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In this paper, we design and analyze third order positivity-preserving discontinuous 
Galerkin (DG) schemes for solving the time-dependent system of Poisson–Nernst–Planck 
(PNP) equations, which have found much use in diverse applications. Our DG method with 
Euler forward time discretization is shown to preserve the positivity of cell averages at 
all time steps. The positivity of numerical solutions is then restored by a scaling limiter 
in reference to positive weighted cell averages. The method is also shown to preserve 
steady states. Numerical examples are presented to demonstrate the third order accuracy 
and illustrate the positivity-preserving property in both one and two dimensions.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we propose a positivity-preserving third order discontinuous Galerkin (DG) method to solve the Poisson–
Nernst–Planck (PNP) system:

∂tci = ∇ · (∇ci + qici∇ψ), (1.1a)

−�ψ =
m∑

i=1

qici + ρ0(x), (1.1b)

where ci = ci(t, x) is the local concentration of ith charged molecular or ion species with charge qi (1 ≤ i ≤ m), and ψ =
ψ(t, x) is the electrostatic potential governed by the Poisson equation with ρ0 as the fixed charge. The PNP system has 
been widely used to describe drift and diffusion phenomena in various settings, including biological ion channels [3] and 
semiconductor devices [29]. However, the PNP system is nonlinear and strongly coupled, so the efficient simulation is highly 
non-trivial. One main challenge of developing numerical schemes for (1.1) is to ensure density positivity (or non-negativity), 
since negative ion concentrations would be non-physical.

The solution to (1.1) is known to have three main properties: mass conservation (when subject to zero flux boundary 
conditions), non-negativity of density, and free energy dissipation. These intrinsic solution features are naturally desired for 
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any numerical algorithm to solve this system. The first property requires the scheme to be conservative. The second property, 
which is also necessary for the third one to be useful, is the most difficult to achieve since it is point-wise. Numerical 
schemes addressing both density positivity and energy dissipation have been intensively studied. This is evidenced by recent 
results in [4,8,22] with second order finite difference schemes. Based on some formulations of the nonlogarithmic Landau 
type (see (1.2) below), the semi-implicit schemes in [2,9,11,20,21] have been shown to feature unconditional positivity, 
while the energy dissipation is handled differently. For instance, the unconditional positive schemes in [21] are linear, and 
shown to feature energy dissipation with only an O (1) time step restriction. However, the spacial discretization in all these 
works is limited to only second order.

The authors in [24] presented an arbitrary high order DG method for (1.1), which naturally incorporates both mass 
conservation and free energy dissipation properties. Their scheme achieves high order accuracy but the provable positivity-
preserving property only holds for certain cases. The DG method is a class of finite element methods, using a completely 
discontinuous piecewise polynomial space for the numerical solution and the test functions. More general information 
about DG methods for elliptic, parabolic, and hyperbolic PDEs can be found in the recent books and lecture notes (see e.g., 
[10,15,34,36]).

The main purpose of this paper is to propose a direct DG (DDG) method for (1.1), which is of third order in space 
and features a provable positivity-preserving property. The DDG method is a special class of the DG methods introduced 
in [25,26] specifically for diffusion. Its key feature lies in numerical flux choices for the solution gradient, which involves 
interface jumps of both the solution against parameter β0, and the second order derivatives against parameter β1. With an 
admissible condition of form β0 > �d(β1) (see in §3.3), the DDG schemes are provably L2 stable and optimally convergent 
[18,19] as well as superconvergent for β1 �= 0 [1]. The DDG method has been successfully applied to various application 
problems, including linear and nonlinear Poisson equations [12,38,39] and Fokker-Planck type equations [23,24,27,28]. In 
this paper, we use such DDG method for solving the Poisson equation (see Section 3.3).

For the NP equation, our idea is to use the nonlogarithmic Landau transformation

ci = gie
−qiψ, (1.2)

so that (1.1a) reduces to

∂tci = ∇ · (Mi∇gi) , ci = gi Mi, Mi = e−qiψ,

to which we apply the DDG spatial discretization. Here we shall identify the admissible range for the pair (β0, β1) to ensure 
the positivity-preserving property for density functions ci .

The two main ingredients in our schemes are:

(i) A positive decomposition over a test set of three points for the weighted numerical integration;
(ii) Positivity-preserving limiter with forward Euler (or high order SSP-RK) time discretization. The limiter is based on 

weighted cell averages.

As for (i), the test set is used to stabilize the scheme in L∞ . The use of the DDG method is essential for identifying a test 
set of form (in one dimensional setting with uniform meshes of size h),

S j = x j + h

2
{−1, γ ,1},

where the existence of γ ∈ (−1, 1) is ensured by the DDG method with parameters satisfying

1

8
≤ β1 ≤ 1

4
, β0 ≥ 1.

The rigorous justification for the existence of γ follows that in [27] for the linear Fokker-Planck (FP) equation.
As for (ii), the projection of ci = gi Mi into the DG space allows to transfer the positivity of cell averages of ci to the 

positivity of weighted cell averages of gi , which will be used in defining the limiter.
The implementation algorithm consists of several steps: (i) from ci we solve the Poisson equation by the DDG method 

to obtain ψ ; (ii) we further calculate Mi = e−qiψ , and obtain gi by the projection of ci = gi Mi to the DG space; (iii) we 
then solve NP equation ∂t ci = ∇ · (Mi∇gi) to obtain ci , while limiter is applied when necessary. In other words, we first 
check the non-negativity of gi on S j . If negative values show up, the positivity-preserving limiter will be applied. We then 
apply the DDG method to solve the NP equation. In 2D, the test set of points in each cell is constructed in a dimension by 
dimension manner.

Note that the established positivity-preserving property for density is independent of the Poisson solver, hence the 
numerical flux parameters for the Poisson equation can be different from those for the NP equation even within the same 
DDG framework.
2
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1.1. Further related work

There is a considerable amount of literature that has been devoted to the numerical study of the PNP system. Many 
algorithms were introduced to handle specific issues in complex applications, in which one may encounter different nu-
merical obstacles, such as discontinuous coefficients, singular charges, and geometric singularities to accommodate various 
phenomena exhibited by biological ion channels; see, e.g., [6,30,42].

Recent efforts have been on the design of efficient and stable methods with structure-preserving analysis. On 
regular domains, results using finite difference/volume for spatial discretization are quite rich, including the works 
[2,4,5,8,9,11,20–22,35], as we discussed above. On irregular domains, Mirzadeh et al. [32] presented a conservative hy-
brid method with adaptive strategies. In [33], linearized finite element schemes that preserve electric energy-decay and 
entropy-decay properties were presented. A finite element method to the PNP system was introduced in [31] using a log-
arithmic transformation of the charge carrier densities, while the involved energy estimate resembles the physical energy 
law that governs the PNP system in the continuous case.

A related and widely known model is the class of nonlinear Fokker–Planck equations

∂tc = ∇x · ( f (c)∇x(ψ(x) + H ′(c))),

where f , H are some nonlinear functions, and the potential ψ is given. For this model, the high order DG method in-
troduced in [23] was shown to satisfy the discrete entropy dissipation law, extending the result for linear Fokker-Planck 
equations [28]. A high order nodal DG scheme using Gauss-Lobatto quadrature was developed in [37], in which both en-
tropy dissipation and solution positivity were preserved by applying a limiter under a time step constraint, yet accuracy 
deterioration was observed in some test cases.

Another work quite relevant to ours is [40], in which the authors developed a third order positivity preserving DDG 
scheme for convection-diffusion equations with anisotropic diffusivity, while one main difficulty stems from the anisotropic 
diffusion.

We now conclude this section by outlining the rest of this paper: in Section 2 we present the DDG method for the 
reformulated PNP system in one dimensional case, followed by the proof of positivity preservation in Section 3. We also 
discuss the positivity-preserving limiter and implementation details in Section 3. The two dimensional DDG scheme and the 
positivity-preserving analysis are presented in Section 4. Both one and two dimensional numerical examples are tested and 
results are reported in Section 5. Finally we conclude the work in Section 6.

2. PNP model, reformulation and the DDG scheme

2.1. The PNP model

Let 	 be a bounded domain in Rd , with n being a unit exterior normal vector on the boundary ∂	. We consider the 
initial-boundary value problem

∂tci = ∇ · (∇ci + qici∇ψ), x ∈ 	, t > 0, i = 1, · · · ,m, (2.1a)

− �ψ =
m∑

i=1

qici + ρ0, x ∈ 	, t > 0, (2.1b)

ci(0, x) = cin
i (x), x ∈ 	; ∂ci

∂n
+ qici

∂ψ

∂n
= 0 on ∂	, t > 0, (2.1c)

ψ = ψD on ∂	D , and
∂ψ

∂n
= σ on ∂	N , t > 0, (2.1d)

where initial data cin is given and zero flux boundary conditions are imposed. Here ψD is the Dirichlet boundary data, 
which models an applied voltage; and σ is the Neumann boundary data, which models surface charge [31].

2.2. Reformulation of the PNP equations

We recall that an energy satisfying DG method based on the formulation

∂tci = ∇ · (ci∇pi) ,

pi = qiψ + log ci,

−�ψ =
m∑

i=1

qici + ρ0(x),
3
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was developed in [24], where the scheme is of arbitrarily high order, yet positivity of cell averages as needed for the limiting 
reconstruction is unwarranted. In this work we design a novel DG scheme by reformulating the PNP system (1.1) as

∂tci = ∇ · (Mi∇gi) , (2.2a)

ci = gi Mi, Mi = e−qiψ, (2.2b)

−�ψ =
m∑

i=1

qici + ρ0(x). (2.2c)

Here gi is calculated based on given ci and Mi .

2.3. The DDG scheme

For simplicity, we consider the domain 	 to be a union of rectangular elements denoted by Th = {K }, and h denotes the 
mesh size of all the elements of Th . We set the DG finite element space as

Vh = {v ∈ L2(	) : ∀K ∈ Th, v|K ∈ Pk(K )},
where Pk(K ) is the space of polynomial functions of degree at most k on K . For quantities crossing interfaces, we need 
to define both jumps and averages. Let the set of the interior interfaces by �0. Let the normal vector n be assumed to be 
oriented from K1 to K2, sharing a common edge (face) e ∈ �0, and he is the average of mesh sizes of the two neighboring 
cells in n direction (or the mesh itself on boundary faces). We define the average {w} and the jump [w] of w on e as

{w} = 1

2
(w|K1 + w|K2), [w] = w|K2 − w|K1 ∀e ∈ ∂ K1 ∩ ∂ K2.

With such approximation space, the semi-discrete DDG scheme is to find cih, gih, ψh ∈ Vh with Mih := e−qiψh such that 
for all v, r, η ∈ Vh , i = 1, · · · , m,ˆ

K

∂tcih v dx = −
ˆ

K

Mih∇gih · ∇v dx +
ˆ

∂ K

{Mih}
(
̂∂n gih v + (gih − {gih})∂n v

)
ds, (2.3a)

ˆ

K

gih Mihrdx =
ˆ

K

cihrdx, (2.3b)

ˆ

K

∇ψh · ∇ηdx −
ˆ

∂ K

(
̂∂nψhη + (ψh − {ψh})∂nη

)
ds =

ˆ

K

(
m∑

i=1

qicih + ρ0

)
ηdx, (2.3c)

where ̂∂n gih = F ln(gih) and ̂∂nψh = F ln(ψh), with the diffusive flux operator F ln(·) defined on the interface e by

F ln(w) := β0
[w]
he

+ {∂n w} + β1he[∂2
n w].

This is the DDG diffusive flux introduced in [26] for diffusion. Here the parameters (β0, β1) are in the range to be specified 
so that the underlying scheme can satisfy certain positivity–principle. Note that the DDG scheme with interface corrections 
as we use here was proposed in [26] for the diffusion problem, as an improved version of the DG scheme in [25].

2.4. Initial and boundary conditions for the DDG scheme

The initial data for cih is generated by the piecewise L2 projection, cih(0, x) = �cin
i (x), i.e.,

ˆ

K

(cih(0, x) − cin
i (x))v dx = 0 ∀v ∈ Vh. (2.4)

The zero-flux boundary condition for ci can be weakly enforced through the boundary fluxes for gih as

F ln(gih) = 0, {gih} = gih, e ∈ ∂	.

For potential ψ with the boundary data given in (2.1d), the numerical fluxes on the boundary are defined as follows.

{ψh} = ψD , ̂∂nψh = β0

he
(ψD − ψh) + ∂nψh, e ∈ ∂	D ,

{ψ } = ψ , ̂∂ ψ = σ , e ∈ ∂	 .

(2.5)
h h n h N

4
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3. Positivity-preserving schemes in one dimension

The semi-discrete scheme in Section 2 is complete if the parameter pair (β0, β1) is admissible for ensuring the positivity 
of solutions. In this section, we study the positivity preserving-property of the DDG scheme with forward Euler discretization 
in one dimension. The two dimensional case will be presented in the next section.

Note that for Pk polynomials with k = 0, the DG formulation can lead to the scheme in [22]; for k = 1, second order 
schemes for β0 ≥ 1 can be designed to preserve positive cell averages by following the techniques in [27]. Here we focus 
only on third order schemes that feature the positivity-preserving property.

3.1. Propagation of positive cell averages

We assume the interval 	 =
N⋃

j=1
I j , where I j = [x j− 1

2
, x j+ 1

2
]. For concise presentation, a uniform mesh h = |I j | is as-

sumed. We consider the first order Euler forward temporal discretization of (2.3) to obtain

ˆ

I j

cn+1
ih − cn

ih

�t
v dx = −

ˆ

I j

Mn
ih∂x gn

ih∂x v dx + {Mn
ih}

[
̂∂x gn

ih v + (gn
ih − {gn

ih})∂x v
]∣∣∣x

j+ 1
2

x
j− 1

2

, (3.1)

where �t > 0 is the time step, and

Mn
ih = e−qiψ

n
h ,

with ψn
h ∈ Vh obtained from cn

ih by solving (2.3c). In (3.1) we used the following notation

w

∣∣∣∣x
j+ 1

2
x

j− 1
2

= w(x−
j+ 1

2
) − w(x+

j− 1
2
) .

On interfaces x j+1/2, j = 1, · · · , N − 1, the numerical fluxes are chosen as

̂∂x gih = β0

h
[gih] + {∂x gih} + β1h[∂2

x gih],

and ̂∂x gih = 0, {gih} = gih for j = 0, N .
From cn

ih ∈ Vh and Mn
ih at each time step, we obtain gn

ih by
ˆ

I j

gn
ih Mn

ihrdx =
ˆ

I j

cn
ihrdx ∀r ∈ Vh. (3.2)

By taking the test function v = �t
h in (3.1) and r = 1

h in (3.2), we obtain the evolutionary equation for the cell average,

c̄n+1
i j = 〈gn

ih〉 + μh {Mn
ih}̂∂x gn

ih

∣∣∣x
j+ 1

2

x
j− 1

2

,

where

〈gn
ih〉 := 1

h

ˆ

I j

gn
ih Mn

ihdx = c̄n
i j,

and μ := �t
h2 is the mesh ratio. In order to apply [27, Theorem 3.4] we set

M(x) = Mn
ih(x) = e−qiψ

n
h (x)

as a piecewise smooth weight, and use the notation

〈φ〉 j = 1

2

1ˆ

−1

φ(ξ)M(x j + h

2
ξ)dξ.

We also define

a j = 〈ξ − ξ2〉 j

〈1 − ξ〉 , b j = 〈ξ + ξ2〉 j

〈1 + ξ〉 ,

j j

5
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and

ω̂1
j (γ ) = 〈γ − ξ(1 + γ ) + ξ2〉 j

2(1 + γ )
,

ω̂2
j (γ ) = 〈1 − ξ2〉 j

1 − γ 2
,

ω̂3
j (γ ) = ω̂1(−γ ).

Hence for any p ∈ P 2[−1, 1] we have the decomposition

〈p〉 j = ω̂1
j (γ )p(−1) + ω̂2

j (γ )p(γ ) + ω̂3
j (γ )p(1).

We recall the following key result (see also Lemma 2.1 in [40]).

Lemma 3.1. [27, Lemma 3.3] ω̃i
j(γ ) > 0 for i = 1, 2, 3 if and only if

γ ∈ (a j,b j),

where a j, b j satisfy −1 < a j < b j < 1.

Remark 3.1. In our numerical tests, γ = 1
2 (a j + b j) is taken in each cell. Both a j and b j depends on Mi , hence the set S j

may differ for each gi .

We thus have the following result.

Theorem 3.2. (k = 2) The scheme (3.1)-(3.2) with

1

8
≤ β1 ≤ 1

4
and β0 ≥ 1 (3.3)

is positivity preserving, namely, c̄n+1
i j > 0 if c̄n

i j > 0 and gn
ih(x) ≥ 0 on the set S j ’s where

S j = x j + h

2

{−1, γ ,1
}

with γ satisfying

a j < γ < b j and |γ | ≤ 8β1 − 1,

under the CFL condition μ ≤ μ0 , with M j+1/2 := {Mn
ih}|x j+1/2 in

μ0 = min
1≤ j≤N

{
ω̂1

j (±γ )

α3(∓γ )M j−1/2 + α1(±γ )M j+1/2
,

(1 − γ 2)ω̂2
j

2(1 − 4β1)(M j−1/2 + M j+1/2)

}
,

where

α1(γ ) = 8β1 − 1 + γ

2(1 + γ )
> 0, α3(γ ) = β0 + 8β1 − 3 + γ

2(1 − γ )
> 0.

Remark 3.2. The CFL conditions depend on ψn
h due to the use of Mn

ih = e−qiψ
n
h . They are sufficient conditions rather than 

necessary to preserve the positivity of solutions. Therefore, in practice, these CFL conditions are strictly enforced only in the 
case the positivity preserving property is violated.

Remark 3.3. The parameter range (3.3) was first identified in [27] for a third order DDG scheme to feature the maximum-
principle-preserving property for linear Fokker-Planck equations.
6
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3.2. Limiter

Theorem 3.2 suggests that for the scheme with forward Euler discretization, we need to modify gn
ih using weight M(x) =

e−qiψ
n
h (x) on I j such that it becomes non-negative on S j . This can be done by using the following scaling limiter. Let 

wh ∈ Pk(I j) be a high order approximation to a smooth function w(x) ≥ 0, with cell averages w̄ j > 0, where

w̄ j :=
´

I j
M(x)wh(x)dx´

I j
M(x)dx

.

We then construct another polynomial by

w̃h(x) = w̄ j + w̄ j

w̄ j − minS j wh(x)
(wh(x) − w̄ j), where θ = min

{
1,

w̄ j

w̄ j − minS j wh(x)

}
. (3.4)

This reconstruction maintains same cell averages and satisfies

min
S j

w̃h(x) ≥ 0.

Moreover, it can be shown that if w̄ j > 0, then the above scaling limiter does not destroy the solution accuracy, as stated 
in the following lemma.

Lemma 3.3. [27, Lemma 3.5] If w̄ j > 0, then the modified polynomial w̃h is as accurate as w in the following sense:

|w̃h(x) − wh(x)| ≤ Ck‖wh − w‖∞ ∀x ∈ I j,

where Ck is a constant depending on the polynomial degree k.

The limiting techniques of this nature are inspired by the limiter introduced for conservation laws [41]; see also invariant 
region preserving limiters for systems of conservation laws in [13,14].

3.3. DDG discretization for the Poisson problem

Note that the established positivity-preserving property for density is independent of the Poisson solver, hence the DDG 
flux parameters for the Poisson equation can be chosen independently of those for the NP equation.

We now investigate the admissible parameters (β0, β1) of the DDG scheme for the Poisson problem. Such a scheme in 
its global formulation, obtained from the DDG scheme (2.3c), is to find ψh ∈ Vh so that

A(ψh, η) = L(cih, η), ∀η ∈ Vh, (3.5)

where A(ψh, η) and L(cih, η) are given by

A(ψh, η) =
∑

K∈Th

ˆ

K

∇ψh · ∇ηdx +
∑
e∈�0

ˆ

e

(
̂∂nψh[η] + {∂nη}[ψh]

)
ds

+
ˆ

∂	D

(
β0

he
ψh − ∂nψh

)
η − ψh∂nηds,

L(cih, η) =
∑

K∈Th

ˆ

K

(
m∑

i=1

qicih + ρ0

)
ηdx +

ˆ

∂	D

(
β0

he
η − ∂nη

)
ψDds +

ˆ

∂	N

σηds.

It has been shown in [19] that there exists a number β∗
0 > 1 depending on β1, k and the mesh geometry such that if 

β0 > β∗
0 , then

A(η,η) ≥ γ ‖η‖2
E , η ∈ Vh, (3.6)

form some γ ∈ (0, 1). Here the energy norm is defined by

‖η‖E =
⎛
⎜⎝ ∑

K∈Th

ˆ

K

|∇η|2dx +
∑
e∈�0

ˆ

e

1

he
[η]2ds +

ˆ

∂	

1

he
η2ds

⎞
⎟⎠

1
2

.

D

7
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Note that for uniform rectangular meshes, we simply use h for he . A sufficient condition given in [19] is β∗
0 = �d(β1) on all 

cell interfaces, and β∗
0 = 2�d(0) on the Dirichlet boundary faces ⊂ ∂	D . For 1D and 2D rectangular meshes, the result in 

[18] gives

�d(β1) = k2

(
1 − β1(k

2 − 1) + β2
1

3
(k2 − 1)2

)
.

Hence for the DDG scheme (3.5) to the Poisson problem alone, we have the following result.

Theorem 3.4. Suppose that ∂	D �= ∅. Given cih , if β0 > β∗
0 , the DDG scheme (3.5) admits a unique ψh. Moreover, let ψh and ψ̃h be 

two solutions of (3.5) corresponding to cih and c̃ih , respectively, then

‖ψh − ψ̃h‖ ≤ C
m∑

i=1

|qi |‖cih − c̃ih‖ (3.7)

for some constant C independent of h.

Proof. The inequality (3.7) implies that there exists a unique solution ψh for given cih . We only need to prove (3.7). The 
difference of (3.5) with cih and c̃ih respectively, gives

A(ψh − ψ̃h, η) =
m∑

i=1

qi(cih − c̃ih, η).

By taking η = ψh − ψ̃h ∈ Vh and applying (3.6), we have

γ ‖η‖2
E ≤ A(η,η) ≤

m∑
i=1

|qi|‖cih − c̃ih‖‖η‖.

Since ∂	D �= ∅, one can show that supw∈Vh,w �=0
‖w‖
‖w‖E

is uniformly bounded from above, hence

‖η‖ ≤ C0‖η‖E

for some C0. Combining these two inequalities, we obtain the claimed bound with C = C2
0/γ . �

In connection to the coupled scheme for the NP system we make a few remarks.

Remark 3.4. (i) A refined analysis similar to that in [19] would lead to the following error bound:

‖ψ − ψh‖ ≤ C

(
hmin{s,k+1} +

m∑
i=1

|qi|‖ci − cih‖
)

,

where (ci, ψ) solves the PNP system (2.1) with ψ ∈ Hs , and ψh is the solution to the DDG scheme (3.5) based on polynomials 
of degree k. Though we may use higher order DDG scheme to solve the Poisson problem, the error is limited by the error 
of the coupled scheme of order 3 to the NP problem, so our method is only third order.
(ii) One may also apply the DDG method with the same flux parameters (β0, β1) for both the Poisson equation and the NP 
equation as long as they are taken from the following range:

β0 ≥ β∗
0 ,

1

8
≤ β1 ≤ 1

4
.

3.4. Preservation of steady-states

With zero flux boundary conditions, scheme (3.1) can be shown to be steady-state preserving. A steady state for the PNP 
system is determined by

ci = c∞
i e−qiφ,

where c∞ > 0 is a constant, and φ solves the following Poisson-Boltzmann problem:
i

8
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− �φ =
m∑

i=1

qic
∞
i e−qiφ + ρ0(x), (3.8a)

φ = ψD on ∂	D , and
∂φ

∂n
= σ on ∂	N . (3.8b)

The well-posedness for this problem may be established by a variational approach using the functional

G[φ] =
ˆ

	

[
1

2
|∇φ|2 − ρ0(x)φ +

m∑
i=1

c∞
i (e−qiφ − 1)

]
dx −

ˆ

∂	N

σφds

with the trial function space{
φ ∈ H1(	), φ = ψD on ∂	D

}
.

For the case ∂	N = ∅, we refer the reader to [16, Theorem 2.1] (and also [17, Theorem 2.1]) for a detailed account of 
existence results using the variational approach for both the point ions and the finite size ions.

We say a discrete function cih is at steady-state if

cih = c∞
i �e−qiφh , (3.9)

where φh satisfies (2.3c) for φh = ψh with cih replaced by (3.9), which is a nonlinear algebraic equation for φh . This may 
serve as a DDG scheme for the Poisson-Boltzmann problem (3.8). Instead of using this nonlinear scheme, we use our DDG 
scheme for PNP as an iterative scheme for obtaining φh .

We state the following nice property of the PNP scheme.

Theorem 3.5. Consider the fully discrete scheme (3.1). If c0
ih is already at steady state, then cn

ih = c0
ih for all n ≥ 1 with any time step 

�t > 0.

Proof. Take c0
ih = c∞

i �e−qiψh with ψh := φh , which means that for any r ∈ Vh ,

ˆ

K

c0
ihrdx =

ˆ

K

c∞
i e−qiψh rdx =

ˆ

K

c∞
i Mihrdx,

which when combined with (2.3b) implies
ˆ

K

g0
ih Mihrdx =

ˆ

K

c∞
i Mihrdx.

Since g0
ih ∈ Vh , hence we can take r = g0

ih − c∞
i to obtain

ˆ

K

(g0
ih − c∞

i )2Mihdx = 0.

Hence g0
ih ≡ c∞

i . Insertion of this into the right of (3.1) for n = 0 gives

c1
ih = c0

ih.

Same induction ensures the asserted cn
ih = c0

ih for any n ≥ 1. Here the size of time steps plays no role. �
3.5. Implementation details

We summarize our algorithm in the following steps.

1. (Initialization) Project cin
i (x) onto Vh , as formulated in (2.4), to obtain c0

ih(x).
2. (Poisson solver) With cih = cn

ih , solve (3.5) to obtain ψn
h = ψh .

3. (Projection) Solve (3.2) to obtain gn
ih .

4. (Reconstruction) Apply, if necessary, the scaling limiter (3.4) on gn
ih to ensure that in each cell gn

ih ≥ 0 on S j .

5. (NP equation) Solve the fully discrete equation (3.1) to update cn+1
ih with second order Runge-Kutta (RK) ODE solver.

6. Repeat steps 2-5 until final time T .
9
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Remark 3.5. The forward Euler time discretization in (3.1) can be extended to higher order SSP Runge-Kutta method [7], 
which is a convex linear combination of the forward Euler method. The desired positivity preserving property is then 
ensured under a suitable CFL condition (see, e.g., [41]). We chose to use second order time discretization since it is sufficient 
not to outweigh the spatial error that comes from our third order DDG schemes.

Remark 3.6. The time step restriction �t ∼ O (h2) is obviously a drawback of the explicit time discretization. Usually one 
would use implicit in time discretization for diffusion and explicit time discretization for the nonlinear drift term (called 
IMEX in the literature) so that the time step restriction could be relaxed. Unfortunately, formulation (2.2) does not support 
such a separation.

4. Positivity-preserving schemes in two dimensions

In this section we extend our result to the two dimensional case.

4.1. Scheme formulation with rectangular meshes

Let the two dimensional domain 	 = [0, Lx] × [0, L y] be partitioned by uniform rectangular meshes so that 	 = ∪I jl

with

I jl = [x j− 1
2
, x j+ 1

2
] × [yl− 1

2
, yl+ 1

2
], 1 ≤ j ≤ P , 1 ≤ l ≤ Q ,

where P and Q are two positive integers, the mesh sizes �x = Lx
P , �y = L y

Q and

x j+ 1
2

= j�x, yl+ 1
2

= l�y, 0 ≤ j ≤ P , 0 ≤ l ≤ Q .

Consider the NP equation of form

∂tc = ∂x(M∂x g) + ∂y(M∂y g), (x, y) ∈ 	 ⊂ R2,

subject to the initial condition c(0, x, y) = cin(x, y) and zero-flux boundary condition. Here (c, g, M) = (ci, gi, Mi) for i =
1, · · · , m. The fully discrete scheme with Euler forward discretization and the DDG spatial discretization is as follows:ˆ

I jl

cn+1
h v dxdy =

ˆ

I jl

cn
h v dxdy − �t

ˆ

I jl

Mn
ih∇gn

h · ∇v dxdy

+ �t

y
l+ 1

2ˆ

y
l− 1

2

{Mn
ih}

[
̂∂x gn

h v + (gn
h − {gn

h})∂x v
]

dy

∣∣∣∣∣∣∣∣

x
j+ 1

2

x
j− 1

2

+ �t

x
j+ 1

2ˆ

x
j− 1

2

{Mn
ih}

[
̂∂y gn

h v + (gn
h − {gn

h})∂y v
]

dx

∣∣∣∣∣∣∣∣

y
l+ 1

2

y
l− 1

2

, (4.1)

where

̂∂x gh

∣∣∣
(x

j+ 1
2
,y)

= β0

�x
[gh] + {∂x gh} + β1�x[∂2

x gh],

̂∂y gh

∣∣∣
(x,y

l+ 1
2
)
= β0

�y
[gh] + {∂y gh} + β1�y[∂2

y gh],

on interior interfaces, and on the boundary they are zero and {gn
h} = gn

h .
Similar to the one dimensional case, we introduce the cell average as

c̄ jl =
´

I jl
ch dxdy

�x�y
= −

x
j+ 1

2ˆ

x
j− 1

2

−
y

l+ 1
2ˆ

y
l− 1

2

ch dxdy,

where −́ denotes the average integral. We obtain the cell average update from (4.1) with v = 1, divided by �x�y
10
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c̄n+1
jl =c̄n

jl + μx�x −
y

l+ 1
2ˆ

y
l− 1

2

{Mn
ih}̂∂x gn

h dy

∣∣∣∣∣∣∣∣

x
j+ 1

2

x
j− 1

2

+ μy�y −
x

j+ 1
2ˆ

x
j− 1

2

{Mn
ih}̂∂y gn

h dx

∣∣∣∣∣∣∣∣

y
l+ 1

2

y
l− 1

2

, (4.2)

where μx = �t
(�x)2 and μy = �t

(�y)2 . Let μ = μx + μy and decompose c̄n
jl as

c̄n
jl = μx

μ
c̄n

jl +
μy

μ
c̄n

jl = μx

μ
〈gn

h〉 jl + μy

μ
〈gn

h〉 jl, �x�y〈g〉 jl =
ˆ

I jl

Mn
ih g(x)dx,

so that (4.2) can be rewritten as

c̄n+1
jl = μx

μ
−
y

l+ 1
2ˆ

y
l− 1

2

H1(y)dy + μy

μ
−

x
j+ 1

2ˆ

x
j− 1

2

H2(x)dx, (4.3)

where

H1(y) = 〈gn
h〉 j(y) + μ�x {Mn

ih}̂∂x gn
h

∣∣∣x
j+ 1

2

x
j− 1

2

,

H2(x) = 〈gn
h〉l(x) + μ�y {Mn

ih}̂∂y gn
h

∣∣∣y
l+ 1

2

y
l− 1

2

,

here we have used the notation

〈g〉 j(y) = 1

�x

x j+1/2ˆ

x j−1/2

g(x, y)Mn
ih(x, y)dx, 〈g〉l(x) = 1

�y

yl+1/2ˆ

yl−1/2

g(x, y)Mn
ih(x, y)dy.

The two integrals in (4.3) can be approximated by quadratures with sufficient accuracy. Let us assume that we use the 
Gaussian quadrature with L ≥ k+2

2 points, which has accuracy of at least O (hk+2) with h = max{�x, �y}. Let

Sx
j = {xσ

j ,σ = 1, . . . , L} and S y
l = {yσ

l ,σ = 1, . . . , L}
denote the quadrature points on [x j− 1

2
, x j+ 1

2
] and [yl− 1

2
, yl+ 1

2
], respectively. The superscript σ will denote the index of the 

Gaussian quadrature points and ωσ ’s are the quadrature weights at the quadrature points, so that 
∑L

σ=1 ωσ = 1. Using the 
quadrature rule on the right-hand side of (4.3), we obtain the following

c̄n+1
jl = μx

μ

L∑
σ=1

ωσ H1(yσ
l ) + μy

μ

L∑
σ=1

ωσ H2(xσ
j ). (4.4)

Applying the one dimensional result in Theorem 3.2 to both H1(yσ
l ) and H2(xσ

j ), we can establish the positivity-preserving 
result for the two dimensional case. Let

Ŝx
j = x j + �x

2
{−1, γ x,1} and Ŝ y

l = yl + �y

2
{−1, γ y,1},

denote the test set on [x j− 1
2
, x j+ 1

2
] and [yl− 1

2
, yl+ 1

2
], respectively, with γ satisfying

a j < γ x < b j, al < γ y < bl, |γ x, γ y| ≤ 8β1 − 1.

Note that a j, b j, γ x depend on yσ
l , and al, bl, γ y depend on xσ

j , through the weights M(x, yσ
l ) and M(xσ

j , y), respectively. 
We use ⊗ to denote the tensor product and define

S jl = (Sx
j ⊗ Ŝ y

l ) ∪ ( Ŝx
j ⊗ S y

l ).

Theorem 4.1. (k = 2) Consider the two dimensional DDG method (4.1) on rectangular meshes, associated with the approximation DG 
polynomials cn

h(x, y) of degree k, with (β0, β1) chosen so that

1 ≤ β1 ≤ 1
and β0 ≥ 1.
8 4

11
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If gn
h(x, y) ≥ 0 for all (x, y) ∈ S jl and c̄n

jl > 0, then c̄n+1
jl > 0 under the CFL condition

μ < μ0,

where c̄n+1
jl is given in (4.4), μ0 is given in (4.5) below.

Proof. It is easy to check that c̄n+1
jl in (4.4) is a convex combination of H1(yσ

l ) and H2(xσ
j ) for σ = 1, · · · , L; hence c̄n+1

jl > 0
if

H1(yσ
l ) > 0 and H2(xσ

j ) > 0, σ = 1, · · · , L.

Applying the one dimensional result in Theorem 3.2 to H1(yσ
l ), we obtain that for each quadrature point y ∈ S y

l , H1(y) > 0

if gn
h(x, y) ≥ 0 on the test set Ŝx

j and μ ≤ μx
0 with

μx
0 = min

jl
min

1≤σ≤L

⎧⎨
⎩ 〈±γ x ∓ ξ(1 ± γ x) + ξ2〉 j(yσ

l )

2(1 ± γ x)
(
α3(∓γ x)M(x j− 1

2
, yσ

l ) + α1(±γ x)M(x j+ 1
2
, yσ

l )
) ,

〈1 − ξ2〉 j(yσ
l )

2(1 − 4β1)
[

M(x j− 1
2
, yσ

l ) + M(x j+ 1
2
, yσ

l )
]
⎫⎬
⎭ .

In an entirely similar manner, we obtain that for each quadrature point x ∈ Sx
j , H2(x) > 0 if gn

h(x, y) ≥ 0 on the test set Ŝ y
l

and μ ≤ μ
y
0 with

μ
y
0 = min

jl
min

1≤σ≤L

⎧⎨
⎩

〈±γ y ∓ η(1 ± γ y) + η2〉l(xσ
j )

2(1 ± γ y)
(
α3(∓γ y)M(xσ

j , yl− 1
2
) + α1(±γ y)M(xσ

j , yl+ 1
2
)
) ,

〈1 − η2〉l(xσ
j )

2(1 − 4β1)
[

M(xσ
j , yl− 1

2
) + M(xσ

j , yl+ 1
2
)
]
⎫⎬
⎭ .

The proof is thus complete if we take

μ0 = min{μx
0,μ

y
0 }. � (4.5)

4.2. Limiter

To enforce the condition in Theorem 4.1, we can use the following scaling limiter similar to the one dimensional case. 
For all j and l, we assume that the cell averages w̄ jl > 0. We use the modified polynomial w̃h instead of wh := gh(x, y) on 
I jl ,

w̃h(x, y) = θ
(

wh(x, y) − w̄ jl
) + w̄ jl, where θ = min

{
1,

w̄ jl

w̄ jl − minS jl wh(x, y)

}
.

Similar implementation as in Section 3.5 applies in the two dimensional setting.

5. Numerical examples

In this section, we present a selected set of examples to numerically validate our positivity-preserving DDG schemes.
In the one dimensional case, for numerical approximation uh we quantify l1 errors by

‖uh − uref ‖l1 =
N∑

j=1

ˆ

I j

|uh(x) − uref (x)|dx,

where each integral is evaluated by a 4-point Gaussian quadrature method. Here uref is either the exact solution in Ex-
ample 1 or the fine-meshed reference solution in Example 2. Long time simulation is also performed to illustrate how the 
positivity of cell averages propagates.
12
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Table 1
Error table of Example 1 at t = 0.01 for k = 2, β0 = 4 and β1 = 1

6 .

h c1 error order c2 error order ψ error order

0.2 2.0624e-04 – 1.3872e-04 – 8.1931e-05 –
0.1 5.4529e-05 2.43 3.5665e-05 2.43 8.7833e-06 3.17
0.05 9.1862e-06 2.69 6.1522e-06 2.66 9.6769e-07 3.15
0.025 1.3082e-06 2.81 8.9366e-07 2.78 1.1148e-07 3.12

Table 2
Error table of Example 1 at t = 0.01 for k = 2, β0 = 4 and β1 = 1

24 .

h c1 error order c2 error order ψ error order

0.2 1.0164e-04 – 8.4562e-05 – 7.1174e-05 –
0.1 8.4066e-06 3.41 7.8862e-06 3.44 7.4710e-06 3.18
0.05 7.8352e-07 3.31 6.7092e-07 3.45 8.2247e-07 3.15
0.025 8.5408e-08 3.20 6.5765e-08 3.35 9.5078e-08 3.11

Table 3
Error table of Example 1 at t = 0.1 for k = 2, β0 = 4 and β1 = 1

6 .

h c1 error order c2 error order ψ error order

0.2 2.6995e-04 – 1.7356e-04 – 7.5599e-05 –
0.1 6.4304e-05 2.51 3.9933e-05 2.50 8.3213e-06 3.15
0.05 1.0421e-05 2.73 6.6252e-06 2.70 9.3043e-07 3.14
0.025 1.4658e-06 2.83 9.4952e-07 2.80 1.0777e-07 3.11

Table 4
Error table of Example 1 at t = 0.1 for k = 2, β0 = 4 and β1 = 1

24 .

h c1 error order c2 error order ψ error order

0.2 9.3406e-05 – 8.1835e-05 – 6.3855e-05 –
0.1 7.7940e-06 3.31 7.5466e-06 3.42 6.7668e-06 3.18
0.05 7.4802e-07 3.18 6.6124e-07 3.41 7.4491e-07 3.15
0.025 9.4980e-08 2.98 6.7140e-08 3.30 8.5650e-08 3.12

Example 1. We consider a modified PNP system so that an exact solution is available. This allows us to test numerical 
convergence and solution positivity. In 	 = [0, 1], we consider

∂tci = ∂x(∂xci + qici∂xψ) + f i, i = 1,2

−∂2
x ψ = q1c1 + q2c2,

c1 = x2(1 − x)2, c2 = x2(1 − x)3,

∂xci + qici∂xψ = 0, x = 0,1,

ψ(t,0) = 0, ∂xψ(t,1) = −e−t/60,

with

f1 = (50x9 − 198x8 + 292x7 − 189x6 + 45x5)

30e2t
+ (−x4 + 2x3 − 13x2 + 12x − 2)

et
,

f2 = (x − 1)(110x9 − 430x8 + 623x7 − 393x6 + 90x5)

60e2t
+ (x − 1)(x4 − 2x3 + 21x2 − 16x + 2)

et
.

This system, with q1 = 1 and q2 = −1, admits the exact solution

c1 = x2(1 − x)2e−t,

c2 = x2(1 − x)3e−t,

ψ = −(10x7 − 28x6 + 21x5)e−t/420.

Table 1–4 display both the l1 errors and orders of convergence at T = 0.01 and 0.1 with different pairs of parameters 
(β0, β1). We observe that the order of convergence is roughly of 3 in all cases when using P 2 elements. Note that though 
the pair (β0, β1) = (4, 1/24) lies outside the range in Theorem 3.2, we still observe the optimal order of accuracy in Table 2
and 4.
13
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Fig. 1. Numerical solutions versus exact solution at t = 0.1 and t = 1.

Fig. 1 shows the numerical solutions at different times. We observe that the numerical solutions (dots) match the exact 
solutions (solid line) at t = 0.1 (top) and t = 1 (bottom) very well. Our simulation also indicates that cell averages of our 
numerical solutions are positive at least until T = 15, at which time the maximum cell average is extremely small at the 
level of 10−8. This simulation shows that our scheme preserves positivity in long time.

Example 2. In this example we solve the PNP system (2.1) with m = 2 to show convergence, mass conservation and free 
energy dissipation of numerical solutions. Defined in the domain [0, 1], the problem is given by

∂tci = ∂x(∂xci + qici∂xψ), i = 1,2

− ∂2
x ψ = q1c1 + q2c2,

cin
1 (x) = 1 + π sin(πx), cin

2 (x) = 4 − 2x,

∂ci

∂n
+ qici

∂ψ

∂n
= 0, x = 0,1,

∂xψ(t,0) = 0, ∂xψ(t,1) = 0,

where q1 and q2 are set to be 1 and −1, respectively.
With the parameter pair (β0, β1) = (4, 1/6), which is admissible according to Theorem 3.2, we observe the third order 

of accuracy in Table 5 and 6 at time t = 0.01 and t = 0.1, respectively.
In Fig. 2 (top), we see the snapshots of c1, c2 and ψ at t = 0, 0.01, 0.1, 0.8, 1. We observe that the solutions at t = 0.8

and t = 1 are indistinguishable. The solution appears to be approaching to the steady state, c1 = 3, c2 = 3 and ψ = 0. Fig. 2
(bottom) shows the energy decay (see the change on the right vertical axis) and conservation of mass (see the left vertical 
axis). We see that the total mass of c1 and c2 stays constant while the free energy is decreasing in time. In fact the free 
energy levels off after t = 0.2, at which the system is already almost in steady state.
14



H. Liu, Z. Wang, P. Yin et al. Journal of Computational Physics 452 (2022) 110777
Table 5
Error table of Example 2 at t = 0.01 for k = 2, β0 = 4 and β1 = 1

6 .

h c1 error order c2 error order ψ error order

0.2 1.4182e-02 – 2.4784e-03 – 1.5565e-02 –
0.1 1.8817e-03 2.96 3.3395e-04 2.94 2.0471e-03 2.97
0.05 2.3522e-04 3.00 4.2034e-05 2.99 2.5493e-04 3.01

Table 6
Error table of Example 2 at t = 0.1 for k = 2, β0 = 4 and β1 = 1

6 .

h c1 error order c2 error order ψ error order

0.2 5.3188e-04 – 5.5476e-04 – 5.9369e-04 -
0.1 5.2491e-05 3.29 7.0056e-05 2.99 5.8189e-05 3.30
0.05 5.5591e-06 3.24 8.7443e-06 3.00 6.1212e-06 3.25

Fig. 2. Temporal evolution of the solutions.

Example 3. This example is to test the spatial accuracy of our scheme in a 2D setting. Similar to the Numerical Test 5.1 in 
[2], we consider the PNP problem (2.1) on 	 = [0, π ]2 with source terms, i.e.,
15
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Table 7
l1 errors and orders at t = 0.001 with meshes N × N .

N c1 error order c2 error order ψ error order

10 2.1205e-06 – 2.1205e-06 – 2.4658e-06 –
20 2.7552e-07 2.94 2.7552e-07 2.94 2.8821e-07 3.10
30 8.1374e-08 3.01 8.1374e-08 3.01 8.3538e-08 3.05
40 3.4254e-08 3.00 3.4254e-08 3.01 3.4884e-08 3.04

Table 8
l1 errors and orders at t = 0.01 with meshes N × N .

N c1 error order c2 error order ψ error order

10 2.22520e-06 – 2.22520e-06 – 2.46582e-06 –
20 2.75811e-07 3.01 2.75812e-07 3.01 2.88210e-07 3.10
30 8.13896e-08 3.01 8.13899e-08 3.01 8.35368e-08 3.05
40 3.42590e-08 3.01 3.42591e-08 3.01 3.48838e-08 3.04

Table 9
l1 errors and orders at t = 0.001 with meshes N × N .

N c1 error order c2 error order ψ error order

10 2.2132e-06 – 2.2132e-06 – 2.5216e-06 –
20 2.7552e-07 3.01 2.7552e-07 3.01 2.8898e-07 3.13
30 8.1374e-08 3.01 8.1374e-08 3.01 8.3559e-08 3.06
40 3.4254e-08 3.01 3.4254e-08 3.01 3.4875e-08 3.04

Table 10
l1 errors and orders at t = 0.01 with meshes N × N .

N c1 error order c2 error order ψ error order

10 2.22520e-06 – 2.22520e-06 – 2.52159e-06 –
20 2.75811e-07 3.01 2.75812e-07 3.01 2.88977e-07 3.13
30 8.13897e-08 3.01 8.13898e-08 3.01 8.35586e-08 3.06
40 3.42590e-08 3.01 3.42591e-08 3.01 3.48746e-08 3.04

∂tc1 = ∇ · (∇c1 + c1∇ψ) + f1,

∂tc2 = ∇ · (∇c2 − c2∇ψ) + f2,

− �ψ = c1 − c2 + f3,

where the functions f i(t, x, y) are determined by the following exact solution

c1(t, x, y) = α1
(
e−αt cos(x) cos(y) + 1

)
,

c2(t, x, y) = α2
(
e−αt cos(x) cos(y) + 1

)
,

ψ(t, x, y) = α3e−αt cos(x) cos(y),

where the parameters α, α1, α2 and α3 will be specified in each test case. The initial conditions in (2.1c) are obtained by 
evaluating the exact solution at t = 0, and the boundary conditions in (2.1c) satisfy the zero flux boundary conditions. The 
boundary data in (2.1d) is obtained by evaluating the exact solution ψ(t, x, y) on ∂	D and its normal derivative ∂ψ

∂n on 
∂	N . In each test case, we consider one of the following two different types of boundary conditions: (i) ∂	D = ∂	, namely, 
ψ is subject to Dirichlet boundary conditions on ∂	; (ii) ∂	D = {(x, y) ∈ 	̄ : x = 0, x = π} and ∂	N = ∂	\∂	D .

The problem is solved by the fully discrete DG scheme (4.1) together with (2.3bc), modified with source terms. The 
numerical flux parameters are chosen as β0 = 16, β1 = 1

6 . The mesh ratio �t
h2 = 1.6 × 10−5 is taken for all test cases for it is 

sufficient to ensure the desired spatial accuracy.

Test case 3-1. We take the parameters in the exact solution as α = α1 = α2 = α3 = 10−3. In (2.1d), we set the boundary 
condition type for ψ as (i). The errors and orders of convergence at t = 0.001 and t = 0.01 are reported in Table 7 and 
Table 8, respectively. From these results, we conclude that the scheme is of third order in space.

Test case 3-2. We still take α = α1 = α2 = α3 = 10−3 in the exact solution and set the boundary type for ψ as (ii). The 
errors and orders of convergence at t = 0.001 and t = 0.01 are reported in Table 9 and Table 10, respectively. From these 
results, we find again that the scheme is of third order in space.
16



H. Liu, Z. Wang, P. Yin et al. Journal of Computational Physics 452 (2022) 110777
Table 11
l1 errors and orders at t = 0.001 with meshes N × N .

N c1 error order c2 error order ψ error order

10 4.2411e-05 – 2.1207e-05 – 5.0437e-05 –
20 5.5113e-06 2.94 2.7558e-06 2.94 5.7797e-06 3.13
30 1.6277e-06 3.01 8.1389e-07 3.01 1.6712e-06 3.06
40 6.8519e-07 3.01 3.4260e-07 3.01 6.9750e-07 3.04

Table 12
l1 errors and orders at t = 0.01 with meshes N × N .

N c1 error order c2 error order ψ error order

10 4.45250e-05 – 2.22621e-05 – 5.04492e-05 –
20 5.51716e-06 3.01 2.75865e-06 3.01 5.77974e-06 3.13
30 1.62795e-06 3.01 8.13998e-07 3.01 1.67113e-06 3.06
40 6.85243e-07 3.01 3.42630e-07 3.01 6.97456e-07 3.04

Table 13
l1 errors and orders at t = 0.1 with meshes N × N .

N c1 error order c2 error order ψ error order

10 4.50511e-05 – 2.25252e-05 – 5.05368e-05 –
20 5.53926e-06 3.02 2.76971e-06 3.02 5.77936e-06 3.13
30 1.63136e-06 3.01 8.15701e-07 3.01 1.67036e-06 3.06
40 6.86088e-07 3.01 3.43052e-07 3.01 6.97023e-07 3.04

Table 14
α = α1 = 2α2 = α3 = 1.

N c1 error order c2 error order ψ error order

10 4.70196e-03 – 1.25563e-03 – 2.44062e-03 –
20 5.57018e-04 3.08 1.49662e-04 3.07 2.85363e-04 3.10
30 1.60997e-04 3.06 4.35957e-05 3.04 8.27135e-05 3.05
40 6.70705e-05 3.04 1.82319e-05 3.03 3.45401e-05 3.04

Table 15
α = α1 = α2 = α3 = 1.

N c1 error order c2 error order ψ error order

10 4.70152e-03 – 2.51073e-03 – 2.44014e-03 –
20 5.57010e-04 3.08 2.99314e-04 3.07 2.85349e-04 3.10
30 1.60996e-04 3.06 8.71903e-05 3.04 8.27119e-05 3.05
40 6.70703e-05 3.04 3.64635e-05 3.03 3.45398e-05 3.04

Table 16
2α = α1 = α2 = α3 = 2.

N c1 error order c2 error order ψ error order

10 2.91466e-02 – 7.76994e-03 – 4.87560e-03 –
20 3.54794e-03 3.04 9.89917e-04 2.97 5.70727e-04 3.09
30 1.02805e-03 3.06 2.92317e-04 3.01 1.65447e-04 3.05
40 4.27907e-04 3.05 1.22839e-04 3.01 6.90885e-05 3.04

Test case 3-3. In this test case, we test the spatial accuracy of our scheme at different time t with the following parameters 
α = α1 = 2α2 = α3 = 10−2 in the exact solution and use the boundary type (ii) for ψ . The errors and orders of convergence 
at t = 0.001, t = 0.01 and t = 0.1 are reported in Table 11, Table 12 and Table 13, respectively. These results further confirm 
third order of accuracy in space.

Test case 3-4. In this test case, we test the spatial accuracy based on various values of α, α1, α2, α3 when ψ is of boundary 
type (i). The l1 errors and orders of convergence at t = 0.01 with mesh N × N are shown in Table 14-16, and the parameters 
α, α1, α2, α3 are specified in each table. All these cases indicate that our scheme is stable in producing solutions of third 
order of accuracy in space.
17
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Fig. 3. Smallest cell averages of c1, c2 and the minimum values of g1, g2.

Example 4. (Solution positivity, conservation of mass and decay of free energy) We test our scheme for the 2D PNP system 
(2.1) with m = 2 on the domain [0, 1]2,

∂tc1 = ∇ · (∇c1 + c1∇ψ),

∂tc2 = ∇ · (∇c2 − c2∇ψ),

− �ψ = c1 − c2,

cin
1 (x, y) = 1

20
(π sin(πx) + π sin(π y)) ,

cin
2 (x, y) = x2(1 − x)2 + y2(1 − y)2,

∂ci

∂n
+ qici

∂ψ

∂n
= 0, (x, y) ∈ ∂	,

ψ = 0 on ∂	D , and
∂ψ

∂n
= 0 on ∂	N , t > 0,

where ∂	D = {(x, y) ∈ 	̄ : x = 0, x = 1} and ∂	N = ∂	\∂	D . We solve this problem by the fully discrete DG scheme (4.1)
with the numerical flux parameters β0 = 16, β1 = 1

6 .

Test case 4-1. (Solution positivity) For t ∈ (0, 1], the smallest cell averages of c1, c2, and the minimum values of g1, g2
on set S jl based on mesh 20 × 20 and time step �t = 10−5 are shown in Fig. 3(a) and 3(b), respectively. From Fig. 3, 
we find that the smallest cell averages of cl, c2 and the minimum values of g1, g2 on set S jl are positive when they are 
away from t = 0. To have a clear view near t = 0, we test the problem again for t ∈ (0, 10−5] based on mesh 40 × 40 and 
time step �t = 10−7. The smallest cell averages of c1, c2 are now shown in Fig. 4, which together with Fig. 3(a) indicates 
that our scheme can preserve the positivity of the cell averages of c1, c2. The minimum values of g1, g2 before and after 
using the limiter near t = 0 are shown in Fig. 5. From the comparison shown in Fig. 5, we find the limiter is effective in 
preserving the positivity of the minimum values of g1, g2 on set S jl , hence, preserving the positivity of the cell averages of 
c1, c2.

Test case 4-2. Conservation of mass and decay of free energy) Next, we simulate the evolution of c1, c2 and ψ for t ∈ (0, 0.5]. 
The contours of c1 − 0.2 (first column), c2 − 0.2 (second column) and ψ (right) at t = 0, 0.01, 0.1, 0.5 are shown in Fig. 6. 
We observe that the contours at t = 0.1 and t = 0.5 are indistinguishable. The solution appears approaching the steady 
state, c1 = 0.2, c2 = 0.2 and ψ = 0.

Fig. 7 shows the energy decay (see the change on the right vertical axis) and conservation of mass (see the left ver-
tical axis). Similar results are observed as in Example 2, which confirms the conservation of mass and dissipation of 
energy.
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Fig. 4. Smallest cell averages of c1, c2.

Fig. 5. Minimum values of g1, g2 on set S jl .

6. Concluding remarks

In this paper, we design and analyze third-order DDG schemes for solving time-dependent Poisson-Nernst-Planck sys-
tems. These equations are featured with non-negative density solutions. For admissible parameters in the DDG numerical 
flux, the weighted numerical integration allows for a positive decomposition over a test set of three points. As a result, 
with the forward Euler (or SSP-RK) time discretization and the positivity-preserving limiter, the fully discretized scheme 
is shown to preserve non-negativity of the numerical density. The schemes are also shown to conserve total mass for ion 
density when zero-flux boundary conditions are imposed, and preserve the steady states. Numerical examples are presented 
to demonstrate high resolution of the numerical algorithm and illustrate the proven property of positivity preserving and 
mass conservation, as well as the free energy decay.
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Fig. 6. The contours evolution of c1 − 0.2, c2 − 0.2 and ψ . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)
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Fig. 7. Temporal evolution of the solutions.
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