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1. Introduction

In this paper, we study the long time behavior of the motion of an inviscid incom-
pressible fluid, e.g., water, inside a time dependent region Ω(t). A fascinating feature of 
this problem, which is also known as the free boundary problem, is that the boundary 
of “Ω(t)” will affect the motion of the fluid and will also be affected by the motion of 
the fluid. In other words, to study the motion of the fluid, we need to study the motion 
of the fluid and the motion of the boundary at the same time.

To be more precise of the problem setting, we assume that there is a vacuum above 
the water region Ω(t) and there is no vorticity inside Ω(t). Moreover, we consider the 
gravity effect and neglect the surface tension effect. The system under consideration is 
also known as the gravity water waves system.

Despite recent gratifying progress devoted to improving the understanding of the long 
time behavior of the water waves system, which will be discussed later, there are still 
many open questions. One of them is how the fixed bottom of the water region “Ω(t)” 
changes the behavior of the solution in the long run. Although we do have evidence 
that shows that the structure of bottom indeed plays an important role in the long run, 
the mechanism is not mathematically clear even in the small data regime. Here comes 
evidence. For the 2D gravity water system, small traveling waves don’t exist in the infinite 
depth setting (without a bottom) but do exist in the flat bottom setting, see [12]. Here 
comes an open question, does the presence of the flat bottom affect the stability of zero 
solution? Please note that the zero solution is indeed stable under small perturbation 
for the infinite depth setting. See the work of Germain–Masmoudi–Shatah [15] and Wu 
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[32] in 3D; see the work of Ionescu–Pusateri [22], Alazard–Delort [3], Ifrim–Tataru [19]
in 2D.

In this paper, we will answer this question definitely in 3D for small initial data. In 
conclusion, the global stability of the zero solution also holds for the 3D gravity water 
waves system in the flat bottom setting. For any suitably small initial data, the solution 
globally exists and scatters to a linear solution. Moreover, the nonlinear solution decays 
sharply over time in a weak L∞-type space.

We arrive in this conclusion by carefully analyzing the low-frequency part of the 
nonlinear solution, which is the main difference between the infinite depth setting and 
the flat bottom setting. We remark that the high-frequency part of the nonlinear solution 
in two settings are essentially same, see [1,2].

1.1. Gravity water waves system above a flat bottom

In this subsection, we give a more precise mathematical description of the 3D gravity 
water waves system in the flat bottom setting.

Assume that the water region Ω(t) has a free interface Γ(t) and a fixed flat bottom 
Σ. We normalize both the depth and the gravity constant “g” to be “1”. As a result, we 
can describe the domain, the interface and the bottom in the Eulerian coordinates as 
follows,

Ω(t) := {(x, y) : x ∈ R2,−1 ≤ y ≤ h(t, x)},

Γ(t) := {(x, y) : x ∈ R2, y = h(t, x)}, Σ := {(x, y) : x ∈ R2, y = −1},

where h(t, x) denotes the height of the interface at point x and at time t. Since we will 
be in the small data regime, readers can imagine that h(t, x) is a small perturbation of 
“0”.

The evolution of the fluid is described by the Euler equation with boundary conditions 
as follows,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u = −∇p− g(0, 0, 1)
∇ · u = 0, ∇× u = 0, u(0) = u0
u · �n = 0 on Σ
p = 0 on Γ(t)
∂t + u · ∇tangents to ∪t Γ(t) on Γ(t).

(1.1)

As the velocity field is irrotational, we can represent it in terms of velocity potential 
φ. Let ψ be the restriction of velocity potential on the boundary Γ(t), i.e., ψ(t, x) :=
φ(t, x, h(t, x)). From the divergence free condition and the boundary conditions, we can 
derive the following harmonic equation with two boundary conditions: a Neumann type 
condition on the bottom and a Dirichlet type condition on the interface,
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(Δx + ∂2
y)φ = 0, ∂φ

∂�n
∣∣
Σ = 0, φ

∣∣
Γ(t) = ψ. (1.2)

Following the work of Zakharov [36] and the work of Craig–Sulem–Sulem [11], we can 
reduce the motion of fluid to the evolution of the height “h” and the velocity potential 
on the interface “ψ” as follows,⎧⎨⎩ ∂th = G(h)ψ,

∂tψ = −h− 1
2 |∇ψ|2 + (G(h)ψ + ∇h · ∇ψ)2

2(1 + |∇h|2) ,
(1.3)

where G(h)ψ =
√

1 + |∇h|2N (h)ψ and N (h)ψ is the Dirichlet–Neumann operator at 
the interface Γ(t). For the gravity water waves system (1.3), the following conservation 
law holds as long as the solution exists over time,

H(h(t), ψ(t)) =
∫
R2

1
2 |h(t)|2 + 1

2ψG(h(t))ψ(t)dx = H(h(0), ψ(0)). (1.4)

1.2. Previous results

There is extensive literature on the study of the water waves system. Without being 
exhaustive on the progress made so far, we only mention several results on the initial 
value problem here. For the results on the blow-up behavior and the “splash singularity” 
of solutions, interested readers please refer to [7,14,10] and references therein.

On the local theory side, Nalimov [27] and Yosihara [35] considered the small ini-
tial data case, Wu [31,32] considered general initial data in Sobolev spaces, see also the 
subsequent works by Christodoulou–Lindblad [8], Lannes [25], Lindblad [26], Coutand–
Shkoller [9], Shatah–Zeng [28] and Alazard–Burq–Zuily [1,2]. If the effect of surface 
tension is also considered, local existence also holds, see Beyer–Gunther [6], Ambrose–
Masmoudi [5], Coutand–Shkoller [9], Shatah–Zeng [28] and Alazard–Burq–Zuily [1,2].

On the long time behavior side, we have several results. For the gravity water waves 
system in the infinite depth setting. In the 3D case, Wu [34] and Germain–Masmoudi–
Shatah [15] proved global existence for small initial data. In the 2D case, see the work 
of Wu [33] and the work of Hunter–Ifrim–Tataru [18] for the almost global existence, 
see the work of Ionescu–Pusateri [22], Alazard–Delort [3], Ifrim–Tataru [19], Wang [30]
for the global existence results. For the capillary water waves system in the infinite 
depth setting. See the work of Germain–Masmoudi–Shatah [16] for the 3D case. See 
the work of Ionescu–Pusateri [23,24] and Ifrim–Tataru [20] for the 2D case. For the 
3D gravity-capillary water waves in the infinite depth setting, see the recent work of 
Deng–Ionescu–Pausader–Pusateri [13] for the small data global existence result.

For the water waves system in the flat bottom setting. What we know so far about the 
flat bottom case can be summarized as follows: (i) on the one hand, the local existence 
holds (with bottom not necessarily flat) by the work of Lannes [25] and the works of 
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Alazard–Burq–Zuily [1,2] and the large time existence holds by the work of Alvarez-
Samaniego and Lannes in [4]; (ii) on the other hand, there exist traveling waves, which 
are arbitrary small in L2. Note that the existence of traveling waves depends on the 
dimension and the ratio of the surface tension coefficient and the gravity constant.

The existence of traveling waves makes the global regularity problem more delicate 
and more complicated. Traveling waves are more likely to exist in 2D. More precisely, 
in the 2D case, the traveling waves exist as long as g �= 0 regardless the presence of 
surface tension effect, see [12] and references therein. In the 3D case, the existence of the 
traveling waves are only known in the strong surface tension case so far, more precisely 
the case when σ/g > 1/3, see [12].

1.3. Main result

Before stating our main theorem, we first define the main function spaces. Define a 
L∞-type space as follows,

‖f‖Wγ,b :=
∑
k∈Z

(2γk + 2bk)‖Pkf‖L∞ , ‖f‖Wγ := ‖f‖Wγ,0 , 0 ≤ b ≤ γ,

where “Pk” denotes the standard Littlewood–Paley projection operator, which will be 
defined precisely in the subsection 2.1.

We define the Z-normed space and the auxiliary space “Bk,j” as follows,

‖f‖Z := sup
k∈Z

∑
j≥max{−k,0}

‖f‖Bk,j
,

‖f‖Bk,j
:= 2αk(1 + 26k)2j‖ϕk

j (x) · Pkf‖L2 , α = 1/10, (1.5)

where the cutoff function ϕk
j (x) localizes the physical position with a threshold deter-

mined by the localized frequency. The detailed formula of ϕk
j (x) is postponed to the 

subsection 2.1.
The Z-normed space of this type was first introduced by Ionescu–Pausader in [21] for 

the Euler–Poisson system. A basic idea of using this Z-normed space is that not only 
this atomic space has the localized L2-type structure, which is very convenient, but also 
it is stronger than the corresponding L1-type space. Note that the L1-norm of the profile 
of the nonlinear solution, which is the pullback of the nonlinear solution along the linear 
flow, suggests the decay rate over time for the nonlinear solution. Hence, we will control 
the Z-norm of the profile instead of the L1-norm.

Our main result is stated as follows,

Theorem 1. Let N0 = 1000 and δ ∈ (0, 10−9] be fixed and sufficiently small. If the initial 
data (h0, ψ0) satisfies the following estimate,

‖h0‖HN0+1/2 + ‖Λψ‖HN0 + ‖(h0,Λψ0)‖Z + ‖F [(h0,Λψ0)](ξ)‖L∞ ≤ ε0 ≤ ε̄,

ξ
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Λ :=
√

|∇| tanh |∇|, (1.6)

for some sufficiently small constant ε̄, then there is a unique global solution for the system 
(1.3) with initial data (h0, ψ0). Moreover, the following estimate holds,

sup
t∈[0,∞)

(1 + t)−δ‖(h,Λψ)(t)‖HN0 + (1 + t)‖(h,Λψ)(t)‖W 4,2α + ‖eitΛ(h + iΛψ)(t)‖Z � ε0.

(1.7)

Remark 1.1. From (1.7), we know that there is no traveling wave below a certain small-
ness level determined by “ε̄” in the above theorem.

Remark 1.2. As a byproduct of deriving the improved Z-norm estimate for the profile 
of the nonlinear solution, we know that the solution is scattering to a linear solution in 
a lower regularity Sobolev space, e.g., H5(R2).

1.4. Summary of the local results for the gravity waves system

In this subsection, we will discuss the local behavior of the gravity waves system (1.3)
studied in [29], which is the starting point of this paper. Note that the local existence 
of the system (1.3) is already known, e.g., see [2]. Our goal is to extend the lifespan of 
the nonlinear solution. Hence, it is very natural to use the bootstrap argument to iterate 
the local result. To close the bootstrap argument, it is very essential to have a good 
understanding of the dispersion of the nonlinear solution.

Because the gravity waves system (1.3) is quasilinear and moreover the system (1.3)
behaves badly at the low-frequency part in the flat bottom setting, it looks unlikely that 
the decay overtime rate of the nonlinear solution will be same as the decay rate of the 
corresponding linear solution. Note that even the decay rate of the linear solution, which 
is 1/(1 + t), is barely integrable to close the bootstrap argument. As a result, a rough 
energy estimate is not sufficient to control the growth of energy in the long run.

To get around this issue, we introduced a new energy estimate in [29], in which we 
paid special attention to the low-frequency part of the nonlinear solution. The reason 
why we did so is due to the expectation that derivatives can compensate for the decay 
rate over time for the nonlinear solution of (1.3). The intuition of having this expectation 
is simple. If the main issue lies in the low-frequency part, then the derivatives at the 
low-frequency part, which are small, will provide extra smallness.

We state the new energy estimate obtained in [29] as follows,

Theorem 2. If the initial data ( h0, Λψ0) ∈ HN0+1/2(R2) ×HN0(R2) satisfies the small-
ness condition (1.6), then there exists some T > 0 and a unique solution ( h, Λψ) ∈
C0([0, T ]; HN0(R2) ×HN0(R2)

)
. Moreover, the following energy estimate holds for any 

t ∈ [0, T ],
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‖(h,Λψ)(t)‖2
HN0 � ε20 +

t∫
0

[
‖(h,Λψ)(s)‖W 4,1 + ‖(h,Λψ)(s)‖2

W 4

]
‖(h,Λψ)(s)‖2

HN0ds.

(1.8)

Remark 1.3. The smallness assumption assumed in [29] is weaker than the smallness 
assumption (1.6). Only W 4-norm of initial data is required to be small in [29]. Hence, 
we can use the new energy estimate derived there directly in this paper.

There are two main ingredients to derive the energy estimate (1.8): (i) Thanks to the 
works of Alazard–Burq–Zuily [1,2], we can use their paralinearization and symmetriza-
tion procedures to avoid losing derivatives at the high-frequency part; (ii) The careful 
study of the Dirichlet–Neumann operator at the low-frequency part.

1.5. Some properties of the Dirichlet–Neumann operator

Note that the gravity waves system (1.3) is fully nonlinear, which is very inconvenient 
to analyze. Thanks to a fixed point type structure lies in the Dirichlet–Neumann opera-
tor, due to the small date regime, it enables us to control the Z-norm of the remainder 
terms (the cubic and higher order terms). We discuss it with details in this subsection 
as follows.

To identify the fixed point type structure inside the Dirichlet–Neumann operator, we 
need to reformulate the velocity potential inside the water region Ω(t). More precisely, 
for any fixed time “t”, we map the water region Ω(t) to the strip S := R2 × [−1, 0] via 
change of coordinates as follows,

(x, y) → (x, z), z := y − h(t, x)
h(t, x) + 1 , z ∈ [−1, 0].

We define the velocity potential in (x, z)-coordinate system as follows,

ϕ(x, z) := φ(x, h(t, x) + (h(t, x) + 1)z). (1.9)

From (1.2), the following identity holds,

(Δx + ∂2
y)φ = 0 =⇒ Pϕ := [Δx + ã∂2

z + b̃ · ∇∂z + c̃∂z]ϕ = 0, ϕ
∣∣
z=0 = ψ, ∂zϕ

∣∣
z=−1 = 0,

(1.10)

where

ã = 1 + (z + 1)2|∇h|2
(1 + h)2 , b̃ = −2(z + 1)∇h

1 + h
, c̃ = −(z + 1)Δxh

(1 + h) + 2(z + 1)|∇h|2
(1 + h)2 .

(1.11)



812 X. Wang / Advances in Mathematics 346 (2019) 805–886
As a result of direct computations, we can formulate the Dirichlet–Neumann operator 
in terms of ϕ as follows,

G(h)ψ = [−∇h · ∇φ + ∂yφ]
∣∣
y=h(t,x) = 1 + |∇h|2

1 + h
∂zϕ

∣∣
z=0 −∇ψ · ∇h. (1.12)

From (1.12), it is easy to see that the only nontrivial term inside the Dirichlet–
Neumann operator is ∂zϕ

∣∣
z=0. Therefore, to estimate G(h)ψ in a normed space, e.g., a 

X-normed space, it is sufficient to estimate ∂zϕ in the L∞
z X-normed space.

Now, we will show that a fixed point type structure for “∇x,zϕ” is hidden inside the 
elliptic equation (1.10). To see so, we reformulate the equation (1.10) as follows,

(∂z + |∇|)(∂z − |∇|)ϕ = (1 − ã)∂2
zϕ− b̃ · ∇∂zϕ− c̃∂zϕ = g(z)

= ∂zg1(z) + g2(z) + ∇ · g3(z), (1.13)

where

g1(z) = 2h + h2 − (z + 1)2|∇h|2
(1 + h)2 ∂zϕ + (z + 1)∇h · ∇ϕ

1 + h
, g1(−1) = 0, (1.14)

g2(z) = (z + 1)|∇h|2∂zϕ
(1 + h)2 − ∇h · ∇ϕ

1 + h
, g3(z) = (z + 1)∇h∂zϕ

1 + h
, z ∈ [−1, 0]. (1.15)

By treating “g(z)” in (1.13) as some given nonlinearity, we can solve ϕ(x, z) explicitly 
from the equation (1.13) and the boundary conditions in (1.10). As a result, we can solve 
∇x,zϕ “explicitly” as follows,

∇x,zϕ =
[[e−(z+1)|∇| + e(z+1)|∇|

e−|∇| + e|∇|

]
∇ψ,

e(z+1)|∇| − e−(z+1)|∇|

e−|∇| + e|∇| |∇|ψ
]

+ [0, g1(z)] +

+
0∫

−1

[K1(z, s) −K2(z, s) −K3(z, s)](g2(s) + ∇ · g3(s))ds

+
0∫

−1

K3(z, s)|∇|sign(z − s)g1(s) − |∇|[K1(z, s) + K2(z, s)]g1(s) ds, (1.16)

where Ki(z, s), i ∈ {1, 2, 3}, are some linear operators that only depend on z and s, see 
[29] for their detailed formulas.

From (1.14) and (1.15), it is easy to see that gi(z), i ∈ {1, 2, 3}, are all linearly 
depending on ∇x,zϕ. Moreover, gi(z), i ∈ {1, 2, 3} are at the higher order than ∇x,zϕ

because of the smallness of the height of interface “h(t, x)”. Because of this observation, 
now it is easy to see that there exists a fixed point type structure inside (1.16).
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From the fixed point type formulation (1.16), we can derive the Taylor expansion for 
the Dirichlet–Neumann operator, which is crucial to the study of the long time behavior 
of the water waves system.

Because the decay rate of the nonlinear solution is critical in the 3D case (2D inter-
face), it is crucial to know precisely what the linear term and the quadratic terms of the 
Dirichlet–Neumann operator are.

From (1.16) and (1.12), it’s easy to see that the linear terms of ∇x,zϕ and G(h)ψ are 
given as follows,

Λ1[∇x,zϕ] =
[[e−(z+1)|∇| + e(z+1)|∇|

e−|∇| + e|∇|

]
∇ψ,

e(z+1)|∇| − e−(z+1)|∇|

e−|∇| + e|∇| |∇|ψ
]
, (1.17)

Λ1[G(h)ψ] = Λ1[∂zϕ
∣∣
z=0] = |∇| tanh(|∇|)ψ. (1.18)

Now, we identify the quadratic terms of the Dirichlet–Neumann operator. Because of 
the hierarchy of the smallness, we can plug-in the linear terms of ∇x,zϕ in (1.17) to (1.16)
to calculate explicitly the quadratic terms of ∂zϕ, which further give us the quadratic 
terms of G(h)ψ from (1.12). As a result (see [29][Lemma 3.4]), we have

Λ2[G(h)ψ] = −∇x · (h∇xψ) − |∇| tanh |∇|(h|∇| tanh |∇|ψ). (1.19)

For the cubic and higher order terms, although it is not necessary to figure out ex-
plicitly what they are, we still need to estimate them over time to show that they do not 
have much accumulated effect in the long run. From (1.16), we can derive a fixed point 
type formulation for Λ≥3[∇x,zϕ] as follows,

Λ≥3[∇x,zϕ] =
∑
i=1,2

Ci
z(h, ψ, h̃i) + hC̃i

z(h, ψ, h̃i) + (1 + h)2C̃z(h̃2, h̃2,Λ≤2[∇x,zϕ])

+ h2Ĉz(h, h̃2, ψ) + T i
z(h̃i,Λ≥3[∇x,zϕ]) + C̃1

z (h, h̃2,Λ≥3[∇x,zϕ])

+ (1 + h)2C̃2
z (h̃2, h̃2,Λ≥3[∇x,zϕ]), (1.20)

where Ci
z, C̃i

z, C̃z, Ĉz, C̃i
z, i ∈ {1, 2} are some trilinear operators with symbols that satisfy 

the rough estimate (6.20), T i
z are some bilinear operators with symbols that satisfy the 

rough estimate (6.19), and h̃1 and h̃2 are defined as follows,

h̃1 = 2h + h2

(1 + h)2 , h̃2 = h

1 + h
,

see [29][Lemma 3.7]. Due to the small data regime, it is easy to see that the formulation 
(1.20) provides a mechanism to estimate Λ≥3[∇x,zϕ].
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1.6. Main ideas of the proof of Theorem 1

From the new energy estimate (1.8) in Theorem 2, we know that it would be sufficient 
to close the argument if we can prove that the decay rate of the nonlinear solution in 
W 4,2α space is sharp, which is 1/(1 + t) over time. From the linear decay estimates 
in Lemma 2.3 and the fact that the Z-norm constructed in (1.5) is stronger than the 
corresponding L1 type norm, we can reduce our goal to prove that the Z-norm of the 
profile doesn’t grow over time.

Although the proof presented in this paper is very complicated at the technical level, 
we mention three key observations that make it possible to close the argument.

The first key observation is that we can decompose the phases of quadratic terms into 
two parts which have the same sign. For example,

Φ+,−(ξ, η)︸ ︷︷ ︸
Phase

:= Λ(|ξ|) − Λ(|ξ − η|) + Λ(|η|) = Λ(|ξ|) − Λ(|ξ| + |η|) + Λ(|η|)︸ ︷︷ ︸
Positive

+ Λ(|ξ| + |η|) − Λ(|ξ − η|)︸ ︷︷ ︸
Positive

, Λ(|ξ|) :=
√

|ξ| tanh |ξ|, ξ, η ∈ R2. (1.21)

Because of this observation, we know that the phases always have a lower bound despite 
it is of cubic level smallness. See also the Lemma A.2.

The second key observation is that, we can gain one degree of the smallness of the 
output frequency in the 1 × 1 → 0 type interaction, which means that the frequencies 
of two inputs are of size “1” and the frequency of the output is of size “0”, see the 
estimate (2.19) in Lemma 2.4. Although this smallness is not sufficiently strong to control 
completely the accumulated 1 × 1 → 0 type interaction effect over time, it makes the 
choice of small “α” in the definition of Z-norm in (1.5) possible. The availability of a 
small “α” is important, because of the following two facts: (i) the gain from the choice 
of “α” in the 1 ×1 → 0 type interaction becomes the corresponding loss in the 0 ×1 → 1
type interaction, which means that the frequencies of the output and one input are of 
size “1” and the frequency of the other input is of size “0”; (ii) The null structure is not 
available for the gravity waves system (1.3) in the Low × High type interaction, because 
the size of the symbol is “1” instead of “0” in the 0 × 1 → 1 type interaction.

The third key observation is that the angle between the output frequency and the rel-
atively smaller input frequency plays an important role when the phases associated with 
quadratic terms degenerate. To illustrate this observation, we use the phase Φ+,−(ξ, η)
and the case |η| 
 |ξ| as an example. From (1.21), it is easy to see that

Φ+,−(ξ, η) ≥ Λ(|ξ| + |η|) − Λ(|ξ − η|) ≈ Λ′(|ξ|)
(
|ξ| + |η| − |ξ − η|

)
= Λ′(|ξ|)2|ξ||η|(1 + cos(∠(ξ, η)))

|ξ| + |η| + |ξ − η| .
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From the above approximation, we can see that the size of phase is of linear level 
smallness, which is not so small, if the angle between ξ and −η is not small and the size 
of phase is of cubic level smallness, which is the worst scenario, if ξ and −η is almost in 
the same direction. That is to say, the size of the Φ+,−(ξ, η) highly depends on the angle 
between “ξ” and “−η”.

Because of this observation, we will first localize the angle between the output fre-
quency and the relatively smaller input frequency if the associated phase is highly 
degenerated and then carefully analyze the role of this angle in the Z-norm estimate.

1.7. The outline of this paper

This paper is organized as follows.

• In section 2, we introduce the notation used in this paper, reduce the system (1.3)
into a quasilinear dispersive equation, and then prove some bilinear estimates with 
the angle localized, which are very important in the Z-norm estimate.

• In section 3, based on the behavior of the associated phases, we first introduce the 
set-up of the Z-norm estimate for the profile and then decompose the quadratic 
terms into good type terms and bad type terms.

• In section 4 and section 5, we derive the improved Z-norm estimate for the good type 
terms and the bad type terms respectively by assuming that the improved Z-norm 
estimate for remainder terms (cubic and higher order terms) holds.

• In section 6, we derive the improved Z-norm estimate for the remainder terms. Hence 
finishing the bootstrap argument.

• In the Appendix A, we analyze properties of phases associated with system (1.3).

Acknowledgment The author thanks his Ph.D. advisor Alexandru Ionescu for many 
helpful discussions and suggestions. The first version of the manuscript was completed 
when the author visited Fudan University and BICMR, Peking University. The author 
thanks their warm hospitalities during the visits.

2. Notation and some lemmas

2.1. Notations

For any two numbers A and B, we use A � B and B � A to denote A ≤ CB, where 
C is an absolute constant. We use A ∼ B to denote the case A � B and B � A. We use 
A ≈ B to denote the case |A −B| ≤ c|A|, where c is some small absolute constant. For 
any two vectors ξ, η ∈ R2, we use ∠(ξ, η) to denote the angle between ξ and η. Moreover, 
we use the convention that ∠(ξ, η) ∈ [0, π].

Throughout this paper, we will slightly abuse the notation of “Λ”. When there is no 
lower script under Λ, then “Λ” denotes “

√
tanh(|∇|)|∇|”, which is the linear operator 
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associated for the system (1.3). When there is a lower script “p” under Λ where p ∈ N+, 
then Λp(N ) denotes the p-th order terms of the nonlinearity N if a Taylor expansion of 
N is available. Also, we use Λ≥p[N ] to denote the p-th and higher orders terms. More 
precisely, Λ≥p[N ] :=

∑
q≥p Λq[N ].

We provide an example here to better illustrate the notation. For example, Λ2[N ]
denotes the quadratic term of N and Λ≥2[N ] denotes the quadratic and higher order 
terms of N .

For an integrable function f(x), the Fourier transform of f is defined as follows,

F(f)(ξ) =
∫

e−ix·ξf(x)dx.

We will also use f̂(ξ) to denote the Fourier transform of f . We use F−1(g) to denote 
the inverse Fourier transform of g(ξ).

We fix an even smooth function ψ̃ : R → [0, 1] supported in [−3/2, 3/2] and equals to 
1 in [−5/4, 5/4]. For any k ∈ Z, we define

ψk(x) := ψ̃(x/2k) − ψ̃(x/2k−1),

ψ≤k(x) := ψ̃(x/2k) =
∑
l≤k

ψl(x), ψ≥k(x) := 1 − ψ≤k−1(x).

We use Pk, P≤k and P≥k to denote the Fourier multiplier operators with symbols 
ψk(ξ), ψ≤k(ξ) and ψ≥k(ξ) respectively. We use fk(x) to abbreviate Pkf(x).

For an integer k ∈ Z, we use k+ to denote max{k, 0} and use k− to denote min{k, 0}. 
The cutoff function “ϕk

j (x)” used in (1.5) is defined as follows,

ϕk
j (x) :=

{
ψ≤−k−(x) if j = −k−
ψj(x) if j > k−.

(2.1)

We define a linear operator “Qk,j” as follows,

Qk,jf := P[k−2,k+2][ϕk
j (x) · Pkf ]. (2.2)

We use fk,j(x) to abbreviate Qk,jf(x). From the above definition, it’s easy to see that 
the following decomposition holds

Pkf =
∑

j≥−k−

Qk,jf, f =
∑
k∈Z

Pkf =
∑
k∈Z

∑
j≥−k−

Qk,jf. (2.3)

For any integrable function f , we define

f+ := f, P+[f ] := f, f− := f̄ , P−[f ] := f̄ . (2.4)
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For two localized functions f(x) and g(x) and a bilinear form Q(f, g), we use the 
convention that the symbol q(·, ·) of Q(·, ·) is defined in the following sense throughout 
this paper,

F [Q(f, g)](ξ) = 1
4π2

∫
R2

f̂(ξ − η)ĝ(η)q(ξ − η, η)dη. (2.5)

Very similarly, for a trilinear form C(f, g, h), its symbol c(·, ·, ·) is defined in the following 
sense throughout this paper,

F [C(f, g, h)](ξ) = 1
16π4

∫
R2

∫
R2

f̂(ξ − η)ĝ(η − σ)ĥ(σ)c(ξ − η, η − σ, σ)dηdσ.

We define a class of symbol and its associated norms as follows,

S∞ := {m : R4 or R6 → C,m is continuous and ‖F−1(m)‖L1 < ∞},

‖m‖S∞ := ‖F−1(m)‖L1 , ‖m(ξ, η)‖S∞
k,k1,k2

:= ‖m(ξ, η)ψk(ξ)ψk1(ξ − η)ψk2(η)‖S∞ ,

‖m(ξ, η, σ)‖S∞
k,k1,k2,k3

:= ‖m(ξ, η, σ)ψk(ξ)ψk1(ξ − η)ψk2(η − σ)ψk3(σ)‖S∞ .

We have the following lemma on the multilinear estimates,

Lemma 2.1. Assume that m, m′ ∈ S∞, p, q, r, s ∈ [1, ∞], then the following multilinear 
estimates hold,

‖m ·m′‖S∞ � ‖m‖S∞‖m′‖S∞ , (2.6)∥∥∥F−1[ ∫
R2

m(ξ, η)f̂(ξ − η)ĝ(η)dη
]∥∥∥

Lp
� ‖m‖S∞‖f‖Lq‖g‖Lr if 1

p
= 1

q
+ 1

r
, (2.7)

∥∥∥F−1[ ∫
R2

∫
R2

m′(ξ, η, σ)f̂(ξ − η)ĥ(σ)ĝ(η − σ)dηdσ
]∥∥∥

Lp
� ‖m′‖S∞‖f‖Lq‖g‖Lr‖h‖Ls ,

(2.8)

where 1/p = 1/q + 1/r + 1/s.

Proof. The proof is standard. See [22] for details. �
To estimate the S∞

k,k1,k2
or the S∞

k,k1,k2,k3
norms of symbols, we use the following 

Lemma.

Lemma 2.2. If f : R2i → C is a smooth function, i ∈ {2, 3}, then the following estimate 
holds for any k1, · · · , ki ∈ Z,
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‖
∫
R2i

f(ξ1, · · · , ξi)
i∏

j=1
eixj ·ξjψkj

(ξj)dξ1 · · · dξi‖L1
x1,··· ,xi

�
i+1∑
m=0

i∑
j=1

2mkj‖∂m
ξj f‖L∞ . (2.9)

Proof. Let’s first consider the case when i = 2. Through scaling, it is sufficient to prove 
the above estimate for the case when k1 = k2 = 0. From Plancherel theorem, we have 
the following two estimates,

‖
∫
R2i

f(ξ1, ξ2)ei(x1·ξ1+x2·ξ2)ψ0(ξ1)ψ0(ξ2)dξ1dξ2‖L2
x1,x2

� ‖f(ξ1, ξ2)‖L∞
ξ1,ξ2

,

‖(|x1| + |x2|)3
∫
R2i

f(ξ1, ξ2)ei(x1·ξ1+x2·ξ2)ψ0(ξ1)ψ0(ξ2)dξ1dξ2‖L2
x1,x2

�
3∑

m=0

[
‖∂m

ξ1f‖L∞ + ‖∂m
ξ2f‖L∞

]
,

which are sufficient to finish the proof of (2.9). The proof of the case i = 3 is very similar. 
Hence we omit the details here. �

We will use the following lemma to derive the L∞-decay estimate for the corresponding 
linear solution of the gravity waves system (1.3).

Lemma 2.3. For f ∈ L1(R2), the following L∞ type estimates hold,

‖eit
√

|∇| tanh |∇|Pkf‖L∞ � (1 + |t|)−123k/2‖f‖L1 , if k ≥ 0. (2.10)

‖eit
√
|∇| tanh |∇|Pkf‖L∞ � (1 + |t|)− 1+θ

2 2
(3−3θ)k

2 ‖f‖L1 , 0 ≤ θ ≤ 1, if k ≤ 0. (2.11)

Proof. After checking the expansion of the phase, we can apply the main result in 
[17][Theorem 1:(a)&(b)] directly to derive the above estimates. �
2.2. Reduction of the gravity waves system (1.3)

In this subsection, we reformulate the gravity waves system (1.3), which is a coupled 
system, into a quasilinear dispersive equation, which is diagonalized and has explicit 
quadratic terms.

Recall (1.18) and (1.19). Based on the order of nonlinearities, we can rewrite the 
gravity waves system (1.3) as follows,⎧⎨⎩

∂th = Λ2ψ −∇x · (h∇xψ) − |∇| tanh |∇|(h|∇| tanh |∇|ψ) + Λ≥3[G(h)ψ],

∂tψ = −h− 1
2 |∇ψ|2 + 1

2 |Λ
2ψ|2 + 1

2Λ≥3

[
(1 + |∇h|2)(B(h)ψ)2

]
,

(2.12)

where
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B(h)ψ = G(h)ψ + ∇xh · ∇xψ

1 + |∇xh|2
. (2.13)

Define u = h + iΛψ, where Λ :=
√
|∇| tanh |∇|. Very naturally, we have

h = u + ū

2 , ψ = Λ−1(c+u + c−ū
)
, where c+ := −i/2, c− := i/2. (2.14)

From (2.12), we can derive the equation satisfied by “u” from (2.12) as follows,

(∂t + iΛ)u =
∑

μ,ν∈{+,−}
Qμ,ν(uμ, uν) + R, (2.15)

where

Qμ,ν(uμ, uν) = −cν
2 ∇x · (uμ∇Λ−1uν) − cν

2 |∇| tanh |∇|(uμΛuν)

+ icμcν
2 Λ

[
− ∇

Λ uμ · ∇Λ uν + ΛuμΛuν
]
, (2.16)

R = Λ≥3[∂th] + iΛΛ≥3[∂tψ] = Λ≥3[G(h)ψ] + iΛ
(
Λ≥3[(1 + |∇h|2)(B(h)ψ)2]

)
. (2.17)

Note that, in (2.16), we used the notation defined in (2.4).
For any fixed k ∈ Z, we define

χ1
k := {(k1, k2) : k1, k2 ∈ Z, k ≤ max{k1, k2} − 5 ≤ min{k1, k2}},

χ2
k := {(k1, k2) : k1, k2 ∈ Z, k2 ≤ k − 5, |k1 − k| ≤ 4},

χ3
k := {(k1, k2) : k1, k2 ∈ Z, k − 5 < min{k1, k2} ≤ max{k1, k2} < k + 5},

χ4
k := {(k1, k2) : k1, k2 ∈ Z, k1 ≤ k − 5, |k2 − k| ≤ 4},

where χ1
k corresponds to the High × High type interaction with the output frequency 

relatively small, χ2
k and χ4

k corresponds to the High × Low type and the Low × High 
type interactions with a relatively small input frequency, and χ3

k corresponds to the case 
when two inputs frequencies and the output frequency are all comparable.

When (k1, k2) ∈ χ4
k, we can do change of coordinates to switch the roles of k1 and k2. 

As a result, we have∑
μ,ν∈{+,−}

Qμ,ν(uμ, uν) =
∑

μ,ν∈{+,−}

∑
k∈Z

∑
(k1,k2)∈χ1

k∪χ2
k∪χ3

k

Q̃μ,ν(uμ
k1
, uν

k2
), (2.18)

for some bilinear operator Q̃μ,ν(uμ, uν). Let qμ,ν(ξ−η, η) denote the symbol of quadratic 
term Q̃μ,ν(uμ, uν).

Lemma 2.4. For k, k1, k2 ∈ Z and any μ, ν ∈ {+, −}, the following estimates hold for
any k ∈ Z, (k1, k2) ∈ χ1

k ∪ χ2
k ∪ χ3

k,
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‖qμ,ν(ξ − η, η)‖S∞
k,k1,k2

� 2k/2+k−/2+k1,+ . (2.19)

Proof. From (2.16) and (2.18), it is easy to compute the symbol qμ,ν(ξ − η, η) explic-
itly. Therefore the desired estimate (2.19) holds directly from the estimate (2.9) in 
Lemma 2.2. �
2.3. Bootstrap assumption and proof of the main theorem

We prove Theorem 1 via the standard bootstrap argument. The bootstrap assumption 
is stated as follows,

sup
t∈[0,T ]

(1 + t)−δ‖(h,Λψ)(t)‖HN0 + ‖eitΛ(h + iΛψ)‖Z � ε1 := ε
5/6
0 . (2.20)

As a result of the new energy estimate (1.8) in Theorem 2, the following Proposition 
holds.

Proposition 2.1. Under the bootstrap assumption (2.20), we have the following estimate,

sup
t∈[0,T ]

(1 + t)−δ‖(h,Λψ)(t)‖HN0 � ε0. (2.21)

Proof. Note that the following estimate holds under the bootstrap assumption (2.20),

‖(h,Λψ)(t)‖W 4 � ‖(h,Λψ)(t)‖1/4
HN0‖(h,Λψ)(t)‖3/4

W 4,2α � (1 + t)−3/4+2δε0.

From the estimate (1.8) in Theorem 2, the following estimate holds for any t ∈ [0, T ],

‖(h,Λψ)(t)‖2
HN0 � ε20 +

t∫
0

ε31
(1 + s)1−2δ ds � (1 + t)2δε20.

Hence the desired estimate (2.21) holds. �
The rest of this paper is devoted to proving the following Proposition, which is suffi-

cient to close the bootstrap argument.

Proposition 2.2. Under the bootstrap assumption (2.20) and the energy estimate (2.21), 
we have

sup
t∈[0,T ]

‖eitΛ(h + iΛψ)‖Z � ε0. (2.22)

Therefore, from the linear decay estimates (2.10) and (2.11) in Lemma 2.3, the following 
decay estimate holds,
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sup
t∈[0,T ]

(1 + t)‖(h,Λψ)(t)‖W 4,2α � ε0. (2.23)

2.4. Bilinear estimates with the angle localized

In the later Z-norm estimate, we need to localize the angle between the output fre-
quency and the smaller input frequency to exploit the observation that the size of the 
degenerated phase depends on this angle. Unavoidably, we need to estimate some bilinear 
operators with the angle localized. More precisely, we have the following two Lemmas.

Lemma 2.5. For l, k, k1, k2 ∈ Z, l ≤ 2, k2 ≤ k1, and f, g ∈ L2 ∩ L1, we define a bilinear 
form as follows,

T (f, g) =
∫
R2

eitΦ
μ,ν(ξ,η)ψk(ξ)ψk1(ξ − η)ψk2(η)ψl(∠(ξ, νη))m(ξ, η)f̂μ(ξ − η)ĝν(η)dη,

where μ, ν ∈ {+, −}, m(ξ, η) ∈ S∞, and the phase “Φμ,ν(ξ, η)” is defined as follows,

Φμ,ν(ξ, η) := Λ(|ξ|) − μΛ(|ξ − η|) − νΛ(|η|), Λ(|ξ|) :=
√

|ξ| tanh |ξ|. (2.24)

Then the following estimates hold,

‖T (f, g)‖L2

� ‖m‖L∞
ξ,η

min
{
22k2+l‖f‖L2‖ĝ‖L∞

ξ
, 2k2+l/2‖f‖L2‖g‖L2 , 2k2+k1+l‖f̂‖L∞

ξ
‖g‖L2

}
,

(2.25)

‖T (f, g)‖L2

� ‖m‖L∞
ξ,η

min{2k+k1+l‖f̂‖L∞
ξ
‖g‖L2 , 2k+l/2‖f‖L2‖g‖L2 , 2k2+k+l‖ĝ‖L∞

ξ
‖f‖L2},

(2.26)

‖T (f, g)‖L2 � ‖m‖S∞
k,k1,k2

min{‖fk1‖L2‖F−1[e−itΛ(ξ)ĝ(ξ)ψk2(ξ)]‖L∞
x
,

2(k1−k2)/2‖g(η)ψk2(η)‖L2‖F−1[e−itΛ(ξ)f̂(ξ)ψk1(ξ)]‖L∞
x
}. (2.27)

Proof. • We first prove the desired estimates (2.25) and (2.26).
Note that for any given small number 0 < 2n � 1, we can decompose the unit circle S1

into the union of angular sections with bounded (with upper bound given by an absolute 
constant) overlaps, where each sector has angular size 2n. These cutoff functions form a 
partition of unity. We label those sectors by their angles ω = ξ/|ξ|, use |ω| to denotes 
the size of angle and use bωn(ξ) to denote a fixed standard bump function that supported 
in this sector and form a partition of unity.

With the above defined notation, we use the angular partition of unity for “ξ”, “ξ−η” 
and “η”. Because of the localized angle between ξ and νη, the following decomposition 
holds,
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T (f, g) =
∑

|ω1|,|ω2|∼2l+k2−k1

|ω1±ω2|∼2l+k2−k1

|ω3|∼2l,|ω1−νω3|∼2l

∫
R2

eitΦ
μ,ν(ξ,η)ψk(ξ)ψk1(ξ − η)ψk2(η)ψl(∠(ξ, νη))m(ξ, η)

× bω1
l+k2−k1

(ξ)bω2
l+k2−k1

(ξ − η)bω3
l (η)f̂μ(ξ − η)ĝν(η)dη. (2.28)

From the L2-orthogonality of the localized angle in “ξ”, the following estimate holds,

‖T (f, g)‖2
L2 �

∑
ω1,ω2,ω3

same as in (2.28)

∥∥∫
R2

eitΦ
μ,ν(ξ,η)ψk(ξ)ψk1(ξ − η)ψk2(η)m(ξ, η)

× bω1
l+k2−k1

(ξ)bω2
l+k2−k1

(ξ − η)f̂μ(ξ − η)ĝν(η)bω3
l (η)dη

∥∥2
L2

ξ

� ‖m‖2
L∞

ξ,η
min{

∑
ω1,ω2,ω3

same as in (2.28)

24k2+2l‖f̂(ξ − η)bω2
l+k2−k1

(ξ − η)ψk1(ξ − η)‖2
L2‖ĝ(η)‖2

L∞
η
,

(2.29)∑
ω1,ω2,ω3

same as in (2.28)

22k2+l‖f̂(ξ−η)bω2
l+k2−k1

(ξ−η)ψk1(ξ−η)‖2
L2‖bω3

l (η)ψk2(η)ĝ(η)‖2
L2

η
}. (2.30)

For the simplicity of notation, in (2.29) and (2.30), ω1, ω2, and ω3 belong to the same 
set listed under the summation of (2.28).

In the first estimate of (2.30), we used the volume of support of η; in the second 
estimate of (2.30), we used the Cauchy–Schwartz inequality for the integration with 
respect to “η”.

Recall the set of ω1, ω2, ω3 under the summation in (2.28). Because of the partition 
of unity, it is easy to check the following two facts: (i) the multiplicity (i.e., how many 
times it has been counted) of the summation with respect to ω2 is a finite number; (ii) 
the multiplicity of the summation with respect to ω3 is 2k1−k2 because there are 2k1−k2

sectors ω2 satisfy |ω1 − νω3| ∼ 2l and |ω1 ± ω2| ∼ 2l+k2−k1 for a fixed sector ω3.
Therefore, the following estimate holds after summarizing with respect to ω2,∑
ω1,ω2,ω3

same as in (2.28)

24k2+2l‖f̂(ξ−η)bω2
l+k2−k1

(ξ−η)ψk1(ξ−η)‖2
L2‖ĝ(η)‖2

L∞
η

� 24k+2l‖f‖L2‖ĝ‖L∞
ξ

∑
ω1,ω2,ω3

same as in (2.28)

22k2+l‖f̂(ξ − η)bω2
l+k2−k1

(ξ − η)ψk1(ξ − η)‖2
L2‖bω3

l (η)ψk2(η)ĝ(η)‖2
L2

η

� 22k2+l‖f‖L2‖g‖L2 .

Alternatively, the following estimate holds after summarizing with respect to ω3 and 
using the volume of support of f̂(·),
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∑
ω1,ω2,ω3

same as in (2.28)

22k2+l‖f̂(ξ − η)bω2
l+k2−k1

(ξ − η)ψk1(ξ − η)‖2
L2‖bω3

l (η)ψk2(η)ĝ(η)‖2
L2

η

� 22k2+l2k1−k222k1+k2−k1+l‖f̂‖2
L∞

ξ

∑
ω3

‖bω3
l (η)ψk2(η)ĝ(η)‖2

L2
η

� 22k1+2k2+2l‖f̂‖2
L∞

ξ
‖g‖2

L2 .

Hence finishing the proof of the desired estimate (2.25).
On the other hand, if we use the size of support of ξ first, then the following estimate 

holds in the same spirit as the proof of (2.25),

L.H.S. of (2.30) � ‖m‖2
L∞

ξ,η

∑
ω1,ω2,ω3

same as in (2.28)

22k+l‖f̂(ξ − η)bω2
l+k2−k1

(ξ − η)ψk1(ξ − η)‖2
L2

× ‖bω3
l (η)ψk2(η)ĝ(η)‖2

L2
η

� ‖m‖2
L∞

ξ,η
min

{ ∑
ω1,ω2,ω3

same as in (2.28)

22k+2l+k1+k2‖f̂‖2
L∞

ξ
‖bω3

l (η)ψk2(η)ĝ(η)‖2
L2

η
,

22k+l‖f‖2
L2‖g‖2

L2 ,
∑

ω1,ω2,ω3
same as in (2.28)

22k+2k2+2l

× ‖f̂(ξ − η)bω2
l+k2−k1

(ξ − η)ψk1(ξ − η)‖2
L2‖ĝ‖2

L∞
ξ

}
� ‖m‖2

L∞
ξ,η

min{22k+2k1+2l‖f̂‖2
L∞

ξ
‖g‖2

L2 , 22k+l‖f‖2
L2‖g‖2

L2 , 22k2+2k+2l‖ĝ‖2
L∞

ξ
‖f‖2

L2}.

Hence finishing the proof of (2.26).
• Now we proceed to prove the desired estimate (2.27). From the L2−L∞ type bilinear 

estimate (2.7) in Lemma 2.1, the following estimate holds,

(2.29) � ‖m‖2
S∞
k,k1,k2

min
{ ∑

ω1,ω2,ω3
same as in (2.28)

‖f̂(ξ − η)bω2
l+k2−k1

(ξ − η)ψk1(ξ − η)‖2
L2

× ‖F−1[e−itΛ(η)ĝ(η)bω3
l (η)ψk2(η)]‖2

L∞
x
,

∑
ω1,ω2,ω3

same as in (2.28)

‖ĝ(η)bω3
l (η)ψk2(η)‖2

L2

× ‖F−1[e−itΛ(ξ−η)f̂(ξ − η)bω2
l+k2−k1

(ξ − η)ψk1(ξ − η)‖2
L∞

x

}
� ‖m‖2

S∞
k,k1,k2

min
{
‖fk1‖2

L2‖F−1[e−itΛ(η)ĝk2(η)]‖2
L∞

x
, 2(k1−k2)

× ‖gk2‖2
L2‖F−1[e−itΛ(η)f̂k1(η)]‖2

L∞
x

}
.

Hence finishing the proof of (2.27). In the above estimate, we used the facts that the mul-
tiplicity of summation with respect to ω3 is 2k1−k2 and the kernel of symbol bωl (ξ)ψk(ξ)
belongs L1, where l, k ∈ Z. �
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To take advantage of the oscillation in time when the frequencies are localized away 
from the time resonance set, we do integration by parts in time. Unavoidably, we will 
confront a bilinear operator with the small divisor issue because of the presence of the 
degenerated phase in the denominator. Hence, we provide the L2-estimates of bilinear 
operators of this type in the following Lemma.

Lemma 2.6. For m, k, k1, k2, κ, l ∈ Z, k2 ≤ k1, t ∈ [2m−1, 2m], κ ≥ −m + δm, and 
f, g ∈ L2 ∩ L1, we define two bilinear operators as follows,

T1(f, g) =
∫
R2

eitΦ
μ,ν(ξ,η)ψ[−10,10](2−κΦμ,ν(ξ, η))

Φμ,ν(ξ, η) ψk(ξ)m(ξ, η)f̂μ
k1

(ξ − η)ĝνk2
(η)dη,

T2(f, g) =
∫
R2

eitΦ
μ,ν(ξ,η)ψ[−10,10](2−κΦμ,ν(ξ, η))

Φμ,ν(ξ, η)

× ψk(ξ)m(ξ, η)f̂μ
k1

(ξ − η)ĝνk2
(η)ψl(∠(ξ, νη))dη,

where the phase Φμ,ν(ξ, η) is defined in (2.24). Then the following estimates hold,

‖T1(f, g)‖L2 � 2−κ‖m‖S∞
k,k1,k2

sup
|λ|≤2δm/2

min{‖e−i(t+λ2−κ)Λfk1‖L∞‖gk2‖L2 ,

‖e−i(t+λ2−κ)Λgk2‖L∞‖fk1‖L2} + 2−10m−κ+k‖m‖L∞
ξ,η

‖fk1‖L2‖gk2‖L2 , (2.31)

‖T2(f, g)‖L2 � 2−κ‖m‖S∞
k,k1,k2

sup
|λ|≤2δm/2

min{2(k1−k2)/2‖e−i(t+λ2−κ)Λfk1‖L∞‖gk2‖L2 ,

‖e−i(t+λ2−κ)Λgk2‖L∞‖fk1‖L2} + 2−10m−κ+k‖m‖L∞
ξ,η

‖fk1‖L2‖gk2‖L2 .

(2.32)

Proof. To prove (2.31), we use the inverse Fourier transform to reformulate T1(f, g) as 
follows,

T1(f, g) = 1
4π2

∫
R

∫
R2

2−κei(t+λ2−κ)Φμ,ν(ξ,η)χ̂(λ)ψk(ξ)m(ξ, η)f̂μ
k1

(ξ − η)ĝνk2
(η)dηdλ,

where

χ̂(λ) =
∫
R

e−iλxψ[−10,10](x)
x

dx,=⇒ |χ̂(λ)| � (1 + |λ|)−N0/δ. (2.33)

Hence, when |λ| ≤ 2δm/2, we use the L2−L∞ type bilinear estimate (2.7) in Lemma 2.1, 
which gives the first part of estimate (2.31). When |λ| ≥ 2δm/2, from (2.33), χ̂(λ) provides 
fast decay. After using the size of support of ξ first and then use the L2−L2 type estimate, 
we derive the second part of estimate (2.31).
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With minor modifications in the above estimates and the proof of (2.27), we can prove 
the desired estimate (2.32) very similarly. Hence, we omit details here. �
3. The set-up of the Z-norm estimate

Note that our goal is reduced to prove the Proposition 2.2. In other words, we will 
prove that the Z-norm of the profile “eitΛ(h + iΛψ) = eitΛu” doesn’t grow over time. In 
this section, we first introduce the set-up of the Z-norm estimate and then reduce the 
proof of Proposition 2.2 into the proof of three Propositions.

3.1. The first reduction

Recall the equation satisfied by u in (2.15) and (2.18), we define the profile of u as 
f(t) := eitΛu(t) and then rewrite the equation (2.15) in terms of profile f(t) as follows,

∂tf =
∑

μ,ν∈{+,−}

∑
k∈Z

∑
(k1,k2)∈χ1

k∪χ2
k∪χ3

k

Tμ,ν(fμ
k1
, fν

k2
) + R′, (3.1)

where R′ = eitΛR and the bilinear operator Tμ,ν(·, ·) is defined as follows,

Tμ,ν(g, h) := F−1
[ ∫
R2

eitΦ
μ,ν(ξ,η)ĝ(ξ − η)ĥ(η)qμ,ν(ξ − η, η)dη

]
,

where “g” and “h” are two localized L2 functions.
Because of the presence of the space resonance but not time resonance set, which is a 

small neighborhood of ( ξ︸︷︷︸
output frequency

, ξ/2︸︷︷︸
input frequency

, ξ/2︸︷︷︸
input frequency

), instead of estimating 

the Z-norm of the profile f(t) directly, we will estimate a good substitution variable 
instead.

We first identify this good substitution variable by utilizing the normal form trans-
formation. More precisely, we define

v(t) := u(t) +
∑

μ,ν∈{+,−}

∑
k∈Z,(k1,k2)∈χ3

k

Aμ,ν(uμ
k1

(t), uν
k2

(t)), (3.2)

where the symbol mμ,ν(·, ·) of Aμ,ν(·, ·) is defined as follows,

mμ,ν(ξ − η, η) := −qμ,ν(ξ − η, η)
iΦμ,ν(ξ, η) . (3.3)

From the estimate (2.19) in Lemma 2.4 and the estimate (A.4) in Lemma A.2, the 
following estimate holds,
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‖mμ,ν(ξ − η, η)ψk(ξ)ψk1(ξ − η)ψk2(η)‖L∞
ξ,η

� 2k−min{k,k2}−2k1,−+3k1,+/2. (3.4)

Since the phases are alway bounded from below (see the estimate (A.4) in Lemma A.2), 
for simplicity, instead of remove a very small neighborhood of (ξ, ξ/2, ξ/2), we removed 
the case when the output frequency and the two inputs frequencies are all comparable, 
i.e., the case when (k1, k2) ∈ χ3

k, in (3.2).
For the Z-norm estimate of the normal form transformation, we have the following 

Lemma.

Lemma 3.1. Under the bootstrap assumption (2.20), the following estimate holds,

sup
t∈[0,T ]

∥∥ ∑
μ,ν∈{+,−}

∑
k∈Z,(k1,k2)∈χ3

k

eitΛAμ,ν(uμ
k1

(t), uν
k2

(t))
∥∥
Z
� ε0. (3.5)

Proof. Postponed to subsection 6.2. �
Define the profile of the good substitution variable “v(t)” as g(t) := eitΛv(t). Recall 

(3.2). From the estimate (3.5) in Lemma 3.1, it is easy to see that the Z-norm of f(t)
and g(t) are comparable. Hence, it would be sufficient to prove the following estimate to 
close the argument,

sup
t1,t2∈[2m−1,2m+1]

‖g(t2) − g(t1)‖Z � 2−δmε0, [2m−1, 2m+1] ⊂ [0, T ], m � 1. (3.6)

In the rest of this paper, time “t” will be naturally restricted inside the time interval 
[2m−1, 2m+1], where “m” is a fixed and sufficiently large number.

From (3.1) and (3.2), we can derive the equation satisfied by the profile g(t) as follows,

∂tgk(t) =
∑

μ,ν∈{+,−}

∑
(k1,k2)∈χ1

k∪χ2
k

Tμ,ν(fk1 , fk2) + Pk[R′]

+
∑

μ,ν∈{+,−}

∑
(k1,k2)∈χ3

k

F−1[ ∫
R2

eitΦ
μ,ν(ξ,η)

×mμ,ν(ξ − η, η)∂t
(
f̂μ
k1

(t, ξ − η)f̂ν
k2

(t, η)
)
dη
]
. (3.7)

3.2. The second reduction

In this subsection, based on the properties of the associated phases, we classify the 
quadratic terms in (3.7) into two types: good type and bad type. Moreover, we reduce 
the proof of the desired estimate (3.6) into the proof of three propositions.

Definition 3.1. We call the phase Φμ,ν(ξ, η) a good phase if and only if

(k1, k2, μ, ν) ∈ Pk
good = χ1

k × {(−,−), (+,+)} ∪ χ2
k × {(−,−), (−,+)}. (3.8)
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Recall that the phase Φμ,ν(ξ, η) is defined as follows,

Φμ,ν(ξ, η) = Λ(|ξ|) − μΛ(|ξ − η|) − νΛ(|η|), μ, ν ∈ {+,−}.

It is easy to verify that the following estimate holds,

|Φμ,ν(ξ, η)| ∼ 2k1/2+k1,−/2, if |ξ| ∼ 2k, |ξ − η| ∼ 2k1 ,

|η| ∼ 2k2 , (k1, k2, μ, ν) ∈ Pk
good. (3.9)

From (3.9), it is easy to see that the sizes of phases are not highly degenerated, which 
is why we refer the phases in the scenarios mentioned above as good type phases.

Definition 3.2. We call the phase Φμ,ν(ξ, η) a bad phase if and only if

(k1, k2, μ, ν) ∈ Pk
bad = χ1

k × {(+,−), (−,+)} ∪ χ2
k × {(+,−), (+,+)}. (3.10)

We refer the phases in the scenarios mentioned above as bad type phases because 
the associated phases are of cubic level smallness in the worst scenario, see the estimate 
(A.6) in Lemma A.2.

Recall (3.7). We can rewrite the equation satisfied by the frequency localized profile 
g(t) as follows,

∂tgk(t) = goodk(t) + badk(t) + Pk[R′], (3.11)

where

goodk(t) =
∑

(k1,k2,μ,ν)∈Pk
good

Tμ,ν(fμ
k1
, fν

k2
), (3.12)

badk(t) =
∑

(k1,k2,μ,ν)∈Pk
bad

Tμ,ν(fμ
k1
, fν

k2
) +

∑
(k1,k2)∈χ3

k

∑
μ,ν∈{+,−}

F−1[Kμ,ν(fμ
k1
, fν

k2
)
]
,

(3.13)

where the bilinear operator Kμ,ν(·, ·) is defined as follows,

Kμ,ν(fμ
k1
, fν

k2
) =

∫
eitΦ

μ,ν(ξ,η)mμ,ν(ξ − η, η)∂t
(
f̂μ
k1

(t, ξ − η)f̂ν
k2

(t, η)
)
dη. (3.14)

Hence, from (3.11), the following identity holds,

Pkg(t2) − Pkg(t1) =
t2∫

t1

goodk(t) + badk(t) + Pk[R′(t)]dt.

Hence to prove the desired estimate (3.6), recall the definition of Z-norm in (1.5), it 
would be sufficient if we can prove the following three Propositions,
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Proposition 3.1. Under the bootstrap assumption (2.20), for any θ ∈ [0, 1], the following 
estimates hold for the remainder term R′:

sup
t1,t2∈[2m−1,m+1]

sup
k∈Z,j≥−k−

2δj‖
t2∫

t1

Pk[R′(t)]dt‖Bk,j
� 2−δmε0, (3.15)

sup
t∈[2m−1,m+1]

‖R′(t)‖Z + 2−(1−θ)k+θm‖Pk

(
R′(t)

)
‖L2 + ‖R̂′(t, ξ)‖L∞

ξ
� 2−mε0. (3.16)

Proof. Postponed to section 6. �
Proposition 3.2. Under the bootstrap assumption (2.20) and the assumption that Propo-
sition 3.1 holds, the following Z-norm estimate holds for any t1, t2 ∈ [2m−1, 2m+1], 
m ∈ Z+,

sup
k∈Z,j≥−k−

2δj‖
t2∫

t1

goodk(t)dt‖Bk,j
� 2−δmε0. (3.17)

Proof. Postponed to section 4. �
Proposition 3.3. Under the bootstrap assumption (2.20) and the assumption that Propo-
sition 3.1 holds, the following Z-norm estimate holds for any t1, t2 ∈ [2m−1, 2m+1], 
m ∈ Z+,

sup
k∈Z,j≥−k−

2δj‖
t2∫

t1

badk(t)dt‖Bk,j
� 2−δmε0. (3.18)

Proof. Postponed to section 5. �
3.3. The size of profile under the bootstrap assumption

In this subsection, we estimate the size of the profile in different function spaces under 
the bootstrap assumption. These estimates will give us a good sense of what the profile 
f(t) looks like with respect to the localized frequencies over time.

From the definition of Z-norm, the bootstrap assumption (2.20), the improved energy 
estimate (2.21), and the linear decay estimates in Lemma 2.3, we have the following 
estimates,

‖Pkf(t)‖L2 � 2−N0k++δmε0, (3.19)

‖Pkf(t)‖L2 � 2(1−α)k−6k+ε1, ‖f̂k(ξ)‖L∞
ξ

� 2−αk−6k+ε1, (3.20)

‖e−itΛPkf‖L∞ � 2−αk−m−4.5k+ε1, (3.21)
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where estimate (3.19) is derived from the energy estimate, estimate (3.20) is derived 
from the Z-norm estimate, estimate (3.21) is derived from the linear decay estimates 
(2.10) and (2.11) in Lemma 2.3.

Note that the L∞-estimate in (3.21) is not sharp when k is sufficiently small. Alter-
natively, after choosing θ = 1 − α in the estimate (2.11) in Lemma 2.3, the following 
estimate holds,

‖eitΛPkf‖L∞ � 2−m+αm/223αk/2‖fk‖L1 � 2−m+αm/2+αk/2ε1, if k ≤ 0.

To sum up, we have the following linear decay estimate at the low-frequency part,

‖e−itΛPkf‖L∞ � min{2−m−αk, 2−m+αm/2+αk/2}ε1, if k ≤ 0. (3.22)

Note that the L∞
ξ -estimate and the L2-estimate of the profile in (3.20) is derived 

directly from the size of Z-norm. When “k” is extremely small, the upper bound provided 
by the Z-norm is not sharp. It turns out that, under the bootstrap assumption (2.20), the 
L∞
ξ estimate of the profile grows at most at rate (1 + t)3δ. More precisely, we summarize 

those improved estimates in the following Lemma.

Lemma 3.2. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, the following estimates hold,

sup
t∈[0,T ]

sup
k∈Z

2−k(1 + t)−δ‖fk(t, x)‖L2 � ε0, (3.23)

sup
t∈[2m−1,2m+1]

sup
k∈Z

2−k‖∂tfk(t, x)‖L2 � 2−mε0, (3.24)

sup
t∈[2m−1,2m+1]

sup
k≤0

‖f̂k(t, ξ)‖L∞
ξ

� 23δmε0. (3.25)

Proof. Recall (3.1). From the L2−L∞ type bilinear estimate (2.7) in Lemma 2.1, (2.19)
in Lemma 2.4, and (3.16) in Proposition 3.1, the following estimate holds,

sup
t∈[2m−1,2m+1]

sup
k∈Z

2−k‖∂tfk(t, x)‖L2

� sup
t∈[2m−1,2m+1]

2−k‖Pk[R′](t)‖L2 +
∑

k2≤k1

2−k+k+k1,+‖fk2(t)‖L2

× ‖e−itΛfk1(t)‖L∞ � 2−mε0 +
∑

k2≤k1

2−m+(1−2α)k2−3k1,+ε21 � 2−mε0. (3.26)

Recall that the L∞
ξ -norm of the initial data is of size ε0, see (1.6). Therefore, the following 

estimate holds from the volume of support of the frequency variable “ξ”,

sup 2−k‖fk(0, x)‖L2 � ‖f̂(t, ξ)ψk(ξ)‖L∞
ξ

� ε0. (3.27)

k∈Z
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Combining (3.27) and (3.26), it is easy to see that our desired estimate (3.23) holds.
Recall again (3.1). From the estimate (3.16) in Proposition 3.1, the following estimate 

holds straightforwardly for any k ∈ Z, k ≤ 0, and t ∈ [2m−1, 2m],

‖f̂k(t, ξ)‖L∞
ξ

� 2δmε0 +
∑

k1,k2∈Z,μ,ν∈{+,−}
k2≤k1

‖
t∫

0

eisΦ
μ,ν(ξ,η)qμ,ν(ξ − η, η)f̂μ

k1
(s, ξ − η)

× f̂ν
k2

(s, η)ψk(ξ)dηds‖L∞
ξ
. (3.28)

From the estimate (2.19) in Lemma 2.4 and the estimate (3.23), the following estimate 
holds when k1, k2 /∈ [−2m, 2βm],

∑
k1,k2 /∈[−2m,2βm]

μ,ν∈{+,−},k1,k2∈Z,k2≤k1

‖
t∫

0

eisΦ
μ,ν(ξ,η)qμ,ν(ξ − η, η)f̂μ

k1
(s, ξ − η)f̂ν

k2
(s, η)ψk(ξ)dηds‖L∞

ξ

�
∑

k2≤−2m, or k1≥2βm

2m+k+k1,+ sup
0≤t≤2m

‖fk1(t)‖L2‖fk2(t)‖L2 � 2−m+2δmε21. (3.29)

When k1, k2 ∈ [−2m, 2βm], we do integration by parts in time once. As a result, the 
following estimate holds from the estimate (3.4),

∑
k1,k2∈[−2m,2βm],k2≤k1

‖
t∫

0

eisΦ
μ,ν(ξ,η)qμ,ν(ξ − η, η)f̂μ

k1
(s, ξ − η)f̂ν

k2
(s, η)ψk(ξ)dηds‖L∞

ξ

� sup
0≤t≤2m

∑
k1,k2∈[−2m,2βm],k1,k2∈Z,k2≤k1

2k−min{k,k2}−2k1,−+3k1,+/2[‖fk1(t)‖L2‖fk2(t)‖L2

+
t∫

0

(
‖∂tfk1(s)‖L2‖fk2(s)‖L2 + ‖fk1(s)‖L2‖∂tfk2(s)‖L2

)
ds
]
� m222δmε21 � 23δmε0.

(3.30)

From the estimates (3.28), (3.29), and (3.30), it is easy to see that our desired estimate 
(3.25) holds. �

Therefore, under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, the following estimates hold for the profile “f(t)” at the low-frequency 
part,

‖Pkf(t)‖L2 � min{2(1−α)k, 2k+3δm}ε1,

‖f̂k(ξ)‖L∞
ξ

� min{2−αk, 23δm}ε1, when k ≤ 0. (3.31)
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Remark 3.1. Please note that the results in Lemma 3.2 cannot and will not be used 
in the proof of Proposition 3.1, i.e., the estimate of the cubic and higher order terms, 
because the validity of Proposition 3.1 is part of the assumptions in Lemma 3.2.

4. The improved Z-norm estimate: good type phases

The main goal of this section is to prove the desired Proposition 3.2. In other words, 
we will prove the desired estimate (3.17) under the bootstrap assumption (2.20) and 
the assumption that Proposition 3.1 holds. Note that the estimate (3.31) is valid in this 
section.

Recall (3.12) and (3.8). In subsection 4.1, we consider the case (k1, k2, μ, ν) ∈
χ1
k × {(+, +), (−, −)}. In subsection 4.2, we consider the case (k1, k2, μ, ν) ∈ χ2

k×
{(−, +), (−, −)}. Hence finishing the proof.

4.1. When (k1, k2, μ, ν) ∈ χ1
k × {(−, −), (+, +)}

For simplicity, we first rule out the relatively high-frequency case and the very-low-
frequency case. More precisely, the following Lemma holds.

Lemma 4.1. For any fixed j, m ∈ Z+, under the bootstrap assumption (2.20) and the 
assumption that Proposition 3.1 holds, the following estimate holds for any k ∈ Z, t1, t2 ∈
[2m−1, 2m],

∑
|k1−k2|≤10

k1≥(1+δ)(j+m)/(N0−8)

∑
μ,ν∈{+,−}

2δj‖
t2∫

t1

Tμ,ν(fk1 , fk2)dt‖Bk,j
� 2−δmε0. (4.1)

Moreover, for any k ∈ Z s.t., k ≤ −(1 + 10δ)(m + j)/(2 + α), the following estimate 
holds,

∑
|k1−k2|≤10

∑
μ,ν∈{+,−}

2δj‖
t2∫

t1

Tμ,ν(fk1 , fk2)dt‖Bk,j
� 2−δmε0. (4.2)

Proof. For any μ, ν ∈ {+, −}, from the L2
x → L1

x type Sobolev embedding, the L2
x −

L2
x-type bilinear estimate and the estimate (2.19) in Lemma 2.4, the following estimate 

holds for any (k1, k2) ∈ χ1
k,

‖
t2∫

t1

Tμ,ν(fk1 , fk2)dt‖Bk,j
� 2αk+6k++m+j+k‖qμ,ν(ξ − η, η)‖S∞

k,k1,k2
‖Pk1f‖L2‖Pk2f‖L2

� 2(2+α)k+6k++m+j+k1,+−2N0k1,++2δmε21. (4.3)



832 X. Wang / Advances in Mathematics 346 (2019) 805–886
From the estimate (4.3), it is easy to see that the desired estimates (4.1) and (4.2)
hold. �

To prove the desired estimate (3.17), from the estimates (4.1) and (4.2) in Lemma 4.1, 
it is easy to see that it would be sufficient to prove the following estimate,

2δj‖
t2∫

t1

Tμ,ν(fk1 , fk2)dt‖Bk,j
� 2−2δm−2δjε0, (μ, ν) ∈ {(−,−), (+,+)}, (4.4)

where fixed k, k1, and k2 satisfy the following estimate

−(1+10δ)(m+j)/(2+α) ≤ k ≤ k1−5 ≤ k2 ≤ k1+5 ≤ (1+δ)(j+m)/(N0−8)+10. (4.5)

Note that we used the fact that there are at most (m + j)2 cases in total in (4.5), which 
is only a logarithmic loss.

Based on the possible size of the fixed j, we separate into two cases, see Lemma 4.2
and Lemma 4.3.

Lemma 4.2. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≥ (1 + 20δ)m, then the desired estimate (4.4) holds for any fixed k, 
k1, and k2 that satisfy (4.5).

Proof. Firstly, we do spatial localizations for two inputs. As a result, the following de-
composition holds,

t2∫
t1

Tμ,ν(fk1(t), fk2(t))dt =
∑

j1≥−k1,−,j2≥−k2,−

t2∫
t1

Tμ,ν(fk1,j1(t), fk2,j2(t))dt. (4.6)

If min{j1, j2} ≥ j − δj − δm, then the following estimate holds after using the L2
x −L∞

x

type bilinear estimate, the estimate (2.19) in Lemma 2.4, and the L∞
x → L2

x type Sobolev 
embedding,

∑
min{j1,j2}≥j−δj−δm

2δj‖
t2∫

t1

Tμ,ν(fk1,j1(t), fk2,j2(t))dt‖Bk,j

�
∑

min{j1,j2}≥j−δj−δm

2αk+m+(1+δ)j2k+(1−2α)k2−j1−j2−3k1,+‖fk1,j1‖Z‖fk2,j2‖Z

� 2m+2δm−(1−3δ)jε0 � 2−2δj−2δmε0, (4.7)

where we used the assumption that j ≥ (1 + 20δ)m.
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Now we consider the case min{j1, j2} ≤ j − δj − δm. Since |k1 − k2| ≤ 5, from the 
symmetry between inputs, we assume that j1 = min{j1, j2}. Otherwise, we can simply 
do change of variables to switch the roles of ξ − η and η.

For this case, we can do integration by parts in “ξ” to see rapidly decay. More precisely, 
after integration by parts in “ξ” once, we have

t2∫
t1

Tμ,ν(fk1,j1(t), fk2,j2(t))dt

=
t2∫

t1

∫
R2

∫
R2

eix·ξ+itΦμ,ν(ξ,η)∇ξ ·
(
f̂μ
k1,j1

(t, ξ − η)f̂ν
k2,j2

(t, η)aμ,ν(t, x, ξ, η)
)
dηdξdt,

where

aμ,ν(t, x, ξ, η) = iqμ,ν(ξ − η, η) x + t∇ξΦμ,ν(ξ, η)
|x + t∇ξΦμ,ν(ξ, η)|2 . (4.8)

Note that

|∇ξΦμ,ν(ξ, η)| � 1 =⇒ x + t∇ξΦμ,ν(ξ, η)
|x + t∇ξΦμ,ν(ξ, η)|2ϕ

k
j (x) ∼ 2−j . (4.9)

Hence, we can gain 2−j if doing integration by parts in “ξ” once.
In the meantime, we need to find out what the maximal loss is. If ∇ξ hits in-

put f̂μ
k1,j1

(·), then we at most lose 2j1 . If ∇ξ hits the cutoff functions or the symbol 
aμ,ν(t, x, ξ, η), it is easy to see that we at most lose max{2−k1 , 2−k, 1}. Note that 
j1 ≥ −k1,− and k1 ≥ k − 10. Therefore, the net gain of doing integration by parts 
in “ξ” once is at least max{2−j+j1 , 2−j−k} � 2−δj−δm. Note that we used the fact that 
j + k ≥ δj + δm, which can be derived from the estimate (4.5) and the assumption that 
j ≥ (1 + 20δ)m.

We can do this process as many times as we want to see rapidly decay. As a result, 
the following point-wise estimate holds after using the estimate (2.19) in Lemma 2.4 and 
the L2 − L2 type bilinear estimate,

∣∣∣ t2∫
t1

Tμ,ν(fk1,j1(t), fk2,j2(t))dt
∣∣∣ϕk

j (x) � 2−10j‖fk1,j1‖L2‖fk2,j2‖L2 , (4.10)

which further implies the following estimate,

∑
min{j1,j2}≤j−δj−δm

2δm‖
t2∫

t1

Tμ,ν(fk1,j1(t), fk2,j2(t))dt‖Bk,j
� 2m+2j−10jε21 � 2−2δm−2δjε0.

(4.11)
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From (4.6), (4.7) and (4.11), it is easy to see that our desired estimate (4.4) holds if 
j ≥ (1 + 20δ)m. �
Lemma 4.3. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ (1 + 20δ)m, then the desired estimate (4.4) holds for any fixed k, 
k1, and k2 that satisfy (4.5).

Proof. If j ≤ (1 + 20δ)m, from the estimate (4.5), we have

−(2 + 100δ)m/(2 + α) ≤ k ≤ k1 − 10 ≤ k1 ≤ βm, β := 1/980.

Note that the following equality holds,

F [
t2∫

t1

Tμ,ν(fk1(t), fk2(t))dt](ξ) =
t2∫

t1

∫
R2

eitΦ
μ,ν(ξ,η)f̂μ

k1
(t, ξ − η)f̂ν

k2
(t, η)qμ,ν(ξ − η, η)dηdt.

Recall (3.9). To take advantage of the high oscillation in time for the good type phases, 
we do integration by parts in time once for the above integral. As a result, we have,

F [
t2∫

t1

Tμ,ν(fk1(t), fk2(t))dt](ξ) =
∑
i=1,2

Endμ,ν,i
k1,k2

+ Jμ,ν,i
k1,k2

, (4.12)

where

Endμ,ν,i
k1,k2

= (−1)i−1
∫
R2

eitiΦ
μ,ν(ξ,η)f̂μ(ti, ξ − η)f̂ν(ti, η)mμ,ν(ξ − η, η)ψk1(ξ − η)ψk2(η)dη,

(4.13)

Jμ,ν,1
k1,k2

=
t2∫

t1

∫
R2

eitΦ
μ,ν(ξ,η)f̂μ(t, ξ−η)∂̂tfν(t, η)mμ,ν(ξ−η, η)ψk1(ξ−η)ψk2(η)dηdt, (4.14)

Jμ,ν,2
k1,k2

=
t2∫

t1

∫
R2

eitΦ
μ,ν(ξ,η)∂̂tfμ(t, ξ−η)f̂ν(t, η)mμ,ν(ξ−η, η)ψk1(ξ−η)ψk2(η)dηdt, (4.15)

where the symbol mμ,ν(·, ·) is defined in (3.3).
From Lemma 2.2, (2.19) in Lemma 2.4, and (3.9), it is easy to check that the following 

estimate holds for any (k1, k2) ∈ χ1
k ∪ χ2

k,

‖mμ,ν(ξ − η, η)‖S∞
k,k1,k2

� 2k/2+k−/2+3k1,+−k1 � 23βm. (4.16)

From the L2 − L∞ type bilinear estimate (2.7) in Lemma 2.1, (3.24) in Lemma 3.2 and 
(4.16), the following estimate holds if k1 ≤ −4βm or k ≤ −40βm,
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∑
i=1,2

2δj‖F−1[Endμ,ν,i
k1,k2

]
‖Bk,j

+ 2δj‖F−1[Jμ,ν,i
k1,k2

]
‖Bk,j

� 2αk+6k++j+3βm+2δm‖fk1‖L2‖e−itΛfk2‖L∞

+ 2αk+6k++j+m+3βm+2δm(‖∂tfk1‖L2‖e−itΛfk2‖L∞ + ‖e−itΛfk1‖L∞‖∂tfk2‖L2
)

� 2αk+(1−2α)k1+3βm+2δmε21 � 2−2δm−2δjε0. (4.17)

From the estimate (4.18) in Lemma 4.4 and the estimate (4.24) in Lemma 4.5, we know 
that the desired estimate (4.17) also holds when k1 ≥ −4βm and k ≥ −40βm. Hence 
finishing the proof. �
Lemma 4.4. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ (1 + 20δ)m, then the following estimate holds for fixed k, k1 ∈
Z, k ∈ [−40βm, βm], k1 ∈ [−4βm, βm],

∑
i=1,2

2δj‖F−1[Endμ,ν,i
k1,k2

]
‖Bk,j

� 2−2δm−2δjε0. (4.18)

Proof. Recall (4.13). After doing spatial localizations for two inputs, we have

Endμ,ν,i
k1,k2

=
∑

j1≥−k1,−,j2≥−k2,−

Endμ,ν,i
k1,j1,k2,j2

, (4.19)

Endμ,ν,i
k1,j1,k2,j2

= (−1)i−1
∫
R2

eitiΦ
μ,ν(ξ,η)f̂μ

k1,j1
(ti, ξ − η)f̂ν

k2,j2
(ti, η)mμ,ν(ξ − η, η)dη.

Firstly, let’s consider the case “max{j1, j2} ≥ m + k + k1 − 4βm”. From the L2 −L∞

type bilinear estimate (2.7) in Lemma 2.1 and the estimate (4.16), we can put the input 
with larger spatial concentration in L2 and the other input in L∞. As a result, the 
following estimate holds,

∑
max{j1,j2}≥m+k+k1−4βm

2δj‖F−1[Endμ,ν,i
k1,j1,k2,j2

]
‖Bk,j

�
∑

max{j1,j2}≥m+k+k1−4βm

2αk+6k++(1+δ)j+4βm

× 2− max{j1,j2}−m−α(k1+k2)‖fk1,j1‖Z‖fk2,j2‖Z
� 2−m−(1+α)(k+k1)+9βmε21 � 2−2δm−2δjε0. (4.20)

Lastly, let’s consider the case when max{j1, j2} ≤ m + k + k1 − 4βm. For this case, 
we can do integration by parts in “η” many times to see rapidly decay. More precisely, 
after integration by parts in η once, we have the following identity,
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Endμ,ν,i
k1,j1,k2,j2

= (−1)i−1

ti

∫
R2

eitiΦ
μ,ν(ξ,η)∇η ·

(
f̂μ
k1,j1

(ti, ξ − η)f̂ν
k2,j2

(ti, η)m̃μ,ν(ξ − η, η)
)
dη,

(4.21)

m̃μ,ν(ξ − η, η) = −mμ,ν(ξ − η, η)∇ηΦμ,ν(ξ, η)
i|∇ηΦμ,ν(ξ, η)|2 . (4.22)

If ∇η hits f̂k1,j1 and f̂k2,j2 , we at most lose 2max{j1,j2}. If ∇η hits the symbol m̃μ,ν(·, ·), 
then from the estimates (A.16) and (A.17) in Lemma A.3, it is easy to see that the 
maximal loss is 2−3k−+k1,+ . Therefore, the net gain of doing integration by parts in “η” 
once is at least 2−m max{2max{j1,j2}−k−k1+5k1,+/2, 2−5k−+k1,+}, which is less than 2−βm. 
Therefore, after repeating this process many times, it is easy to see that the following 
estimate holds, ∑

max{j1,j2}≤m+k+k1−4βm

2δj‖F−1[Endμ,ν,i
k1,j1,k2,j2

]
‖Bk,j

�
∑

max{j1,j2}≤m+k+k1−4βm

2−10m‖fk1,j1‖L2

× ‖fk2,j2‖L2 � 2−2δm−2δjε0. (4.23)

From the estimates (4.20) and (4.23), it is easy to see that our desired estimate (4.18)
holds. �
Lemma 4.5. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ (1 + 20δ)m, then the following estimate holds for fixed k, k1 ∈
Z, k ∈ [−40βm, βm], k1 ∈ [−4βm, βm],∑

i=1,2
2δj‖F−1[Jμ,ν,i

k1,k2

]
‖Bk,j

� 2−2δm−2δjε0. (4.24)

Proof. Recall (4.14) and (4.15). After plugging in the equation satisfied by ∂tf in (3.1)
and doing dyadic decompositions for the quadratic terms of ∂tf , we have

Jμ,ν,i
k1,k2

=
∑

(k′
1,k

′
2)∈χ1

k3−i
∪χ2

k3−i
∪χ3

k3−i

∑
τ,κ∈{+,−}

Jμ,ν,τ,κ,i
k′
1,k

′
2

+ JRi
k1,k2

,

Jμ,ν,τ,κ,i
k′
1,k

′
2

:=
∑

j′1≥−k′
1,−,j′2≥−k′

2,−,ji≥−ki,−

Hμ,ν,τ,κ,i
ji;j′1,j′2

,

Hμ,ν,τ,κ,i
j′1,j

′
2

=
∑

ji≥−ki,−

Hμ,ν,τ,κ,i
ji;j′1,j′2

, Hμ,ν,τ,κ,i
ji;j′1

=
∑

j′2≥−k′
2,−

Hμ,ν,τ,κ,i
ji;j′1,j′2

, i ∈ {1, 2}, (4.25)

where
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Hμ,ν,τ,κ,1
ji;j′1,j′2

=
t2∫

t1

∫
R2

∫
R2

eitΦ
μ,τ,κ
1 (ξ,η,σ)mτ,κ

μ,ν,1(ξ, η, σ)f̂μ
k1,j1

(t, ξ − η)f̂τ
k′
1,j

′
1
(t, η − σ)f̂κ

k′
2,j

′
2
(t, σ)dηdσdt,

Hμ,ν,τ,κ,2
ji;j′1,j′2

=
t2∫

t1

∫
R2

∫
R2

eitΦ
τ,κ,ν
2 (ξ,η,σ)mτ,κ

μ,ν,2(ξ, η, σ)f̂τ
k′
1,j

′
1
(t, ξ − σ)f̂κ

k′
2,j

′
2
(t, σ − η)f̂ν

k2,j2
(t, η)dηdσdt,

JR1
k1,k2

=
t2∫

t1

∫
R2

eitΦ
μ,ν(ξ,η)f̂μ(t, ξ − η)R̂′ν(t, η)mμ,ν(ξ − η, η)ψk1(ξ − η)ψk2(η)dηdt,

JR2
k1,k2

=
t2∫

t1

∫
R2

eitΦ
μ,ν(ξ,η)R̂′μ(t, ξ − η)f̂ν(t, η)mμ,ν(ξ − η, η)ψk1(ξ − η)ψk2(η)dηdt,

Φμ,τ,κ
1 (ξ, η, σ) = Λ(ξ) − μΛ(ξ − η) − τΛ(η − σ) − κΛ(σ), (4.26)

Φτ,κ,ν
2 (ξ, η, σ) = Λ(ξ) − τΛ(ξ − σ) − κΛ(σ − η) − νΛ(η), (4.27)

mτ,κ
μ,ν,1(ξ, η, σ) = mμ,ν(ξ − η, η)

(
qτν,κν(η − σ, σ)

)ν
ψk(ξ)ψk1(ξ − η)ψk2(η), (4.28)

mτ,κ
μ,ν,2(ξ, η, σ) = mμ,ν(ξ − η, η)

(
qτμ,κμ(ξ − σ, σ − η)

)μ
ψk(ξ)ψk1(ξ − η)ψk2(η). (4.29)

Here, we remind readers that “τν” is understood as the product of signs, e.g., +− = −.
From the estimate (2.6) in Lemma 2.1, the estimate (4.16), and the estimate (2.19)

in Lemma 2.4, the following estimate holds,

‖mτ,κ
μ,ν,1(ξ, η, σ)ψk′

1
(η − σ)ψk′

2
(σ)‖S∞ + ‖mτ,κ

μ,ν,2(ξ, η, σ)ψk′
1
(ξ − σ)ψk′

2
(σ − η)‖S∞

� 2k1+k′
1,++4βm. (4.30)

From the estimate (3.16) in Proposition 3.1, we know that the Z-norm of R′(t) decays 
at rate 2−m, which compensates the loss from the integration with respect to time. With 
minor modifications, the method used in the estimate of Endμ,ν,i

k1,k2
can be applied directly 

to the estimate of JR1
k1,k2

and JR2
k1,k2

. We omit details here.
Now let’s proceed to estimate Jμ,ν,τ,κ,1

k′
1,k

′
2

and Jμ,ν,τ,κ,2
k′
1,k

′
2

. From the L∞ − L∞ − L2 type 
trilinear estimate (2.8) in Lemma 2.1 and the estimate (4.30), the following estimate 
holds for fixed k′1 and k′2,∑

i=1,2
2δj‖F−1[Jμ,ν,τ,κ,i

k′
1,k

′
2

]
‖Bk,j

�
∑
i=1,2

2αk+6k++m+j+k1+k′
1,++4βm‖e−itΛfki

‖L∞‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2

� 2αk+(1−α)k1+(1−2α)k′
2 min{2−2k′

1,++4βm+20δm, 2m−(N0−6)k′
1,++4βm+30δm}ε0.

(4.31)
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In the above estimate, we used the fact that ‖e−itΛfk′
1
‖L∞ � 2k′

1‖fk′
1
‖L2

� 2k
′
1−N0k

′
1,++δmε1. From (4.31), we can rule out the case when k′1 ≥ 2βm or k′2 ≤ −6βm.

It remains to consider the case when k′1 and k′2 are fixed and −6βm ≤ k′2 ≤ k′1 ≤ 2βm. 
Recall that |k1 − k2| ≤ 10. With minor modifications, we can estimate Jμ,ν,τ,κ,2

k′
1,k

′
2

and 

Jμ,ν,τ,κ,1
k′
1,k

′
2

in the same way. Hence, we only show the estimate of Jμ,ν,τ,κ,1
k′
1,k

′
2

in details here.
Firstly, we consider the case when κ = −τ . For Jμ,ν,τ,−τ,1

k′
1,k

′
2

, we can first rule out the 
case when max{j′1, j′2} ≤ m − 20βm by doing integration by parts in σ many times to 
see rapidly decay. More precisely, after doing integration by parts in “σ”, we have

Hμ,ν,τ,−τ,1
j′1,j

′
2

=
t2∫

t1

∫
R2

∫
R2

1
t
eitΦ

μ,τ,−τ
1 (ξ,η,σ)∇σ ·

(
m̃τ,−τ

μ,ν,1(ξ, η, σ)

× f̂μ
k1

(t, ξ − η)f̂τ
k′
1,j

′
1
(t, η − σ)f̂−τ

k′
2,j

′
2
(t, σ)

)
dηdσdt, (4.32)

where

m̃τ,−τ
μ,ν,1(ξ, η, σ) := −

mτ,−τ
μ,ν,1(ξ, η, σ)∇σΦμ,τ,−τ

1 (ξ, η, σ)
i|∇σΦμ,τ,−τ

1 (ξ, η, σ)|2
. (4.33)

From the estimate (A.16) in Lemma A.3 and (4.30), we have

|m̃τ,−τ
μ,ν,1(ξ, η, σ)| � 215βm, |∇σm̃

τ,−τ
μ,ν,1(ξ, η, σ)| � 2−2(k2,−+k′

1,−)−k′
2+9βm � 2m/2. (4.34)

From the estimate (4.34), it is easy to see that the net gain of doing integration by 
parts in “σ” once is at least max{2−m/2, 2−m+15βm−max{j′1,j′2}}, which is less than 2−βm. 
Therefore, we can repeat this process many times to see rapidly decay.

From (4.30) and the L2 − L∞ − L∞ type trilinear estimate (2.8) in Lemma 2.1, the 
following estimate holds after putting the input with the higher spatial concentration in 
L2 and other inputs in L∞,∑

max{j′1,j′2}≥m−20βm

2δj‖Hμ,ν,τ,−τ,1
j′1,j

′
2

‖Bk,j

�
∑

max{j′1,j′2}≥m−20βm

2αk+6k++m+(1+δ)j2k1+4βm+k′
1,+

× 2−αk1−αk′
1−αk′

22−2m−max{j′1,j′2}‖fk′
1,j

′
1
‖Z‖fk′

2,j
′
2
‖Z‖fk1‖Z � 2−m/2ε0. (4.35)

Lastly, we consider the case κ = τ . Note that ∇σΦμ,τ,τ
1 (ξ, η, σ) = 0 if σ = η/2. Hence, 

we localize around a small neighborhood of (ξ, η, η/2) and split Hμ,ν,τ,τ,1
j1;j′1,j′2

into two parts 
as follows,

Hμ,ν,τ,τ,1
j1;j′1,j′2

=
t2∫ ∫ ∫

eitΦ
μ,τ,τ
1 (ξ,η,σ)mτ,τ

μ,ν,1(ξ, η, σ)f̂μ
k1,j1

(t, ξ − η)f̂τ
k′
1,j

′
1
(t, η − σ)
t1 R2 R2
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× f̂τ
k′
2,j

′
2
(t, σ)ψ≤k2−10(η − 2σ)dηdσdt +

t2∫
t1

∫
R2

∫
R2

eitΦ
μ,τ,τ
1 (ξ,η,σ)mτ,τ

μ,ν,1(ξ, η, σ)

× f̂μ
k1

(t, ξ − η)f̂τ
k′
1
(t, η − σ)f̂τ

k′
2
(t, σ)ψ>k2−10(η − 2σ)

)
dηdσdt. (4.36)

Note that 
∣∣|η| − |ξ− η|

∣∣ ≤ 2−4|η| because (k1, k2) ∈ χ1
k. It is easy to see that |ξ− η| −

|η− σ| ∼ |η| when σ locates inside a small neighborhood of η/2. Hence, we can take the 
advantage of the high oscillation in “η” by doing integration by parts in “η” when σ is 
close to η/2.

Therefore, we do integration by parts in “η” for the first integral in (4.36) and do 
integration by parts in “σ” for the second integral in (4.36). As a result, we have

Hμ,ν,τ,τ,1
j1;j′1,j′2

=
t2∫

t1

∫
R2

∫
R2

1
t
eitΦ

μ,τ,τ
1 (ξ,η,σ)∇σ

·
(
m̃τ,τ

μ,ν,1(ξ, η, σ)f̂μ
k1,j1

(t, ξ − η)f̂τ
k′
1,j

′
1
(t, η − σ)f̂τ

k′
2,j

′
2
(t, σ)

)
+ 1

t
eitΦ

μ,τ,τ
1 (ξ,η,σ)∇η

·
(
m̃τ,τ

μ,ν,2(ξ, η, σ)f̂μ
k1,j1

(t, ξ − η)f̂τ
k′
1,j

′
1
(t, η − σ)f̂τ

k′
2,j

′
2
(t, σ)

)
dηdσdt, (4.37)

where

m̃τ,τ
μ,ν,1(ξ, η, σ) := −

mτ,τ
μ,ν,1(ξ, η, σ)∇σΦμ,τ,τ

1 (ξ, η, σ)ψ>k2−10(η − 2σ)
i|∇σΦμ,τ,τ

1 (ξ, η, σ)|2 , (4.38)

m̃τ,τ
μ,ν,2(ξ, η, σ) := −mμ,τ,τ

1 (ξ, η, σ)∇ηΦμ,τ,τ
1 (ξ, η, σ)ψ≤k2−10(η − 2σ)

i|∇ηΦμ,τ,τ
1 (ξ, η, σ)|2 . (4.39)

From the estimates (A.16) and (A.17) in Lemma A.3 and (4.30), we have

|m̃τ,τ
μ,ν,1(ξ, η, σ)| + |m̃τ,τ

μ,ν,2(ξ, η, σ)| � 2−k2−k′
2+10βm. (4.40)

|∇σm̃
τ,τ
μ,ν,1(ξ, η, σ)| + |∇ηm̃

τ,τ
μ,ν,2(ξ, η, σ)| � 2−2(k2,−+k′

1,−)−k′
2+9βm � 2m/2. (4.41)

Hence, from estimates (4.40) and (4.41), we can see that the net gain of doing integration 
by parts in “σ” (when σ is away from η/2) and “η” (when σ is close to η/2) once is 
at least max{2−m/2, 2−m ×2max{j1,j′1,j′2}−k2−k′

2+10βm}, which is less than 2−βm when 
max{j1, j′1, j′2} ≤ m +k2 +k′2 − 16βm. Therefore, we can repeat this process many times 
to see rapidly decay, hence ruling out the case when max{j1, j′1, j′2} ≤ m +k2+k′2−16βm.

It remains to consider the case when max{j1, j′1, j′2} ≥ m + k2 + k′2 − 16βm. From the 
estimate (4.30) and the L2 − L∞ − L∞ type trilinear estimate (2.8) in Lemma 2.1, the 
following estimate holds after putting the input with the largest spatial concentration in 
L2 and other two inputs in L∞,
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∑
max{j1,j′1,j′2}≥m+k2+k′

2−16βm

2δj‖Hμ,ν,τ,τ,1
ji;j′1,j′2

‖Bk,j

�
∑

max{j1,j′1,j′2}≥m+k2+k′
2−16βm

2αk+6k++m+(1+δ)j

× 2k1+4βm+k′
1,+2−αk′

1−αk′
2−αk22−2m−max{j1,j′1,j′2}‖fk1,j1‖Z‖fk′

1,j
′
1
‖Z‖fk′

2,j
′
2
‖Z

� 2−m/2ε0. (4.42)

Hence finishing the proof. �
4.2. When (k1, k2, μ, ν) ∈ χ2

k × {(−, −), (−, +)}

As we did before, we first rule out the very-low-frequency case and the relatively-high-
frequency case. More precisely, the following Lemma holds.

Lemma 4.6. For any fixed j, m ∈ Z+, under the bootstrap assumption (2.20) and the 
assumption that Proposition 3.1 holds, then the following estimate holds for any k ∈ Z, 
t1, t2 ∈ [2m−1, 2m],

∑
(k1,k2)∈χ2

k
k2≤−(1+10δ)(m+j)/(2−α)

∑
μ,ν∈{+,−}

2δj‖
t2∫

t1

Tμ,ν(fk1 , fk2)dt‖Bk,j
� 2−δmε0. (4.43)

Moreover, for any k ∈ Z s.t., k /∈ [−(1 +10δ)(m +j)/(4 −α), (1 +10δ)(m +j)/(N0−10)], 
the following estimate holds,

∑
(k1,k2)∈χ2

k

∑
μ,ν∈{+,−}

2δj‖
t2∫

t1

Tμ,ν(fk1 , fk2)dt‖Bk,j
� 2−δmε0. (4.44)

Proof. From the L2 − L∞ type bilinear estimate (2.7) in Lemma 2.1 and the estimate 
(2.19) in Lemma 2.4, the following estimate holds,

‖
t2∫

t1

Tμ,ν(fk1 , fk2)dt‖Bk,j
� 2αk+6k++m+j‖qμ,ν(ξ − η, η)‖S∞

k,k1,k2
‖Pk1f‖L2‖e−itΛPk2f‖L∞

(4.45)

� 2m+j+k1+k1+(2−α)k2−(N0−7)k1,+−4k2,++δmε21. (4.46)

From the above estimate (4.46), it is easy to see that our desired estimates (4.43) and 
(4.44) hold. �
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Hence, from the estimates (4.43) and (4.44) in Lemma 4.6, we know that it would be 
sufficient to prove the following estimate,

2δj‖
t2∫

t1

Tμ,ν(fk1 , fk2)dt‖Bk,j
� 2−δm−δjε0, (μ, ν) ∈ {(−,+), (−,−)}, (4.47)

where fixed k, k1 and k2 satisfies the following estimates,

−(1 + 10δ)(m + j)/(2 − α) ≤ k2 ≤ k − 10, |k1 − k| ≤ 10, (4.48)

−(1 + 10δ)(m + j)/(4 − α) ≤ k ≤ (1 + 10δ)(m + j)/(N0 − 10). (4.49)

Same as we did in the previous subsection, we separate into two cases based on the 
possible size of j.

Lemma 4.7. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≥ (1 + 20δ)m, then the desired estimate (4.47) holds for any fixed k, 
k1, and k2 that satisfy the estimates (4.48) and (4.49).

Proof. Note that the rough estimate (4.9) still holds for the case (k1, k2) ∈ χ2
k. The sizes 

of frequencies of inputs do not play a role there. With minor modifications in the proof 
of Lemma 4.2, we can prove the desired estimate very similar if j ≥ (1 +20δ)m. We omit 
details for this case here. �
Lemma 4.8. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ (1 + 20δ)m, then the desired estimate (4.47) holds for any fixed k, 
k1, and k2 that satisfy the estimates (4.48) and (4.49).

Proof. Since j ≤ (1 +20δ)m, from estimates (4.48) and (4.49), we know that fixed k, k1, 
and k2 satisfy the following estimates,

−2(1 + 100δ)m/(2 − α) ≤ k2 ≤ k − 10, |k1 − k| ≤ 10, (4.50)

−2(1 + 100δ)m/(4 − α) ≤ k ≤ 2βm, β = 1/980. (4.51)

Same as we did in the proof of Lemma 4.3, we do integration by parts in time to 
take advantage of the high oscillation in time. As a result, we have the same identity 
as in (4.12). For simplicity, we use the same notations used there. Note that the only 
difference is that now (k1, k2) ∈ χ2

k instead of belongs to χ1
k.

From the L2 −L∞ type bilinear estimate (2.7) in Lemma 2.1 and the estimate (4.16), 
the following estimate holds when k2 ≤ −αm,∑

2δj‖F−1[Endμ,ν,i
k1,k2

]
‖Bk,j

+ 2δj‖F−1[Jμ,ν,i
k1,k2

]
‖Bk,j
i=1,2
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� 2αk+6k++(1+δ)j+3βm‖e−itΛfk1‖L∞‖fk2‖L2

+ 2αk+6k++(1+δ)j+m+3βm(‖e−itΛ∂tfk1‖L∞‖fk2‖L2 + ‖e−itΛfk1‖L∞‖∂tfk2‖L2
)

� 2(1−α)k2+αm/2+10βmε21 � 2−2δm−δjε0. (4.52)

Note that in the above estimate, we used the following estimate

‖e−itΛ∂tfk1‖L∞ �
∑

μ,ν∈{+,−},k′
2≤k′

1

‖e−itΛTμ,ν(fμ
k′
1
, fν

k′
2
)‖L∞ + 2−m‖Pk1(R′)‖Z

�
∑

k′
2≤k′

1

2k
′
1+k′

1,+‖e−itΛfk′
1
‖L∞‖e−itΛfk′

2
‖L∞ + 2−2mε0 � 2−2m+αm/2ε0,

which can be derived from L∞ − L∞ type bilinear estimate (2.7) in Lemma 2.1, the 
estimate (3.22), and the estimate (3.16) in Proposition 3.1. From the estimate (4.53) in 
Lemma 4.9 and the estimate (4.54) in Lemma 4.10, it is easy to see that the desired 
estimate (4.47) also holds for the case when k2 ≥ −αm. Hence finishing the proof. �
Lemma 4.9. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ (1 +20δ)m, then the following estimate holds for fixed k, k1, k2 ∈ Z, 
s.t., (k1, k2, μ, ν) ∈ χ2

k × {(−, −), (−, +)}, and k1, k2 ∈ [−αm, 2βm],∑
i=1,2

2δj‖F−1[Endμ,ν,i
k1,k2

]
‖Bk,j

� 2−2δm−2δjε0. (4.53)

Proof. Firstly, we consider the case when max{j1, j2} ≥ m +2k2−4βm. From the L2−L∞

type bilinear estimate (2.7) in Lemma 2.1 and the estimate (4.16), the following estimate 
holds, ∑

max{j1,j2}≥m+2k2−4βm

2δj‖F−1[Endμ,ν,i
k1,j1,k2,j2

]
‖Bk,j

�
∑

max{j1,j2}≥m+2k2−4βm

2αk+6k++(1+δ)j+4βm

× 2− max{j1,j2}−m−α(k1+k2)‖fk1,j1‖Z‖fk2,j2‖Z � 2−m−(2+2α)k2+15βmε21

� 2−2δm−2δjε0.

For the case when max{j1, j2} ≤ m + 2k2 − 4βm, we can do integration by parts in “η” 
to see rapidly decay. If ∇η hits f̂k1,j1 and f̂k2,j2 , we at most lose 2max{j1,j2}−2k2+5k1,+/2, 
which is less than 2m−βm. If ∇η hits the symbol m̃μ,ν(·, ·), then from the estimates (A.16)
and (A.17) in Lemma A.3, it is easy to see that the maximal loss is 2−k2−4k1,−+k1,+ , which 
is less than 2m−βm. Hence the net gain is at least 2−βm from integration by parts in “η” 
once. We can repeat this process many times to see rapidly decay. Hence finishing the 
proof. �
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Lemma 4.10. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ (1 +20δ)m, then the following estimate holds for fixed k, k1, k2 ∈ Z, 
s.t., (k1, k2, μ, ν) ∈ χ2

k × {(−, −), (−, +)}, and k1, k2 ∈ [−αm, 2βm],∑
i=1,2

2δj‖F−1[Jμ,ν,i
k1,k2

]
‖Bk,j

� 2−2δm−2δjε0. (4.54)

Proof. Same as before, the method used in the estimate of Endμ,ν,i
k1,k2

can be applied 

directly to the estimate of JR1
k1,k2

and JR2
k1,k2

. Now we proceed to estimate Jμ,ν,τ,κ,1
k′
1,k

′
2

and Jμ,ν,τ,κ,2
k′
1,k

′
2

.
Recall (4.28) and (4.29). From the estimate (2.6) in Lemma 2.1, the estimate (2.19)

in Lemma 2.4, and the estimate (4.16), the following estimate holds,

‖mτ,κ
μ,ν,1(ξ, η, σ)ψk′

1
(η − σ)ψk′

2
(σ)‖S∞ + ‖mτ,κ

μ,ν,2(ξ, η, σ)ψk′
1
(ξ − σ)ψk′

2
(σ − η)‖S∞

� 2k
′
1+4βm. (4.55)

From the estimate (4.55) and the L2 − L∞ − L∞ type trilinear estimate (2.8) in 
Lemma 2.1, the following estimate holds for fixed k′1 and k′2,∑

i=1,2
2δj‖F−1[Jμ,ν,τ,κ,i

k′
1,k

′
2

]
‖Bk,j

�
∑
i=1,2

22δm+αk+6k++m+j+k′
1+4βm‖e−itΛfki

‖L∞‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2

� min{2(1−α)(k′
1+k′

2)+11βm, 2(1−α)k′
2+m+4βm−(N0−8)k′

1,+}ε0.

From the above estimate, we can rule out the case when k′1, k
′
2 /∈ [−14βm, βm]. Now, it 

is sufficient to consider the case when k′1 and k′2 are fixed and −14βm ≤ k′2 ≤ k′1 ≤ βm.
Recall that |η| ≤ 2−4|ξ − η| for the case we are considering. It is easy to see that 

“ξ−η” and “η/2” are still not close. Hence, the methods used in the proof of Lemma 4.5
for the χ1

k case can be applied directly here. Therefore we can do integration by parts in 
“σ” when “σ” is far away from η/2 and do integration by parts in η when σ is close to 
η/2 to take the advantage of the high oscillation in σ or η. As a result, we can rule out 
the case when max{ji, j′1, j′2} ≤ m + k2 + k′2 − 16βm.

For the case when max{ji, j′1, j′2} ≥ m +k2+k′2−16βm, it is easy to verify that a similar 
estimate as in the estimate (4.42) is still valid for the case when k1, k2 ∈ [−αm, 2βm]
and k′1, k

′
2 ∈ [−14βm, βm]. Hence finishing the proof. �

5. The improved Z-norm estimate: bad type phases

The main goal of this section is to prove the desired Proposition 3.3. In other words, 
we will prove the desired estimate (3.18) under the bootstrap assumption (2.20) and 



844 X. Wang / Advances in Mathematics 346 (2019) 805–886
the assumption that Proposition 3.1 holds. Note that the estimate (3.31) is valid in this 
section.

Recall (3.13) and (3.10). In subsection 5.1, we consider the case (k1, k2, μ, ν) ∈
χ1
k × {(+, −), (−, +)}. In subsection 5.2, we consider the case (k1, k2, μ, ν) ∈ χ2

k×
{(+, +), (+, −)}. In subsection 5.3, we estimate Kμ,ν(fμ

k1
, fν

k2
), where μ, ν ∈ {+, −}

and (k1, k2) ∈ χ3
k. Hence finishing the proof.

5.1. When (k1, k2) ∈ χ1
k, (μ, ν) ∈ {(−, +), (+, −)}

Note that the estimates (4.1) and (4.2) in Lemma 4.1 holds regardless the sign of μ
and ν. Moreover, the proof of the Lemma 4.2 is also valid regardless the sign of μ and ν. 
Hence, we can rule out the very-low-frequency case, the relatively-high-frequency case, 
and the case j ≥ (1 + 20δ)m as in subsection 4.1. Moreover, from the estimate (A.4) in 
Lemma A.2, it is easy to see that the phase is not degenerated if k1 ≥ 0. Therefore, the 
case when k1 ≥ 0 can be handled in the same way as in the subsection 4.1. To sum up, 
in this subsection, it would be sufficient to consider fixed k, k1, k2, and j that satisfy 
the following estimate,

−(1 + δ)(m + j)/(2 + α) ≤ k ≤ k1 − 10 ≤ k2 ≤ k1 + 10 ≤ 10, j ≤ m + 20δm. (5.1)

From the estimate of bad type phases in (A.4), we know that the size of phases 
highly depends on the angle between ξ and νη. This fact motivates us to do dyadic 
decomposition for the angle between ξ and νη with a threshold l̄ chosen to be 2k1,− as 
follows,

F [
t2∫

t1

Tμ,ν(fk1(t), fk2(t))dt](ξ) =
∑

l̄≤l≤2

Iμ,νl , Iμ,νl =
∑

j1≥−k1,−,j2≥−k2,−

Iμ,νl;j1,j2 , (5.2)

where

Iμ,νl;j1,j2 =
t2∫

t1

∫
eitΦ

μ,ν(ξ,η)ϕl̄;l(∠(ξ, νη))qμ,ν(ξ − η, η)f̂μ
k1,j1

(t, ξ − η)f̂ν
k2,j2

(t, η)dηdt, (5.3)

and ϕl̄;l(·) is defined as follows,

ϕl̄;l(x) =
{

ψl(x) if l̄ < l ≤ 2
ψ≤l̄(x) if l = l̄ := 2k1,−.

(5.4)

Note that there are at most m2 cases in total for l, which is only a logarithmic loss. 
Hence we will also let l to be fixed in the rest of this subsection.
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To sum up, it would be sufficient to prove the following estimate in this subsection,

2δj‖F−1[Iμ,νl

]
‖Bk,j

� 2−2δm−2δjε0, (μ, ν) ∈ {(−,+), (+,−)}, (5.5)

where fixed k, k1, and j satisfy the estimate (5.1) and fixed l ∈ [−2k1,−, 2]. Based on the 
possible sizes of j, k+2k1, and k+2l, we separate into five cases. As a result, the desired 
estimate (5.5) follows from Lemma 5.1, Lemma 5.2, Lemma 5.3, Lemma 5.4, Lemma 5.5.

Lemma 5.1. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if max{m + l, −k− l} +100δm ≤ j ≤ m +20δm, then the desired estimate 
(5.5) holds for any fixed k, k1, and k2 that satisfy (5.1).

Proof. Note that the assumption on the size of j implies that k ≤ −30δm because 
otherwise max{m + l, −k − l} + 100δm > m + 20δm.

We first consider the case when min{j1, j2} ≥ j− δm. From (2.26) in Lemma 2.5 and 
(2.19) in Lemma 2.4, the following estimate holds,∑
min{j1,j2}≥j−δm

2δj‖F−1[Iμ,νl;j1,j2 ]‖Bk,j

�
∑

min{j1,j2}≥j−δm

2(2+α)k+m+(1+δ)j+k+k+l/2‖fk1,j1‖L2

× ‖fk2,j2‖L2 � 2(2+α)k+m+2δm−(1−δ)j−2αk1+l/2ε21 � 2(1−α)k+2δmε0 � 2−2δm−2δjε0.

(5.6)

Now we consider the case when min{j1, j2} ≤ j − δm. For this case, we will do 
integration by parts in “ξ” repeatedly to see rapidly decay. Recall that μν = −. From 
the estimate (A.3) in Lemma A.1 and the estimate (A.15) in Lemma A.3, it is easy to 
see that the following estimate holds,

|∇ξΦμ,ν(ξ, η)|ϕl̄;l(∠(ξ, νη)) =
∣∣∣Λ′(|ξ|) ξ

|ξ| − μΛ′(|ξ − η|) ξ − η

|ξ − η|

∣∣∣ϕl̄;l(∠(ξ, νη)) � 2l.

From the above estimate and the assumption that j ≥ m + l + 100δm, we have the 
following estimate,

|∇ξ[x · ξ + tΦμ,ν(ξ, η)]|ϕl̄;l(∠(ξ, νη))ϕk
j (x) ∼ 2j . (5.7)

Hence, after doing integration by part in ξ once, we can gain 2−j by paying the price 
of at most max{2min{j1,j2}, 2−k−l}, where 2−k−l comes from the fact that ∇ξ might 
hit the angular cutoff function ϕl̄;l(∠(ξ, νη)) or the symbol aμ,ν(t, x, ξ, η) (see (4.8)). As 
j ≥ −k − l + 100δm and min{j1, j2} ≤ j − δm, we can see that the net gain of doing 
integration by parts in “ξ” once is at least 2−δm. Hence, we can keep doing this process 
to see rapidly decay. More precisely, the following estimate holds.



846 X. Wang / Advances in Mathematics 346 (2019) 805–886
∣∣F−1[Iμ,νl;j1,j2 ](x)
∣∣ϕk

j (x) � 2−10m‖fk1,j1‖L2‖fk2,j2‖L2 .

Hence, it’s easy to see that the following estimate holds∑
min{j1,j2}≤j−δm

2δj‖F−1[Iμ,νl;j1,j2 ]‖Bk,j
� 2−2δm−2δjε0. (5.8)

Hence finishing the proof from the estimates (5.6) and (5.8). �
Lemma 5.2. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m +l, −k−l} +100δm, then the desired estimate (5.5) holds for 
any fixed k, k1, and k2 that satisfy (5.1) under the assumption that k+2k1 ≤ −m +βm, 
and k + 2l ≤ −m + 2βm.

Proof. From the assumptions that j ≤ max{m + l, −k− l} +100δm, k+2k1 ≤ −m +βm

and k + 2l ≤ −m + 2βm, it is easy to see that j ≤ −k − l + 2βm + 100δm and k ≤
−m/3 + βm.

From the estimate (2.26) in Lemma 2.5, the estimate (2.19) in Lemma 2.4, and the 
estimates (3.23) and (3.25) in Lemma 3.2, the following estimate holds,

2δj‖F−1[Iμ,νl ]‖Bk,j
� 22δm+αk+m+(1+δ)j+k+k+k1+l‖fk1‖L2‖f̂k2(t, ξ)‖L∞

ξ

� 2(1+α)k+m+2k1+3βmε0 � 2αk+4βmε0 � 2−2δm−2δjε0.

Hence finishing the proof. �
Lemma 5.3. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m +l, −k−l} +100δm, then the desired estimate (5.5) holds for 
any fixed k, k1, and k2 that satisfy (5.1) under the assumption that k+2k1 ≤ −m +βm, 
and k + 2l ≥ −m + 2βm.

Proof. From the assumptions on j, k+ 2k1 and k+ 2l, it is easy to see that j ≤ m + l+
100δm and k ≤ −m/3 + βm.
• We first consider the case when max{j1, j2} ≥ m +k−k1 + l−4βm. From the estimate 
(2.27) in Lemma 2.5 and the estimate (2.19) in Lemma 2.4, the following estimate holds,∑
max{j1,j2}≥m+k−k1+l−4βm

2δj‖F−1[Iμ,νl;j1,j2 ]‖Bk,j
�

∑
max{j1,j2}≥m+k−k1+l−4βm

2αk+m+(1+δ)j

× 2k+βm−m−2αk1−max{j1,j2}‖fk1,j1‖Z‖fk2,j2‖Z � 2αk+(1−2α)k1+6βmε21 � 2−2δm−2δjε0.

• Now we consider the case when max{j1, j2} ≤ m + k − k1 + l − 4βm. For this case, 
we can keep doing integration by parts in “η” to see rapidly decay. Because k + 2l ≥
−m + 2βm, which means that we are away from the space resonance set, there is no 
problem when ∇η hits the symbol m̃μ,ν(ξ − η, η) when doing integration by parts in 
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η, see (4.22) and (A.14) in Lemma A.3. From (A.14) in Lemma A.3, we can see that 
the net gain of doing integration by parts in “η” once is at least 2−m max{2−k−2l+βm, 
2max{j1,j2}−k+k1−l+3βm}, which is less than 2−βm. Therefore, we can keep doing this 
process to see rapidly decay. �
Lemma 5.4. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m +l, −k−l} +100δm, then the desired estimate (5.5) holds for 
any fixed k, k1, and k2 that satisfy (5.1) under the assumption that k+2k1 ≥ −m +βm, 
and k + 2l ≤ −m + 2βm.

Proof. From the assumptions on j, k + 2k1 and k + 2l, it is easy to see that j ≤ −k −
l + βm + 100δm, k ≤ −m/5 + βm and l ≤ k1 + βm/2.

Because k+2k1 ≥ −m +βm, which means that we are away from the time resonance 
set, we do integration by parts in time once to take advantage of the high oscillation in 
time. The formulas are very similar to (4.12) and (4.25). For the sake of readers, we still 
state them in details as follows,

Iμ,νl =
∑
i=1,2

Endμ,ν,i
l;k1,k2

+ Jμ,ν,i
l;k1,k2

,

Jμ,ν,i
l;k1,k2

=
∑

k′
1,k

′
2∈Z

∑
μ′,κ′∈{+,−}

Jμ,ν,τ,κ,i
l;k′

1,k
′
2

+ JRi
l;k1,k2

, i ∈ {1, 2}, (5.9)

Jμ,ν,τ,κ,i
l;k′

1,k
′
2

:=
∑

j′1≥−k′
1,−,j′2≥−k′

2,−,ji≥−ki,−

Hμ,ν,τ,κ,i
l,ji;j′1,j′2

,

Endμ,ν,i
l;k1,k2

=
∑

j1≥−k1,−,j2≥−k2,−

Endμ,ν,i
l;k1,j1,k2,j2

, (5.10)

Hμ,ν,τ,κ,i
l;j′1,j′2

=
∑

ji≥−ki,−

Hμ,ν,τ,κ,i
l,ji;j′1,j′2

, Hμ,ν,τ,κ,i
l,ji;j′1

=
∑

j′2≥−k′
2,−

Hμ,ν,τ,κ,i
l,ji;j′1,j′2

, i ∈ {1, 2}, (5.11)

where

Endμ,ν,i
l;k1,j1,k2,j2

= (−1)i−1
∫
R2

eitiΦ
μ,ν(ξ,η)f̂μ

k1,j1
(ti, ξ − η)f̂ν

k2,j2
(ti, η)mμ,ν(ξ − η, η)ϕl̄;l(∠(ξ, νη))dη,

(5.12)

Hμ,ν,τ,κ,1
l,j1;j′1,j′2

=
t2∫

t1

∫
R2

∫
R2

eitΦ
μ,τ,κ
1 (ξ,η,σ)mτ,κ

μ,ν,1(ξ, η, σ)ϕl̄;l(∠(ξ, νη))

× f̂μ
k1,j1

(t, ξ − η)f̂τ
k′
1,j

′
1
(t, η − σ)f̂κ

k′
2,j

′
2
(t, σ)dηdσdt, (5.13)
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Hμ,ν,τ,κ,2
l,j2;j′1,j′2

=
t2∫

t1

∫
R2

∫
R2

eitiΦ
τ,κ,ν
2 (ξ,η,σ)mτ,κ

μ,ν,2(ξ, η, σ)ϕl̄;l(∠(ξ, νη))

× f̂τ
k′
1,j

′
1
(t, ξ − σ)f̂κ

k′
2,j

′
2
(t, σ − η)f̂ν

k2,j2
(t, η)dηdσdt, (5.14)

JR1
l;k1,k2

=
t2∫

t1

∫
R2

eitΦ
μ,ν(ξ,η)f̂μ(t, ξ − η)R̂′ν(t, η)mμ,ν(ξ − η, η)

× ψk1(ξ − η)ψk2(η)ϕl̄;l(∠(ξ, νη))dηdt, (5.15)

JR2
l;k1,k2

=
t2∫

t1

∫
R2

eitΦ
μ,ν(ξ,η)R̂′μ(t, ξ − η)f̂ν(t, η)mμ,ν(ξ − η, η)

× ψk1(ξ − η)ψk2(η)ϕl̄;l(∠(ξ, νη))dηdt, (5.16)

where mμ,ν(ξ − η, η), mτ,κ
μ,ν,1(ξ, η, σ), and mτ,κ

μ,ν,2(ξ, η, σ) are defined in (3.3), (4.28), and 
(4.29). From the estimate (2.9) in Lemma 2.2, the estimate (2.19) in Lemma 2.4, the 
estimate (A.4) in Lemma A.2, and the estimate (A.14) in Lemma A.3, the following 
estimates hold,

‖mμ,ν(ξ − η, η)ϕl̄;l(∠(ξ, νη))‖L∞
ξ,η

� 2k−k−2 max{k1,−,l}, (5.17)

‖mμ,ν(ξ − η, η)ϕl̄;l(∠(ξ, νη))‖S∞
k,k1,k2

� max{2k−k−2 max{k1,−,l}−3k1,− , 2k−k−2 max{k1,−,l}−3l} � 2−2 max{k1,−,l}−6k1,− .

(5.18)

From the estimate (2.26) in Lemma 2.5, estimates (3.23), (3.24) and (3.25) in Lemma 3.2, 
and the estimate (5.17), the following estimate holds,∑

i=1,2
2δj‖F−1[Endμ,ν,i

l;k1,k2
]‖Bk,j

+
∑
i=1,2

2δj‖F−1[Jμ,ν,i
l;k1,k2

]‖Bk,j

�
∑
i=1,2

2αk+(1+δ)j−2 max{k1,−,l}+2βm+k+k1+l

×
(
‖f̂ki

(ξ)‖L∞
ξ
‖fk3−i

‖L2 + 2m‖f̂ki
(t, ξ)‖L∞

ξ
‖∂tfk3−i

‖L2
)

� 2αk+3βmε21 � 2−2δm−2δjε0.

Hence finishing the proof. �
Lemma 5.5. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m +l, −k−l} +100δm, then the desired estimate (5.5) holds for 
any fixed k, k1, and k2 that satisfy (5.1) under the assumption that k+2k1 ≥ −m +βm, 
and k + 2l ≥ −m + 2βm.
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Proof. From the assumptions on j, k+ 2k1 and k + 2l, it is easy to see that j ≤ m + l+
100δm and k1 ≥ −m/3. Same as in Lemma 5.4, we do integration by parts in time first 
to take advantage of high oscillation in time.

• Estimate of the endpoint case. Because k+2l ≥ −m +2βm, which means that we 
are away from the space resonance set, we can first rule out the case when max{j1, j2} ≤
m + k − k1 + l − 4βm by keep doing integration by parts in “η” many times.

Now it would be sufficient to consider the case when max{j1, j2} ≥ m +k−k1+l−4βm. 
From the estimate (2.26) in Lemma 2.5 and the estimate (5.17), the following estimate 
holds after putting the input with higher spatial concentration in L2 and the other input 
in L∞

ξ .

∑
max{j1,j2}≥m+k−k1+l−4βm

∑
i=1,2

2δj‖F−1[Endμ,ν,i
l;k1,j1,k2,j2

]‖Bk,j

�
∑

max{j1,j2}≥m+k−k1+l−4βm

2αk+(1+δ)j−2 max{k1,−,l}+k+k1+l−max{j1,j2}−2αk1

× ‖fk1,j1‖Z‖fk2,j2‖Z � 2αk+2k1+l−2 max{k1,−,l}−2αk1+6βmε21 � 2αk+(1−2α)k1+6βmε0.

From the above estimate, we can rule out the case when k1 ≤ −7βm or k ≤ −70βm. 
It remains to consider the case when k1 ≥ −7βm and k ≥ −70βm. From the estimate 
(5.18), we have

‖mμ,ν(ξ − η, η)ϕl̄;l(∠(ξ, νη))‖S∞
k,k1,k2

� 2−8k1,−+2βm � 258βm. (5.19)

From the L2 − L∞ type bilinear estimate (2.7) in Lemma 2.1 and the estimate (5.19), 
the following estimate holds after putting the input with higher spatial localization in 
L2 and the other input in L∞.∑

max{j1,j2}≥m+k−k1+l−4βm

∑
i=1,2

2δj‖F−1[Endμ,ν,i
l;k1,j1,k2,j2

]‖Bk,j

�
∑

max{j1,j2}≥m+k−k1+l−4βm

2αk+(1+δ)j+58βm−max{j1,j2}−m−2αk1‖fk1,j1‖Z‖fk2,j2‖Z

� 2−m−(1−α)k+(1−2α)k1+70βmε21 � 2−m+140βmε0 � 2−2δm−2δjε0.

• Estimate of Jμ,ν,i
l;k1,k2

, i ∈ {1, 2}. Recall (5.9), (5.10), and (5.11).
Since the decay rate of Z-norm of R′ is 2−m, with minor modifications, we can estimate 

of JR1
l;k1,k2

and JR2
l;k1,k2

in the same way as we did above for Endμ,ν,i
l;k1,k2

. We omit details 
here.

From the estimate (A.4) in Lemma A.2, it is easy to see that the size of Φμ,ν(ξ− η, η)
is greater than 2k+2 max{k1,l}, which is greater than 2−m+βm. From the estimate (2.32)
in Lemma 2.6, after putting fki

(t) in L∞ and T τ,κ(fk′
1
, fk′

2
) in L2, the following estimate 

holds
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∑
i=1,2

2δj‖F−1[Jμ,ν,τ,κ,i
l;k′

1,k
′
2

]‖Bk,j

� sup
|λ|≤2βm/2

2αk+m+(1+δ)j−2 max{l,k1,−}+2βm‖e−i(t+2−k−2lλ)fk1(t)‖L∞

× 2k1‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2

+ 2−10m+k+αk+m+j−2 max{l,k1,−}‖fk1‖L2‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2

� min{2(1−2α)k′
2+3βm, 2(1−2α)k′

2+m+3βm−(N0−8)k′
1,+}ε0. (5.20)

From the above estimate (5.20), we can rule out the case when k′1, k
′
2 /∈ [−4βm, βm]. 

Now, it remains to consider fixed k′1, k
′
2 ∈ [−4βm, βm].

Firstly, we consider the case when max{ji, j′1, j′2} ≥ m + k1 + k′1 − 10βm, i ∈ {1, 2}. 
From the estimate (2.32) in Lemma 2.6, the following estimate holds after putting the 
input with the maximal spatial concentration in L2 and the other two inputs in L∞, the 
following estimate holds,

∑
i=1,2

∑
max{ji,j′1,j′2}≥m+k1+k′

1−10βm

2δj‖F−1[Hμ,ν,τ,κ,i
l,ji;j′1,j′2

]‖Bk,j

�
∑

max{ji,j′1,j′2}≥m+k1+k′
1−10βm

22βm(2αk+m+j−2 max{l,k1,−}2−m−αk1

+ 2−10m+k+αk+m+j−2 max{l,k1,−})
× 2k12− max{ji,j′1,j′2}−m−α(k′

1+k′
2)‖fk′

1,j
′
1
‖Z‖fki,ji‖Z‖fk′

2,j
′
2
‖Z

� 2−m−k1−(1+α)(k′
1+k′

2)+24βmε0 � 2−2δm−2δjε0. (5.21)

In the above estimate, we used the fact that k1 ≥ −m/3.
Now, we consider the case when max{ji, j′1, j′2} ≤ m + k1 + k′1 − 10βm, i ∈ {1, 2}. We 

separate further into two cases based on the possible size of k1. If k1 ≥ −10βm, then 
the cubic degeneracy of the bad type phases doesn’t cause much difference, with minor 
modifications, the argument used in the proof of Lemma 4.5 for the good type phases 
also works out for this case.

Lastly, we consider the case when k1 ≤ −10βm. Recall that −4βm ≤ k′2 ≤ k′1 ≤ βm. 
In other words, we have |η| 
 |η−σ| ∼ |σ| or |ξ−η| 
 |ξ−σ| ∼ |σ−η|. Hence, we can do 
integration by parts in σ to take the advantage of high oscillation in σ. More precisely, the 
net gain of doing integration by parts in “σ” is at least max{2−m+max{j′1,j′2}−k1−k′

1+3βm, 
2−m−min{k1,k

′
2}−4k′

1+5βm}, which is less than 2−βm, see estimates (A.16) and (A.17) in 
Lemma A.3. Therefore, we can do integration by parts in “σ” many times to see rapidly 
decay to rule out the case when max{j′1, j′2} ≤ m + k1 + k′1 − 4βm. Hence finishing the 
proof. �
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5.2. When (k1, k2) ∈ χ2
k, (μ, ν) ∈ {(+, +), (+, −)}

Note that the estimates (4.43) and (4.44) in Lemma 4.6 and Lemma 4.7 hold re-
gardless the sign of μ and ν. Hence, we can rule out the very-low-frequency case, the 
relatively-high-frequency case and the case j ≥ (1 + 20δ)m as in subsection 4.2. From 
the estimate (A.4) in Lemma A.2, it is easy to see that the phase is not degenerated 
when k ≥ 0. Therefore, there is little difference between the bad type phase and the good 
type phase and the method used in subsection 4.2 also works for this case. To sum up, it 
would be sufficient to consider fixed k, k1, k2, and j that satisfy the following estimate,

−2(1 + 100δ)m/(2 − α) ≤ k2 ≤ k − 10, |k1 − k| ≤ 10, (5.22)

−2(1 + 100δ)m/(4 − α) ≤ k ≤ 0, j ≤ (1 + 20δ)m. (5.23)

For fixed k1 and k2 in the above range, we do dyadic decomposition for the angle 
between ξ and νη with the threshold l̄ chosen to be 2k1,− and then spatially localize two 
inputs as in (5.3). For simplicity, we use the same notations listed in (5.2) and (5.3) but 
readers should keep in mind that now (k1, k2) ∈ χ2

k instead of χ1
k.

To sum up, it would be sufficient to prove the following estimate in this subsection,

2δj‖F−1[Iμ,νl

]
‖Bk,j

� 2−2δm−2δjε0, (μ, ν) ∈ {(+,−), (+,+)}, (5.24)

where fixed k, k1, and j satisfy the estimates (5.22) and (5.23) and fixed l ∈ [−2k1,−, 2]. 
Based on the possible size of j, k2 and l, we separate the proof of the desired esti-
mate (5.24) into five cases, see Lemma 5.6, Lemma 5.7, Lemma 5.8, Lemma 5.9, and 
Lemma 5.10.

Lemma 5.6. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if max{m + l, min{−k2 − l, m}} + 100δm ≤ j ≤ m + 20δm, then the 
desired estimate (5.24) holds for any fixed k, k1, and k2 that satisfy (5.22) and (5.23).

Proof. Recall that j ≤ m + 20δm. From the assumption on j, it is easy to see that we 
only need to consider the case when k2 + l ≥ −m, j ≥ max{m + l, −k2 − l} +100δm and 
k1 ≤ −20δm.

Recall (5.3). Although k1 and k2 are not comparable in the case we are considering, 
the following rough estimate always holds,

|∇ξΦμ,ν(ξ, η)|ϕl̄;l(∠(ξ, νη))ψk1(ξ − η)ψk2(η)

+ |∇ξΦμ,ν(ξ, ξ − η)|ϕl̄;l(∠(ξ, ν(ξ − η)))ψk1(η)ψk2(ξ − η) � 2l.

Recall that j ≥ max{m + l, −k2− l} +100δm. Hence, by doing integration by parts in 
ξ once, we gain 2−j and pay the price of max{2min{j1,j2}, 2−k2−l}, where 2−k2−l comes 
from the fact that ∇ξ might hit the angular cutoff function or aμ,ν(t, x, ξ−η) (see (4.8)). 
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Hence, we can rule out the case when min{j1, j2} ≤ j−δm by doing integration by parts 
in ξ many times.

It remains to consider the case when min{j1, j2} ≥ j − δm, from the estimate (2.25)
in Lemma 2.5, the following estimate holds,

∑
min{j1,j2}≥j−δm

2δj‖F−1[Iμ,νl;j1,j2 ]‖Bk,j
�

∑
min{j1,j2}≥j−δm

2αk+m+(1+δ)j+k+k2+l/2‖fk1,j1‖L2

× ‖fk2,j2‖L2 � 2k+(1−α)k2+m+2δm−j+l/2ε21 � 2(1−α)k2+2δmε0 � 2−2δm−2δjε0. (5.25)

Hence finishing the proof. �
Lemma 5.7. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m + l, min{−k2 − l, m}} + 100δm, then the desired estimate 
(5.24) holds for any fixed k, k1, and k2 that satisfy (5.22) and (5.23) under the assumption 
that (2 − 2α)k2 ≤ −m − 20βm, and k2 + 2l ≤ −m + 4βm.

Proof. Note that the assumptions on j, k2, and l implies that j ≤ min{−k2 − l +
4βm, m} + 100δm. Since k1 and k2 are not comparable for the case we are considering, 
whether j2 is the smaller than j1 makes a difference.

• If j2 ≤ j1, then from the estimate (2.25) in Lemma 2.5, the following estimate holds,

∑
j2≤j1

2δj‖F−1[Iμ,νl;j1,j2 ]‖Bk,j
�

∑
−k2≤j2≤j1

22δm+αk+6k++m+j+k1+k2+l/2‖fk1,j1‖L2‖fk2,j2‖L2

� 212βm+m+k1−l/2+(2−α)k2ε0 � 2−2δm−δjε0.

• If j1 ≤ j2, then we can improve the upper bound of j. More precisely, as j1 ≤ j2, there 
is no need to switch the role of ξ− η and η. As a result, the following improved estimate 
holds from the estimate (A.14) in Lemma A.3,

|∇ξΦ+,ν(ξ, η)|ϕl̄;l(∠(ξ, νη)) = |Λ′(|ξ|) ξ

|ξ| − Λ′(|ξ − η|) ξ − η

|ξ − η| |ϕl̄;l(∠(ξ, νη)) � 2k2−k1+l.

With the above observation, we can redo the argument used in the proof of Lemma 5.6
to further rule out the case when max{m + (1 − α)(k2 − k1) + l, −k1 − l} + 3βm ≤ j ≤
max{m + l, −k2− l} +100δm. More precisely, a similar estimate as in the estimate (5.25)
holds for the case when j1 ≥ j−δm. Recall (4.8). Note that the price of doing integration 
by parts in ξ once is 2−k1−l when ∇ξ hits aμ,ν(t, x, ξ, η). Hence, by doing the integration 
by parts in “ξ” many times, we can rule out the case when j1 ≤ j − δm.

Lastly, it remains to consider the case when j ≤ max{m + (1 −α)(k2 − k1) + l, −k1 −
l} + 3βm. From the estimate (2.25) in Lemma 2.5 and the estimates (3.23) and (3.25)
in Lemma 3.2, the following estimate holds,
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∑
j1≤j2

2δj‖F−1[Iμ,νl;j1,j2 ]‖Bk,j
�

∑
j1≤j2

22δm+αk+m+j+k1+k1+k2+l‖fk1,j1‖L1‖fk2,j2‖L2

� max{27βm+2m+(3−2α)k2+k1+2lε0, 27βm+m+(2−α)k2+k1ε0} � 2−2δm−2δjε0. �
Lemma 5.8. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m + l, min{−k2 − l, m}} + 100δm, then the desired estimate 
(5.24) holds for any fixed k, k1, and k2 that satisfy (5.22) and (5.23) under the assumption 
that (2 − 2α)k2 ≤ −m − 20βm, and k2 + 2l ≥ −m + 4βm.

Proof. Note that the assumptions on j, k2, and l implies that j ≤ m + l + 100δm and 
l ≥ −m/4. Moreover, note that we are away from the space-resonance in “η” set since 
k2 + 2l ≥ −m + 4βm.

We separate into two cases based on whether j1 is smaller than j2 as follows.
• We first consider the case when j2 ≤ j1. Note that the net gain of doing integration 

by parts in η once is at least 2−m max{2max{j1,j2}−l+3βm, 2−k2−2l+βm}, which is less than 
2−βm if j1 ≤ m + l − 4βm. Hence, we can first rule out the case j1 ≤ m + l − 4βm by 
doing integration by parts in “η” many times. From (2.25) in Lemma 2.5, the following 
estimate holds for the case j1 ≥ m + l − 4βm∑

j2≤j1,m+l−4βm≤j1

2δj‖F−1[Iμ,νl;j1,j2 ]‖Bk,j
�

∑
j2≤j1,m+l−4βm≤j1

22δm+αk+m+j+k1+2k2+l

× ‖fk1,j1‖L2‖fk2,j2‖L1 � 2m+(2−α)k2+k1+l+6βmε0 � 2−2δm−2δjε0.

• Lastly, we consider the case when j1 ≤ j2. For this case, we can improve the upper 
bound for j. More precisely, following the same argument used in the proof of Lemma 5.7, 
we can rule out the case when max{m + (1 − α)(k2 − k1) + l, −k1 − l} + 3βm ≤ j ≤
max{m + l, −k2 − l} + 100δm.

It remains to consider the case when j ≤ max{m +(1 −α)(k2−k1) + l, −k1− l} +3βm. 
Moreover, same as in the case j2 ≤ j1 considered previously, we can further rule out the 
case when j2 ≤ m + l − 4βm by doing integration by parts in “η” many times to see 
rapidly decay.

To sum up, it would be sufficient to consider the case when j ≤ max{m +(1 −α)(k2−
k1) + l, −k1 − l} + 3βm and j2 ≥ m + l − 4βm. From the estimate (2.25) in Lemma 2.5
and the estimate (2.19) in Lemma 2.4, we derive the following estimate,∑

j1≤j2,m+l−4βm≤j2

2δj‖F−1[Iμ,νl;j1,j2 ]‖Bk,j
�

∑
j1≤j2,m+l−4βm≤j2

22δm+αk+m+j+k1+k1+k2+l

× ‖fk1,j1‖L1‖fk2,j2‖L2 � max{2m+(2−2α)k2+k1+l+12βm, 212βm+(1−α)k2+k1−l}ε21
� 2−2δm−2δjε0.

In the above estimate, we used the fact that k2 ≤ −m/(2 − 2α) − 12βm and l ≥ −m/4. 
Hence finishing the proof. �
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Lemma 5.9. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m + l, min{−k2 − l, m}} + 100δm, then the desired estimate 
(5.24) holds for any fixed k, k1, and k2 that satisfy (5.22) and (5.23) under the assumption 
that (2 − 2α)k2 ≥ −m − 20βm, and k2 + 2l ≤ −m + 4βm.

Proof. Note that the assumptions on j, k2, and l implies that j ≤ −k2−l+100δm +4βm, 
l ≤ −m/5 and k1 ≤ −m/10. For this case, we first do integration by parts in time. As a 
result, we have the same equality as in (5.9).

From the estimate (2.9) in Lemma 2.2, the estimate (2.19) in Lemma 2.4, the estimate 
(A.4) in Lemma A.2, and the estimates (A.16) and (A.17) in Lemma A.3, the following 
estimates hold,

‖mμ,ν(ξ − η, η)ϕl̄;l(∠(ξ, νη))‖L∞
ξ,η

� 2k1−k2−2 max{k1,l}, (5.26)

‖mμ,ν(ξ − η, η)ϕl̄;l(∠(ξ, νη))‖S∞
k,k1,k2

� max{2k1−k2−2 max{k1,−,l}−3k1,− ,

2k1−k2−2 max{k1,−,l}−3l} � 2k1−k2−2 max{k1,−,l}−6k1,− . (5.27)

• Estimate of the endpoint case. Recall (5.12). From the estimate (2.25) in 
Lemma 2.5, the estimates (3.23) and (3.25) in Lemma 3.2, and the estimate (5.26), 
the following estimate holds,∑
i=1,2

2δj‖F−1[Endμ,ν,i
l;k1,k2

]‖Bk,j
�

∑
i=1,2

22δm+αk+j−k1−k2+k1+k2+l‖f̂k1(ti, ξ)‖L∞
ξ
‖fk2(ti)‖L2

� 2αk+4βm+200δmε0 � 2−2δm−2δjε0.

• Estimate of Jμ,ν,i
l;k1,k2

, i ∈ {1, 2}. Recall (5.9). With minor modifications, we can 

estimate of JR1
l;k1,k2

and JR2
l;k1,k2

in the same way as we did for Endμ,ν,i
l;k1,k2

. We omit 
details here and proceed to the estimate of Jμ,ν,τ,κ,i

l;k′
1,k

′
2

. From (2.25) in Lemma 2.5, (2.19)
in Lemma 2.4, (3.23) and (3.25) in Lemma 3.2, and (5.26), the following estimate holds 
after putting T τ,κ(fk′

1
, fk′

2
) in L2 and the other one in L∞

ξ ,

∑
i=1,2

2δj‖F−1[Jμ,ν,τ,κ,i
l;k′

1,k
′
2

]‖Bk,j

� 22δm+αk+m+j−k1−k2+k1+k2+l‖f̂k1(t, ξ)‖L∞
ξ

2k2+k′
1,+‖e−itΛfk′

1
‖L∞

× ‖fk′
2
‖L2 + 22δm+αk+m+j−k1−k2+2k2+l‖f̂k2(t, ξ)‖L∞

ξ
2k1+k′

1,+‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2

� min{2αk+(1−α)k′
2−4k′

1,++3βm, 2m+αk+(1−α)k′
2+k′

1−N0k
′
1,++3βm}ε0. (5.28)

From the above estimate, we can rule out the case when k′2 ≤ −10βm or k′1 ≥ βm.
It remains to consider fixed k′1 and k′2 such that −10βm ≤ k′2 ≤ k′1 ≤ βm. Recall that 

k1 ≤ −m/10. In other words, we have |η| 
 |η − σ| ∼ |σ| or |ξ − η| 
 |ξ − σ| ∼ |σ − η|. 
From the estimates (A.16) and (A.17) in Lemma A.3, we know that ∇σΦμ,τ,κ

i (ξ, η, σ)
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always has a good lower bound. Hence, we can rule out the case when max{j′1, j′2} ≤
m +k2+k′1−4βm by doing integration by parts in “σ” many times. It would be sufficient 
to consider the case when max{j′1, j′2} ≥ m + k2 + k′1 − 4βm. From (2.25) in Lemma 2.5, 
the following estimate holds after first putting T τ,κ(fk′

1,j
′
1
, fk′

2,j
′
2
) in L2 and then putting 

the input with higher spatial localization in L2 and the other input in L∞
x ,

∑
i=1,2

∑
max{j1,j2}≥m+k2+k′

1−4βm

2δj‖F−1[Jμ,ν,τ,κ,i
l;k′

1,j
′
1,k

′
2,j

′
2
]‖Bk,j

�
∑

max{j1,j2}≥m+k2+k′
1−4βm

22δm+αk+m+j

× 2−k1−k2+k1+k2+l‖f̂k1(t, ξ)‖L∞
ξ

2k2+k′
1,+2−m−αk′

1−αk′
2−max{j′1,j′2}‖fk′

1,j
′
1
‖Z‖fk′

2,j
′
2
‖Z

+ 2αk+m+j−k1−k2+2k2+l‖f̂k2(t, ξ)‖L∞
ξ

2k1+k′
1,+2−m−αk′

1−αk′
2−max{j′1,j′2}‖fk′

1,j
′
1
‖Z‖fk′

2,j
′
2
‖Z

� 2−m−(1+α)k2−(1+2α)k′
2+4βmε0 � 2−2δm−2δjε0.

Hence finishing the proof. �
Lemma 5.10. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m + l, min{−k2 − l, m}} + 100δm, then the desired estimate 
(5.24) holds for any fixed k, k1, and k2 that satisfy (5.22) and (5.23) under the assumption 
that (2 − 2α)k2 ≥ −m − 20βm, and k2 + 2l ≥ −m + 4βm.

Proof. Note that the assumptions on j, k2, and l implies that j ≤ m + l + 100δm. 
Moreover, note that we are away from the space-resonance in “η” set since k2 + 2l ≥
−m + 4βm. For this case, we do integration by parts in time once and have the same 
identity as in (5.9).

• Estimate of the endpoint case. Recall (5.12). We separate into two cases based 
on whether j1 is smaller than j2 as follows.

(i) If j2 ≤ j1, then we can first rule out the case when j1 ≤ m + l − 4βm by doing 
integration by parts in “η” many times. It would be sufficient to consider the case when 
j1 ≥ m +l−4βm. From (2.25) in Lemma 2.5, the following estimate holds if k2 ≤ −30βm

∑
j2≤j1,m+l−4βm≤j1

∑
i=1,2

2δj‖F−1[Endμ,ν,i
l;k1,j1,k2,j2

]‖Bk,j

�
∑

j2≤j1,m+l−4βm≤j1

22δm+αk+j+k1−k2−2 max{l,k1}

× 22βm+2k2+l‖fk1,j1‖L2‖fk2,j2‖L1 � 2(1−α)k2+15βmε0 � 2−2δm−2δjε0.

If k2 ≥ −30βm, then the following estimate holds from estimate (5.27), L2−L∞ type 
bilinear estimate (2.7) in Lemma 2.1 and (5.27) to derive the following estimate,
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∑
j2≤j1,m+l−4βm≤j1

∑
i=1,2

2δj‖F−1[Endμ,ν,i
l;k1,j1,k2,j2

]‖Bk,j

�
∑

j2≤j1,m+l−4βm≤j1

2βm+αk+j−k2−7k1

× ‖fk1,j1‖L2‖e−itΛfk2,j2‖L∞ � 2−m−(1+α)k2−7k1+15βmε21 � 2−2δm−2δjε0.

(ii) If j1 ≤ j2, then we can first rule out the case when max{m + (1 − α)(k2 − k1) +
l, −k1−l} +3βm ≤ j ≤ max{m +l, −k2−l} +100δm by redoing the argument used in the 
proof of Lemma 5.7. Moreover, by doing integration by parts in “η” many times, we can 
further rule out the case when j2 ≤ m + l−4βm. Therefore, it is sufficient to consider the 
case when j ≤ max{m +(1 −α)(k2−k1) +l, −k1−l} +3βm = m +(1 −α)(k2−k1) +l+3βm
and j2 ≥ m + l − 4βm. From (2.25) in Lemma 2.5, the following estimate holds if 
k2 ≤ −30βm∑

j1≤j2,m+l−4βm≤j2

∑
i=1,2

2δj‖F−1[Endμ,ν,i
l;k1,j1,k2,j2

]‖Bk,j
�

∑
j1≤j2,m+l−4βm≤j2

2βm+αk+j

× 2k1−k2−2 max{l,k1,−}+2βm+k1+k2+l‖fk1,j1‖L1‖fk2,j2‖L2 � 2(1−2α)k2+10βmε0

� 2−2δm−δjε0.

If k2 ≥ −30βm, then the following estimate holds from the L2 − L∞ type bilinear 
estimate (2.7) in Lemma 2.1 and the estimate (5.27),∑

j1≤j2,m+l−4βm≤j2

∑
i=1,2

2δj‖F−1[Endμ,ν,i
l;k1,j1,k2,j2

]‖Bk,j

�
∑

j1≤j2,m+l−4βm≤j2

2βm+αk+j−k2−7k1,−+2βm

× ‖fk2,j2‖L2‖e−itΛfk1,j1‖L∞ � 2−m−(1+α)k2−7k1+15βmε21 � 2−2δm−2δjε0.

• Estimate of Jμ,ν,i
l;k1,k2

, i ∈ {1, 2}. Same as before, we omit details for the estimates 
of JR1

l;k1,k2
and JR2

l;k1,k2
here and proceed to the estimate of Jμ,ν,τ,κ,i

l;k′
1,k

′
2

directly. From the 
estimate (2.25) in Lemma 2.5, it is easy to see that the following estimates hold,

2δj‖F−1[Jμ,ν,τ,κ,1
l;k′

1,k
′
2

]‖Bk,j
� 22δm+αk+m+j+k1−k2−2 max{l,k1,−}+k1+k2+l

× ‖f̂k1(t, ξ)‖L∞
ξ

2k2‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2 , (5.29)

2δj‖F−1[Jμ,ν,τ,κ,2
l;k′

1,k
′
2

]‖Bk,j
� 22δm+αk+m+j+k1−k2−2 max{l,k1,−}+2k2+l

× ‖f̂k2(t, ξ)‖L∞
ξ

2k1‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2 . (5.30)

From (5.29) and (5.30), it is easy to see that the following estimate holds if k′1, k′2 /∈
[−2m, 2βm],
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∑
i=1,2

2δj‖F−1[Jμ,ν,τ,κ,i
l;k′

1,k
′
2

]‖Bk,j
� min{2m+(1−α)k′

2+10βm, 22m+(1−α)k′
2+10βm−(N0−8)k′

1,+}ε21

� 2−2δm−2δjε0. (5.31)

From the estimate (5.32) in Lemma 5.11 and the estimate (5.42) in Lemma 5.13, it is 
easy to see that the desired estimate (5.31) also holds if k′1, k′2 ∈ [−2m, 2βm]. Hence 
finishing the proof. �
Lemma 5.11. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m + l, min{−k2 − l, m}} +100δm, k, k1, and k2 satisfy (5.22)
and (5.23), (2 − 2α)k2 ≥ −m − 20βm, and k2 + 2l ≥ −m + 4βm, k′1, k′2 ∈ [−2m, 2βm], 
then the following estimate holds,

2δj‖F−1[Jμ,ν,τ,κ,1
l;k′

1,k
′
2

]‖Bk,j
� 2−2δm−2δjε0. (5.32)

Proof. Recall (5.10) and (5.13). Note that (k′1, k′2) ∈ χ1
k2
∪χ2

k2
∪χ3

k2
and j ≤ m +l+100δm.

Case 1: If k′2 − 3βm ≤ k2. From the estimate (2.32) in Lemma 2.6 and the estimate 
(3.23) in Lemma 3.2, after putting T ντ,νκ(fk′

1
, fk′

2
) in L2 and the other input in L∞, the 

following estimate holds,

2δj‖F−1[Jμ,ν,τ,κ,1
l;k′

1,k
′
2

]‖Bk,j

� sup
|λ|≤2βm

22δm+αk+m+j+k1−k2−2 max{l,k1,−}2(k1−k2)/22k2‖e−itΛfk′
1
‖L∞

× ‖fk′
2
‖L2‖e−i(t+2−k2−2 max{l,k1,−}λ)fk1(t)‖L∞

+ 2−10m+k+αk+m+j+k1−k2−2 max{l,k1,−}+k2

× ‖fk1‖L2‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2 � 2k

′
2−αk′

1+(k1−k2)/2+βm/2ε0 � 2(1−2α)k′
2/2+2βmε0.

From above estimate, we can rule out the case when k′2 ≤ −7βm.
It remains to consider the case when k′2 ≥ −7βm. As k2 ≥ k′2 − 3βm, we have 

k2 ≥ −10βm. That is to say, all frequencies are relatively large, which implies that the 
cubic degeneracy of the phases is not an issue. Recall that |η| 
 |ξ − η| ∼ |ξ|. From the 
estimates (A.16) and (A.17) in Lemma A.3, it is easy to verify that ∇σΦμ,τ,κ

1 (ξ, η, σ)
is bounded from below by 2k2+k′

2−4βm when σ is away from η/2 and ∇ηΦμ,τ,κ
1 (ξ, η, σ)

is bounded from below by 2k2+k′
2−4βm when σ is close to η/2. As a result, we can do 

integration by parts in σ and η many times respectively to rule out the case when 
max{j1, j′1, j′2} ≤ m + k2 + k′2 − 10βm.

Now, it’s sufficient to consider the case when max{j1, j′1, j′2} ≥ m + k2 + k′2 − 10βm. 
From the estimate (2.32) in Lemma 2.6 and the estimate (2.19) in Lemma 2.4, the 
following estimate holds after putting the input with the maximum spatial concentration 
in L2 and the other two inputs in L∞,
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∑
max{j1,j′1,j′2}≥m+k2+k′

2−10βm

2δj‖F−1[Hμ,ν,τ,κ,1
l,j1;j′1,j′2

]‖Bk,j

�
∑

max{j1,j′1,j′2}≥m+k2+k′
2−10βm

22δm+αk+m+j2k1−k2−2 max{l,k1,−}

× 2(k1−k2)/22−m−αk12k2−m−max{j1,j′1,j′2}−2αk′
2‖fk′

1,j
′
1
‖Z‖fk′

2,j
′
2
‖Z‖fk1,j1‖Z

+ 2−10m+k+m+j+k1−k2−2 max{l,k1,−}+k2‖fk1,j1‖Z

× 2−m−max{j1,j′1,j′2}−2αk′
2‖fk′

1,j
′
1
‖Z‖fk′

2,j
′
2
‖Z

� 2−m−3k′
2+200βmε0 � 2−2δm−2δjε0.

Case 2: If k′2 − 3βm ≥ k2 and (k′1, k′2, ντ, νκ) ∈ Pk2
good. Note that the assumption 

k′2 − 3βm ≥ k2 implies that (k′1, k′2) ∈ χ1
k2

.
Recall (4.26). A key observation for this case is that the phase Φμ,τ,κ

1 (ξ, η, σ) is rela-
tively large. More precisely, from the estimate (3.9) and the estimate (A.6) in Lemma A.2, 
we have

2k
′
2−k′

2,+/2 � 2k
′
2−k′

2,+/2 − 2k2+2 max{l,k1,−} ≤ |Φμ,ν,τ,κ
1 (ξ, η, σ)|

≤ 2k
′
2−k′

2,+/2 + 2k2+2 max{l,k1,−} � 2k
′
2−k′

2,+/2.

Hence, we can take the advantage of the above fact by doing integration by parts in time 
again. As a result, we have

Jμ,ν,τ,κ,1
l;k′

1,k
′
2

=
∑
i=1,2

(−1)iEi + H1,

Ei =
∫
R2

∫
R2

eitiΦ
μ,τ,κ
1 (ξ,η,σ)m̃τ,κ

μ,ν,1(ξ, η, σ)ϕl̄;l(∠(ξ, νη))f̂μ
k1

(ti, ξ − η)

× f̂τ
k′
1
(ti, η − σ)f̂κ

k′
2
(ti, σ)dηdσ, H1 = −

t2∫
t1

∫
R2

∫
R2

eitΦ
μ,τ,κ
1 (ξ,η,σ)

× m̃τ,κ
μ,ν,1(ξ, η, σ)ϕl̄;l(∠(ξ, νη))∂t

(
f̂μ
k2

(t, ξ − η)f̂τ
k′
1
(t, η − σ)f̂κ

k′
2
(t, σ)

)
dηdσdt,

(5.33)

where

m̃τ,κ
μ,ν,1(ξ, η, σ) =

mτ,κ
μ,ν,1(ξ, η, σ)

iΦμ,ν,τ,κ
1 (ξ, η, σ) = qμ,ν(ξ − η, η)

−Φμ,ν(ξ, η)
(qντ,νκ(η − σ, σ))ν

Φμ,ν,τ,κ
1 (ξ, η, σ)

= qμ,ν(ξ − η, η)
−Φμ,ν(ξ, η)

(qτν,κν(η − σ, σ))ν

Φμ,ν,τ,κ
1 (ξ, η, σ)

× ψ[−10,10](2−κ1Φμ,ν(ξ, η))ψ[−10,10](2−κ2Φμ,ν,τ,κ
1 (ξ, η, σ)),
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where

κ1 := k2 + 2 max{k1, l}, κ2 = k′2 − k′2,+/2.

Using the inverse Fourier transform twice, we have

Ei = 1
16π4

∫
R

∫
R

∫
R2

∫
R2

2−κ2−κ1 χ̂(λ2)χ̂(λ1)

× ei(ti+2−κ2λ2)Φμ,ν,τ,κ
1 (ξ,η,σ)+i2−κ1λ1Φμ,ν(ξ,η)ϕl̄;l(∠(ξ, νη))

× qμ,ν(ξ − η, η)
(
qτν,κν(η − σ, σ)

)ν
f̂μ
k1

(ti, ξ − η)f̂τ
k′
1
(ti, η − σ)f̂κ

k′
2
(ti, σ)dηdσdλ2dλ1

= 1
16π4 2−κ1−κ2

∫
R

∫
R

∫
R2

χ̂(λ1)χ̂(χ2)

× ei(ti+2−κ2λ2+2−κ1λ1)Φμ,ν(ξ,η)+iν(ti+2−κ2λ2)Λ(η)ϕl̄;l(∠(ξ, νη))

× qμ,ν(ξ − η, η)f̂μ
k1

(ξ − η)T τ,κ
λ2

(fk′
1
, fk′

2
)(η)dηdλ1dλ2,

where

χ̂(λ) =
∫

e−iλxψ[−10,10](x)
x

dx,

T τ,κ
λ2

(fk′
1
, fk′

2
)(η)

=
∫
R2

e−i(ti+2−κ2λ2)(τΛ(|η−σ|)+κΛ(|σ|))(qτν,κν(η − σ, σ))ν f̂τ
k′
1
(ti, η − σ)f̂κ

k′
2
(ti, σ)dσ.

Using the rapidly decay property of χ̂(λ), very similar to the proof of (2.31) in Lemma 2.6, 
we can derive the following estimate,

2δj‖F−1[Ei]‖Bk,j

� sup
|λ1|,|λ2|≤2βm/10

22δm+αk+j+k1−κ1−κ22(k1−k2)/2‖ei(ti+2−κ1λ1+2−κ2λ2)Λfk1‖L∞

× ‖T τ,κ
λ2

(fk′
1
, fk′

2
)(η)‖L2 + 2−10m+k1+k2−κ1−κ2+2k2+2k′

2‖f̂k1‖L∞
ξ
‖f̂k′

1
‖L∞

ξ
‖f̂k′

2
‖L∞

ξ

� sup
|λ1|,|λ2|≤2βm/10

2−3k2/2+k1/2−k′
2+k2+10βm‖ei(ti+2−κ2λ2 )Λfk′

1
‖L∞‖fk′

2
‖L2 + 2−2δm−2δjε0

� 2−m−(1+2α)k2/2+k1/2+13βmε0 + 2−2δm−2δjε0 � 2−2δm−2δjε0. (5.34)

In the above estimate, we used the fact that k2 ≥ −m/(2 − 2α) − 12βm and also used 
the estimate (3.23) in Lemma 3.2 and (2.19) in Lemma 2.4.

With minor modifications, we can estimate H1 very similarly. From (2.25) in 
Lemma 2.5, and (3.24) in Lemma 3.2, the following estimate holds if k2 ≤ −10βm
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2δj‖F−1[H1]‖Bk,j

� sup
|λ1|,|λ2|≤2βm/10

22δm[2αk+m+j+k1−κ1−κ22(k1−k2)/2‖ei(ti+2−κ1λ1+2−κ2λ2)Λfk1‖L∞

×
(
‖T τ,κ

λ2
(∂tfk′

1
, fk′

2
)(η)‖L2 + ‖T τ,κ

λ2
(fk′

1
, ∂tfk′

2
)(η)‖L2

)
+ 2αk+m+j+k1−κ1−κ2+k2+l/2‖∂tfk1‖L2

× ‖T τ,κ
λ2

(fk′
1
, fk′

2
)(η)‖L2

]
+ 2−10m+k1+k2−κ1−κ2+k2+k′

2
(
‖∂tfk1‖L2‖fk′

1
‖L2‖fk′

2
‖L2

+ ‖fk1‖L2‖∂tfk′
1
‖L2‖fk′

2
‖L2 + ‖fk1‖L2‖fk′

1
‖L2‖∂tfk′

2
‖L2

)
� 2−(1+2α)k2/2+k1/2−m+13βmε0 + 2−2δm−2δjε0 + 2(1−α)k2+k1/2+8βmε0 � 2−2δm−2δjε0.

(5.35)

If k2 ≥ −10βm, then instead of using the inverse Fourier transform twice, we use the 
L2 − L∞ − L∞ type trilinear estimate directly. From Lemma 2.2, (2.8) in Lemma 2.1, 
and (3.24) in Lemma 3.2, the following estimate holds,

2δj‖F−1[H1]‖Bk,j
� 22δm+αk+m+j−20k2

(
‖∂tfk1‖L2‖e−itΛfk′

1
‖L∞‖e−itΛfk′

2
‖L∞

+ ‖∂tfk′
1
‖L2‖e−itΛfk1‖L∞‖e−itΛfk′

2
‖L∞ + ‖∂tfk′

2
‖L2‖e−itΛfk′

1
‖L∞‖e−itΛfk1‖L∞

)
� 2−m−22k2+7βmε0 � 2−2δm−2δjε0. (5.36)

Case 3: If k′2 − 3βm ≥ k2 and (k′1, k′2, ντ, νκ) ∈ Pk2
bad. Note that the assumption 

k′2 − 3βm ≥ k2 implies that (k′1, k′2) ∈ χ1
k2

.
For this case, we first localize the angle between η and νκσ and then decompose 

Jμ,ν,τ,κ,1
l;k′

1,k
′
2

as follows,

Jμ,ν,τ,κ,1
l;k′

1,k
′
2

=
∑

j1≥−k1,−,j2≥−k2,−

∑
j′1≥−k′

1,−,j′2≥−k′
2,−

∑
¯̃l≤l̃≤2

Hj1,j2
l,l̃;j′1,j′2

(5.37)

Hj1,j2
l,l̃;j′1,j′2

:=
t2∫

t1

eitΦ
μ,ν(ξ,η)ϕl̄;l(∠(ξ, νη))mμ,ν(ξ, η)f̂μ

k1,j1
(t, ξ − η) ̂Qk2,j2 [T

ντ,νκ

l̃;j′1,j′2
(t)]ν(η)dηdt,

(5.38)

where ¯̃l = max{l − 6βm/5, 2k′1,−} and

T ντ,νκ

l̃;j′1,j′2
(t) = F−1[ ∫

R

eitΦ
τ,κ(η,σ)f̂ντ

k′
1,j

′
1
(t, η−σ)f̂νκ

k′
2,j

′
2
(t, σ)qντ,νκ(η−σ, σ)ϕ¯̃l;l̃(∠(η, νκσ))dσ

]
.

For simplicity, we also use the following notation,

Hl,l̃;j′1,j′2 :=
∑

Hj1,j2
l,l̃;j′1,j′2

,

j1≥−k1,−,j2≥−k2,−,
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Hj1,j2
l,l̃

=
∑

j′1≥−k′
1,−,j′2≥−k′

2,−

Hj1,j2
l,l̃;j′1,j′2

, T ντ,νκ

l̃
(t) =

∑
j′1≥−k′

1,−,j′2≥−k′
2,−

T ντ,νκ

l̃;j′1,j′2
(t).

• We first consider the case when either 2k′1,− ≥ l − 6βm/5 or 2k′1,− < l − 6βm/5, 
l̃ > ¯̃l = l− 6βm/5. Recall that l ∈ [2k1,−, 2] and k2 ≤ k′2 − 3βm, i.e., |η| 
 |η− σ| ∼ |σ|. 
For the case we are considering, we have k2 + 2l̃ ≥ k2 + 2l − 12βm/5 ≥ −m + 8βm/5
and l − l̃ ≤ 6βm/5, which means that we are away from the space resonance in “σ” 
set. Hence, we can do integration by parts in “σ” many times to rule out the case when 
max{j′1, j′2} ≤ m + k2 − k′2 + l̃ − 2βm.

On one hand, from (2.31) in Lemma 2.6 and (2.27) in Lemma 2.5, the following 
estimate holds, ∑

max{j′1,j′2}≥m+k2−k′
2+l̃−2βm

2δj‖F−1[Hl,l̃;j′1,j′2 ]‖Bk,j

�
∑

max{j′1,j′2}≥m+k2−k′
2+l̃−2βm

sup
|λ|≤2βm

22δm+αk

× 2m+jk1−k2−2 max{l,k1,−}2(k1−k2)/2‖e−i(t+2−k2−2 max{l,k1,−}λ)fk1(t)‖L∞

× 2k2−m−max{j′1,j′2}−2αk′
2‖fk′

1,j
′
1
‖Z

× ‖fk′
2,j

′
2
‖Z + 2−10m+k+αk+m+j+k1−k2−2 max{l,k1,−}+k2‖fk1‖L2

× 2−m−max{j′1,j′2}−2αk′
2‖fk′

1,j
′
1
‖Z‖fk′

2,j
′
2
‖Z

� 2−3k2/2−k1/2+k′
2+10βm−mε0 � 2−m/10+11βm−k1/2ε0 � 2−αm/2−k1/2ε0. (5.39)

On the other hand, from (2.25) and (2.27) in Lemma 2.5, the following estimate also 
holds, ∑

max{j′1,j′2}≥m+k2−k′
2+l̃−2βm

2δj‖F−1[Hl,l̃;j′1,j′2 ]‖Bk,j

�
∑

max{j′1,j′2}≥m+k2−k′
2+l̃−2βm

2αk+m+j+k1−k2

× 2−2 max{l,k1,−}+k1+k2+l‖f̂k1(t, ξ)‖L∞
ξ

2k2−m−max{j′1,j′2}−2αk′
2‖fk′

1,j
′
1
‖Z‖fk′

2,j
′
2
‖Z

� 2k1+10βmε0. (5.40)

Therefore, combining estimates (5.39) and (5.40), we can derive the following estimates,∑
max{j′1,j′2}≥m+k2−k′

2+l̃−2βm

2δj‖F−1[Hl,l̃;j′1,j′2 ]‖Bk,j
�
(
2−αm/2−k1/2ε0

)1/2(2k1+10βmε0)1/2

� 2−2δm−2δjε0.
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• Lastly, we consider the case when 2k′1,− < l − 6βm/5 and l̃ = ¯̃l = l − 6βm/5. Hence, 
we have k′2 ≤ −3βm/5 and k2 ≤ −18βm/5.

If we view the bilinear term T ντ,νκ

l̃
(t) in (5.38) as a single input, then it is easy to see 

that the estimate of Jμ,ν,τ,κ,1
l;k′

1,k
′
2

is very similar to the estimate of the endpoint case in the 
proof of Lemma 5.10. More precisely, we separate into two cases based on whether j1 is 
smaller than j2.

(i) If j2 ≤ j1. Then we can first rule out the case when j1 ≤ m + l − βm by doing 
integration by parts in “η” many times for (5.38). It remains to consider the case when 
j1 ≥ m + l − βm. From the estimates (2.25) and (2.27) in Lemma 2.5, the following 
estimate holds,

∑
j2≤j1,m+l−βm≤j1

2δj‖F−1[Hj1,j2
l,l̃

]‖Bk,j

�
∑

m+l−βm≤j1

22δm+αk+m+j+k1−k2−2 max{l,k1,−}+k2+l/2‖fk1,j1‖L2‖T ντ,νκ

l̃
(t)‖L2

�
∑

j1≥m+l−βm

2−k1/2+2m+l+100δm−j1‖fk1,j1‖Z2k2‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2

� 2k2/2+(1−2α)k′
2+βm+100δmε0 � 2−2δm−2δjε0.

(ii) If j2 ≥ j1. For this case, we can rule out the case when j2 ≤ m + l − βm

by doing integration by parts in “η” many times for (5.38). Therefore, it remains to 
consider the case when j2 ≥ m + l − βm. Note that j2 ≥ m + l − βm ≥ m + l̃ + βm/6, 
k2 + 2l̃ ≥ k2 + 2l − 12βm/5 ≥ −m + 8βm/5, and k′2 ≥ k2 + 3βm. Now, it is easy to see 
that all conditions in Lemma 5.12 are satisfied. Therefore, from (2.25) in Lemma 2.5, 
(3.23) in Lemma 3.2, and (5.41) in Lemma 5.12, the following estimate holds,

∑
j1≤j2,m+l−βm≤j2

2δj‖F−1[Hj1,j2
l,l̃

]‖Bk,j

�
∑

m+l−βm≤j2

22δm+αk+m+j+k1−k2−2 max{l,k1,−}+k2+l/2

× ‖fk1‖L2‖Qk2,j2 [F−1[T ντ,νκ

l̃
(t)]]‖L2 �

∑
m+l−βm≤j2

2m+(1−2α)k2+3l/2−j2+200δmε0

� 2−2δm−2δjε0.

Hence finishing the proof. �
Lemma 5.12. Under the bootstrap assumption (2.20), the following estimate holds if 
(k1, k2, μ, ν) ∈ Pk

bad and t ∈ [2m−1, 2m],
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‖Qk,j

[
F−1[ ∫

R2

eitΦ
μ,ν(ξ,η)f̂μ

k1
(t, ξ − η)f̂ν

k2
(t, η)qμ,ν(ξ − η, η)ϕl̄;l(∠(ξ, νη))dη

]]
‖L2

� 2(1−2α)k−m−j+2δmε0, if j ≥ max{m + l,−k − l,−k2 − l} + 100δm and l̄ ≥ 2k1,−.

(5.41)

Proof. To prove the desired estimate (5.41), we only need to redo the proof of Lemma 5.1
and the proof of Lemma 5.6. From the second estimate in (5.6) and (5.25) instead of 
the last estimate in (5.6) and (5.25), it is easy to see that our desired estimate (5.41)
holds. �
Lemma 5.13. Under the bootstrap assumption (2.20) and the assumption that Proposi-
tion 3.1 holds, if j ≤ max{m + l, min{−k2− l, m}} +100δm, k, k1, and k2 satisfy (5.22), 
(2 − 2α)k2 ≥ −m − 20βm, and k2 + 2l ≥ −m + 4βm, k′1, k′2 ∈ [−2m, 2βm], then the 
following estimate holds,

2δj‖F−1[Jμ,ν,τ,κ,2
l;k′

1,k
′
2

]‖Bk,j
� 2−2δm−2δjε0. (5.42)

Proof. Recall (5.10) and (5.14). Note that (k′1, k′2) ∈ χ1
k1

∪ χ2
k1

∪ χ3
k1

.
We first rule out the case when τ = κ = −. Note that the phase Φτ,κ,ν

2 (ξ, η, σ) is at 
least of size 2k1 for this case. Hence, same as what we did in the estimate of Jμ,ν,τ,κ,1

l;k′
1,k

′
2

, 
we can do integration by parts in time to take the advantage of the fact that the size of 
phase is big. With minor modifications in (5.34), (5.35) and (5.36), it is easy to see that 
our desired estimate (5.42) holds.

For the case when (τ, κ) �= (−, −), we divide it into four cases as follows.
Case 1: If l ≥ −2αm/3 and k′2 + 2k1 ≤ −m/2 − αm + 3βm. Recall that k2 + 2l ≥

−m + 4βm, which means that the frequencies are away from the time resonance set. 
From (2.32) in Lemma 2.6 and (3.23) in Lemma 3.2, it is easy to see that the following 
estimate holds after putting the input fk2 in L∞ and T τ,κ(fk′

1
, fk′

2
) in L2,

2δj‖F−1[Jμ,ν,τ,κ,2
l;k′

1,k
′
2

]‖Bk,j

� 2αk+m+j+k1−k2−2 max{l,k1,−}( sup
|λ|≤2βm

‖ei(t+2−k2−2 max{l,k1,−}λ)fk2(t)‖L∞

× 22δm+k1+k′
1,+‖e−itΛfk′

1
‖L∞‖fk′

2
‖L2 + 2−10m+k1+k′

1,+‖fk2‖L2‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2

)
� 2m+2k1+2βm+k′

2−k2−l(22k2+δm)1/2(2−m+αm/3)1/2ε0 � 2−αm/6+6βmε0

� 2−2δm−2δjε0. (5.43)

Note that we used the following fact in the above estimate,

‖e−itΛfk2(t)‖L∞ � min{2−m+αm/3ε1, 2k2‖Pk2f(t)‖L2} � min{2−m+αm/3, 22k2+δm}ε1.



864 X. Wang / Advances in Mathematics 346 (2019) 805–886
Case 2: If l ≥ −2αm/3 and k′2 + 2k1 ≥ −m/2 − αm + 3βm. Recall that (k′1, k′2) ∈
χ1
k1
∪χ2

k1
∪χ3

k1
. For this case we have max{k1, k′1} ≥ −m/6 −αm/3 +βm and min{k1, k′2} +

4k′1 ≥ −5m/6 − 5αm/3 + 5βm ≥ −m + 5βm.
When τκ = −, from (A.16) in Lemma A.3, it is easy to see that we are away from 

the space resonance in “σ” set. Hence, we can do integration by parts in σ many times 
to rule out the case max{j′1, j′2} ≤ m + k′1 + k1 − 4βm.

For the case when τκ = +, i.e., τ = κ = + as the case τ = κ = − is ruled out, we 
separate into two cases based on the size of the angle ∠(ξ − σ, σ − η).

If ∠(ξ−σ, σ− η) ≥ 2−αm, then the net gain of doing integration by parts in “σ” once 
is at least max{2−m+αm−max{j′1,j′2}+2βm, 2−m−k1+2αm+2βm}, which is less than 2−βm

when max{j′1, j′2} ≤ m − 2αm. If ∠(ξ − σ, σ − η) ≤ 2−αm, then we have ∠(ξ − η, σ −
η) ≤ 2−αm and ∠(σ − η, νη) ∼ ∠(ξ − η, νη) ∼ 2l � 2−2αm/3. For this case, we do 
integration by parts in “η”. The net gain of doing integration by parts in “η” once 
is at least max{2−m−l−max{j2,j′2}+2βm, 2−m−k2−2l+2βm}, which is less than 2−βm when 
max{j2, j′2} ≤ m − 2αm.

Therefore, in whichever case, we can rule out the case when max{j2, j′1, j′2} ≤ min{m +
k1 + k′1 − 4βm, m − 2αm}. It is sufficient to consider the case when max{j2, j′1, j′2} ≥
min{m +k1+k′1−4βm, m −2αm} ≥ m +k1+k′1−4βm −2αm. From (2.32) in Lemma 2.6, 
the following estimate holds, ∑

max{j2,j′1,j′2}≥m+k1+k′
1−4βm−2αm

2δj‖F−1[Hμ,ν,τ,κ,2
l,j2;j′1,j′2

]‖Bk,j

�
∑

max{j2,j′1,j′2}≥m+k1+k′
1−4βm−2αm

22δm+αk

× 2m+jk1−k2−2 max{l,k1,−}2−m−αk2‖fk2,j2‖Z

× 2k1−m−max{j2,j′1,j′2}−αk′
1−αk′

2‖fk′
1,j

′
1
‖Z‖fk′

2,j
′
2
‖Z

+ 2−10m+k+αk+m+j+k1−k2−2 max{l,k1,−}‖fk2,j2‖Z

× 2k1−m−max{j2,j′1,j′2}−αk′
1−αk′

2‖fk′
1,j

′
1
‖Z‖fk′

2,j
′
2
‖Z

� 2−(1+α)k2−l+2αm−αk′
2+4βm−mε0 � 2−2δm−2δjε0.

Case 3: If l ≤ −2αm/3 and k′2 + 2k1 ≤ k2 + 2 max{l, k1,−} + βm. From (2.32) in 
Lemma 2.6 and (3.23), estimate (5.43) also holds and

(5.43) � 2l+2k1+k′
2−k2−2 max{l,k1,−}+αm/3+8βmε0 + 2−2δm−2δjε0

� 2−2αm/3+αm/3+9βmε0 + 2−2δm−2δjε0 � 2−2δm−2δjε0.

Case 4: If l ≤ −2αm/3 and k′2 +2k1 ≥ k2 +2 max{l, k1,−} +βm. The assumption in 
this case implies that k1 ≤ l/2 ≤ −αm/3, k′2 ≥ k2+βm. Recall (4.27). From the estimate 
(A.4) in Lemma A.2, the following estimate holds for the size of phase Φμ,ν,τ,κ

2 (ξ, η, σ),
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|Φμ,ν,τ,κ
2 (ξ, η, σ)| � 2k

′
2+2k1 − 2k2+2 max{l,k1,−} � 2k

′
2+2k1 . (5.44)

With this observation, it motives us to do integration by parts in time again and have 
a similar identity as in (5.33). Very similar to the proof of the estimate (5.34), after 
using the inverse Fourier transform twice, the following estimate holds from the estimate 
(2.25) in Lemma 2.5, (3.23), (3.24) and (3.25) in Lemma 3.2,

2δm‖F−1[Jμ,ν,τ,κ,2
l;k′

1,k
′
2

]‖Bk,j

�
∑

κ2≥k′
2+2k1

sup
|λ1|,|λ2|≤2βm/10

∑
i=1,2

22δm+αk+j+2k1−k2−2 max{k1,l}−κ2+k2+l/2

× ‖fk2(ti)‖L2‖e−i(ti+2−κ2λ2)Λfk′
1
‖L∞‖fk′

2
‖L2

+ 2αk+m+j+2k1−k2−2 max{k1,l}−κ2+k2+l/2

×
(
‖∂tfk2‖L2‖e−i(ti+2−κ2λ2)Λfk′

1
‖L∞‖fk′

2
‖L2

+ ‖fk2‖L2‖e−i(ti+2−κ2λ2)Λfk′
1
‖L∞‖∂tfk′

2
‖L2

)
+ 2αk+m+j+2k1−k2−2 max{k1,l}−κ2+2k2+l

× ‖f̂k2(t, ξ)‖L∞
ξ
‖e−i(ti+2−κ2λ2)Λfk′

2
‖L∞‖∂tfk′

1
‖L2

+ 2−10m−k2−2 max{k1,l}−κ2
(
‖fk2‖L2‖fk′

1
‖L2‖fk′

2
‖L2 + ‖fk2‖L2‖∂tfk′

1
‖L2‖fk′

2
‖L2

+ ‖∂tfk2‖L2‖fk′
1
‖L2‖fk′

2
‖L2 + ‖fk2‖L2‖fk′

1
‖L2‖∂tfk′

2
‖L2

)
� 2k2−αk′

2−max{l,k1,−}/2+βmε0 + 2k2+k′
1+2l−k′

2−2 max{l,k1,−}+βm+αm/3ε0 + 2−2δm−2δjε0

� 2(1−2α)k2/2+2βmε0 + 2l+αm/3+2βmε0 + 2−2δm−2δjε0 � 2−2δm−2δjε0.

In the above estimate, we used the fact that k2 ≤ k1 − 5, k2 ≤ k′2 − βm, (k′1, k′2) ∈
χ1
k1

∪ χ2
k1

∪ χ3
k1

, l ≤ −2αm/3 and k2 ≤ k1 ≤ −αm/3 in the above estimate. Hence 
finishing the proof. �
5.3. The estimate of Kμ,ν(fμ

k1
, fν

k2
) in badk

In this subsection, we estimate the last term in “badk”, see (3.13). Hence finishing the 
proof of Proposition 3.3.

Recall (3.13) and (3.14). Note that the output frequency and the two input frequencies 
are all comparable as (k1, k2) ∈ χ3

k. From the estimate (3.4), the estimates (3.23) and 
(3.24) in Lemma 3.2, the following estimate holds from the L2 − L2 type estimate and 
the volume of support of ξ,

2δj‖Kμ,ν(fμ
k1
, fν

k2
)‖Bk,j

� 2αk+7k+−2k−+m+(1+δ)j+k
(
‖∂tfk1(t)‖L2‖fk2(t)‖L2 + ‖∂tfk2(t)‖L2‖fk1(t)‖L2

)
� 2(1+α)k+(1+δ)j−(N0−10)k+ε0. (5.45)
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Hence, we can rule out the case when k ≤ −(1 + δ)j/(1 +α) −2δm or k ≥ j/(N0 −20) +
10δm. Moreover, it is easy to see that the proof of Lemma 4.2 is still valid. As a result, 
it would be sufficient to prove the following estimate,

(Desired estimate) : 2δj‖
t2∫

t1

F−1[Kμ,ν(fμ
k1
, fν

k2
)
]
dt‖Bk,j

� 2−2δm−2δjε0, (5.46)

where fixed k, k1, k2 and j satisfy the following estimate,

−(1 + 100δ)m/(1 + α) ≤ k ≤ 2βm, (k1, k2) ∈ χ3
k, j ≤ (1 + 20δ)m. (5.47)

Recall (3.14), after plugging the equation satisfied by ∂tf in (3.1), the following equal-
ity holds,

t2∫
t1

Kμ,ν(fμ
k1
, fν

k2
) =

∑
k′
1,k

′
2∈Z

∑
τ,κ∈{+,−}

∑
i=1,2

∑
l̄i≤l≤2

[ ∑
j=1,2

Kμ,ν,τ,κ,i
l;k′

1,k
′
2,j

]
+ JRμ,ν,i

l;k1,k2
, (5.48)

where l̄1 := 2k−, ̄l2 := 0,

Kμ,ν,τ,κ,i
l;k′

1,k
′
2,1

= −
t2∫

t1

∫
R2

∫
R2

eitΦ
μ,τ,κ
1 (ξ,η,σ)cτ,κ,iμ,ν,1(ξ, η, σ)f̂μ

k1
(t, ξ − η)f̂τ

k′
1
(t, η − σ)

× f̂κ
k′
2
(t, σ)ϕl̄i;l(∠(ξ, νη))dηdσdt, i = 1, 2, (5.49)

Kμ,ν,τ,κ,i
l;k′

1,k
′
2,2

= −
t2∫

t1

∫
R2

∫
R2

eitΦ
τ,κ,ν
2 (ξ,η,σ)cτ,κ,iμ,ν,2(ξ, η, σ)f̂τ

k′
1
(t, ξ − σ)f̂κ

k′
2
(t, σ − η)

× f̂ν
k2

(t, η)ϕl̄i;l(∠(ξ, νη))dηdσdt, i = 1, 2, (5.50)

JRμ,ν,i
l;k1,k2

= −
t2∫

t1

∫
eitΦ

μ,ν(ξ,η)((̂R′)μk1
(t, ξ − η)f̂ν

k2
(t, η) + f̂μ

k1
(t, ξ − η)(̂R′)νk2

(t, η)
)

×mi
μ,ν(ξ − η, η)ϕl̄i;l(∠(ξ, νη))dηdt, (5.51)

where the symbols mi
μ,ν(ξ − η, η) and cτ,κμ,ν,i(ξ, η, σ), i ∈ {1, 2}, are defined as follows,

cτ,κ,iμ,ν,1(ξ, η, σ) := mi
μ,ν(ξ − η, η)

(
qτν,κν(η − σ, σ)

)ν
ψk(ξ)ψk1(ξ − η)ψk2(η),

cτ,κ,iμ,ν,2(ξ, η, σ) := mi
μ,ν(ξ − η, η)

(
qμτ,μκ(ξ − σ, σ − η)

)μ
ψk(ξ)ψk1(ξ − η)ψk2(η),

m1
μ,ν(ξ − η, η) := mμ,ν(ξ − η, η)(1 − cμ,ν(ξ, η)),

m2
μ,ν(ξ − η, η) := mμ,ν(ξ − η, η)cμ,ν(ξ, η), (5.52)
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where the symbols mμ,ν(ξ−η, η) cμ,ν(ξ, η), μ, ν ∈ {+, −}, are defined in (3.3), (A.1) and 
(A.2) respectively.

In (5.48), we separated the cubic terms into two parts based on whether (ξ, η) is close 
to the support of cμ,ν(ξ, η). We did this decomposition because the size of phases is not 
small when (ξ, η) is close to the support of cμ,ν(ξ, η), see (A.5) in Lemma A.2.

From the estimate (2.19) in Lemma 2.4, (A.4) in Lemma A.2, the following estimate 
holds,

‖cτ,κ,1μ,ν,1(ξ, η, σ)ψk′
1
(η − σ)ψk′

2
(σ)ϕl̄1;l(∠(ξ, νη))‖L∞

ξ,η,σ

+ ‖cτ,κ,1μ,ν,2(ξ, η, σ)ψk′
1
(ξ − σ)ψk′

2
(σ − η)ϕl̄1;l(∠(ξ, νη))‖L∞

ξ,η,σ
� 2k−2 max{l,k−}+k++k′

1,+ .

(5.53)

From the estimate (2.19) in Lemma 2.4, (A.5) in Lemma A.2, the following estimate 
holds,

‖cτ,κ,2μ,ν,1(ξ, η, σ)ψk′
1
(η − σ)ψk′

2
(σ)ϕl̄2;l(∠(ξ, νη))‖L∞

ξ,η,σ

+ ‖cτ,κ,2μ,ν,2(ξ, η, σ)ψk′
1
(ξ − σ)ψk′

2
(σ − η)ϕl̄2;l(∠(ξ, νη))‖L∞

ξ,η,σ
� 2k+k++k′

1,+ . (5.54)

For Kμ,ν,τ,κ,i
l;k′

1,k
′
2

, i ∈ {1, 2}, we do spatial localizations for all inputs. As a result, the 
following decompositions hold,

Kμ,ν,τ,κ,i
l;k′

1,k
′
2,1

=
∑

j1≥−k1,−,j′1≥−k′
1,−,j′2≥−k′

2,−

Kμ,ν,τ,κ,i
l;j1,j′1,j′2

, Kμ,ν,τ,κ,i
l;k′

1,k
′
2,2

=
∑

j2≥−k2,−,j′1≥−k′
1,−,j′2≥−k′

2,−

Kμ,ν,τ,κ,i
l;j2,j′1,j′2

,

where

Kμ,ν,τ,κ,i
l;j1,j′1,j′2

= −
t2∫

t1

∫
R2

∫
R2

eitΦ
μ,τ,κ
1 (ξ,η,σ)cτ,κ,iμ,ν,1(ξ, η, σ)f̂μ

k1,j1
(t, ξ − η)f̂τ

k′
1,j

′
1
(t, η − σ)

× f̂κ
k′
2,j

′
2
(t, σ)ϕl̄i;l(∠(ξ, νη))dηdσdt, i = 1, 2, (5.55)

Kμ,ν,τ,κ,i
l;j2,j′1,j′2

= −
t2∫

t1

∫
R2

∫
R2

eitΦ
τ,κ,ν
2 (ξ,η,σ)cτ,κ,iμ,ν,2(ξ, η, σ)f̂τ

k′
1,j

′
1
(t, ξ − σ)f̂κ

k′
2,j

′
2
(t, σ − η)

× f̂ν
k2,j2

(t, η)ϕl̄i;l(∠(ξ, νη))dηdσdt, i = 1, 2. (5.56)

Lemma 5.14. Under the bootstrap assumption (2.20) and the assumption that Propo-
sition 3.1 holds, if fixed k, k1, k2 and j satisfy the estimate (5.47), then the following 
estimate holds,
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∑
i1,i2=1,2,k′

1,k
′
2∈Z

∑
l̄i1≤l≤2

2δj‖F−1[Kμ,ν,τ,κ,i1
l;k′

1,k
′
2,i2

]‖Bk,j
� 2−2δm−2δjε0. (5.57)

Proof. We first rule out the case when (k′1, k′2) ∈ ∪i=1,2χ
1
ki

∪ χ2
ki

or (k′1, k′2) ∈
∪i=1,2χ

3
ki
, τκ = −. From the estimates (A.16) and (A.17) in Lemma A.3, we know 

that ∇σΦμ,τ,κ
1 (ξ, η, σ) always has a good lower bound. Therefore, there is no extra diffi-

culty caused by the fact that (k1, k2) ∈ χ3
k. With minor modifications, we can redo the 

argument used in the estimate of “goodk” and the estimate of “badk” to estimate those 
scenarios. Hence, we omit the details here for those cases.

Now, we restrict ourself to the case when (k′1, k′2) ∈ χ3
k2

and τκ = +. We separate 
into three cases based on the possible size of k.

• If k + 2l ≤ −m + βm. Note that this assumption implies that k ≤ −m/5 + βm. 
From the estimate (5.54), (2.25) in Lemma 2.5 and (3.23) in Lemma 3.2, the following 
estimate holds,

∑
i=1,2

2δj‖F−1[Kμ,ν,τ,κ,2
l;k′

1,k
′
2,i

]‖Bk,j

� sup
t∈[t1,t2]

22δm+αk+m+j2k+k′
1,+22k+l‖f̂k2(t, ξ)‖L∞

ξ
‖e−itΛfk′

1
‖L∞‖fk′

2
‖L2

� 2200δm2m+4k+lε0 � 2m+2k+2l+3βmε0 � 2−2δm−2δjε0. (5.58)

Now we proceed to estimate Kμ,ν,τ,κ,1
l;k′

1,k
′
2

. From the estimate (A.3) in Lemma A.1, it is easy 
to see that the proof of Lemma 5.1 is also valid. Hence, we can rule out the case when 
max{m + l, min{−k − l, m}} + 100δm ≤ j ≤ m + 20δm. Now, it would be sufficient to 
consider the case when j ≤ −k − l + 100δm.

From (5.53), the estimate (2.25) in Lemma 2.5 and the estimates (3.23) and (3.25) in 
Lemma 3.2, the following estimate holds,

∑
i=1,2

2δj‖F−1[Kμ,ν,τ,κ,1
l;k′

1,k
′
2,i

]‖Bk,j
� sup

t∈[t1,t2]
22δm+αk+m+j2k−2 max{k,l}+k′

1,+22k+l‖f̂k2(t, ξ)‖L∞
ξ

× ‖e−itΛfk′
1
‖L∞‖fk′

2
‖L2 � 23βm+kε0 � 2−2δm−2δjε0. (5.59)

• If −m + βm ≤ k + 2l ≤ −βm/100. Note that this assumption implies that k ≤
−βm/500. From the estimate (A.4) in Lemma A.2, we know that |Φμ,ν(·, ·)| is greater 
than 2−m+βm. From the estimate (2.32) in Lemma 2.6, and the L2

x − L∞
x type bilinear 

estimate, the following estimate holds after putting T τ,κ(fτ
k′
1
, fκ

k′
2
) in L2,

∑
i=1,2

2δj‖F−1[Kμ,ν,τ,κ,2
l;k′

1,k
′
2,i

]‖Bk,j

� 22δm+αk+m+j+k−2m−3αk+kε31 + 2−2δm−2δjε31 � 2−2δm−2δjε0.



X. Wang / Advances in Mathematics 346 (2019) 805–886 869
Same as the previous case, we can rule out the case when max{m + l, min{−k −
l, m}} + 100δm ≤ j ≤ m + 20δm for the estimate of Kμ,ν,τ,κ,1

l;k′
1,k

′
2

. Hence, it would be 
sufficient to consider the case when j ≤ m + l+ 100δm, then from the estimate (2.32) in 
Lemma 2.6 and the L2

x − L∞
x type bilinear estimate, the following estimate holds after 

putting T τ,κ(fτ
k′
1
, fκ

k′
2
) in L2,

∑
i=1,2

2δj‖F−1[Kμ,ν,τ,κ,1
l;k′

1,k
′
2,i

]‖Bk,j
� 2αk+m+j+k−2 max{k,l}2−2m−3αk+kε31 + 2−2δm−2δjε31.

� 2(1−2α)k+200δmε0 + 2−2δm−2δjε0 � 2−2δm−2δjε0. (5.60)

• If −βm/100 ≤ k + 2l. Recall (5.47). Note that this assumption implies that k ∈
[−βm/1000, 2βm]. For the case we are considering, all frequencies are almost of size “1”, 
which means that the localized angle ∠(ξ, νη), which is of size greater than 22k− , and 
the degenerated phase, which is of size greater than 23k− , play little role. As a result, 
there is little difference between estimating Kμ,ν,τ,κ,1

l;k′
1,k

′
2,1

and Kμ,ν,τ,κ,j
l;k′

1,k
′
2,i

, i, j ∈ {1, 2}. For 
simplicity, we only estimate Kμ,ν,τ,κ,1

l;k′
1,k

′
2,1

in details here.
From the L2

x−L∞
x −L∞

x type trilinear estimate, and the following estimate holds when 
max{j1, j′1, j′2} ≥ 10βm after putting the input with the maximum spatial concentration 
in L2 and the other two inputs in L∞,∑

max{j1,j′1,j′2}≥10βm

2δj‖F−1[Kμ,ν,τ,κ,1
l;j1,j′1,j′2

]‖Bk,j

�
∑

max{j1,j′1,j′2}≥10βm

2βm+m+j−10k+−2m−3αk−max{j1,j′1,j′2}ε31

� 2−2δm−2δjε0. (5.61)

It remains to consider the case when max{j1, j′1, j′2} ≤ 10βm.
In the estimate of “goodk” and “badk”, we used the fact that either |ξ − η| ≈ |η|

or |η| ≤ 2−5|ξ − η| to show that the space resonance in “η” set doesn’t intersect with 
the space resonance in “σ” set (when σ = η/2), which means that we can alway do 
integration by parts in “σ” or “η” to take the advantage of the high oscillation either in 
“σ” or “η”. The only extra difficulty caused by the fact that (k1, k2) ∈ χ3

k is that there 
exists a space resonance in “η” and “σ” set, i.e., ∇ηΦμ,τ,κ

i (ξ, η, σ) and ∇σΦμ,τ,κ
i (ξ, η, σ), 

i = 1, 2, can equal to zero at the same time.
Therefore, we can decompose the support of frequencies into three regions: (i) the 

frequencies are far away from the space resonance in “σ” set; (ii) the frequencies are 
close to the space resonance in “σ” set but far away from the space resonance in “η” set; 
(iii) the frequencies are close to the space resonance “σ” and in “η” set. More precisely, 
we decompose the symbols cτ,τ,1μ,ν,1(ξ, η, σ) and cτ,τ,1μ,ν,2(ξ, η, σ) into three pieces as follows,

cτ,τ,1μ,ν,1(ξ, η, σ) =
∑

eτ,τ,jμ,ν (ξ, η, σ), eτ,τ,1μ,ν (ξ, η, σ) = cτ,τ,1μ,ν,1(ξ, η, σ)ψ≥l̃μ,τ
(σ − η/2),
j=1,2,3
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eτ,τ,2μ,ν (ξ, η, σ) = cτ,τ,1μ,ν,1(ξ, η, σ)ψ≥l̃μ,τ

(
(ξ − η) − μτ(η − σ)

)
ψ<l̃μ,τ

(σ − η/2),

eτ,τ,3μ,ν (ξ, η, σ) = cτ,τ,1μ,ν,1(ξ, η, σ)ψ<l̃μ,τ

(
(ξ − η) − μτ(η − σ)

)
ψ<l̃μ,τ

(σ − η/2),

l̃+,− = l̃+,+ = l̃−,− = −2βm, l̃−,+ = −m/2 + 10βm.

Because max{j1, j′1, j′2} ≤ 10βm and the threshold l̃μ,ν we choose is away from −m/2, 
by doing integration by parts in σ or η many times, the terms with symbols eτ,τ,1μ,ν (ξ, η, σ)
and eτ,τ,2μ,ν (ξ, η, σ) decay rapidly over time.

Now, we consider the cubic term with the symbol eτ,τ,3μ,ν (ξ, η, σ). An important observa-
tion for the phase Φμ,τ,τ (ξ, η, σ), (μ, ν, τ) ∈ {(+, −, −), (+, +, +), (−, −, −)}, is that the 
space resonance in η and σ set is far away from the time resonance set. More precisely, 
the following estimate holds,

|Φμ,τ,τ
1 (ξ, η, σ)|ψ<l̃μ,τ

(
(ξ − η) − μτ(η − σ)

)
ψ<l̃μ,τ

(σ − η/2) � 2−βm,

(μ, τ, τ) �= (−,+,+). (5.62)

Therefore, we can first do integration by parts in time once for this case. As a result, 
we can gain 2−m by paying the price of 2−βm, the extra gain of 2−m+βm is sufficient to 
close the argument.

Lastly, we consider the case when (μ, τ, τ) = (−, +, +). Note that the following equal-
ity and estimate hold around the space resonance in “η” and “σ” set,

∇ξΦ−,+,+
1 (ξ, η, σ)

∣∣
(η/2,η,η/2) = Λ′(|ξ|) ξ

|ξ| + Λ′(|ξ − η|) ξ − η

|ξ − η|
∣∣
(η/2,η,η/2) = 0,

|∇ξΦ−,+,+
1 (ξ, η, σ)|ψ<l̃−,+

(
(ξ − σ)

)
ψ<l̃−,+

(σ − η/2) � 2−k−+βm+l̃−,+ � 2−m/2+12βm.

(5.63)

Recall that max{j1, j′1, j′2} ≤ 10βm. From the above estimate (5.63), we can rule out 
the case when j ≥ m/2 + 14βm by doing integration by parts in ξ many times, see the 
argument used in the proof of Lemma 5.1. For the case when j ≤ m/2 + 14βm, the 
following estimate holds after using the volume of support of η and σ,∑

max{j1,j′1,j′2}≤10βm

2δj‖F−1[K−,ν,ν,ν,1
l;j1,j′1,j′2

]‖Bk,j
� 2βm+αk+m+j+4l̃−,+ε31 � 2−2δm−2δjε0.

Hence finishing the proof. �
Lemma 5.15. Under the bootstrap assumption (2.20) and the assumption that Propo-
sition 3.1 holds, if fixed k, k1, k2 and j satisfy the estimate (5.47), then the following 
estimate holds, ∑

i=1,2

∑
l̄i≤l≤2

2δj‖F−1[JRμ,ν,i
l;k1,k2

]‖Bk,j
� 2−2δm−2δjε0. (5.64)
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Proof. Recall (5.51). As there are at most “m” cases of “l”, we first fix “l”. From the 
estimate (2.25) in Lemma 2.5 and (3.16) in Proposition 3.1, the following estimate holds 
if k ≤ −βm,∑

i=1,2
2δj‖F−1[JRμ,ν,i

l;k1,k2
]‖Bk,j

�
∑
i=1,2

sup
t∈[t1,t2]

22δm+αk+m+j−2 max{l,k}22k+l‖Pki
R(t)‖L2

× ‖f̂k3−i
(t, ξ)‖L∞

ξ
� 2k+200δmε0 � 2−βm/2ε0.

From the L∞−L2 type bilinear estimate (2.7) in Lemma 2.1 and (3.16) in Proposition 3.1, 
the following estimate holds if k ≥ −βm,∑

i=1,2
2δj‖F−1[JRμ,ν,i

l;k1,k2
]‖Bk,j

�
∑
i=1,2

sup
t∈[t1,t2]

2m+j+50βm‖Pki
R(t)‖L2‖e−itΛfk3−i

‖L∞

� 2−αm/4ε0.

Hence finishing the proof. �
6. Remainder estimate and the proof of Lemma 3.1

This section is devoted to prove Proposition 3.1 and Lemma 3.1. The main idea of 
proving Proposition 3.1 can be summarized as follows,

(i) We first decompose the remainder term R into two parts: cubic type terms, which 
don’t depend on Λ≥3[B(h)ψ] and terms that do depend on Λ≥3[B(h)ψ]. We will 
prove a Z-norm estimate for a general trilinear form, which is sufficient to estimate 
the cubic type terms.

(ii) To estimate the Z-norm of the profile of Λ≥3[B(h)ψ], it would be sufficient to esti-
mate the profile of Λ≥3[∇x,zϕ] in the L∞

z Z-normed space, where “ϕ” is defined in 
(1.9). Due to the small data regime, based on the equality (1.16), we can use a fixed 
point type argument to estimate the L∞

z Z-norm of Λ≥3[∇x,zϕ].

Step (i) is straightforward. Recall (2.17), we have

R = Λ≥3[(1 + |∇h|2)B(h)ψ] + iΛΛ≥3[(1 + |∇h|2)(B(h)ψ)2]

= Λ≥3[(1 + |∇h|2)(Λ≤2[B(h)ψ]

+ Λ≥3[B(h)ψ])] + iΛΛ≥3[(1 + |∇h|2)(Λ≤2[B(h)ψ] + Λ≥3[B(h)ψ])2] = Icubic + Ifps,

where

Icubic = |∇h|2Λ≤2[B(h)ψ]

+ iΛ
(
|∇h|2(Λ≤2[B(h)ψ])2 + (Λ2[B(h)ψ])2 + 2Λ2[B(h)ψ]Λ1[B(h)ψ]

)
, (6.1)
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Ifps = (1 + |∇h|2)Λ≥3[B(h)ψ] + iΛ
(
(1 + |∇h|2)(Λ≥3[B(h)ψ])2

+ 2(1 + |∇h|2)(Λ≤2[B(h)ψ])(Λ≥3[B(h)ψ])
)
. (6.2)

Since the explicit formula of Λ≤2[B(h)ψ] is known, we can explicitly represent “Icubic” 
in terms of h and ψ. More precisely, we can rewrite “Icubic” as follows,

Icubic =
∑

μ,ν,τ∈{+,−}
Cμ,ν,τ (uμ, uν , uτ ) + C ′

μ,ν(uμ, uν , h1) + Cμ(uμ, h2, h3) + C(h4, h5, h6),

(6.3)

where hi, 1 ≤ i ≤ 6, denotes some determined quadratic term in terms of u and ū, whose 
explicit formulas are not pursued here. Generally speaking, they can be represented as 
follows,

hi =
∑

μ,ν∈{+,−}
T i
μ,ν(uμ, uν), 1 ≤ i ≤ 6,

where T i
μ,ν(·, ·), i ∈ {1, · · · , 6}, are some determined bilinear operators.

Proof of Proposition 3.1. Recall (2.20) and (2.21). From (6.14) in Lemma 6.2, we have

sup
1≤i≤6

sup
t∈[2m−1,2m+1]

‖eitΛhi‖Z � ε0.

From the above estimate and estimates (6.16), (6.17), and (6.18) in Lemma 6.2, the 
following estimate holds for k ∈ Z, θ ∈ [0, 1], and t, t1, t2 ∈ [2m−1, 2m+1],

‖eitΛ
[
Icubic

]
‖Z + 2−(1−θ)k+θm‖Pk

(
eitΛ

[
Icubic

])
‖L2 � 2−mε0,

sup
k∈Z,j≥max{−k,0}

2δj‖
t2∫

t1

eitΛ
[
Icubic

]
dt‖Bk,j

� 2−δmε0.

From L2−L2−L∞ type trilinear estimate (2.8) in Lemma 2.1, we put the input with the 
medium frequency in L∞ and the other inputs in L2. As a result, the following estimate 
holds,

sup
t∈[2m−1,2m]

‖Îcubic(t, ξ)‖L∞
ξ

� 2−m
∑

1≤i≤6

(
‖eitΛu‖Z + ‖eitΛhi‖Z

)3 � 2−mε0. (6.4)

Combining the above estimates with estimates (6.5) and (6.6), it’s easy to see that 
Proposition 3.1 holds. �
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6.1. Z-norm estimate of terms depend on Λ≥3[B(h)ψ]

In this subsection, we mainly do step (ii), which is stated at the beginning of this 
section. More precisely, we have the following lemma,

Lemma 6.1. Under the bootstrap assumption (2.20) and the improved energy estimate 
(2.21), the following estimates hold for any k ∈ Z, θ ∈ [0, 1], and t, t1, t2 ∈ [2m−1, 2m+1],

‖eitΛ
[
Ifps

]
‖Z + 2−(1−θ)k+θm‖Pk

(
eitΛ

[
Ifps

])
‖L2 + ‖Îfps(t, ξ)‖L∞

ξ
� 2−mε0, (6.5)

sup
k∈Z,j≥max{−k,0}

2δj‖
t2∫

t1

eitΛ
[
Ifps

]
dt‖Bk,j

� 2−δmε0. (6.6)

Proof. To estimate the Z-norm of Λ≥3[B(h)ψ], it is sufficient to estimate the L∞
z Z-norm 

of Λ≥3[∇x,zϕ]. Recall (1.20). We define

ũ1 = h̃1 + i2Λψ, ũ2 = h̃2 + iΛψ,

hence

h̃1 = 2h + h2

(1 + h)2 =⇒ ũ1 = 2u− 3h
2

2h + h2

(1 + h)2 − h3

2(1 + h)2

= 2u− 3(u + ū)
4

ũ1 + ũ1

2 − (u + ū)
4

( ũ2 + ũ2

2

)2
, (6.7)

h̃2 = h

1 + h
=⇒ ũ2 = u− h

h

1 + h
= u− (u + ū)(ũ2 + ũ2)

4 . (6.8)

With the above notation, we can easily transfer the fixed point type formulation (1.20)
into a fixed point type formulation in terms of u, ū, ũi and ũi, i ∈ {1, 2}.

Let us first estimate the Z-norm of the profile of ũi. From (6.7) and (6.8), the following 
estimate holds by using the estimate (6.14) in Lemma 6.2,∑

i=1,2
‖eitΛũi‖Z � ε1 + ε1

∑
i=1,2

‖eitΛũi‖Z ,=⇒
∑
i=1,2

‖eitΛũi‖Z � ε1.

Now we are ready to prove Lemma 6.1. From the estimates (6.14), (6.15), (6.16), 
(6.17), and (6.18) in Lemma 6.2, and Hölder type estimates, we can derive the following 
estimate from (1.20),

‖eitΛΛ≥3[∇x,zϕ]‖L∞
z Z � 2−mε0 + ε1‖eitΛΛ≥3[∇x,zϕ]‖L∞

z Z , (6.9)

‖ ̂Λ≥3[∇x,zϕ]‖L∞
z L∞

ξ
� 2−mε0 + ε0‖eitΛΛ≥3[∇x,zϕ]‖L∞

z Z , (6.10)

2−(1−θ)k+θm‖Pk[Λ≥3[∇x,zϕ]]‖L∞L2 � 2−mε0 + ε0‖eitΛ[Λ≥3[∇x,zϕ]]‖L∞Z , (6.11)

z z
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sup
k∈Z,j≥−k−

2δj‖
t2∫

t1

eitΛΛ≥3[∇x,zϕ]‖L∞
z Bk,j

� 2−δmε0 + 23m/2 sup
k∈Z

‖Pk[Λ≥3[∇x,zϕ]]‖L∞
z L2

� 2−δmε0. (6.12)

In the above estimate, we used the fact that the case when j ≥ m + 100δm can be ruled 
out easily as we did in the previous two sections. Also we used the L2−L∞ type estimate 
for all quartic-and-higher order terms in (1.20).

From the estimates (6.9), (6.10), (6.11), and (6.12), we have the following estimates,

‖eitΛΛ≥3[B(h)ψ]‖Z + 2−(1−θ)k+θm‖Pk[B(h)ψ]‖L2 � ‖eitΛΛ≥3[∇x,zϕ]‖L∞
z Z

+2−(1−θ)k+θm‖Pk[Λ≥3[∇x,zϕ]]‖L∞
z L2 � 2−mε0, (6.13)

sup
k∈Z,j≥−k−

2δj‖
t2∫

t1

eitΛΛ≥3[B(h)ψ]‖L∞
z Bk,j

� 2−δmε0,

‖Λ≥3[B(h, ψ)]‖L∞
ξ

� ‖ ̂Λ≥3[∇x,zϕ]‖L∞
z L∞

ξ
� 2−mε0.

Following the same procedure, recall (6.2), it’s easy to see that our desired estimates 
(6.5) and (6.6) hold. �
Lemma 6.2. For any μ, ν, κ ∈ {+, −} and f , g, h ∈ HN0 ∩Z, which satisfy the following 
estimates,

‖f‖HN0 + ‖g‖HN0 + ‖h‖HN0 ≤ A, ‖f‖Z + ‖g‖Z + ‖h‖Z ≤ B,

the following estimates for any t, t1, t2 ∈ [2m−1, 2m+1], m ∈ Z+, and θ ∈ [0, 1],

‖eitΛQ((e−itΛf)μ, (e−itΛg)ν)‖Z � ‖f‖Z‖g‖Z + 2−10δm(A + B)2, (6.14)

sup
k∈Z

2−(1−θ)k‖Pk

[
eitΛQ((e−itΛf)μ, (e−itΛg)ν)

]
‖L2 � 2−θmB2. (6.15)

‖eitΛC
(
(e−itΛf)μ, (e−itΛg)ν , (e−itΛh)κ

)
‖Z � 2−m‖f‖Z‖g‖Z‖h‖Z + 2−m−10δm(A + B)2,

(6.16)

sup
k∈Z

2−(1−θ)k‖Pk

[
eitΛC

(
(e−itΛf)μ, (e−itΛg)ν , (e−itΛh)κ

)]
‖L2 � 2−(1+θ)mB3, (6.17)

sup
k∈Z,j≥−k−

2δj‖
t2∫

t1

eitΛC
(
(e−itΛf)μ, (e−itΛg)ν , (e−itΛh)κ

)
dt‖Bk,j

� 2−10δm(A + B)3,

(6.18)

where the symbol q(ξ − η, η) of bilinear operator Q(·, ·) and the symbol c(ξ − η, η − σ, σ)
of trilinear operator C(·, ·, ·) satisfy the following estimates respectively,
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‖q(ξ − η, η)‖S∞
k,k1,k2

� 23 max{k1,k2}+ , (6.19)

‖c(ξ − η, η − σ, σ)‖S∞
k,k1,k2,k3

� 24 max{k1,k2,k3}+ . (6.20)

Proof. • We first prove the desired estimates (6.15) and (6.17). Since (6.17) can be 
proved very similarly, we only prove (6.15) in details here. From the bilinear estimate 
(2.7) in Lemma 2.1, the following estimate holds for any k ∈ Z and any θ ∈ [0, 1],

sup
k∈Z

2−(1−θ)k‖Pk

[
eitΛQ((e−itΛf)μ, (e−itΛg)ν)

]
‖L2

�
∑

k2≤k1−10

2−(1−θ)k1+3k1,+
[
‖e−itΛfk1‖L∞‖gk2‖L2 + ‖e−itΛgk1‖L∞‖fk2‖L2

]
+

∑
|k2−k1|≤10

2−(1−θ)k+(1−θ)k+3k1,+‖e−itΛfk1‖θL∞‖fk1‖
(1−θ)
L2 ‖gk2‖L2 � 2−θmB2.

• Now we proceed to prove the desired estimates (6.14) and (6.16). Since the proof of 
the desired estimates (6.16) and (6.14) are very similar, we only prove (6.14) in details 
here.

Firstly, we do dyadic decomposition for two inputs. From the L2 − L∞ type bilinear 
estimate and the L∞ −→ L2 type Sobolev embedding, the following estimate holds,

‖eitΛQ((e−itΛfk1)μ, (e−itΛgk2)ν)‖Bk,j

� 2αk+6k++j+min{k1,k2}+3 max{k1,k2}+‖fk1(t)‖L2‖fk2(t)‖L2

� 2j+max{k1,k2}+(2−α) min{k1,k2}+δm−(N0−20) max{k1,k2}+(A + B)2.

Due to the symmetry between inputs, without loss of generality, we assume that k2 ≤
k1 + 5. From the above estimate, we can rule out the very-low-frequency case and the 
relatively-high-frequency case. From now on, we restrict ourself to the following case,

k2 ≤ k1 + 5, k1 + (2 − α)k2 ≥ −j − 10δm, k1 ≤ 2βj + δm.

With minor modifications in the proof of Lemma 4.2, we can rule out the case when 
j ≥ m + 10. It remains to consider the case when j ≤ m + 10. Note that we have 
k2 ≥ −m/(2 − α) − βm and k1 ≤ 3βm for this case. From the L2 − L∞ type bilinear 
estimate (2.7) in Lemma 2.1, the following estimate holds if k2 ≤ −αm/2,

‖eitΛQ((e−itΛfk1)μ, (e−itΛgk2)ν)‖Bk,j
� 2αk+j+6k++3k1,+‖e−itΛfk1‖L∞‖gk2‖L2

� 230βm+(1−α)k2‖f‖Z‖g‖Z � 2−10δm‖f‖Z‖g‖Z . (6.21)

To sum up, it remains to consider the case when k1, k2 ∈ [−αm/2, 3βm]. If moreover 
(k1, k2) ∈ χ1

k∪χ2
k, then from the estimates (A.16) and (A.17) in Lemma A.2, it is easy to 

see that we are away from the space resonance in “η” set. Hence, we can do integration 
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by parts in “η” many times to rule out the case when max{j1, j2} ≤ m − 2αm. As a 
result, we have∑

j≤m+10
‖eitΛQ((e−itΛf)μ, (e−itΛg)ν)‖Bk,j

�
∑

j≤m+10
2αk+j+6k+

( ∑
(k1,k2)∈χ3

k

23k1,+‖e−itΛfk1‖L∞‖gk2‖L2 + 2−10δm(A + B)2

+
∑

−αm/2≤k2≤k1+5≤3βm
max{j1,j2}≥m−2αm

23k1,+2−m−max{j1,j2}−αk1−αk2‖fk1,j1‖Z‖gk2,j2‖Z
)

� ‖f‖Z‖g‖Z + 2−10δm(A + B)2.

• Now, we proceed to prove (6.18). The major difference between the estimate (6.17)
and (6.18) is that we can take advantage of the oscillation in time for (6.18). Firstly, 
we do dyadic decompositions for all the inputs. Due to the symmetry between inputs, 
without loss of generality, we assume that k3 ≤ k2 ≤ k1. From the L2 − L∞ − L∞ type 
estimate, the following estimate holds for any t1, t2 ∈ [2m−1, 2m],

2δj‖
t2∫

t1

eitΛC
(
(e−itΛfk1)μ, (e−itΛgk2)ν , (e−itΛhk3)κ

)
dt‖Bk,j

� sup
t∈[2m−1,2m]

2αk+6k++m+(1+δ)j+4k1,+

× ‖e−itΛfk3‖L∞‖e−itΛfk2‖L∞‖fk1‖L2 � 2(2−2α)k3+(1+δ)j−(N0−12)k1,++δm(A + B)3.

Therefore, from the above estimate, we can rule out the case when k1 ≥ βj + δm or 
k3 ≤ −(1 + δ)j/(2 − 2α) − βm. Hence, it would be sufficient to consider the following 
case,

k3 ≤ k2 ≤ k1 ≤ βj + δm, k3 ≥ −(1 + δ)j/(2 − 2α) − βm.

As before, with minor modifications in the proof of Lemma 4.2, we can first rule out the 
case when j ≥ m + 10. For the case when j ≤ m + 10, from the L2 − L∞ − L∞ type 
estimate, we have

2δj‖
t2∫

t1

eitΛC
(
(e−itΛfk1)μ, (e−itΛgk2)ν , (e−itΛhk3)κ

)
dt‖Bk,j

� sup
t∈[2m−1,2m]

2αk+10k1,++2m+δm‖fk3(t)‖L2

× ‖e−itΛfk1‖L∞‖e−itΛfk2‖L∞ � 2(1−2α)k3+9βmB3.
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From the above estimate, we can rule out further the case when k3 ≤ −12βm. There-
fore, it remains to consider the case when k1, k2, k3 ∈ [−12βm, βm]. In other words, all 
frequencies are of size almost like “1”. The Z-norm estimate of a trilinear form of this 
type has already been considered in the third case of the proof of Lemma 5.14. We omit 
details here. �
6.2. Proof of Lemma 3.1

Note that (k1, k2) ∈ χ3
k and t ∈ [2m−1, 2m], m ∈ Z+. Since we have already proved 

the Proposition 3.1 in the previous subsection, under the bootstrap assumption (2.20), 
the estimates in Lemma 3.2 are valid in this subsection.

From the estimate (3.4), the estimates (3.23) and (3.24) in Lemma 3.2, the following 
estimate holds from the L2 − L2 type estimate and the volume of support of ξ, the 
following estimate holds,

∑
μ,ν∈{+,−}

2δj‖eitΛAμ,ν(uμ
k1

(t), uν
k2

(t))‖Bk,j
� 2αk+(1+δ)j+8k+−2k+k‖fk1(t)‖L2‖fk2(t)‖L2

� 2(1+α)k+10δm+j−(N0−10)k+ε21.

Therefore, we can rule out the case when k ≤ −(1 + 20δ)j/(1 + α) − 20δm and k ≥
j/(N0 − 20) + 10δm. Moreover, it is easy to check that the proof of Lemma 4.2 is still 
valid. Hence we can rule out the case when j ≥ (1 + 20)δm. It would be sufficient to 
consider the case when k and j satisfy the following estimate,

−(1 + 100δ)m/(1 + α) ≤ k ≤ 2βm, j ≤ (1 + 20)δm. (6.22)

Recall the decomposition of symbol mμ,ν(ξ − η, η) in (5.52). We localize the angle 
between ξ and νη and have the following decomposition,

F [eitΛAμ,ν(uμ
k1
, uν

k2
)](ξ) =

∑
i=1,2

∑
l̄i≤l≤2

T̃μ,ν,i
l;k1,k2

(t, ξ),

T̃μ,ν,i
l;k1,k2

(t, ξ) =
∑

j1≥−k1,−,j2≥−k2,−

T̃μ,ν,i
l;k1,j1,k2,j2

(t, ξ), (6.23)

where l̄1 := 2k−, ̄l2 := −4,

T̃μ,ν,i
l;k1,j1,k2,j2

(t, ξ) =
∫
R2

eitΦ
μ,ν(ξ,η)f̂μ

k1,j1
(t, ξ − η)f̂ν

k2,j2
(t, η)mi

μ,ν(ξ − η, η)ϕl̄i;l(∠(ξ, νη))dη.

Therefore,
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F−1[T̃μ,ν,i
l;k1,j1,k2,j2

(t, ξ)ψk(ξ)] =
∫
R2

∫
R2

eix·ξ+itΦμ,ν(ξ,η)f̂μ
k1,j1

(t, ξ − η)f̂ν
k2,j2

(t, η)

×mi
μ,ν(ξ − η, η)ϕl̄i;l(∠(ξ, νη))ψk(ξ)dηdξ,

where symbols mi
μ,ν(ξ − η, η), i ∈ {1, 2}, are defined in (5.52). Recall (6.23). It is easy 

to see that our goal can be reduced to prove the following two Lemmas.

Lemma 6.3. Under the bootstrap assumption (2.20), the following estimate holds if fixed 
k satisfies the estimate (6.22),∑

0≤j≤(1+20δ)m

∑
l̄2≤l≤2

‖F−1[T̃μ,ν,2
l;k1,k2

(t, ξ)
]
‖Bk,j

� ε0. (6.24)

Proof. Recall that l̄2 = −4. From the L2
x − L∞

x type bilinear estimate, the following 
estimate holds, ∑

0≤j≤m+20

∑
l̄2≤l≤2

‖F−1[T̃μ,ν,2
l;k1,k2

(t, ξ)
]
‖Bk,j

�
∑

0≤j≤m+20
2αk+j+8k+‖e−itΛfk1(t)‖L∞‖fk2(t)‖L2

�
∑

0≤j≤m+20
2(1−α)k−2k++j−mε21 � ε0.

Note that the following estimate holds if |x| ∼ 2j and j ≥ m + 20,

|∇ξ[x · ξ + tΦμ,ν(ξ, η)| ∼ 2j .

Therefore, after doing integration by parts ξ many times, we can rule out the case when 
min{j1, j2} ≤ j − δj. If min{j1, j2} ≥ j − δj, then the following estimate holds after 
using the volume of support of ξ first and then using the L2 − L2 type estimate,∑

min{j1,j2}≥j−δj

‖F−1[T̃μ,ν,i
l;k1,j1,k2,j2

(t, ξ)ψk(ξ)]‖Bk,j

�
∑

j1,j2≥j−δj

2αk+j+k+8k+−j1−j2−2αkε21 � 2−m/2ε0.

Hence finishing the proof. �
Lemma 6.4. Under the bootstrap assumption (2.20), the following estimate holds if fixed 
k satisfies the estimate (6.22),∑

0≤j≤(1+20δ)m

∑
l̄1≤l≤2

‖F−1[T̃μ,ν,1
l;k1,k2

(t, ξ)
]
‖Bk,j

� ε0. (6.25)
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Proof. Recall that l̄1 := 2k−. Note that the estimate (A.3) holds for the case we are 
considering. Following the same argument used in the proof of Lemma 5.1, we first rule 
out the case when j ≥ max{m + l, −k − l} + 100δm. It would be sufficient to consider 
the case when j ≤ max{m + l, −k − l} + 100δm. Based on the possible size of j, k, and 
l, we separate into three cases as follows.

• If k + 2l ≤ −m + 50δm, then this assumption implies that j ≤ −k− l + 200δm and 
k ≤ −m/5 + βm. From the estimate (2.25) in Lemma 2.5 and the estimates (3.23) and 
(3.25) in Lemma 3.2, the following estimate holds,

‖F−1[T̃μ,ν,i
l;k1,k2

(t, ξ)ψk(ξ)]‖Bk,j
� 2αk+j−2 max{k−,l}+2k+l‖f̂k1(t, ξ)‖L∞

ξ
‖fk2‖L2

� 2αk+200δmε21 � 2−βmε0. (6.26)

• If k + 2l ≥ −m + 50δm and l = l̄1, then this assumption implies that k ≥ −m/5 +
10δm. Note that the following estimate holds from the estimate (2.32) in Lemma 2.6,∑

j≤m+l+80

‖F−1[T̃μ,ν,i
l;k1,k2

(t, ξ)ψk(ξ)]‖Bk,j

�
∑

j≤m+l+80

2j−2 max{k−,l}−m+(1−α)k−2k+ε21 + 2−mε21 � ε0. (6.27)

If j ≥ m + l + 80, then from the estimate (A.3) in Lemma A.1, the following estimate 
holds if |x| ∼ 2j , and ∠(ξ, νη) ∼ 2l,

|∇ξ[x · ξ + tΦμ,ν(ξ, η)| ∼ 2j .

Hence, we can do integration by parts in ξ many times to rule out the case when 
min{j1, j2} ≤ j − δj. From the estimate (2.25) in Lemma 2.5, the following estimate 
holds if min{j1, j2} ≥ j − δj,∑

min{j1,j2}≥j−δj

‖F−1[T̃μ,ν,i
l;k1,j1,k2,j2

(t, ξ)ψk(ξ)]‖Bk,j

�
∑

min{j1,j2}≥j−δj

2αk+j−2 max{k−,l}+k+l̄1/2‖fk1,j1(t)‖L2

× ‖fk2,j2(t)‖L2 � 2−(1−2δ)j−αkε21 � 2−(1−2δ)m−(2+α)k−ε0 � 2−m/3ε0.

Note that the above estimate is more than sufficient to cover the logarithm loss of size 
“m” caused by the summation with respect to j.

• If k+2l ≥ −m +50δm and l > l̄1, then this assumption implies that j ≤ m +l+100δm
and max{k, l} ≥ −m/3 +10δm. Note that we are away from the space resonance in “η” set 
for the case we are considering. Therefore, we can rule out the case when max{j1, j2} ≤
m + l − 4βm by doing integration by parts η many times. From the estimate (2.32) in 
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Lemma 2.6 and the estimates (3.23) and (3.25) in Lemma 3.2, the following estimate 
holds, ∑

max{j1,j2}≥m+l−4βm

‖F−1[T̃μ,ν,i
l;k1,j1,k2,j2

(t, ξ)ψk(ξ)]‖Bk,j

�
∑

max{j1,j2}≥m+l−4βm

2αk+j−2 max{k−,l̄1}

× 2−m−2αk−max{j1,j2}−4k+‖fk1,j1(t)‖Z‖fk2,j2(t)‖Z

� 2−m+5βm−2 max{k−,l̄1}−αkε0 � 2−βmε0.

Note that the above estimate is more than sufficient to cover the logarithm loss of size 
“m2” caused by the summation with respect to j and l. Hence finishing the proof of the 
desired estimate (6.25). �
Appendix A. Analysis of the phases

In this appendix, we analyze and estimate the phase Φμ,ν(ξ, η), where μ, ν ∈ {+, −}. 
Recall that the phase Φμ,ν(ξ, η) is defined as follows,

Φμ,ν(ξ, η) := Λ(|ξ|) − μΛ(|ξ − η|) − νΛ(|η|), ξ, η ∈ R2,Λ(|ξ|) :=
√

|ξ| tanh |ξ|.

Note that

∇ξΦμ,ν(ξ, η) = Λ′(|ξ|) ξ

|ξ| − μΛ′(|ξ − η|) ξ − η

|ξ − η| ,

∇ηΦμ,ν(ξ, η) = μΛ′(|ξ − η|) ξ − η

|ξ − η| − νΛ′(|η|) η

|η| .

It turns out that the relative size between ∇ξΦμ,ν(ξ, η) and ∇ηΦμ,ν(ξ, η) plays an es-
sential role. Hence it is necessary to consider the relation between ∠(ξ, μ(ξ − η)) and 
∠(μ(ξ − η), νη).

We will show that either the phase Φμ,ν(ξ, η) is big or the sizes of angles ∠(ξ, μ(ξ−η))
and ∠(μ(ξ − η), νη) are proportional to each other if the phase Φμ,ν(ξ, η) is small, see 
estimate (A.3) in Lemma A.1 and estimate A.5 in Lemma A.2. To this end, we define 
axillary functions as follows,

c−,−(ξ, η) = 1, c−,+(ξ, η) = ϕ̃((|η| − |ξ|)/|ξ − η|), (A.1)

c+,+(ξ, η) = ϕ̃((|ξ| − |η|)/|ξ − η|), c+,−(ξ, η) = ϕ̃(
(
|ξ − η| − |ξ|)/|η|), (A.2)

where ϕ̃(·) is a cutoff function such that ϕ̃(x) = 1 if x ≤ 2−100 and it is supported inside 
(−∞, 2−50].
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Lemma A.1. For any μ, ν ∈ {+, −}, |ξ| ∼ 2k, |ξ − η| ∼ 2k1 , |η| ∼ 2k2 , k, k1, k2 ∈ Z, if 
(ξ, η) ∈ supp(1 − cμ,ν(ξ, η)), then it is easy to verify that

∠(ξ, μ(ξ − η)) ∼ 2k2−k1∠(ξ, νη), ∠(μ(ξ − η), νη) ∼ 2k−k1∠(ξ, νη). (A.3)

Moreover, if (k1, k2, μ, ν) ∈ Pk
bad, then the above estimate also holds.

Proof. To prove the desired estimate (A.3), it would be sufficient to consider the case 
when ∠(ξ, νη) ≤ 2−100. If (ξ, η) ∈ supp(1 − cμ,ν(ξ, η)), then we only have to consider the 
case when (μ, ν) �= (−, −). Recall (A.1) and (A.2). For the case when (μ, ν) = (−, +), 
(ξ, η) ∈ supp(1 − cμ,ν(ξ, η)) implies that |η| ≥ |ξ| + 2−100|ξ − η|, which further implies 
that the angle (ξ, η − ξ) is small when ∠(ξ, η) is small. The other two cases follows very 
similarly, we omit details here.

Recall (3.10). We first consider the case when (k1, k2, μ, ν) ∈ χ1
k×{(+, −), (−, +)}, i.e., 

|ξ| ≤ 2−5|η| and μν = − for this case. It is easy to see that ∠(ξ, ν(η−ξ)) is of same size as 
∠(ξ, νη) as the angle ∠(νη, ν(η−ξ)) is much smaller than ∠(ξ, νη). The desired estimate 
(A.3) also holds very similarly for the case when (k1, k2, μ, ν) ∈ χ2

k×{(+, −), (+, +)}. �
Lemma A.2. Given any k, k1, k2, l ∈ Z, μ, ν ∈ {+, −}, s.t., k2 ≤ k1 + 5, l ≤ 2, |ξ| ∼
2k, |ξ − η| ∼ 2k1 , |η| ∼ 2k2 , and ∠(ξ, νη) ∼ 2l. Then the following rough estimate holds,

|Φμ,ν(ξ, η)| � 2min{k,k2}/2+min{k,k2}−/2+2 max{k,k2}− + 2−k1,+/2+min{k,k2}+2l. (A.4)

If (ξ, η) ∈ supp(cμ,ν(ξ, η)), then the following improved estimate holds,

|Φμ,ν(ξ, η)| � 2k2−k1,+/2. (A.5)

If (k1, k2, μ, ν) ∈ Pk
bad, then the following estimate holds,

|Φμ,ν(ξ, η)| ∼ 2− min{k,k2}+/2+min{k,k2}+2k1,− + 2min{k,k2}−k1,+/2+2l. (A.6)

Proof. Note that the following estimate holds easily,

|Φ−,−(ξ, η)| ≥ Λ(|ξ − η|) � 2k1/2+k1,−/2. (A.7)

Note that

Φ−,+(ξ, η) = Λ(|ξ|) + Λ(|ξ − η|) − Λ(|ξ| + |ξ − η|) + Λ(|ξ| + |ξ − η|) − Λ(|η|), (A.8)
Φ+,+(ξ, η) = Λ(|ξ|) − Λ(|ξ − η| + |η|) + Λ(|ξ − η| + |η|) − Λ(|ξ − η|) − Λ(|η|), (A.9)

Φ+,−(ξ, η) = Λ(|ξ|) + Λ(|η|) − Λ(|ξ| + |η|) + Λ(|ξ| + |η|) − Λ(|ξ − η|). (A.10)

Recall that |ξ| ∼ 2k, |ξ − η| ∼ 2k1 , |η| ∼ 2k2 , ∠(ξ, νη) ∼ 2l, and k2 ≤ k1 + 5. From the 
estimates (A.20) and (A.21) in Lemma A.4, it’s easy to see that the following estimate 
holds,
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|Φ−,+(ξ, η)| � 2k/2+k−/2+2k1,− + 2−k1,+/2+k+2l, (A.11)

|Φ+,+(ξ, η)| � 2k2/2+k2,−/2+2k1,− + 2−k1,+/2+k2+2l, (A.12)

|Φ+,−(ξ, η)| � 2min{k,k2}/2+min{k,k2}−/2+2k1,− + 2−k1,+/2+min{k,k2}+2l. (A.13)

To sum up, from (A.7), (A.11), (A.12), and (A.13), it is easy to see that our desired 
estimate (A.4) holds.

Now, let’s proceed to prove the desired estimate (A.5). If (μ, ν) = (−, +), then the 
assumption (ξ, η) ∈ supp(1 −c−,+(ξ, η)) implies that |η| ≤ |ξ| +2−100|ξ−η|. Recall (A.8). 
From the estimates (A.20) and (A.21) in Lemma A.4, we have

|Φ−,+(ξ, η)| � 2k1−k1,+/2.

The proof for the case (μ, ν) ∈ {(+, +), (+, −)} is very similar, we omit details here.
Lastly, we prove the desired estimate (A.6). Recall (3.10). We first consider the case 

when (k1, k2, μ, ν) ∈ χ1
k × {(−, +), (+, −)}. Since |ξ| 
 |ξ − η| ≈ |η|, from the equalities 

(A.8) and (A.10), it is easy to see that our desired estimate (A.6) follows directly from 
the estimates (A.20) and (A.21) in Lemma A.4. The case when (k1, k2, μ, ν) ∈ χ2

k ×
{(+, +), (+, −)} follows very similarly. Hence finishing the proof. �
Lemma A.3. Given k1, k2, k, l ∈ Z, l ≤ 2, k2 ≤ k1 + 4, μ, ν ∈ {+, −}, such that |ξ| ∼ 2k, 
|ξ − η| ∼ 2k1 , |η| ∼ 2k2 , ∠(ξ, νη) ∼ 2l. If (k1, k2) ∈ χ1

k, then we have

∣∣Λ′(|ξ − η|) ξ − η

|ξ − η| + Λ′(|η|) η

|η|
∣∣ ∼ 2k−k1+max{l,2k1,−}−k1,+/2. (A.14)

If (k1, k2) ∈ χ2
k, then we have,

2−k1,+/2+max{l,2k1,−} �
∣∣Λ′(|ξ − η|) ξ − η

|ξ − η| − νΛ′(|η|) η

|η|
∣∣ � 2max{l,2k1,−}. (A.15)

Moreover, the following estimates always hold,

∣∣Λ′(|ξ − η|) ξ − η

|ξ − η| + Λ′(|η|) η

|η|
∣∣ � 2−3k1,+/2+k+k1,− , (A.16)

∣∣Λ′(|ξ − η|) ξ − η

|ξ − η| − Λ′(|η|) η

|η|
∣∣ψ≥k−10(|η − ξ/2|) � 2−3k1,+/2+k+k1,− . (A.17)

Proof. • If (k1, k2) ∈ χ1
k, i.e., |k1 − k2| ≤ 5, k ≤ k1 − 5, which means that 0 < |ξ| 


|ξ − η| ≈ |η|. Note that

∣∣Λ′(|ξ−η|) ξ − η

|ξ − η|+Λ′(|η|) η

|η|
∣∣ ∼ 2−k1,+/2∠(ξ−η,−η)+2k1,−−3k1,+/2∣∣|ξ−η|−|η|

∣∣. (A.18)

∠(ξ, νη) = 2l, k ≤ k1 − 5,=⇒ ∠(ξ − η,−η) ∼ 2k−k1+l. (A.19)



X. Wang / Advances in Mathematics 346 (2019) 805–886 883
From (A.18) and (A.19), it is easy to see that the desired estimate (A.14) holds if 
l ≥ 2k1,− − 10.

It remains to consider the case when l ≤ 2k1,−− 10. Because the angle between ξ and 
νη is very small, as a result we have 

∣∣|ξ − η| − |η|
∣∣ ∼ 2k. Again from (A.18) and (A.19), 

it is easy to see that the desired estimate (A.14) also holds.
• If (k1, k2) ∈ χ2

k, i.e., |k1 −k| ≤ 4, k2 ≤ k−5, which means that 0 < |η| 
 |ξ−η| ≈
|ξ|. Note that

∣∣Λ′(|ξ − η|) ξ − η

|ξ − η| − νΛ′(|η|) η

|η|
∣∣ ∼ max{|Λ′(|ξ − η|) − Λ′(|η|)|, 2−k1,+/2∠(ξ − η, νη)},

∠(ξ, νη) ∼ ∠(ξ − η, νη),

2−k1,+/2+2k1,− ≤
|ξ−η|∫

|ξ−η|/2

|Λ′′(r)|dr ≤ |Λ′(|ξ − η|) − Λ′(|η|)| ≤
|ξ−η|∫
0

|Λ′′(r)|dr ≤ 22k1,− .

Hence, from the above estimates, it’s easy to see that our desired estimate (A.15) holds.
Lastly, let’s proceed to prove the desired estimates (A.16) and (A.17). Note that

Λ′(|ξ − η|) ξ − η

|ξ − η| + Λ′(|η|) η

|η| = 0, =⇒ ξ = 0,

Λ′(|ξ − η|) ξ − η

|ξ − η| − Λ′(|η|) η

|η| = 0, =⇒ η = ξ/2.

Therefore, those two quantities have corresponding lower bounds when the frequencies 
are localized away from these two points. Following a very similar analysis as the proof 
of the estimates (A.14) and (A.15), it is easy to see that the desired estimates (A.16)
and (A.17) hold. �
Lemma A.4. Let f(r) :=

√
r tanh r, then the following estimate holds for any r, s ∈

R, r ≥ s ≥ 0,

f(r + s) − f(r) ∼ smax{r, 1}−1/2, (A.20)
f(r) + f(s) − f(r + s) ∼ s

1
2 min{s, 1} 1

2 min{r, 1}2. (A.21)

Proof. From direct computations, we have

f ′(r) = 4re2r + e4r − 1
2(1 + e2r)3/2(e2r − 1)1/2r1/2 ≥ 0, r ≥ 0, (A.22)

f ′′(r) = 2e4r(1 + 8r2) − 1 − e8r − 8e6rr(2r − 1) − 8e2rr(1 + 2r)
4(1 + e2r)5/2(e2r − 1)3/2r3/2 , r ≥ 0. (A.23)

An important observation is that f ′′(r) ≤ 0 and f ′′(r) = 0 if and only if r = 0. To prove 
this claim, we only have to prove that the numerator is non-positive. We define f̂(r) to 
be the numerator of f ′′(r) in (A.23). Note that the following decomposition holds,
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f̂(r) := g(r) + h(r), g(r) := 16e4rr2 − 8e6rr2 − 8e2rr2 = −8e2rr2(e2r − 1)2,

h(r) := 2e4r − 1 − e8r − 8e6rr(r − 1) − 8e2rr(1 + r).

Obviously, g(r) ≤ 0 and g(r) = 0 if and only if r = 0. It remains to check h(r). After 
taking up to four derivatives for h(r), we have h(n)(0) = 0 for n ∈ {0, 1, 2, 3}, and the 
following estimate holds,

h(4)(r) = −128e2r(5 + 5r + r2 + 27e4r(r + 3r2) + 32e6r − 27e4r − 4e2r) < 0,

hence h(r) ≤ 0 and h(r) = 0 if and only if r = 0.
Note that f(0) = 0. Hence,

f(r + s) − f(r) =
r+s∫
r

f ′(τ)dτ ≥ 0, (A.24)

f(r)+f(s)−f(r+s) =
r∫

0

[f ′(τ1)−f ′(s+τ1)]dτ1 =
r∫

0

s∫
0

−f ′′(τ1+τ2)dτ2dτ1 ≥ 0. (A.25)

Note that

f ′(r) ∼
{

1 if r ≤ 1
r−1/2 if r ≥ 1,

f ′′(r) ∼
{

−r if r ≤ 1
−r−3/2 if r ≥ 1.

(A.26)

Hence, from (A.24) and (A.26), we have

f(r + s) − f(s) ∼ smax{r, 1}−1/2. (A.27)

From (A.25) and (A.26), the following estimate holds if r, s ≤ 1,

f(r) + f(s) − f(r + s) ∼ r2s. (A.28)

If s ≤ 1 ≤ r, we have

s �
1∫

1/2

s∫
0

−f ′′(τ1 + τ2)dτ1dτ2 ≤ f(r) + f(s) − f(r + s) ≤ f(s) ≤ s. (A.29)

Lastly, if 1 ≤ s ≤ r, we have

s1/2 �
s∫ s∫

−f ′′(τ1 + τ2)dτ2dτ1 ≤ f(r) + f(s) − f(r + s) ≤ f(s) ≤ s1/2. (A.30)

s/2 s/2
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To sum up, from estimates (A.28), (A.29), (A.30), we have

f(r) + f(s) − f(r + s) ∼ s
1
2 min{s, 1} 1

2 min{r, 1}2, 0 ≤ s ≤ r. (A.31)

Hence finishing the proof. �
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