the HDG method, namely, the postprocessing and superconvergence.
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Recently, a superconvergence HDG method is developed with the idea of M-decomposition
[14].

Since many types of fluid are isotropic, such as ordinary gases and liquids, they lead to the
symmetry of the stress tensor. However, the SDG formulation hinders the preservation of this
symmetry, in particular, as the staggered continuities are defined in the finite element spaces,
so it is not easy to construct symmetric finite element basis functions for the stress tensor.
Therefore, we will develop a new DG method, which can retain the distinctive advantages
of the SDG method and preserve the properties of the nonlinear Stokes equations (1), espe-
cially the symmetry of the stress tensor. These can be achieved by a technique of staggered
hybridization, which uses some hybrid variables to enforce the staggered continuities on a
staggered mesh.

Next, we discuss two distinctive features of our proposed method. First of all, we consider
the second equation in (1), which is often referred as the incompressibility condition. In other
words, it is an equation describing the conservation of mass. We emphasize that upon the
use of staggered continuities, the resulting discrete system can preserve the structures of the
continuous problem and the conservation ofmass property (see [21] for details). Furthermore,
the postprocessing technique in [6] can be used and shows that the postprocessed velocity
is exactly divergence free. Secondly, we consider the first equation of (1), and we see that
the stress tensor is symmetric. So, extra symmetry condition is needed to be imposed on the
system. One may choose to use a weak symmetric approach, but then the preservation of the
symmetry of the stress tensor is also weakened. Therefore, in order to enhance the accuracy
of numerical solution, we will propose a DG method that can give an exactly symmetric
approximation for the stress tensor and retain the nice properties of the SDGmethod bymeans
of hybridization, which has been successfully applied in many DG methods (for example,
[6,16,26]). By using such approach, the construction of basis functions are completely local,
and the continuity of solution is enforced bymeans of hybridization. Besides the symmetry of
the stress tensor, the idea for preserving the nonlinearity comes from the viscosity coefficient
μ can also be inherited from [10], which considers solving the nonlinear elliptic problems
with varying coefficient functions.

We remark here that themajor differences between the SDGmethod and the new proposed
DG method are the strongly enforced symmetry of the stress tensor in the finite element
space, and the staggered continuity conditions are now relaxed in the finite element spaces,
so hybrid variables will be used to retain the staggered continuities. Besides the use of
hybridization, there are many other successful examples for solving the varying viscosity
problems. For example, in [19], the focus is put onto the construction of preconditioner for
the discrete system of equations. Moreover, an emphasis is placed on the situation when
both the viscosity and the density are considered as variable functions for the incompressible
Navier–Stokes equations in [23]. Furthermore, we remark that the model (1) can be applied
to many physical problems, for example, the ice sheet dynamics [20], mantle convection [29]
and fluid dynamics involving non-Newtonian fluids [13], which motivate the study in this
paper.

The organization of the paper is as follows. In Sect. 2, we present the discrete formulation
of our model with a detailed explanation of the staggered mesh, and the solution algorithm is
also included. As our proposed method inherits several staggered properties from the SDG
method, so after the presentationof the numerical scheme, someSDGrelated analytical results
will be stated in Sect. 3. These results are important and can be seen as the preliminaries of the
stability and convergence analysis of the proposed scheme in Sect. 4. Numerical examples
will be illustrated in Sect. 5 to demonstrate the convergence order and accuracy of themethod.
Finally, in Sect. 6, we conclude the paper.
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2 Numerical Scheme

In this section, we will construct a DG method with staggered hybridization so that we can
achieve staggered continuity for the numerical solution. At the same time, we can preserve
the symmetry of the numerical stress and obtain the nice properties of the SDG method.

2.1 Weak Formulation

To simplify the notation, we writeμ(ε(u)) to representμ(x, ε(u)) in the remaining sections.
Then, we introduce some auxiliary variables:

S = ε(u),

Sμ = μ(ε(u)) ε(u),

so the problem (1) can be rewritten as:

S = ε(u) inΩ, (2a)

Sμ = μ(S)S inΩ, (2b)

− div Sμ + ∇ p = f inΩ, (2c)

div u = 0 inΩ, (2d)

u = gD on ∂ΩD, (2e)

σn = gN on ∂ΩN , (2f)

where σ = μ(ε(u)) ε(u)− p I2 and the zero average condition for the pressure
∫
Ω

p dx = 0
is imposed. In the above system, we can see that the symmetry of the strain tensor and the
stress tensor is highly emphasized, so we need to construct a stable numerical scheme which
can preserve this symmetry. Since many discontinuous Gelerkin (DG) methods only give
weakly symmetric numerical stress tensor when the variational formulation with weakly
symmetric constraint is considered, so here we consider a variational formulation with the
strong symmetry approach. We further introduce

W = [L2(Ω)]2×2
sym ,

U = [H1(Ω)]2,
P = L2(Ω),

where [L2(Ω)]2×2
sym denotes a subspace of [L2(Ω)]2×2, consisting of symmetric matrices

only. Then, the variational form corresponding to system (2) is to find (u, S, Sμ, p) ∈ U ×
W × W × P such that

(S, φ)0,Ω − (ε(u), φ)0,Ω = 0 ∀φ ∈ W,

(Sμ,ψ)0,Ω − (μ(S)S, ψ)0,Ω = 0 ∀ψ ∈ W,

(− div Sμ, v)0,Ω + (∇ p, v)0,Ω = ( f , v)0,Ω ∀v ∈ U,

(div u, q)0,Ω = 0 ∀q ∈ P,

where (·, ·)0,Ω denotes the usual L2(Ω) inner product, the pressure p satisfies the zero
average condition and the boundary conditions are assumed.

For the analysis of stability and optimal order of convergence of our numerical scheme
with respect to the L2-norm, we follow [4] and state two important assumptions on the
continuous problem (1) as follows: we define a mapping Aμ : [L2(Ω)]2×2 → [L2(Ω)]2×2
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by Aμ(φ) = μ(φ)φ ∀φ ∈ [L2(Ω)]2×2, and assume that this mapping Aμ satisfies two
additional conditions. The first condition is the strongly monotone condition, which can be
stated as follows:∫

Ω

(
Aμ(φ) − Aμ(ψ)

)
: (φ − ψ) dx ≥ CM

∫
Ω

|φ − ψ |2 dx, (3)

for any φ,ψ ∈ [L2(Ω)]2×2. Here, CM is a positive constant independent of the mesh size
h. Besides the strongly monotone condition, Aμ is also assumed to be Lipschitz continuous.
In other words, there exists a positive constant CL , independent of the mesh size h, such that

‖Aμ(φ) − Aμ(ψ)‖0,Ω ≤ CL‖φ − ψ‖0,Ω . (4)

The strongly monotone and Lipschitz continuity conditions of the mapping Aμ are essential
for the unique solvability of the continuous problem (1) (see [12] and [24] for more general
theory).

2.2 Staggered Mesh

We follow [9] to define the triangulation as follows. The domain Ω is first triangulated into
an initial shape regular triangulation Tu , and we assume there is no hanging nodes in Tu . Fu

andF0
u are defined as the sets of all edges and interior edges of Tu , respectively.We introduce

the notation S(ν) to denote the element in Tu with ν as its centroid. The element S(ν) is then
further divided into three subtriangles by connecting ν to its vertices. The final triangulation
and the set of new edges formed after this process are denoted as T and Fp , respectively.

To clarify the notation with respect to the edges, we define F = Fu ∪ Fp to be the set
of all edges in T and F0 = F0

u ∪ Fp to be the set of all interior edges in T . Moreover,
we introduce the notation FD

u = F0
u ∪ ∂ΩD and FN

p = Fp ∪ ∂ΩN , which will be used in
our discrete formulation. An illustration of the final triangulation T for a square domain and
element S(ν) can be found in Fig. 1.

The main feature of the SDG method is the continuities of the finite element solutions
uh and σhn over the edges FD

u and FN
p , respectively. However, in our method introduced

in this paper, we relax this condition in the finite element spaces and we are ready to state
the definitions of the corresponding finite element spaces that will be used in the discrete
formulation of our method. Let k be a non-negative integer and τ ∈ T be an element, the
notation Pk(τ ) and Pk(e) are used to denote the space of polynomials with degree at most
k on some element τ and edge e, respectively. Then the finite element spaces for velocity,
gradient and pressure are defined in the order as

Uh = {v : v|τ ∈ Pk(τ ),∀τ ∈ T },
Wh = {φ : φ|τ ∈ [Pk(τ )]2×2,∀τ ∈ T , φ = φT },
Ph = {q : q|τ ∈ Pk(τ ),∀τ ∈ T }.

From the definition of the finite element space for gradient, Wh, we can see that every
numerical variable φh ∈ Wh is always strong symmetric.

Before we define the finite element spaces for the hybrid variables, we first define some
jump operators over an edge e. For an element τ ∈ T , we define nτ as the outward unit
normal vector on ∂τ. And this notation will be simplified to n if there is no confusion. For
an interior edge e ∈ F0, there are two elements τ+, τ− ∈ T sharing this edge e. n+ and
n− are denoted as the unit normal vectors pointing from τ+ to τ− and pointing from τ− to
τ+, respectively. For this interior edge e, we fix ne as one of n+ and n−. For a boundary

123



1552 J Sci Comput (2018) 76:1547–1577

Fig. 1 An illustration of the
triangulation T on a square
domain, where the red solid
edges belong to FD

u and the blue
dashed edges belong to FN

p . The
shaded area in the bottom right
corner represents the element
S(ν). Note that both ∂ΩD and
∂ΩN are non-empty (Color
figure online)

edge e ∈ F \ F0, the unit normal vector ne is defined as pointing outside Ω. Then the jump
operator [v]|e for a vector-valued function v over an edge e is defined as

[v]|e = (n+ · ne)v+ + (n− · ne)v−,

where v+ and v− are the values of v on e taking from τ+ and τ−, respectively. For a
matrix-valued function φ, the corresponding jump operator [φn]|e over an edge e is defined
as

[φn]|e = φ+n+ + φ−n−,

where the meaning of φ+ and φ− are similar to v+ and v−.
Then, the finite element spaces for the hybrid variables are defined as

Mh
u = {φ̂ : φ̂|e ∈ Pk(e),∀e ∈ FD

u },
Mh

p = {̂v : v̂|e ∈ Pk(e),∀e ∈ FN
p }.

The idea of our DG method is similar to the SDG method. However, instead of imposing
staggered continuity of the approximate variables in the definition of finite element spaces, we
now relax these constraints in the finite element space, and approximate u, S, Sμ and p with
uh ∈ [Uh]2, Sh ∈ Wh , Sμ

h ∈ Wh and ph ∈ Ph , respectively. Meanwhile, the approximation
of the velocity uh |FN

p
and the stress tensor σhne|FD

u
= (Sμ

h − ph I2)ne|FD
u
are shifted to the

hybrid variables as ûh ∈ [Mh
p]2 and σ̂ h ∈ [Mh

u]2, respectively. The continuities of uh on

FD
u and σhne on FN

p are imposed as the following extra continuity conditions:
∫
e
[uh] · φ̂h ds = 0, ∀φ̂h ∈ [Mh

u]2, ∀e ∈ FD
u , (5)

∫
e
[σhn] · v̂h ds = 0, ∀̂vh ∈ [Mh

p]2, ∀e ∈ FN
p . (6)
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On the boundary edge e ∈ ∂ΩD, the value of uh taken from the outside of Ω is considered
as gD . Similarly, gN is considered as the value of σhn = (Sμ

h − ph I2)n taken from the
outside of Ω on boundary edge e ∈ ∂ΩN . Therefore, when e is a boundary edge, the above
continuity conditions become the L2 projections of the given boundary values.

2.3 Discrete System

Wecan then derive discrete formulation of a hybridizedDGmethodwith staggered continuity
based on system (2). First, wemultiply the Eq. (2a) by test function φh ∈ Wh , and integrating
over τ ∈ T . Using integration by parts, we have

∫
τ

S : φh dx +
∫

τ

u · div(φh) dx −
∫

∂τ

u · (φhn) ds = 0. (7)

Next, a test function ψh ∈ Wh is multiplied on both sides of Eq. (2b) and integrate over
τ ∈ T , we obtain ∫

τ

Sμ : ψh dx −
∫

τ

μ(S)S : ψh dx = 0. (8)

Similarly, for the Eq. (2c), we multiply a test function vh ∈ [Uh]2 and integrate over each
τ ∈ T . Integration by parts yields∫

τ
Sμ : ∇vh dx −

∫
∂τ

(Sμn) · vh ds −
∫
τ
p div(vh) dx +

∫
∂τ

(pn) · vh ds =
∫
τ
f · vh dx .

(9)

Finally, we multiply a test function qh ∈ Ph on both sides of Eq. (2d) and integrate over
τ ∈ T ,

−
∫

τ

u · ∇qh dx +
∫

∂τ

u · (qhn) ds = 0. (10)

Then we replace u, S, Sμ and p by the approximate solutions in the above weak formu-
lation, we have∫

τ

Sh : φh dx +
∫

τ

uh · div(φh) dx −
∫

∂τ∩FD
u

uh · (φhn) ds −
∫

∂τ∩FN
p

ûh · (φhn) ds = 0,

(11a)∫
τ

Sμ
h : ψh dx −

∫
τ

μ(Sh)Sh : ψh dx = 0, (11b)
∫

τ

Sμ
h : ∇vh dx −

∫
∂τ∩FN

p

(Sμ
h n) · vh ds −

∫
τ

ph div(vh) dx

+
∫

∂τ∩FN
p

(phn) · vh ds −
∫

∂τ∩FD
u

(n · ne)σ̂ h · vh ds =
∫

τ

f · vh dx, (11c)

−
∫

τ

uh · ∇qh dx +
∫

∂τ∩FD
u

uh · (qhn) ds +
∫

∂τ∩FN
p

ûh · (qhn) ds = 0, (11d)

for any τ ∈ T , and test functions (φh, ψh, vh, qh) ∈ Wh × Wh × [Uh]2 × Ph .

Then summing all the equations of system (11) over all elements τ ∈ T , with the extra
staggered continuity conditions (5) and (6), the desired discrete formulation for (2) can be
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rewritten as: find (uh, Sh, S
μ
h , ph, ûh, σ̂ h) ∈ [Uh]2 × Wh × Wh × Ph × [Mh

p]2 × [Mh
u]2

such that

(Sh, φh)0,Ω − B∗
h (uh, φh) − Dh (̂uh, φh) = 0, (12a)

(Sμ
h , ψh)0,Ω = (μ(Sh)Sh, ψh)0,Ω, (12b)

Bh(S
μ
h , vh) − Ch(ph, vh) − D∗

h(σ̂ h, vh) = ( f , vh)0,Ω, (12c)

C∗
h (uh, qh) + Dh (̂uh, qh I2) = 0, (12d)

D∗
h(φ̂h, uh) = 0, (12e)

Dh (̂vh, S
μ
h − ph I2) = 0, (12f)

for any test functions (φh, ψh, vh, qh, φ̂h, v̂h) ∈ Wh ×Wh ×[Uh]2×Ph ×[Mh
u]2×[Mh

p]2.
The zero average condition for the approximate solution ph ,

∫
Ω

ph dx = 0 is also imposed
to ensure the uniqueness of the solution. In the above formulation, the bilinear forms are
defined as:

Bh(φh, vh) =
∫

Ω

φh : ∇hvh dx −
∑
e∈FN

p

∫
e
[φhn · vh] ds, (13a)

B∗
h (vh, φh) = −

∫
Ω

vh · divh(φh) dx +
∑
e∈FD

u

∫
e
[φhn · vh] ds, (13b)

Ch(qh, vh) =
∫

Ω

qhdivhvh dx −
∑
e∈FN

p

∫
e
[qhn · vh] ds, (13c)

C∗
h (vh, qh) = −

∫
Ω

vh · ∇hqh dx +
∑
e∈FD

u

∫
e
[qhn · vh] ds, (13d)

Dh (̂vh, φh) =
∑
e∈FN

p

∫
e
v̂h · [φhn] ds, (13e)

D∗
h(φ̂h, vh) =

∑
e∈FD

u

∫
e
φ̂h · [vh] ds, (13f)

where [φn · v]|e = (φ+n+) · v+ + (φ−n−) · v−,∇h and divh are the elementwise gradient
operator and elementwise divergence operator, respectively. Here, we remark that the bilinear
form Ch(qh, vh) is closely related to Bh(φh, vh). It can be easily verified that

Ch(qh, vh) =
∫

Ω

qhdivhvh dx −
∑
e∈FN

p

∫
e
[qhn · vh] ds

=
∫

Ω

qh I2 : ∇hvh dx −
∑
e∈FN

p

∫
e
[(qh I2)n · vh] ds = Bh(qh I2, vh)

Similarly, C∗
h (vh, qh) = −

∫
Ω

vh · ∇hqh dx +
∑
e∈FD

u

∫
e
[qhn · vh] ds

= −
∫

Ω

vh · divh(qh I2) dx +
∑
e∈FD

u

∫
e
[(qh I2)n · vh] ds = B∗

h (vh, qh I2).

Therefore, in some situations, wewill use Bh(qh I2, vh) instead ofCh(qh, vh)without further
explanation.
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2.4 Solution Algorithm

After an introduction of some matrix representations of the bilinear forms, we can present
the equations of (12) in a more compact way. We use the notation mvh ,mφh ,mqh ,m v̂h and
mφ̂h

to denote the dimensions of [Uh]2,Wh,Ph, [Mh
p]2 and [Mh

u]2, respectively.
Furthermore, we let the basis functions of the corresponding finite element spaces as

{vi }mvh
i=1 , {φi }mφh

i=1 , {qi }mqh
i=1 , {̂vi }m v̂h

i=1 and {φ̂i }
mφ̂h
i=1 , respectively. Sowecanwrite the approximate

solutions as a linear combinations of the basis functions as below

uh =
mvh∑
i=1

uivi , Sh =
mφh∑
i=1

Siφi , Sμ
h =

mφh∑
i=1

Sμ
i φi ,

ph =
mqh∑
i=1

piqi , ûh =
m v̂h∑
i=1

ûi v̂i , σ̂ h =
mφ̂h∑
i=1

σ̂ i φ̂i .

Then, we define the matrix representations of the bilinear forms as follows:

(B)i j = Bh(φ j , vi ), (B∗)i j = B∗
h (v j , φi ),

(C)i j = Ch(q j , vi ), (C∗)i j = C∗
h (v j , qi ),

(D)i j = Dh (̂v j , φi ), (D∗)i j = D∗
h(φ̂ j , vi ),

(E)i j = Dh (̂v j , qi I2), (M)i j = (φ j , φi )0,Ω .

For the purpose of clarification, we will use the notation #»u h to represent the coefficient
vector (u1, u2, . . . , umvh

)T of the finite element solution uh , and the notation is similar for
the remaining approximate solutions. Note, using integration by parts, we can show that
Bh(φ j , vi ) = B∗

h (vi , φ j ), so these bilinear forms are adjoint to each other and we have
BT = B∗ and CT = C∗. Then, the equations in (12) can be rewritten into the following
algebraic system of equations:

M
#»

S h − BT #»u h − D
#»

û h = 0

M
#  »

Sμ
h = F(

#»

S h)

B
#  »

Sμ
h − C #»ph − D∗ #»

σ̂ h = f h

CT #»u h + E
#»

û h = 0

(D∗)T #»u h = 0

DT #  »

Sμ
h − ET #»ph = 0

(14)

where f h =
(

( f , v1)0,Ω, ( f , v2)0,Ω, . . . , ( f , vmvh
)0,Ω

)T

and similar for gh,D and gh,N .

Here, we emphasize that F(
#»

S h) is a vector-valued function depends on the approximate

solution Sh =
mφh∑
i=1

Siφi and is defined entrywise as

F(
#»

S h) j = (μ(Sh)Sh, φ j )0,Ω .

Here, we eliminate the variable
#  »

Sμ
h by rewriting it as

#  »

Sμ
h = M−1F(

#»

S h).
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Then, the matrix system becomes

⎛
⎜⎜⎜⎜⎝

M −BT 0 0 −D
BM−1F 0 −C −D∗ 0

0 CT 0 0 E
0 (D∗)T 0 0 0

DT M−1F 0 −ET 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

#»

S h
#»u h
#»ph
#»

σ̂ h
#»

û h

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
f h
0
0
0

⎞
⎟⎟⎟⎟⎠ (15)

where F is a matrix function depends on
#»

S h .
It is clear that F(

#»

S h) is a nonlinear function, so we choose to use the Newton’s method
for solving the resulting system (15). Then, we introduce the notation of variables for the
iterations of the Newton’s method as follows:

In the n-th iteration, let ynh =

⎛
⎜⎜⎜⎜⎝

#»

S n
h

#»u n
h

#»pn
h

#»

σ̂ n
h

#»

û n
h

⎞
⎟⎟⎟⎟⎠ be the solution vector and

H( ynh) =

⎛
⎜⎜⎜⎜⎝

M
#»

S n
h − BT #»u n

h − D
#»

û n
h

BM−1F(
#»

S n
h) − C #»pn

h − D∗ #»

σ̂ n
h − f h

CT #»u n
h + E

#»

û n
h

(D∗)T #»u n
h

DT M−1F(
#»

S n
h) − ET #»pn

h

⎞
⎟⎟⎟⎟⎠

be the residual vector. The Jacobian matrix of H( ynh) is

J ( ynh) =

⎛
⎜⎜⎜⎜⎝

M −BT 0 0 −D
BM−1F′( #»

S n
h) 0 −C −D∗ 0

0 CT 0 0 E
0 (D∗)T 0 0 0

DT M−1F′( #»

S n
h) 0 −ET 0 0

⎞
⎟⎟⎟⎟⎠

where F′( #»

S n
h) is the derivative of F(

#»

S n
h) with respect to

#»

S n
h , and F′( #»

S n
h) is defined elemen-

twise as

F′( #»

S n
h)i j = (μ(Snh )φ j , φi )0,Ω +

(
∂μ(Snh )

∂Snj
Snh , φi

)

0,Ω

.

We remark that one can implement the inversion of the matrix J ( ynh) efficiently by hybridiza-
tion.

Finally, our algorithm can be concluded as follows:
Step 1 Seek an initial guess y0h for the Newton’s method by solving (15) with μ(Sh) = 1,

i.e., BM−1F and DM−1F are replaced by B and D, respectively, in the matrix system (15).
Step 2 Solve the nonlinear system (15) by theNewton’smethod. In other words, we update

the solution iteratively as

yn+1
h = ynh − J ( ynh)

−1H( ynh).

Step 3 The iterative process stops until the successive error between un+1
h and unh is small

enough.
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2.5 Postprocessing

Due to the relationship between the SDG method and the HDG method (see [6] for details),
the SDG method enjoys a superconvergence error estimates of the velocity variable after
postprocessing of the approximate solution uh . As we have mentioned that all the variables
in our method converges optimally with respect to the L2-norm, so now the postprocessing
results can further improve the velocity solution and the postprocessed solution converges
with order k + 2 by using polynomials of degree k ≥ 1 for approximation.

The postprocessing procedure is performed locally, so the computation is in an efficient
element-by-element fashion. Hence, the computational cost is smaller than solving the orig-
inal solution. Here, we remark that the postprocessed velocity u∗

h is divergence-free and is
H(div)-conforming, this nice property is suitable for linearizing the Navier–Stokes equations
and deriving a consistent and stable numerical scheme for solving the equations (see [5]).

In our method, the local postprocessing is performed on each S(ν) such that for any edge
e ∈ ∂S(ν), the postprocessed velocity u∗

h ∈ [Pk+1(S(ν))]2 satisfies
∫
e
(u∗

h − uh) · nφ̂h ds = 0 ∀φ̂h ∈ Pk(e),

and ∫
e

(
(n × ∇)(u∗

h) − n × ({LT
h }n)

)
(n × ∇)φ̂h ds = 0 ∀φ̂h ∈ Pk(e).

Here, n× ∇ = n2∂1 − n1∂2, Lh is the numerical solution of velocity gradient L and {LT
h } is

the average of the transpose of Lh on the edge e, i.e., {LT
h } = (LT

h )+ + (LT
h )−

2
. Moreover,

u∗
h also satisfies

∫
S(ν)

(u∗
h − uh) · ∇vh dx = 0 ∀vh ∈ Pk(S(ν)),

and ∫
S(ν)

(∇ × u∗
h − Lh)vhB dx = 0 ∀vh ∈ Pk−1(S(ν)),

where Lh = (Lh)21 − (Lh)12 and B is the bubble function defined by the product of the
barycentric coordinates of vertices of S(ν).

We remark that as Lh is not a fundamental variable in (12), so it cannot be obtained directly
from our proposed scheme and a posteriori differentiation on uh is performed to acquire the
numerical gradient.

2.6 On the Slip Boundary Condition

In this section, we present a modification of our numerical scheme when the slip boundary
condition is imposed in the system (1). In particular, we consider the system

− div (μ ε(u) − p I2) = f inΩ,

div u = 0 inΩ,

u · n = 0 on ∂Ω,

(μ ε(u)n) · t = α u · t on ∂Ω,

(16)

123



1558 J Sci Comput (2018) 76:1547–1577

where t is the unit tangential vector defined on ∂Ω and α is a constant. The corresponding
first order form is written as

S = ε(u) inΩ, (17a)

Sμ = μ(S)S inΩ, (17b)

− div Sμ + ∇ p = f inΩ, (17c)

div u = 0 inΩ, (17d)

u · n = 0 on ∂Ω, (17e)

(μ ε(u)n) · t = α u · t on ∂Ω. (17f)

There are multiple ways to impose the boundary conditions (17e) and (17f), and we will
consider a standard approach. In particular, we will impose the condition (17e) in the approx-
imation space for u and the condition (17f) by the variational formulation. To impose the
condition (17f), wemultiply the equation (17c) by a test function vh and integrate the resulting
equation on a triangle τ to get
∫

τ

Sμ : ∇vh dx −
∫

∂τ

(Sμn) · vh ds −
∫

τ

p div(vh) dx +
∫

∂τ

(pn) · vh ds =
∫

τ

f · vh dx .

where we assume one of the edges of τ lies on the domain boundary ∂Ω . We further write
the above equation as

∫
τ

Sμ : ∇vh dx −
∫

∂τ\∂Ω

(Sμn) · vh ds −
∫

τ

p div(vh) dx +
∫

∂τ\∂Ω

(pn) · vh ds

−
∫

∂τ∩∂Ω

(Sμn) · vh ds +
∫

∂τ∩∂Ω

(pn) · vh ds =
∫

τ

f · vh dx .

(18)

Since the test function vh satisfies vh · n = 0 on ∂Ω , we have∫
∂τ∩∂Ω

(pn) · vh ds =
∫

∂τ∩∂Ω

(pn) · (vh · n)n ds +
∫

∂τ∩∂Ω

(pn) · (vh · t)t ds = 0,

and ∫
∂τ∩∂Ω

(Sμn) · vh ds =
∫

∂τ∩∂Ω

(Sμn) · (vh · n)n ds +
∫

∂τ∩∂Ω

(Sμn) · (vh · t)t ds

=
∫

∂τ∩∂Ω

(Sμn) · (vh · t)t ds.

So, we can write (18) as∫
τ

Sμ : ∇vh dx −
∫

∂τ\∂Ω

(Sμn) · vh ds −
∫

τ

p div(vh) dx +
∫

∂τ\∂Ω

(pn) · vh ds

−
∫

∂τ∩∂Ω

(Sμn) · (vh · t)t ds =
∫

τ

f · vh dx .

(19)

Hence, we can impose the boundary condition (17f) in the following way
∫

τ

Sμ : ∇vh dx −
∫

∂τ\∂Ω

(Sμn) · vh ds −
∫

τ

p div(vh) dx +
∫

∂τ\∂Ω

(pn) · vh ds

−
∫

∂τ∩∂Ω

α(u · t)(vh · t) ds =
∫

τ

f · vh dx .

(20)
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3 Analysis for the Discrete Problem

Before we start the proof of the stability and the optimal convergence of the proposed numeri-
cal scheme, due to the staggered continuity conditions inherited from the SDGmethod, many
nice properties are retained and we will introduce them in this section.

3.1 SDG Results

For simplicity, we assume ∂ΩD = ∂Ω and gD = 0 in our proof. Nevertheless, we remark
here that our method can be extended to mixed boundary cases. In the SDGmethod, the finite
element spaces with staggered continuities are defined as

Uh
c =

{
v : v|τ ∈ Pk(τ ),∀τ ∈ T , v is continuous across e ∈ F0

u , v|∂Ω = 0
}

,

Wh
c =

{
φ : φ|τ ∈ [Pk(τ )]2,∀τ ∈ T , φ · ne is continuous across e ∈ Fp

}
,

Ph
c =

{
q : q|τ ∈ Pk(τ ),∀τ ∈ T , q is continuous across e ∈ Fp

}
,

for the numerical solution of velocity, gradient and pressure, respectively.
We can observe that after imposing the staggered continuity conditions (5) and (6), the

approximate velocity uh and stress tensor σh = Sμ
h − ph I2 in our numerical scheme (12)

have the property that uh ∈ [Uh
c ]2 and σh ∈ [Wh

c ]2. Therefore, we can make use of the SDG
related theorems in our analysis.

We first define some norms in the finite element spaces mentioned above. In the space
Uh
c , we define the discrete L2-norm ‖ · ‖X and the discrete H1-norm ‖ · ‖Z as the following:

‖vh‖2X =
∫

Ω

v2h dx +
∑
e∈F0

u

he

∫
e
v2h ds

‖vh‖2Z =
∫

Ω

|∇hvh |2 dx +
∑
e∈Fp

h−1
e

∫
e
[vh]2 ds.

Here, the jump [vh]|e for a scalar-valued function vh ∈ Uh
c across an edge e is defined as

[vh]|e = (n+ · ne)v+
h + (n− · ne)v−

h .

Similarly, the notation ‖ · ‖X ′ and ‖ · ‖Z ′ denotes the discrete L2-norm and H1-norm respec-
tively in the space Wh

c . The definition is

‖φh‖2X ′ =
∫

Ω

|φh |2 dx +
∑
e∈Fp

he

∫
e
(φh · n)2 ds,

‖φh‖2Z ′ =
∫

Ω

(∇h · φh)
2 dx +

∑
e∈F0

u

h−1
e

∫
e
[φh · n]2 ds,

where the jump [φh · n] for a vector-valued function φh ∈ Wh
c across an edge e is defined as

[φh · n]|e = φ+
h · n+ + φ−

h · n−.

Note, the discrete L2-norm ‖ · ‖X ′ inWh
c is equivalent to the standard L2-norm ‖ · ‖0,Ω (see

[8] for details), i.e., for any φh ∈ Wh
c , there exists a positive constant kW , independent of
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the mesh size h, such that

kW ‖φh‖X ′ ≤ ‖φh‖0,Ω ≤ ‖φh‖X ′ . (21)

Last, we define the norm ‖ · ‖P in Ph
c as

‖qh‖P =
∫

Ω

q2h dx +
∑
e∈Fp

he

∫
e
q2h ds.

Similarly, the discrete L2-norm ‖ · ‖P in Ph
c is equivalent to the standard L2-norm ‖ · ‖0,Ω ,

i.e., for any qh ∈ Ph
c , there exists a positive constant kP , independent of the mesh size h,

such that

kP‖qh‖P ≤ ‖qh‖0,Ω ≤ ‖qh‖P . (22)

Herewe remark that the approximate solution uh = (uh,1, uh,2)
T in our numerical scheme

lies in the product space [Uh
c ]2, but we still use the notation ‖ · ‖X to denote the discrete L2-

norm in [Uh
c ]2 to avoid redundant notation. And the definition is

‖uh‖2X = ‖uh,1‖2X + ‖uh,2‖2X ,

for which norm is used will be stated clearly in the context. Similarly, for the other discrete
norms in different spaces, we use the same way to define the corresponding discrete norms
in product spaces.

We are now ready to state the important theorems related to the SDG method, and the
details of proof can be found in [9].

First, for any vh ∈ Uh
c and φh ∈ Wh

c , we can define two bilinear forms as

bh(φh, vh) =
∫

Ω

φh · ∇hvh dx −
∑
e∈Fp

∫
e
φh · n[vh] ds,

b∗
h(vh,φh) = −

∫
Ω

vh · divh(φh) dx +
∑
e∈F0

u

∫
e
vh[φh · n] ds,

then we can observe that for any vh = (vh,1, vh,2)
T ∈ [Uh

c ]2 and φh = (φh,1,φh,2)
T ∈

[Wh
c ]2, the bilinear form Bh(φh, vh) coincides with bh(φh,i , vh,i ) and B∗

h (vh, φh) coincides
with b∗

h(vh,i ,φh,i ) in a way that

Bh(φh, vh) =
2∑

i=1

bh(φh,i , vh,i ),

B∗
h (vh, φh) =

2∑
i=1

b∗
h(vh,i ,φh,i ).

Therefore, the nice properties of bh(φh,i , vh,i ) and b∗
h(vh,i ,φh,i ) can be extended to the

bilinear forms Bh(φh, vh) and B∗
h (vh, φh). For any vh ∈ [Uh

c ]2 and φh ∈ [Wh
c ]2, these

properties can be summarized as

1. (Discrete adjoint condition)

Bh(φh, vh) = B∗
h (vh, φh). (23)
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2. (Continuity conditions)

|Bh(φh, vh)| ≤ ||φh ||X ′ ||vh ||Z , (24a)

|B∗
h (vh, φh)| ≤ ||vh ||X ||φh ||Z ′ . (24b)

3. (Inf-sup conditions) There exists two positive constants β1 and β2, both are independent
of h, such that

inf
vh∈[Uh

c ]2\{0}
sup

φh∈[Wh
c ]2\{0}

Bh(φh, vh)

||φh ||X ′ ||vh ||Z ≥ β1, (25a)

inf
φh∈[Wh

c ]2\{0}
sup

vh∈[Uh
c ]2\{0}

B∗
h (vh, φh)

||vh ||X ||φh ||Z ′
≥ β2. (25b)

Similarly, the bilinear form (13c) also has these good properties as (13a) and (13b).

Lemma 1 For any vh ∈ [Uh
c ]2 and qh ∈ Ph

c , we have

1. (Discrete adjoint condition)

Ch(qh, vh) = C∗
h (vh, qh). (26)

2. (Continuity condition)

|Ch(qh, vh)| ≤ ||qh ||P ||vh ||Z . (27)

3. (Inf-sup condition) There exist a positive constant γ , independent of the mesh size h,
such that

inf
vh∈[Uh

c ]2\{0}
sup

qh∈Ph
c \{0}

Ch(qh, vh)

||qh ||P ||vh ||Z ≥ γ. (28)

The discrete adjoint condition (26) and the continuity condition (27) follow from (23)
and the Cauchy–Schwarz inequality, respectively. And using the fact that Ch(qh, vh) =
Bh(qh I2, vh), the proof of the inf-sup condition (28) is just the generalization of the proof
of (25a) in [9].

3.2 Interpolation Operators

From the inf-sup conditions, we can define some interpolation operators, which are vital for
the analysis of the convergence estimates of our numerical scheme (see [12] for more general
theory).

First, the inf-sup condition (25b) implies that there exists an operator I : [H1(Ω)]2 →
[Uh

c ]2 such that for any u ∈ [H1(Ω)]2
B∗
h (Iu − u, ψh) = 0 ∀ψh ∈ [Wh

c ]2. (29)

Furthermore, if u ∈ [Hk+1(Ω)]2, we have the following interpolation error estimate for the
operators I: there exists a positive constant CI , independent of the mesh size h, such that

‖u − Iu‖0,Ω ≤ CI h
k+1|u|[Hk+1(Ω)]2 . (30)

Besides this interpolation operator I, we will then construct another operator J :
[H(div;Ω)]2 → [Wh

c ]2 with a property that J is symmetry preserving. We first define
an approximation space for skew-symmetric matrix as follows:

Kh = {η : η|τ ∈ [Pk(τ )]2×2,∀τ ∈ T , η = −ηT }.
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And for any (φh, vh, ηh) ∈ [Wh
c ]2 × [Uh

c ]2 × Kh, we define

B̃h(φh; vh, ηh) = Bh(φh, vh) −
∫

Ω

φh : ηh dx

and

‖(vh, ηh)‖2Z̃ =
∫

Ω

|ηh − ∇hvh |2 dx +
∑
e∈Fp

h−1
e

∫
e
|[vh]|2 ds.

Then, from the results in [22], we can state an inf-sup condition regarding the bilinear form
B̃h(φh; vh, ηh) as below: there exists a positive constant β3, independent of the mesh size h,
such that

inf
(vh ,ηh)∈[Uh

c ]2×Kh\{(0,0)}
sup

φh∈[Wh
c ]2\{0}

B̃h(φh; vh, ηh)

||φh ||X ′ ||(vh, ηh)||Z̃
≥ β3.

This inf-sup condition implies that given φ ∈ [H(div;Ω)]2, there exists a unique solution
(φ̃h, ṽh, η̃h) ∈ [Wh

c ]2 × [Uh
c ]2 × Kh such that for any (φh, vh, ηh) ∈ [Wh

c ]2 × [Uh
c ]2 × Kh

∫
Ω

φ̃h : φh dx + B̃h(φh; ṽh, η̃h) =
∫

Ω

φ : φh dx,

B̃h(φ̃h; vh, ηh) = B̃h(φ; vh, ηh).

(31)

Therefore, the operator J : [H(div;Ω)]2 → [Wh
c ]2 is defined as J φ = φ̃h ∈ [Wh

c ]2 for
any φ ∈ [H(div;Ω)]2. Here, φ̃h is the solution of the system (31) and from the definition of
J , we have

B̃h(J φ − φ; vh, ηh) = 0 ∀(vh, ηh) ∈ [Uh
c ]2 × Kh . (32)

Finally, we present two lemmas to show the interpolation error and symmetry preserving
property of J .

Lemma 2 (Stability and interpolation error for J ) For any φ ∈ [H(div;Ω)]2, we have
‖J φ‖X ′ ≤ C‖φ‖[H(div;Ω)]2 . (33)

And if φ ∈ [Hk+1(Ω)]2×2, we have

‖φ − J φ‖0,Ω ≤ CJh
k+1|φ|[Hk+1(Ω)]2×2 . (34)

Here, C and CJ are some positive constants independent of the mesh size h.

Proof First, the inf-sup condition (25a) is equivalent to the following (see [28] for details):
there exists a positive constant β ′

1, independent of the mesh size h, such that

inf
φh∈[Wh

c ]2\{0}
sup

vh∈[Uh
c ]2\{0}

Bh(φh, vh)

||φh ||X ′ ||vh ||Z ≥ β ′
1. (35)

Since J φ ∈ [Wh
c ]2, so the above inf-sup condition (35) implies

||J φ||X ′ ≤ 1

β ′
1

sup
vh∈[Uh

c ]2\{0}
Bh(J φ, vh)

||vh ||Z

= 1

β ′
1

sup
vh∈[Uh

c ]2\{0}
B̃h(J φ; vh, 0)

||vh ||Z
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= 1

β ′
1

sup
vh∈[Uh

c ]2\{0}
B̃h(φ; vh, 0)

||vh ||Z
= 1

β ′
1

sup
vh∈[Uh

c ]2\{0}
Bh(φ, vh)

||vh ||Z
≤ ‖φ‖X ′

β ′
1

≤ C‖φ‖[H(div;Ω)]2 ,

where we have used the Eq. (32) and the continuity condition (24a) of the bilinear form
Bh(φh, vh).

To show the interpolation error estimate, we consider the system (31) again and notice
that for any ψh ∈ [Wh

c ]2 and (φh, vh, ηh) ∈ [Wh
c ]2 × [Uh

c ]2 × Kh , we have∫
Ω

(J φ − ψh) : φh dx + B̃h(φh; ṽh, η̃h) =
∫

Ω

(φ − ψh) : φh dx,

B̃h(J φ − ψh; vh, ηh) = B̃h(φ − ψh; vh, ηh).

However, due to the uniqueness of the solution of the above system, we can conclude that

‖J φ − ψh‖X ′ = ‖J (φ − ψh)‖X ′ ≤ 1

β ′
1
‖φ − ψh‖X ′ .

Therefore, the desired interpolation error follows by taking ψh as the standard conforming
interpolant of φ for the triangulation T and using the norm equivalence relation (21) in the
following estimate:

‖φ − J φ‖X ′ ≤ ‖φ − ψh‖X ′ + ‖ψh − J φ‖X ′ ≤
(

1

β ′
1

+ 1

)
‖φ − ψh‖X ′ .

��
From the definition of the interpolation operator J and bilinear form B̃h(φh; vh, ηh),

we can rewrite the definition of J through the bilinear form Bh(φh, vh) instead, and the
symmetry preserving property can be then shown.

Lemma 3 For any φ ∈ [H(div;Ω)]2, we have
Bh(J φ − φ, vh) = 0 ∀vh ∈ [Uh

c ]2. (36)

Furthermore, if φ = φT , then J φ = (J φ)T .

Proof Considering ηh = 0 in the Eq. (32), we immediately see (36) by the definition of
B̃h(φh; vh, ηh) as below

Bh(J φ − φ, vh) = B̃h(J φ − φ; vh, 0) = 0 ∀vh ∈ [Uh
c ]2.

To show the symmetry preserving property, we take vh = 0 in the Eq. (32)

−
∫

Ω

(J φ − φ) : ηh dx = B̃h(J φ − φ; 0, ηh) = 0 ∀ηh ∈ Kh .

Since φ is assumed to be symmetric and ηh is skew-symmetric, so∫
Ω

J φ : ηh dx =
∫

Ω

φ : ηh dx = 0 ∀ηh ∈ Kh

implies J φ is also symmetric. ��
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4 Stability and Optimal Convergence Analysis

We will prove the stability and the optimal convergence of the proposed numerical scheme.

Theorem 1 Let (uh, Sh, S
μ
h , ph) ∈ [Uh]2×Wh×Wh×Ph be the solutions of the numerical

scheme (12), then the following stability estimates hold:

||uh ||0,Ω ≤ C2
P

CMβ2
1

|| f ||0,Ω, (37)

||Sh ||0,Ω ≤ CP

CMβ1
|| f ||0,Ω, (38)

||Sμ
h ||0,Ω ≤ CPCL

CMβ1
|| f ||0,Ω, (39)

||ph ||0,Ω ≤ CP√
2

(
1

β ′
1

+ CL

CMβ1

)
|| f ||0,Ω, (40)

where β1 and β ′
1 are the constants in (25a) and (35). And CM, CL and CP are the constants

that taken form the strongly monotone condition (3), the Lipschitz continuity condition (4),
and the discrete Poincaré–Friedrichs inequality for piecewise H1 functions, respectively. All
these constants are independent of the mesh size h.

Proof Due to the staggered continuity conditions (5) and (6), we have the result that uh ∈
[Uh

c ]2, Sμ
h − ph I2 ∈ Wh ∩[Wh

c ]2. Moreover, for any vh ∈ [Uh
c ]2, φh ∈ [Wh

c ]2, v̂h ∈ [Mh
p]2

and φ̂h ∈ [Mh
u]2, we have

D∗
h(φ̂h, vh) = 0, (41)

Dh (̂vh, φh) = 0. (42)

Therefore, if we take the test functions in (12) as the following:

vh = uh, φh = Sμ
h , ψh = −Sh, qh = ph,

the system (12) reduces to

(Sh, S
μ
h )0,Ω − B∗

h (uh, S
μ
h ) − Dh (̂uh, S

μ
h ) = 0,

−(Sμ
h , Sh)0,Ω = −(μ(Sh)Sh, Sh)0,Ω,

Bh(S
μ
h , uh) − Ch(ph, uh) − D∗

h(σ̂ h, uh) = ( f , uh)0,Ω,

C∗
h (uh, ph) + Dh (̂uh, ph I2) = 0.

After summing up the above four equations and applying the discrete adjoint properties (23)
and (26), we have

(μ(Sh)Sh, Sh) = ( f , uh), (43)

where we have used of the fact that uh ∈ [Uh
c ]2 and Sμ

h − ph I2 ∈ Wh ∩ [Wh
c ]2.

From the strongly monotone condition (3), and by the Cauchy−Schwarz inequality,

||Sh ||20,Ω ≤ C−1
M || f ||0,Ω ||uh ||0,Ω . (44)

Now, the discrete Poincaré–Friedrichs inequality for piecewise H1 functions (see [3])
implies that for any vh ∈ Uh , there exists a positive constant CP , independent of the mesh
size h, such that

‖vh‖0,Ω ≤ CP‖vh‖Z .
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Thus, by the inf-sup condition for the bilinear form (25a), the discrete adjoint relation (23)
and the equation (12a) with staggered continuous test function φh ∈ [Wh

c ]2, we have

‖uh‖0,Ω ≤ CP‖uh‖Z ≤ CP

β1
sup

φh∈[Wh
c ]2\{0}

Bh(φh, uh)
||φh ||X ′

= CP

β1
sup

φh∈[Wh
c ]2\{0}

B∗
h (uh, φh)

||φh ||X ′

= CP

β1
sup

φh∈[Wh
c ]2\{0}

(Sh, φh)0,Ω

||φh ||X ′
.

Then, applying the Cauchy–Schwarz inequality on (Sh, φh)0,Ω and the norm equivalence
relation (21) in the space Wh

c yields

‖uh‖0,Ω ≤ CP

β1
sup

φh∈[Wh
c ]2\{0}

(Sh, φh)0,Ω

||φh ||X ′

≤ CP

β1
sup

φh∈[Wh
c ]2\{0}

‖Sh‖0,Ω‖φh‖0,Ω
||φh ||X ′

≤ CP

β1
‖Sh‖0,Ω . (45)

Combining (45) with (44), we can derive the second bound (38) as

||Sh ||20,Ω ≤ C−1
M || f ||0,Ω ||uh ||0,Ω ≤ CP

CMβ1
|| f ||0,Ω‖Sh‖0,Ω .

Thus, the first bound (37) follows immediately from (45)

‖uh‖0,Ω ≤ CP

β1
‖Sh‖0,Ω ≤ C2

P

CMβ2
1

|| f ||0,Ω .

The second bound (38) also directly implies the stability estimates of Sμ
h by the Lipschitz

continuity condition (4).
Therefore, making use of the equivalent inf-sup condition (35) and Sμ

h − ph I2 ∈ Wh ∩
[Wh

c ]2, we can derive the last bound (40) of the stability estimates.

||Sμ
h − ph I2||0,Ω ≤ ‖Sμ

h − ph I2‖X ′

≤ 1

β ′
1

sup
vh∈[Uh

c ]2\{0}

Bh(S
μ
h − ph I2, vh)

||vh ||Z
= 1

β ′
1

sup
vh∈[Uh

c ]2\{0}
( f , vh)0,Ω

||vh ||Z
≤ CP

β ′
1

‖ f ‖0,Ω,

where we have used Eq. (12c) with test function vh ∈ [Uh
c ]2, and the discrete Poincaré–

Friedrichs inequality.
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After applying the previous stability estimate result (39), we obtain the desired result
√
2||ph ||0,Ω = ‖ph I2‖0,Ω ≤ ‖Sμ

h − ph I2‖0,Ω + ‖Sμ
h ‖0,Ω

≤ CP

β ′
1

‖ f ‖0,Ω + ‖Sμ
h ‖0,Ω .

��
After deriving the stability estimates of the numerical scheme (12), the existence and

uniqueness of the approximate solution (uh, Sh, S
μ
h , ph) follows immediately. Then, we

show the optimal convergence of the numerical scheme.

Theorem 2 Let u ∈ [Hk+1(Ω)]2, S ∈ [Hk+1(Ω)]2×2, Sμ ∈ [Hk+1(Ω)]2×2 and p ∈
Hk+1(Ω) be the exact solutions of the system (2), and uh ∈ [Uh]2, Sh ∈ Wh, Sμ

h ∈ Wh

and ph ∈ Ph be the approximate solutions of the system (12). Then, we have the following
convergence estimates:

‖u − uh‖0,Ω + ‖S − Sh‖0,Ω + ‖Sμ − Sμ
h ‖0,Ω + ‖p − ph‖0,Ω

≤ Chk+1
(

‖u‖[Hk+1(Ω)]2 + ‖p‖Hk+1(Ω) + ‖S‖[Hk+1(Ω)]2×2

)
(46)

where C is a positive constant, independent of the mesh size h.

Proof In the following proof, wewill useC to denote a positive generic constant, independent
of the mesh size h, may have different values at any two different places. First, we will show
the upper bound of the error in the projection of Sh and then extend it to the projection error
of Sμ

h . Note, if we take the test functions vh ∈ [Uh
c ]2 in (9), φh ∈ Wh in (7) and qh ∈ Ph in

(10) such that φh − qh I2 ∈ Wh ∩ [Wh
c ]2, then the exact solution (u, S, Sμ, p) satisfies the

system of equations

(S, φh)0,Ω − B∗
h (u, φh) + C∗

h (u, qh) = 0,

Bh(S
μ, vh) − Ch(p, vh) = ( f , vh)0,Ω,

where we have used the results of (41) and (42). Next, subtracting this system by the corre-
sponding equations in the discrete formulation system (12) results in

(S − Sh, φh)0,Ω − B∗
h (u − uh, φh) + C∗

h (u − uh, qh) = 0,

Bh(S
μ − Sμ

h , vh) − Ch(p − ph, vh) = 0,

for any test functions φh ∈ Wh , qh ∈ Ph such that φh−qh I2 ∈ Wh∩[Wh
c ]2 and vh ∈ [Uh

c ]2.
Due to the properties (29) and (36) of the interpolators I and J , so the above system of
Galerkin orthogonality relations can be rewritten as

(S − Sh, φh)0,Ω − B∗
h (Iu − uh, φh) + C∗

h (Iu − uh, qh) = 0,

Bh(J Sμ − Sμ
h , vh) − Ch(πh p − ph, vh) = Ch(p − πh p, vh),

for any test functions φh ∈ Wh , qh ∈ Ph such that φh − qh I2 ∈ Wh ∩ [Wh
c ]2 and vh ∈

[Uh
c ]2. Here, πh is the standard conforming finite element interpolation operator for the

triangulation T . Then, we take vh = Iu−uh ∈ [Uh
c ]2, φh = J Sμ − Sμ

h and qh = πh p− ph .
From the symmetry preserving property of the interpolation operator J in Lemma 3, we
know J Sμ is symmetric with continuous normal component across edges of Fp . Thus,
combining with the results that the numerical stress tensor Sμ

h − ph I2 also has continuous
normal component across edges of Fp and πh p is continuous across edges of Fp , we have
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φh − qh I2 ∈ Wh ∩ [Wh
c ]2. Then, summing the above two equations and using the discrete

adjoint properties (23) and (26) show

(S − Sh,J Sμ − Sμ
h )0,Ω = Ch(p − πh p, Iu − uh). (47)

Therefore, the projection error of S follows as

‖J S − Sh‖20,Ω ≤ C−1
M

∫
Ω

(J S − Sh) : (J Sμ − Sμ
h ) dx

≤ C−1
M

( ∫
Ω

(J S − S) : (J Sμ − Sμ
h ) dx + Ch(p − πh p, Iu − uh)

)

≤ C−1
M (‖J S − S‖0,Ω‖J Sμ − Sμ

h ‖0,Ω + ‖p − πh p‖P‖Iu − uh‖Z )

≤ C−1
M (CL‖J S − S‖0,Ω‖J S − Sh‖0,Ω + ‖p − πh p‖P‖Iu − uh‖Z ),

(48)

where we have used the strongly monotone condition (3), Eqs. (47), (27) and the Lipschitz
continuity condition (4). Note, we can derive a upper bound for the term ‖Iu − uh‖Z as
follows:

‖Iu − uh‖Z ≤ 1

β1
sup

φh∈[Wh
c ]2\{0}

Bh(φh, Iu − uh)
||φh ||X ′

= 1

β1
sup

φh∈[Wh
c ]2\{0}

B∗
h (Iu − uh, φh)

||φh ||X ′

= 1

β1
sup

φh∈[Wh
c ]2\{0}

B∗
h (u − uh, φh)

||φh ||X ′

= 1

β1
sup

φh∈[Wh
c ]2\{0}

(S − Sh, φh)0,Ω

||φh ||X ′

≤ 1

β1
‖S − Sh‖0,Ω, (49)

where the inf-sup condition (25a), the discrete adjoint property (23), the property of the
interpolation operator (29) and the Eq. (12a) have been used. Then, there exists some positive
constants δ1, δ2 such that Eq. (48) becomes

2CM‖J S − Sh‖20,Ω ≤ 2CL‖J S − S‖0,Ω‖J S − Sh‖0,Ω + 2(kPβ1)
−1‖p

− πh p‖0,Ω‖S − J S‖0,Ω
+ 2(kPβ1)

−1‖p − πh p‖0,Ω‖J S − Sh‖0,Ω
≤ CL

(
δ−1
1 ‖J S − S‖20,Ω + δ1‖J S − Sh‖20,Ω

)

+ (kPβ1)
−1

(
‖p − πh p‖20,Ω + ‖S − J S‖20,Ω

)

+ (kPβ1)
−1

(
δ−1
2 ‖p − πh p‖20,Ω + δ2‖J S − Sh‖20,Ω

)

=
(
CLδ−1

1 + (kPβ1)
−1

)
‖S − J S‖20,Ω
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+
(

(kPβ1)
−1 + (kPβ1δ2)

−1
)

‖p − πh p‖20,Ω

+
(
CLδ1 + (kPβ1)

−1δ2

)
‖J S − Sh‖20,Ω

Note, [12] shows the interpolation error result for πh as ‖p−πh p‖0,Ω ≤ Chk+1|p|Hk+1(Ω).
Therefore, choosing δ1, δ2 such that 2CM − CLδ1 − (kPβ1)

−1δ2 > 0, and applying the
interpolation error for J and πh , we have the desired projection error

‖J S − Sh‖0,Ω ≤ Chk+1
(

‖p‖Hk+1(Ω) + ‖S‖[Hk+1(Ω)]2×2

)
. (50)

Similarly, the error of projection of Sμ can be obtained by using the Lipschitz continuous
condition (4):

‖J Sμ − Sμ
h ‖0,Ω ≤ CL‖J S − Sh‖0,Ω

≤ Chk+1
(

‖p‖Hk+1(Ω) + ‖S‖[Hk+1(Ω)]2×2

)
. (51)

And the upper bound of ‖Iu − uh‖0,Ω arises naturally from the discrete Poincaré–
Friedrichs inequality and Eq. (49) as

‖Iu − uh‖0,Ω ≤ CP

β1
‖S − Sh‖0,Ω . (52)

For the estimate of the upper boundof‖J (p I2)−ph I2‖0,Ω ,weuse again that Sμ
h −ph I2 ∈

Wh ∩ [Wh
c ]2, then the inf-sup condition (35) implies

‖J (p I2) − ph I2‖0,Ω ≤ ‖(Sμ
h − ph I2) − J Sμ + J (p I2)‖0,Ω + ‖J Sμ − Sμ

h ‖0,Ω
≤ 1

β ′
1

sup
vh∈[Uh

c ]2\{0}

Bh((S
μ
h − ph I2) − J Sμ + J (p I2), vh)

||vh ||Z
+ ‖J Sμ − Sμ

h ‖0,Ω
= 1

β ′
1

sup
vh∈[Uh

c ]2\{0}

Bh((S
μ
h − Sμ), vh) − Bh((ph I2 − p I2), vh)

||vh ||Z
+ ‖J Sμ − Sμ

h ‖0,Ω
= ‖J Sμ − Sμ

h ‖0,Ω (53)

where the last two steps follows from the property of the interpolation operator (36) and
Eq. (12c).

Therefore, combining the above estimates (50)–(53) and the approximation properties of
the interpolation operators in (30) and (34) results in the explicit L2-norm error estimates as
follows:

‖u − uh‖0,Ω ≤ ‖u − Iu‖0,Ω + ‖Iu − uh‖0,Ω
≤ Chk+1

(
‖u‖[Hk+1(Ω)]2 + ‖p‖Hk+1(Ω) + ‖S‖[Hk+1(Ω)]2×2

)

‖S − Sh‖0,Ω ≤ ‖S − J S‖0,Ω + ‖J S − Sh‖0,Ω
≤ Chk+1

(
‖p‖Hk+1(Ω) + ‖S‖[Hk+1(Ω)]2×2

)
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‖Sμ − Sμ
h ‖0,Ω ≤ ‖Sμ − J Sμ‖0,Ω + ‖J Sμ − Sμ

h ‖0,Ω
≤ Chk+1

(
‖p‖Hk+1(Ω) + ‖S‖[Hk+1(Ω)]2×2

)

‖p − ph‖0,Ω ≤ (
√
2)−1(‖p I2 − J (p I2)‖0,Ω + ‖J (p I2) − ph I2‖0,Ω)

≤ Chk+1
(

‖p‖Hk+1(Ω) + ‖S‖[Hk+1(Ω)]2×2

)

��

5 Numerical Experiments

We consider the nonlinear Stokes equation whose analytic solution is chosen as the solution
of the Kovasznay flow problem with the explicit form

u1(x, y) = 1 − exp(λx) cos(2πy),

u2(x, y) = λ

2π
(exp(λx) sin(2πy)),

p(x, y) = exp(2λx)

2
+ p̄,

where λ = − 8π2

Re+√
Re2+16π2 with Re = 1 as the Reynolds number and p̄ is a constant chosen

such that the zero average condition for the pressure is satisfied.
In all of our examples, we take the computational domain Ω = [0, 1]2 and ∂ΩD = ∂Ω .

An illustration of the mesh triangulation is shown in Fig. 2.
Piecewise linear polynomial (i.e. k = 1) is used in all the finite element spaces and f , gD

are chosen as in (1). Since we are interested in the varying viscosity function, so we test our
method with the following six different viscosity functions:

μ1(ε) := 2 + 1

1 + |ε| μ2(ε) := 1 + exp(−|ε|)

Fig. 2 Triangulation on
Ω = [0, 1]2 with mesh size 1/4
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μ3(ε) := 1 + exp(−|ε|2) μ4(ε) := 1√
1 + |ε|

μ5(ε) := |ε| μ6(ε) := |ε|2,

where ε = ε(u) is the strain tensor. TheNewton’smethod is used to solve the resulting system
and the Newton iterations stop until the successive error ||un+1

h − unh ||0,Ω/||un+1
h ||0,Ω <

10−10.We remark that for our simulations, the Newton’smethod takes approximately 10−20
iterations to achieve the stated stopping condition.

The numerical results show clearly that under different choices of viscosity functions, the
L2 errors of the approximations of the velocity, strain tensor and pressure all converge with
an optimal rate k + 1. In the last two columns of each table, we measure the L1-norm and
L∞-norm of the divergence of the postprocessed velocity u∗

h, respectively, and both results
show that the numerical solution u∗

h is exactly divergence free (Tables 1–6).
And we can see that in general, the L2 errors of the approximations of the postprocessed

velocity converges with a superconvergence rate k + 2, which also verify our proposition
regarding the superconvergence rate of our proposed DG method. However, in Table 6, we
can see that the convergence rate of the L2 errors of the approximations of the postprocessed
velocity at the last mesh size level decreases. Possible reasons for this phenomenon include
that the rapid increase in the values ofμ6(ε) among the domainΩ is difficult to fully capture
by our numerical scheme. Another possible reason is that as a posteriori differentiation is
required to find the numerical velocity gradient in postprocessing, this process entails a loss
of accuracy.

Despite the fact that the convergence rate of u∗
h is not exactly k+2 for all the examples, we

can still see a clear phenomenon that the accuracy ismuch improved by using an efficient local
postprocessing technique. Moreover, the exactly divergence free property of u∗

h is distinct
and is very suitable for applying to fluid flow problems with the incompressibility condition
is assumed.

6 Conclusion

In this paper, we developed a discontinuous Galerkinmethodwith a new staggered hybridiza-
tion technique for the Stokes equationwith nonlinear coefficient functions.Ourmethod shares
the advantages of the SDG method by the use of staggered hybridization, including mass
conservation, optimal convergence and the superconvergence from the local postprocessing
technique. Numerical results showed that the postprocessed velocity has better accuracy and
is exactly divergence free. Besides, one distinctive feature of our method is the approximate
stress tensor is strongly symmetric, so the symmetry of the variable can be best preserved.
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