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ON THE POSITIVITY OF THE LOGARITHMIC
COTANGENT BUNDLE

by Damian BROTBEK & Ya DENG

Dedicated to Jean-Pierre Demailly on the occasion of his 60th birthday

Abstract. — The aim of this work is to construct examples of pairs whose
logarithmic cotangent bundles have strong positivity properties. These examples
are constructed from any smooth n-dimensional complex projective varieties by
considering the sum of at least n general sufficiently ample hypersurfaces.
Résumé. — L’objectif de ce travail est de construire des exemples de paires

dont le fibré cotangent logarithmique possède de fortes propriétés de positivité.
Ces exemples sont construit à partir de n’importe quelle variété lisse de dimension
n en considérant la somme d’au moins n diviseurs généraux suffisamment amples.

1. Introduction

To every smooth pair (X,D) (a smooth projective variety X with a sim-
ple normal crossing divisor D), one can associate a logarithmic cotangent
bundle ΩX(logD). The properties of this bundle have important conse-
quences concerning the geometry of the pair (X,D). In the present paper,
we focus on the positivity properties of the logarithmic cotangent bundle
and in particular on the study in X1(D) := P(ΩX(logD)) of the augmented
base locus B+(OX1(D)(1)) of the tautological line bundle OX1(D)(1). There
are now several examples of pairs (X,D) for which this base locus is not
the entire space X1(D) [2, 9, 10, 11, 29, 34, 39], but we lack examples of
pairs for which one has a stronger control of B+(OX1(D)(1)) when ΩX itself
does not have a strong positivity property.
It should be noted that if D 6= ∅ and dimX > 2, this augmented base

locus is never empty. In particular, the logarithmic cotangent bundle is

Keywords: Logarithmic cotangent bundles, hyperbolicity.
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3002 Damian BROTBEK & Ya DENG

not ample. This follows from the existence of residue maps which induce
a trivial quotient of the logarithmic cotangent bundle when restricted to
the different components of D. Each such quotient produces a positive
dimensional subvariety of B+(OX1(D)(1)).
It is therefore natural to wonder if these are the only general obstruc-

tions to the ampleness of the logarithmic cotangent bundle. In the present
paper we show that this is the case by producing examples for which the
augmented base locus of the tautological line bundle on X1(D) is equal to
the reunion of all obstructions induced by the residue maps, in which case
we say that the logarithmic cotangent bundle is almost ample.

Theorem A. — Let Y be a smooth projective variety of dimension n
and let c > n. Let L be a very ample line bundle on Y . For anym > (4n)n+2

and for general hypersurfaces H1, . . . ,Hc ∈ |Lm|, writing D =
∑c
i=1 Hi,

the logarithmic cotangent bundle ΩY (logD) is almost ample.

In this statement, the case c = n is the critical case. In Section 4 we shall
see that for Y = Pn, and for c < n, the logarithmic cotangent bundle can
not be almost ample as it is not even big. Therefore, in this generality, our
result is optimal on c. Our main result is a special case of Corollary 3.2
(see Section 3), in which we also consider cases where the degrees of the
different hypersurfaces are different.
The only result of this type we are aware of is due to Noguchi [29],

who proved that for pair (P2, D), where D is the sum of 6 lines in gen-
eral position, the logarithmic cotangent bundle satisfies a similar positivity
property.
Let us mention that Theorem A has a straightforward implication re-

garding the hyperbolicity of Y \D. In fact it implies that Y \D does not
contain any entire curve, where we recall that an entire curve in Y \D is a
non constant holomorphic map f : C→ Y \D. Moreover, one can actually
prove that Y \D is hyperbolically embedded in Y (see [23] for the defini-
tion). These results are not new and follow from the work [12] or [38], but
while these works rely on higher order jet space technics, here we just rely
on jets of order one. Let us put this in perspective with previously known
results and conjectures.
A conjecture of Kobayashi states that the complement of a general hy-

persurface of high degree in Pn is Kobayashi hyperbolic. In view of a result
of Green [22] and the compact counterpart of the Kobayashi conjecture,
this would imply that the complement of a general hypersurface is in fact
hyperbolically embedded in Pn. This conjecture was only proved recently
by Siu [38]. Before that, the effective algebraic degeneracy of entire curve
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POSITIVITY OF THE LOG COTANGENT BUNDLE 3003

in these complements was proved by Darondeau [12] building on ideas of
Voisin [40, 41], Siu [37], Diverio, Merker and Rousseau [20].
On the other hand, the logarithmic Green–Griffiths conjecture stipulates

that if (X,D) is a pair of log general type (i.e. KX(D) is big), then every
entire curve in X \ D is algebraically degenerate (one even expects there
to be an algebraic subset Z ( X containing the image of all entire curves).
One of the main general results towards this conjecture was obtained by
the work of Noguchi, Winkelmann and Yamanoi [31, 32, 33] and Lu and
Winkelmann [25] who proved that if (X,D) is a pair of log general type
with logarithmic irregularity h0(X,ΩX(logD)) > dimX, then every entire
curve in X \D is algebraically degenerate. This improves and generalizes
a classical result of Bloch and Ochiai. When X = Pn and if D has n
components, then, as we recall in Section 4, the logarithmic irregularity of
the pair (Pn, D) is n−1, and therefore the situation of Theorem A lies just
outside the cases covered by the work of these authors.
The first step when one tries to control the augmented base locus of

the tautological line bundle OX1(D)(1) is to prove that this line bundle
is big and therefore to construct some logarithmic symmetric differential
forms on the pair (X,D). Under some circumstances, as in [34] one can
use a Riemann–Roch argument. A more differential geometric approach,
motivated by the study of hyperbolicity properties of moduli spaces, is
sometimes possible. It relies on the curvature properties of some metric on
X \ D. This approach has proved very fruitful when for instance X \ D
carries a variation of Hodge structure or is the base of a suitable family of
smooth varieties [2, 9, 10, 11, 17, 18, 39, 43], but we don’t know if the pairs
considered in Theorem A have such a property.
In the present article, in order to construct logarithmic symmetric differ-

ential forms on the pairs under consideration, we follow the general strat-
egy of [5, 6]. In fact, our main result can be seen as a logarithmic analogue
of a result of Darondeau and the first named author [6] on a conjecture
of Debarre, taking into account the effective results of the second named
author [15, 16]. In [13], Debarre conjectured that if X ⊂ Pn is a gen-
eral complete intersection of sufficiently high multidegree and such that
codimPn(X) > dimX, then the cotangent bundle ΩX is ample. This con-
jecture was established by Xie [42] with an effective uniform lower bound
on the degree and independently, in the work [6] with no effective bound
and moreover an arithmetic condition on the multidegree, similar to the
one appearing in Corollary 3.2. In [16], among other results, the second
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3004 Damian BROTBEK & Ya DENG

named was able to make the argument of [6] effective, and improved the
bounds obtained in [42].
Let us now outline the proof of Theorem A. First we reduce ourselves to

the case c = n, then, the main idea of the proof is to deduce the result for
general pairs from the construction of a particular example (Y,D) satis-
fying a stronger Zariski open property. Because the logarithmic cotangent
bundle can not be ample, we can not use the Zariski openness of ampleness
in such a direct way. Instead, one has to take into account the obstructions
from the residues by considering a “universal” modification P̂(ΩY (logD))
of P(ΩY (logD)) and prove a suitable ampleness statement on this modifi-
cation.
Such examples are constructed by considering hypersurfaces H1, . . . ,Hn

being defined as suitable deformations of Fermat type hypersurfaces. For
simplicity, until the end of this introduction, let us restrict ourselves to
the case Y = Pn and L = OPn(1). For i ∈ {1, . . . , n}, we consider the
hypersurface Hi ⊂ Pn defined by a polynomial of the form

Fi =
∑
|I|=δ

ai,Iy
(r+1)I ,

where δ ∈ N∗, r ∈ N is large enough, the ai,I ’s are polynomials of de-
gree ε > 1 in C[y0, . . . , yn], and where we used the multi-index notation
y(r+1)I = (yi00 . . . yinn )r+1 for I = (i0, . . . , in) and homogeneous coordinates
[y0, . . . , yn] on Pn. Set m := ε + (r + 1)δ. For any i ∈ {1, . . . , n} we ob-
tain, as explained in Section 2.6, a logarithmic connection ∇Fi : OPn(m)→
OPn(m)⊗ ΩPn(logHi) defined by

∇Fi(s)
loc:= ds− sdFi

Fi
.

This connection satisfies moreover trivially the relation ∇Fi(Fi) ≡ 0. A
straightforward computation therefore implies that

0 = ∇Fi(Fi) =
∑
|I|=δi

αi,Iy
rI =

∑
|I|=δi

αi,Ix
I

where for each I, αi,I ∈ H0(Pn,ΩPn(logHi) ⊗ OPn(ε + δ)) and where
(x0, . . . , xn) = (yr0, . . . , yrn). From this observation, one can see that this
collection of connexions induces a rational map

P(ΩPn(logD)) 99K Y

where Y is the universal family of complete intersections of codimension
n and multidegree (δ, . . . , δ):

Y := {(P1, . . . , Pn, [x]) ∈ |OPn(δ)|×n × Pn |P1(x) = · · · = Pn(x) = 0}.

ANNALES DE L’INSTITUT FOURIER



POSITIVITY OF THE LOG COTANGENT BUNDLE 3005

If one denotes O(b1, . . . , bn) := O|OPn (δ)|(b1) × · · · × O|OPn (δ)|(bn) for any
integers b1, . . . , bn, then, as we shall see, at least for r large enough, every
element in

H0(Y ,O(b1, . . . , bn)� OPn(−1)|Y )

induces a symmetric logarithmic differential form of (Pn, D) vanishing along
some ample divisor. The map Y → |OPn(δ)|×n being generically finite,
if the bi’s are positive, the pull back of O(b1, . . . , bn) to Y is big and
nef. Therefore, at least when the bi’s are large enough, there are many
global sections of O(b1, . . . , bn) � OPn(−1)|Y . Moreover, the base locus in
Y of these global section can be understood geometrical from a result of
Nakamaye [27] and one can control the dimension of this base locus in
view of a work of Benoist [1]. One can thus hope to use this information
to understand the augmented base locus of the tautological line bundle on
P(ΩPn(logD)).

Unfortunately, there are several technical difficulties which make the
proof rather involved. First of all, as mentioned above, we first have to
take a suitable modification of P(ΩPn(logD)), this relies on the most tech-
nical part of our argument, namely an explicit resolution of the obstructions
induced by the residues. Even so, it is rather delicate to understand the
map from P(ΩPn(logD)) to Y , mainly because the dependence of the αi,I ’s
on the ai,I ’s is non-linear. Therefore we had to modify the above argument
by constructing an embedding of the pair (Pn, D) ∼→ (Z,D′|Z) ⊂ (X,D′)
where now Z depends on the ai,I ’s, but the pair (X,D′) does not. Moreover,
because of our particular shape of equation, there are also complications
occurring along the coordinate hyperplanes. These seem to be unavoidable
with this approach, as in [4, 5, 6, 16, 42].
Lastly, let us mention that, although in the case (Pn,

∑c
i=1 Hi), the condi-

tion c > n in Theorem A is optimal, there exists many examples with fewer
components having almost ample logarithmic cotangent bundles. Such ex-
amples as well as generalizations of positivity to higher order jet spaces will
be studied in a forthcoming work.

The organization of the paper is as follows. In Section 2, we make some
preliminary observations on the geometry of the projectivization of the log-
arithmic cotangent bundle and study the ampleness obstructions induced
by the residue maps. We moreover explain how these obstructions are also
indeterminacy loci of natural rational maps between the projectivizations
of the logarithmic cotangent bundles of (X,D) and (X,D′) where D′ is the
sum of only some of the components of D. In Section 3 we prove our main
result by implementing the strategy explained above. In Section 4 we prove
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3006 Damian BROTBEK & Ya DENG

that our result is optimal on the number of components by establishing a
vanishing theorem for logarithmic symmetric differential form on (Pn, D)
where D is a divisor with less than n components. Lastely, in section Sec-
tion 5, we describe an explicit resolution algorithm for the indeterminacies
between the different rational maps studied in Section 2.

Acknowledgments. It is a great honor for us to dedicate this article
to Professor Jean-Pierre Demailly. Much of our knowledge on complex ge-
ometry comes from his lectures, surveys and articles, and our research was
strongly motivated by him. It is hard to overestimate the influence of his
ideas on both of us, especially on the second named author, who used
to be his student. We take this opportunity to express our gratitude and
admiration to him.

2. The geometry of the projectivized logarithmic
cotangent bundle

2.1. Conventions

We summarize here the main conventions we use throughout this text.
We work over the field of complex numbers C. Given a complex manifold
X and a line bundle L on X, for any global section σ of L, we denote by
(σ = 0) ⊂ X the zero locus of σ. The base locus Bs(L) is the intersection
of the zero loci of all global sections of L and B(L) :=

⋂
m∈N Bs(Lm). If X

if projective, then the augmented base locus of L is

B+(L) :=
⋂
m∈N

B(Lm ⊗A−1)

for any ample line bundle A on X (see [24]). Given a vector bundle E on X
we will denote by P(E) the projectivization of rank one quotients of E and
by OP(E)(1) the tautological line bundle on P(E). We will often identify
P(E) with P (E∨) the projectivisation of lines in E∨ and thus denote the
elements in P(E) in the form [ξ] with ξ ∈ E∨x for some x ∈ X. Given a
divisor D on X and a subvariety Z ⊂ X, we denote by D|Z the divisor ι∗D
where ι : Z → X is the inclusion morphism. Given a morphism ρ : X → S

we will denote by Xs = ρ−1({s}) the fiber above s ∈ S.

2.2. Log pairs and logarithmic cotangent bundles

Let X be a (not necessarily compact) complex manifold of dimension
n > 1. Let D =

∑c
i=1 Di be a simple normal crossing divisor on X, that is,

ANNALES DE L’INSTITUT FOURIER



POSITIVITY OF THE LOG COTANGENT BUNDLE 3007

for any x ∈ X, there exists an open neighborhood U of x with coordinates
(z1, . . . , zn) centered at x and an integer k 6 c such that

D ∩ U = (z1 · · · zk = 0).

Such a pair (X,D) will be called a smooth pair or a log pair. One denotes
by TX(− logD) the logarithmic tangent bundle of (X,D). Recall that this
is the locally free subsheaf of the holomorphic tangent bundle TX of vec-
tor fields tangent to D. Locally on an open subset of U ⊂ X with local
coordinates (z1, . . . , zn) as above, TX(− logD) is generated by(

z1
∂

∂z1
, . . . , zk

∂

∂zk
,

∂

∂zk+1
, . . . ,

∂

∂zn

)
.

Consider the dual of TX(− logD), which is the locally free sheaf gener-
ated by (

dz1

z1
, . . . ,

dzk
zk

,dzk+1, . . . ,dzn
)
.

It is denoted by ΩX(logD) and is called the logarithmic cotangent bundle
of (X,D). Note that ΩX is a subsheaf of ΩX(logD).

The projectivization P(ΩX(logD)) of ΩX(logD) will be critical in this
paper, therefore we introduce the following notation

X1(D) := P(ΩX(logD)).

We will also denote by πX,D : X1(D) → X the canonical projection, but
we will mostly write πX instead of πX,D for readability. This slight abuse
of notation should not lead to any confusion.
Given another log pair (Y,E), and a morphism f : X → Y , we say

that f is a morphism of log pairs if f−1(E) ⊂ D, and in this case, we
write f : (X,D) → (Y,E). The differential of such a morphism induces a
morphism

df : TX(− logD) −→ f∗TY (− logE),
or dually, a morphism

tdf : f∗ΩY (logE) −→ ΩX(logD).

Therefore, one obtains a rational map

[df ] : X1(D) 99K Y1(E).

A particular instance of a morphism of log pairs is given when one considers
a smooth submanifold Z of X. If Z intersects D transversely (i.e. D|Z
is simple normal crossing), then (Z,D|Z) is also a log manifold and the
inclusion morphism iZ : (Z,D|Z) → (X,D) is a morphism of log pairs.

TOME 68 (2018), FASCICULE 7



3008 Damian BROTBEK & Ya DENG

Moreover, the induced meromorphic map [diZ ] : Z1(D|Z) → X1(D) is
holomorphic.

2.3. Obstruction to ampleness

Take (X,D) as above. For any i ∈ {1, . . . , c}, there exists a residue map

ResDi : ΩX(logD) −→ ODi

defined, over any open subset U ⊂ X, by

ResDi

(
α+

c∑
k=1

βk
dσk
σk

)
= βi|Di ,

for any α ∈ Γ(U,ΩX) any β1, . . . , βc ∈ OX(U) and where Dk = (σk = 0) for
any k ∈ {1, . . . , c}. This map is easily seen to be a well defined morphism
of OX -modules.
For any non-empty I = {i1, . . . , ir} ⊂ {1, . . . , c}, set I{ := {1, . . . , c} \ I,

define DI := Di1 ∩ · · · ∩ Dir which is a smooth complete intersection
of dimension n − r since the divisor D is simple normal crossing, and
D(I{) =

∑
i∈I{ Di which is a simple normal crossing divisor. We obtain

the following short exact sequence of sheaves

(2.1) 0 −→ ΩX(logD(I{)) −→ ΩX(logD) Res−−→ ⊕i∈IODi −→ 0,

which induces a quotient of vector bundles over the (not necessarily con-
nected) smooth submanifold DI ⊂ X of codimension r in X:

(2.2) ΩX(logD) |DI−→ O⊕rDI −→ 0.

Since this is a morphism of ODI -modules, it induces an inclusion

D̃I := P(O⊕rDI ) ∼= DI × Pr−1 ⊂ P(ΩX(logD)).

Observe that dim D̃I = dimDI + #I − 1 = n − 1 for any I ⊂ {1, . . . , c}.
From (2.2), we see that when X is projective of dimension n > 2 and
the number of components of D is positive (i.e. D 6= ∅), the logarithmic
cotangent bundle ΩX(logD) cannot be ample. Indeed, for any non-empty
I ⊂ {1, . . . , c} with #I < n, the restriction of ΩX(logD) to DI has a
trivial quotient, which, since dimDI = n −#I > 0 prevents the logarith-
mic cotangent bundle from being ample. Said differently, it implies that
D̃I ⊂ B+(OX1(D)(1)) for any such I. Observe that when #I > n then DI

is empty, and that when #I = n then DI is a finite set of point, therefore,
in this last case it does not directly follow that D̃I ⊂ B+(OX1(D)(1)). This
leads us to introduce the following definition.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.1. — Let D =
∑c
i=1 Di be a simple normal crossing di-

visor on a projective manifold X of dimension n. We say that the log pair
(X,D) has almost ample logarithmic cotangent bundle if the tautological
line bundle OX1(D)(1) is big and its augmented base locus satisfies

B+(OX1(D)(1)) =
⋃

∅(I⊂{1,...,c}
#I<n

D̃I .

The situation can be understood in local coordinates as follows. Fix a
point x ∈ X. Without loss of generality, we can suppose that there exists
k 6 c such that {i ∈ {1, . . . , c} |x ∈ Di} = {1, . . . , k}. One can therefore
take an open neighborhood U of x with local coordinates (z1, . . . , zn) such
that Di ∩ U = (zi = 0) for any i ∈ {1, . . . , k}. In this setting, one has a
local trivialization

U × Pn−1 ∼−→ π−1
X (U)

(z, [ξ1, . . . , ξn]) 7−→
(
z,

[
k∑
i=1

ξizi
∂

∂zi
+

n∑
i=k+1

ξi
∂

∂zi

])
.

Take I ⊂ {1, . . . , c}. Observe that DI ∩U = ∅ if I 6⊂ {1, . . . , k}. If on the
other hand I = {i1, . . . , ir} ⊂ {1, . . . , k}, then from the definition of the
residue map, we see that in these local coordinates, the restricted residue
map Res : ΩX(logD)|DI∩U → O⊕rDI∩U is given by

Res
(

k∑
i=1

ηi
dzi
zi

+
n∑

i=k+1
ηidzi

)
= (ηi1 , . . . , ηir ).

Therefore, it follows that under the above trivialization, D̃I is given by

(2.3) D̃I∩π−1
X (U) =

(z, [ξ1, . . . , ξn]) ∈ U× Pn−1

∣∣∣∣∣∣∣
zi = 0 ∀ i ∈ I
and ξj = 0
∀ j ∈ {1, . . . , n}\I

.
For later use, let us observe that this implies that for any ∅ 6= I, J ⊂
{1, . . . , c}, since (I ∩ J){ = I{ ∪ J{,

(2.4)
{
D̃I ∩ D̃J ⊂ D̃I∩J if I ∩ J 6= ∅
D̃I ∩ D̃J = ∅ if I ∩ J = ∅.

Definition 2.2. — For a non-empty subset I ⊂ {1, . . . , c}, we define
JI to be the ideal sheaf of D̃I in X1(D) and JI :=

⋂
J⊂I JJ . We also write

JD :=
⋂

∅6=J JJ and Ji := J{i}{ for brevity.

TOME 68 (2018), FASCICULE 7
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For any I ⊂ {1, . . . , c}, the map

gI : ΩX(logD(I{)) −→ ΩX(logD)

induces a rational map

(2.5) γI : X1(D) 99K X1(D(I{)).

If one denotes by U(γI) ⊂ X1(D) the complement of the indeterminacy
locus of γI , then one has an isomorphism

(2.6) OX1(D)(1)|U(γI)
∼−→ γ∗I (OX1(D(I{))(1)).

On the other hand, for any line bundle L on X, one has isomorphisms

H0(X,ΩX(logD)⊗ L) ∼= H0(X1(D),OX1(D)(1)⊗ π∗XL)

H0(X,ΩX(logD(I{))⊗ L) ∼= H0(X1(D(I{)),OX1(D(I{))(1)⊗ π∗XL).

As we also have a map H0(X,ΩX(logD(I{))⊗L)→ H0(X,ΩX(logD)⊗L)
induced by gI , we obtain a map

γ∗I : H0(X1(D(I{)),OX1(D(I{))(1)⊗π∗XL)→H0(X1(D),OX1(D)(1)⊗π∗XL).

The choice of notation is legitimate because on U(γI) it coincides with the
map induced by (2.6).

Proposition 2.3. — With the same notation as above, take I ⊂
{1, . . . , c}.

(1) Let µ̃ : X̃1 → X1(D) be a log resolution of the ideal sheaves JI .
Then µ̃ resolves the indeterminacy of the meromorphic map γI .

(2) Given any line bundle L on X, and any element σ ∈ H0(X1(D(I{)),
OX1(D(I{))(1)⊗ π∗XL), the section γ∗Iσ vanishes along JI . Equiva-
lently, γ∗I factors through

H0(X1(D(I{)),OX1(D(I{))(1)⊗ π∗XL)

−→ H0(X1(D),OX1(D)(1)⊗ π∗XL⊗JI).

(3) If W ⊂ H0(X1(D(I{)),OX1(D(I{))(1) ⊗ π∗XL) is a base point free
linear system, then the ideal sheaf defined by γ∗IW is precisely JI .

Proof. — Without loss of generality, one can assume that I = {1, . . . , r}.
Take x ∈ X. One can assume that there exists an open neighborhood
U of x with local coordinates (z1, . . . , zn), and integers m ∈ {0, . . . , r},
q ∈ {r, . . . , c}, such that

U ∩D = U ∩ (D1 ∪ · · · ∪Dm ∪Dq+1 ∪ · · · ∪Dc)

ANNALES DE L’INSTITUT FOURIER



POSITIVITY OF THE LOG COTANGENT BUNDLE 3011

and such that Di ∩ U = (zi = 0) for any i ∈ {1, . . . ,m, q + 1, . . . , c},
here we use the convention D1 ∪ · · · ∪ Dm = ∅ if m = 0. In this setting,
both P(ΩX(logD)|U ) and P(ΩX(logD(I{))|U ) are isomorphic to the trivial
product U × Pn−1 in such a way that one has the following commutative
diagram

P(ΩX(logD)|U )

∼=
��

γI // P(ΩX(logD(I{))|U )

∼=
��

U × Pn−1 fU // U × Pn−1

where

fU (z, [ξ1, . . . , ξn]) = (z, [z1ξ1, . . . , zmξm, ξm+1, . . . , ξn]).

On the other hand, for any J = {j1, . . . , js} ⊂ {1, . . . , r} = I, writing
{ks+1, . . . , kn} = {1, . . . , n} \ J one has

JJ(π−1
X (U)) = (zj1 , . . . , zjs , ξks+1 , . . . , ξkn).

But then, as we shall see in Section 5.1, it follows that

(2.7) JI(π−1
X (U)) = (z1ξ1, . . . , zmξm, ξm+1, . . . , ξn).

From the expression of fU it is clear that any resolution of JI resolves the
indeterminacies of fU , and therefore also of γI . This proves the first point.
The verification of the second point can be done locally. Take a line bundle
L and a global section σ ∈ H0(X1(D(I{)),OX1(D(I{))(1) ⊗ π∗XL

)
. We can

suppose that L|U is trivialized. Above the open subset U , the restriction
σU := σ|π−1

X
(U) is of the form

σU =
n∑
i=1

siξi,

for some si ∈ O(U). Then in our choice of coordinates

(γ∗i σ)|π−1
X

(U) =
m∑
i=1

siziξi +
n∑

i=m+1
siξi.

In view of the above description for JI , it is immediate that γ∗i σ|π−1
X

(U)

vanishes along JI(π−1
X (U)), and since this holds for any x ∈ X and any

small enough neighborhood U of x, the second assertion follows at once.
The third assertion is also an immediate consequence of the local expression
for (γ∗i σ)|π−1

X
(U). �

Let us now show that at least under some additional assumption, the
“almost ampleness” property is preserved if one add more components.
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Proposition 2.4. — LetX be a smooth projective variety of dimension
n. Take an integer c > n and a simple normal crossing divisor D =

∑c
i=1 Di

on X. For any j ∈ {1, . . . , c} let us define D̂ := D − Dj . If for any
j ∈ {1, . . . , n + 1} the pair (X,D̂) has almost ample logarithmic cotan-
gent bundle, then the pair (X,D) has almost ample logarithmic cotangent
bundle.
In particular, if (X,D̂) has almost ample logarithmic cotangent bundle

for any j ∈ {1, . . . , c} then so does the pair (X,D).

Proof. — For any j ∈ {1, . . . , c}, set Uj := X \ Dj . Since D is simple
normal crossing, one has X =

⋃n+1
j=1 Uj and therefore it suffices to prove

that for any j ∈ {1, . . . , n+ 1}, one has

(2.8) B+(OX1(D)(1)) ∩ π−1
X (Uj) =

⋃
I⊂{1,...,c}

#I<n

D̃I ∩ π−1
X (Uj).

Without loss of generality, since our assumption is on all j ∈ {1, . . . , n+1},
it suffices to prove (2.8) for j = 1. Observe that for any I ∈ {1, . . . , c}, if
1 ∈ I, then D̃I ∩ π−1

X (U1) = ∅. The right hand side of (2.8) is therefore⋃
I⊂{2,...,c}

#I<n

D̃I ∩ π−1
X (U1).

We now resolve the ideal sheaf I{1} = J{1} ⊂ OX1(D) by blowing up D̃{1}.
Write D′ = D − D1 and X̃1 := BlX1(D)(D̃{1})

µ̃→ X1(D). By Proposi-
tion 2.3, the map µ̃ resolves the indeterminacies of γ{1} and therefore we
have a commutative diagram

X̃1

µ̃

��

ν

$$
X1(D)

πX,D
%%

γ{1}
// X1(D′)

πX,D′

��
X

satisfying moreover

(2.9) ν∗OX1(D′)(1) = µ̃∗OX1(D)(1)⊗ O
X̃1

(−E)

where E is the exceptional divisor of µ̃.
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By hypothesis, (X,D′) has almost ample logarithmic cotangent bundle,
therefore

B+(OX1(D′)(1)) =
⋃

I⊂{2,...,c}
#I<n

D̃′I .

One can find m ∈ N and an ample line bundle A on X such that
B+(OX1(D′)(1)) = Bs

(
OX1(D′)(m)⊗ π∗X,D′A−1). After pulling back to X̃1

and in view of (2.9) this implies

Bs
(
µ̃∗(OX1(D)(m)⊗ π∗X,DA−1))

⊂ Bs
(
ν∗(OX1(D′)(m)⊗ π∗X,D′A−1)) ∪ Supp(E)

⊂ ν−1(B+(OX1(D′)(1))) ∪ Supp(E).

Since µ̃ is birational and X1(D) is smooth we obtain

Bs(OX1(D)(m)⊗ π∗X,DA−1) ⊂ µ̃(ν−1(B+(OX1(D′)(1))) ∪ Supp(E))

⊂ γ−1
{1}(B+(OX1(D′)(1))) ∪ D̃1,

where γ{1} is understood to be restricted to X1(D)\D̃1, where it is regular.
Therefore

(2.10) B+(OX1(D)(1)) ⊂ γ−1
{1}(B+(OX1(D′)(1))) ∪ D̃1

⊂
⋃

I⊂{2,...,c}
#I<n

D̃I ∪ π−1
X (D1).

To deduce the last inclusion, we use the fact that outside π−1
X (D1) the map

γ{1} is an isomorphism and that for any I ⊂ {2, . . . , c} with #I < n one
has γ−1

{1}(D̃
′
I) ∩ π

−1
X,D(U1) = D̃I ∩ π−1

X,D(U1). It then suffices to take the
intersection with π−1

X (U1) on both sides of (2.10) to deduce (2.8). �

If in Proposition 2.4 we do not ask a condition on the D̂ for all j ∈
{1, . . . , n+ 1}, but only on one of them, then the above argument does not
work. However, if one slightly weakens the expected conclusion by allowing
the augmented base locus of OX1(D)(1) to contain the different D̃I for
#I = n as well, then one has the following stronger result.

Proposition 2.5. — LetX be a smooth projective variety of dimension
n. Take c ∈ N∗ and a simple normal crossing divisor D =

∑c
i=1 Di on X.

Let D′ :=
∑c
i=2 Di. If

B+(OX1(D′)(1)) =
⋃

I⊂{1,...,c}
#I6n

D̃′I ,
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then
B+(OX1(D)(1)) =

⋃
I⊂{1,...,c}

#I6n

D̃I .

Proof. — As in the prof of Proposition 2.4, one can prove that

B+(OX1(D)(1)) ⊂ γ−1
{1}(B+(OX1(D′)(1))) ∪ D̃1.

Therefore we are just reduced to understand γ−1
{1}(B+(OX1(D′)(1))). This

can be done locally. Outside D1 there is nothing to prove because γ{1} is an
isomorphism and that moreover for any I one has γ−1

{1}(D̃
′
I) ∩ π

−1
X,D(U1) =

D̃I ∩ π−1
X,D(U1), where U1 = X \D1. Let x ∈ D1 and take an open neigh-

borhood U of x with coordinates (z1, . . . , zn) centered at x such that there
exists k ∈ {1, . . . , n} for whichD∩U = (z1 · · · zk = 0) andDi∩U = (zi = 0)
for all i ∈ {1, . . . , k}. Using the trivialization described above, the map γ{1}
is then given by

γ{1}(z1, . . . , zn, [ξ1, . . . , ξn]) = (z1, . . . , zn, [z1ξ1, ξ2, . . . , ξn]).

On the other hand, for any non-empty I = {i1, . . . , ir} ⊂ {2, . . . , c} with
#I = r 6 n, writing {j1, . . . jn−r} = {1, . . . , n} \ I, the equations defining
D̃′I in the above coordinates for X1(D′) are

D̃′I = (zi1 , . . . , zir , ξj1 , . . . , ξjn−r = 0).

Since 1 /∈ I, one has 1 ∈ J , and we can therefore suppose j1 = 1. Therefore,
γ−1
{1}(D̃

′
I) is given in the above coordinates by

(zi1 , . . . , zir , ξ1, ξj2 , . . . , ξjn−r = 0) ∪ (zi1 , . . . , zir , z1, ξj2 , . . . , ξjn−r = 0)

= D̃I ∪ D̃I∪{1}.

Since D̃I∪{1} = ∅ whenever #I = n, the result follows. �

2.4. Families of smooth pairs

Let us collect here some elementary observations concerning families of
smooth pairs.

Definition 2.6. — A family of smooth pairs consists in the following
data:

(1) A smooth quasi-projective variety X , a smooth quasi-projective
variety S and a smooth proper morphism

ρ : X −→ S.
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(2) A simple normal crossing divisor D =
∑c
i=1 Di on X such that

given any s ∈ S, denoting by ιs : Xs ↪→X the canonical injection,
the divisor Ds := ι∗sD is simple normal crossing.

We will denote such a family by (Xs, Ds)s∈S or more precisely by
(X ,D) ρ→ S if needed.

Let us first observe that as a consequence of the local inverse theorem in
several complex variables we obtain that in the analytic category, families
of smooth pairs are locally trivial.

Lemma 2.7. — Let (X ,D) ρ→ S be a family of smooth pairs. Set
n := dim ρ. For any x ∈ X there exists a neighborhood U ⊂ X , a neigh-
borhood U1 ⊂ S of ρ(x) and an open subset U2 ⊂ Cn with coordinates
(z1, . . . , zn) such that there exists an isomorphism

Φ : U1 × U2 −→ U

satisfying ρ ◦ Φ = pr1 (where pr1 : U1 × U2 → U1 is the projection on the
first factor) and such that for some k 6 n one has

Φ∗D = (z1 · · · zk = 0).

Let us now make the following observation.

Lemma 2.8. — Let X be a smooth quasi-projective variety endowed
with a simple normal crossing divisor D . Let S be a quasi-projective variety
and suppose that we are given a proper morphism ρ : X → S. If there
exists s0 ∈ S such that (Xs0 , Ds0) is a smooth pair (where Ds0 = D |Xs0

),
then there exists a non-empty Zariski open subset U ⊂ S such that the
restricted family (ρ−1(U),D |ρ−1(U))

ρ→ U is a family of smooth pairs.

Proof. — This is a consequence of the properness of the map ρ since
the locus of point x ∈ X at which the divisor Dρ(x) is not simple normal
crossing is closed. �

To any family of smooth pairs (X ,D) ρ→ S, one can associate a rel-
ative logarithmic cotangent bundle ΩX /S(log D) defined as the quotient
of ΩX (log D) by ρ∗ΩS . By definition, it sits in the following commutative
diagram

0 // ρ∗ΩS // ΩX
//

��

ΩX /S
//

��

0

0 // ρ∗ΩS // ΩX (log D) // ΩX /S(log D) // 0.
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Observe that Lemma 2.7 implies that ΩX /S(log D) is a locally free
sheaf. We denote its dual by TX /S(− log D). Observe also that for any
s ∈ S, one has ΩXs(logDs) = ΩX /S(log D)|Xs and TXs(− logDs) =
TX /S(− log D)|Xs .

2.5. A resolution algorithm

Let us state here the main properties of a resolution algorithm we will
construct in Section 5.

Proposition 2.9. — There exists a resolution algorithm which to every
smooth pair (X,D) such that D =

∑c
i=1 Di with c 6 dimX, associates a

smooth variety X̂1(D) and a birational morphism (the so-called minimal
resolution in Section 5.4)

µ : X̂1(D) −→ X1(D),

satisfying the following properties.
(1) With the notation of Definition 2.2, the morphism µ is a resolution

of JI for every I ( {1, . . . , c}. In particular µ is a simultaneous
log resolution of {Ji}i∈{1,...,c}. Moreover, µ is birational outside⋃
I⊂{1,...,c}
#I<dimX

D̃I .

(2) Given a smooth subvariety Z ⊂ X intersecting D transversally
(so that (Z,D|Z) is a smooth pair) and assuming that c 6 dimZ,
the resolution Ẑ1(D|Z) is the strict transform in X̂1(D) of
Z1(D|Z) ⊂ X1(D).

(3) Given a family of smooth pairs (X ,D) ρ→ S such that the number
of components of D is less than the dimension of the fibers of ρ,
there exists a smooth variety P̂(ΩX /S(log D)) with a birational
morphism µrel : P̂(ΩX /S(log D)) → P(ΩX /S(log D)) such that for
any s ∈ S, denoting Xs = ρ−1(s) and Ds = D |Xs , and viewing
Xs,1(Ds) as a subvariety of P(ΩX /S(log D)), one has

(µrel)−1(Xs,1(Ds)) ∼= X̂s,1(Ds).

Moreover, there exists effective divisors E1, . . . ,Em on
P̂(ΩX /S(log D)) such that for any s ∈ S, the set of irreducible
exceptional divisor of the map µ : X̂s,1(Ds)→ Xs,1(Ds) is{

E1|X̂s,1(Ds), . . . ,Em|X̂s,1(Ds)

}
.

This allows us to make the following definition:
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Definition 2.10. — Let (X,D) be a smooth pair. Suppose that X is
projective. We say that the pair (X,D) satisfies property (∗) if there exists
a µ-exceptional effective Q-divisor F ∈ DivQ(X̂1(D)) such that the Q-line
bundle

(∗) µ∗(OX1(D)(1))⊗ O
X̂1(D)(−F ) is ample.

From Proposition 2.9 we deduce the following useful consequence.

Corollary 2.11.
(1) Property (∗) is a Zariski open property. Namely, given a family of

smooth pairs (X ,D) ρ→ S, if there exists s0 ∈ S such that the pair
(Xs0 , Ds0) satisfies (∗), then there exists a non-empty Zariski open
subset U ⊂ S such that for any s ∈ U the pair (Xs, Ds) satisfies (∗).

(2) Let (X,D) be a smooth pair and let L be an ample line bundle on
X. If (X,D) satisfies (∗), then the logarithmic cotangent bundle
ΩX(logD) is almost ample.

Proof. — The first claim follows from Proposition 2.9(3) by the open-
ness property of ampleness. To prove the second claim, one can observe
that if µ∗(OX1(D)(1))⊗O

X̂1(D)(−F ) is ample, then B+(µ∗(OX1(D)(1))) ⊂
Supp(F ) and therefore since µ is birational and X1(D) is smooth.

B+(OX1(D)(1)) ⊂ µ
(

Supp(F )) ⊂
⋃

I⊂{1,...,c}
#I<dimX

D̃I ,

in view of 2.9(1). �

2.6. Logarithmic connections

Let L be a line bundle over a (not necessarily compact) complex manifold
X. Take a smooth hypersurface D ∈ |L| (if such a hypersurface exists) and
let sD ∈ H0(X,L) be a section defining D. There exists a logarithmic
connection

(2.11) ∇sD : L −→ L⊗ ΩX(logD),

defined locally by

∇sDs
loc:= ds− sdsD

sD
.

By this we mean that over an open subset U with a fixed trivialization
of L, if we let sU , sD,U ∈ O(U) to be local representative for s ∈ Γ(U,L)
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and sD ∈ Γ(X,L) under our choice of trivialization then

∇sDs := dsU − sU
dsD,U
sD,U

.

One verifies without difficulty that this local definition defines a logarithmic
connection on L with logarithmic poles along D.
Let us observe the following tautological relation

(2.12) ∇sD (sD) = 0.

Moreover, if Y ⊂ X is a smooth subvariety transverse to D, and if one
denotes sY,D := sD|Y , then one has the following commutative diagram

L
∇sD //

��

L⊗ ΩX(logD)

��
L|Y ∇sY,D

// L|Y ⊗ ΩY (logD|Y ),

where the right vertical arrow is induced by the composition

ΩX(logD) −→ ΩX(logD)|Y −→ ΩY (logD|Y ).

Remark 2.12. — Let us stress here that in [7] we generalize the logarith-
mic connections defined in (2.11) to higher order ones, which are used to
construct jet differentials, to prove the logarithmic Kobayashi conjecture.

3. Proof of the main results

3.1. The main technical result

We will establish the following stronger version of our main result.

Theorem 3.1. — Let Y be a projective variety of dimension n and let
L be a very ample line bundle on Y . Take ε1, . . . , εn ∈ N∗ and take integers
δ1, . . . , δn > 4n− 1. Then, for any i ∈ {1, . . . , n} set bi = δ−1

i

∏n
j=1 δj . For

any

r >

n∑
i=1

bi(εi + δi)

and for general hypersurfaces H1 ∈ |Lε1+(r+1)δ1 |, . . . ,Hn ∈ |Lεn+(r+1)δn |,
writing H =

∑n
i=1 Hi, the logarithmic cotangent bundle ΩY (logH) is al-

most ample. Moreover, the complement U = Y \ H is hyperbolically em-
bedded in Y .
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As a corollary of this result we obtain the following strengthening of
Theorem A.

Corollary 3.2. — Let Y be a projective variety of dimension n and
let L be a very ample line bundle on Y . Take an integer c > n and integers
δ1, . . . , δc ∈ N∗ such that δ1, . . . , δc > 4n−1. Let α > 3 + 2n(max16i6c δi)n
be a rational number such that αδi ∈ N for all i ∈ {1, . . . , n}, and set
(m1, . . . ,mc) = α · (δ1, . . . , δc) ∈ Nn. For general hypersurfaces H1 ∈ |Lm1 |,
. . . ,Hc ∈ |Lmc |, writting D =

∑c
i=1 Hi, the pair (Y,D) has almost ample

logarithmic cotangent bundle.

Theorem 3.1 ⇒ Corollary 3.2 and Theorem A. — Let us first fix

r0 := 1 + 2n max
16i6c

(δi)n.

In view of Proposition 2.4 we are reduced to prove that under the hypothesis
of Corollary 3.2, for every divisor D′ consisting of n of the components of
D, the logarithmic cotangent bundle of (Y,D′) is almost ample. Without
loss of generality, we may assume D′ =

∑n
i=1 Hi.

Our hypothesis on r0 guaranties that r0 >
∑n
i=1 2biδi, and therefore one

can apply Theorem 3.1 for any r > r0 and for any (ε1, . . . , εn) such that
1 6 εi 6 δi for all i ∈ {1, . . . , n}.

For any rational number α > r0 + 2, and any (m1, . . . ,mn) ∈ Nn of the
form α(δ1, . . . , δn), one can set r := dαe−2 > r0 and for any i ∈ {1, . . . , n}
one can set εi = (α− dαe+ 1)δi ∈ {1, . . . , δi}, so that mi = εi + (r + 1)δi.
Applying Theorem 3.1 implies that the logarithmic cotangent bundle of
(Y,D′) is almost ample, which concludes the proof of Corollary 3.2.
To prove Theorem A, it suffices to take δ1, . . . , δc = 4n − 1. The bound

for α is α > 3 + 2n(4n− 1)n. And we can therefore apply Corollary 3.2 to
obtain the almost ampleness of the logarithmic cotangent bundle for degree

m = m1 = · · · = mc > (4n− 1)(3 + 2n(4n− 1)n).

It then remains to observe that (4n− 1)(3 + 2n(4n− 1)n) 6 (4n)n+2. �

3.2. Notation and conventions

Let us summarize here the main notation and conventions we will use
in Section 3. We fix an integer n > 2 and take homogenous coordinates
[x0, . . . , xn] on Pn. Given any δ ∈ N∗, these homogenous coordinates induce
an isomorphism

H0(Pn,OPn(δ)) = C[x0, . . . , xn]δ,
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where the right hand side denotes the set of homogenous polynomials of
degree δ in n+ 1 variables. The set of unitary monomials of degree δ forms
a basis of this space, and this basis is naturally in bijection with the set of
multi-indices of weight δ

I(δ) := {I = (i0, . . . , in) ∈ Nn+1 | |I| = i0 + · · ·+ in = δ}.

For any I = (i0, . . . , in) ∈ I(δ), we use the standard multi-index notation
xI := xi00 . . . xinn . We therefore have the following identification

CI(δ) ∼−→ H0(Pn,OPn(δ))

(aI)I∈I(δ) 7−→
∑
|I|=δ

aIx
I .

This induces an identification P (CI(δ)) ∼= |OPn(δ)|. We will implicitly use
these identifications in what follows.
Given a subset J ⊂ {0, . . . , n} of cardinality #J = n − k, we consider

the k-dimensional projective subspace PJ ⊂ Pn defined by

PJ = {[x] ∈ Pn |xj = 0 ∀ j ∈ J}.

The coordinates [x0, . . . , xn] induce homogenous coordinates [x`0 , . . . , x`k ]
on PJ , where {`0, . . . , `k} = {0, . . . , n} \ J . Moreover, we have a restriction
map

resδJ : H0(Pn,OPn(δ)) −→ H0(PJ ,OPJ (δ)),
which, with our choice of homogenous coordinates, is the map given by

resδiJ

 ∑
|I|=δi

aIx
I

 =
∑
|I|=δi

Supp(I)∩J=∅

aIx
I .

where Supp(I) = {j ∈ {0, . . . , n} | ij 6= 0}. Writing

IJ(δ) := {I ∈ Nn+1 | |I| = δ and Supp(I) ∩ J = ∅},

we can therefore identify the restriction map resδJ with the natural projec-
tion CI(δ) → CIJ (δ).

3.3. Setting

Following the ideas of [6], we will construct n families of divisors para-
metrized by certain Fermat-type equations. Let L be a very ample line
bundle over Y . Fix n+ 1 sections in general position τ0, . . . , τn ∈ H0(Y,L).
By “general position” we mean that the divisor

∑n
i=0(τi = 0) is simple
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normal crossing. We fix two n-tuples of positive integers ε = (ε1, . . . , εn)
and δ = (δ1, . . . , δn). For any i ∈ {1, . . . , n} we define

Ai :=
⊕
I∈I(δi)

H0(Y, Lεi) ∼= H0(Y,Lεi)⊗H0(PN ,OPN (δi)).

Let us also fix a positive integer r and consider for any ai = (ai,I)I∈I(δi)
the hypersurface Hai in Y defined by the zero locus of the section

σi(ai) :=
∑
|I|=δi

ai,Iτ
(r+1)I ∈ H0(Y,Lmi)

where mi = εi+(r+1)δi and τ (r+1)I := (τ i00 . . . τ inn )r+1 for I = (i0, . . . , in).
Define

A := A1 × · · · × An,
and for any a = (a1, . . . ,an) ∈ A, define Ha :=

∑c
i=1 Hai . Let us now

observe that this way we obtain indeed smooth pairs.

Lemma 3.3. — There exists a non-empty Zariski open subset Asm ⊂ A
such that for any a ∈ Asm, the pair (Y,Ha) is a smooth pair.

Proof. — In [6, Lemma 2.1] was proven the following Bertini type result:
Given any smooth subvariety W ⊂ Y and any i ∈ {1, . . . , n}, then for a
general ai ∈ Ai, the intersection W ∩ Hai is smooth. From there it suf-
fices to make an induction on the number of components since this result
ensures that at each step one can chose the hypersurface Hai+1 to be trans-
verse to the configuration given by the first i constructed hypersurfaces
Ha1 , . . . ,Hai . �

For any i ∈ {1, . . . , n}, let us define Li := Lmi and let us denote by
Li the total space of Li. Moreover, let us denote by V the total space of
the rank n vector bundle L1 ⊕ L2 ⊕ · · · ⊕ Ln and let pV : V → Y be the
canonical projection. For any i ∈ {1, . . . , n}, denote by Ti ∈ H0(V, p∗VLi)
the tautological section defined by

Ti(`1, . . . , `n) := `i ∀ (`1, . . . , `n) ∈ V = L1 ×Y · · · ×Y Ln.

These induce a simple normal crossing divisor D =
∑n
i=1 Di on V where

for each i ∈ {1, . . . , n} we write Di = (Ti = 0). For any ai ∈ Ai, consider
the section

Σi(ai) := Ti − p∗Vσi(ai) ∈ H0(V, p∗VLi).
Denote also by Eai = (Σi(ai) = 0) ⊂ V the hypersurface defined by Σi(ai),
and for a = (a1, . . . ,an) ∈ A denote

Za :=
n⋂
i=1

Eai ⊂ V.
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If Ha is simple normal crossing, then so is
∑n
i=1 Eai , and therefore Za is

a smooth complete intersection subvariety of V. For any i ∈ {1, . . . , n} set
Di,a := Di|Za and Da :=

∑n
i=1 Di,a. By construction, the restriction of pV

to Za

pV|Za : (Za, Da) −→ (Y,Ha)
is a biholomorphism of log manifolds. We will consider these varieties in
families. Let us denote by pr1 : A × V → A and pr2 : A × V → V the
two canonical projections, and consider for each i ∈ {1, . . . , n}, the sec-
tion Σi ∈ H0(A × V,pr∗2 p∗VLi) defined by Σi(a, v) := Σi(ai)(v) for any
a := (a1, . . . ,ac) ∈ A and any v ∈ V. We then consider the family of
complete intersections Za as above, namely the subvariety Z ⊂ A × V
defined by

Z := {(a, v) ∈ A× V | Σ1(a1, v) = · · · = Σc(ac, v) = 0}.

On Z we consider the divisor D := pr∗2 D which satisfies D |Za = Da for
any a ∈ Asm. We will denote by

Z rel
1 (D) := P(ΩZ /Asm(log D)),

the projectivisation of the relative logarithmic cotangent bundle of
(Z ,D)→ Asm, the family (Z ,D) restricted to Asm and we will denote by

Ẑ rel
1 (D) := P̂(ΩZ /Asm(log D)),

the associated resolution constructed in Proposition 2.9. This proposition
moreover allows us to identify, for any a ∈ Asm, Ẑa,1(Da) with the fiber in
Ẑ rel

1 (D) above a.

3.4. Modified logarithmic connections

In this section, let us fix i ∈ {1, . . . , n}. Recall that we defined Li to be
the total space of the line bundle Li = Lmi . Let us denote by pi : Li → Y

the canonical projection and by TLi ∈ H0(Li, p∗iLi) the tautological section
defined by TLi(`i) := `i for any `i ∈ Li. Note that one can identify Y with
the zero locus of TLi , Y = (TLi = 0). We will use this identification and
study the log pair (Li, Y ). For shortness, denote by πi : Li,1(Y ) → Li the
canonical projection. Observe that under the canonical projection qi : V→
Li, one has q∗i TLi = Ti and q∗i Y = Di. Therefore we get a morphism of log
pairs qi : (V, Di)→ (Li, Y ). Let us denote by

∇i : p∗iLi −→ p∗iLi ⊗ ΩLi(log Y )
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the logarithmic connexion associated to the section TLi as defined in (2.11).
By (2.12) one has ∇i(TLi) = 0.

Lemma 3.4. — For any I ∈ Ii, there exists a C-linear map

(3.1)
∇i,I : H0(Y,Lεi) −→ H0(Li,ΩLi(log Y )⊗ p∗iLεi+δi)

a 7−→ ∇i,I(a)
such that

p∗i (τ rI)∇i,I(a) = ∇i(p∗i a · p∗i τ (r+1)I).

Proof. — One just needs to verify that ∇i(p∗i a · p∗i τ (r+1)I) is divisible
by p∗i (τ rI). This can be done locally: over an open subset U with a fixed
choice of trivialization for L|U , denoting by aU , τ IU ∈ O(U) the holomorphic
function associated to a, τ I under this choice of trivialization, and denoting
by ti ∈ O(p−1

i (U)) the holomorphic function associated to TLi , one has

∇i(p∗i a · p∗i τ (r+1)I)

loc= p∗i τ
rI
U

(
(r + 1)p∗i aUd(p∗i τ IU ) + p∗i τ

I
U

(
d(p∗i aU )− p∗i aU

dti
ti

))
= p∗i τ

rI
U · ∇i,I(a)U .

Since ∇i(p∗i a · p∗i τ (r+1)I) ∈ H0(Li,ΩLi(log Y ) ⊗ p∗iL
εi+(r+1)δi) and

τ rI ∈ H0(Y,Lrδi), we see that the elements ∇i,I(a)U defined this way in-
duces the desired global twisted logarithmic differential form ∇i,I(a). �

This allows us to define the rational map

Φi : Ai × Li,1(Y ) 99K |OPn(δi)|(3.2)

(ai, [ξ]) 7−→
[ ∑
I∈I(δi)

∇i,I(ai,I)(ξ)xI
]
.

This is well defined since it is independent of the choice of ξ representing
[ξ]. We will now study the indeterminacy locus of this map.
Take an open set U ⊂ Y with local coordinates (z1, . . . , zn) and a fixed

trivialization of L|U . Then there are induced coordinates (ti, z1, . . . , zn) on
the open set p−1

i (U) in Li with Y ∩ p−1
i (U) = (ti = 0). For any ` ∈ p−1

i (U)
and any non-zero ξ ∈ TLi(− logDLi)`, consider the evaluation map

(3.3)
∇ξi : Ai −→ H0(Pn,OPn(δi)).

ai 7−→
∑
|I|=δi

∇ξi,I(ai,I)x
I ,

where ai = (ai,I)I∈I(δi) and where ∇ξi,I(ai,I) corresponds to the local repre-
sentation of∇i,I(ai,I)(ξ) obtained from our choice of trivialization. Namely,
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for any a ∈ H0(Y,Lεi), if we denote by aU ∈ O(U) the corresponding holo-
morphic function under our choice of trivialization, then

(3.4)
∇ξi,I(a) :=

(
(r + 1)p∗i aUd(p∗i τ IU ) + p∗i τ

I
U

(
d(p∗i aU )− p∗i aU

dti
ti

))
(ξ)

= ((r + 1)aUdτ IU + τ IUdaU
)
(dpi(ξ))− p∗i (τ IUaU )dti

ti
(ξ).

Observe that ∇ξi,I : H0(Y, Lεi)→ C is linear for each I.
We are now going to estimate the rank of ∇ξi . Let us first introduce a

natural stratification on Y . Given any J ⊂ {0, . . . , n}, define

YJ := {y ∈ Y | τj(y) = 0⇔ j ∈ J} .

Observe that since τ0, . . . , τn are supposed to be in general position, each
YJ is smooth of dimension n−#J . Moreover, the family (YJ)J ⊂ {0, . . . , n}
is a stratification of Y .

Lemma 3.5. — Same notation as above. Take ` ∈ Li and a non-zero
ξ ∈ TLi(− log Y )`. Set y = pi(`) and let J ⊂ {0, . . . , n} be such that
y ∈ YJ . Set k = n−#J . Then

rank∇ξi > rank(resδiJ ◦∇
ξ
i ) >

(
k + δi
k

)
.

Proof. — The first inequality being obvious, we only prove the second
one. Observe that the linear map

(3.5) resδiJ ◦∇
ξ
i = (∇ξi,I)I∈IJ (δi)

is diagonal by blocs. Therefore we just have to study the rank of ∇ξi,I for
each I such that |I| = δi and Supp(I) ∩ J = ∅. There are precisely

(
k+δi
k

)
such multi-indices I, and therefore it suffices to prove that for each of these,
rank(∇ξi,I) = 1 or equivalently, ∇ξi,I 6= 0.
Fix I such that τ I(y) 6= 0. If dpi(ξ) = 0 then there exists λ ∈ C∗ such that

ξ = λ · ti ∂∂ti . Since L is very ample and εi > 1, there exists a ∈ H0(Y,Lεi)
such that a(y) 6= 0. Thus (with aU ∈ O(U) as above)

∇ξi,I(a) = ((r + 1)aUdτ IU + τ IUdaU
)
(dpi(ξ))− (τ IUaU )(y)dti

ti
(ξ)

= −λaU (y)τ I(y) 6= 0.

If dpi(ξ) 6= 0, it also follows from the very ampleness of L that there exists
a ∈ H0(Y,Lεi) such that

aU (y) = 0 and daU
(
dpi(ξ)) 6= 0.

Therefore ∇ξi,I(a) = τ I(y)daU
(
dpi(ξ)) 6= 0. Hence the result. �
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This lemma allows us to control the indeterminacies of Φi in the following
way.

Proposition 3.6. — Assume δi > 2n. Then there exists a non-empty
open set Adef

i ⊂ Ai such that the indeterminacy locus of Φi does not inter-
sect Adef

i × Li,1(Y ).

Proof. — Let us define

B := {(ai, [ξ]) ∈ Ai × Li,1(Y ) | ∇i,I(ai,I)(ξ) = 0 ∀ I} .

Certainly the indeterminacy locus of Ψi is contained in B. We are now
going to prove that B does not dominate Ai under the projection pr1 (here
we denote by pr1 and pr2 the projections from Ai×Li,1(Y ) to each factor).
To prove this we are going to prove that for each J ⊂ {0, . . . , n} the locus

BJ = B ∩ (pi ◦ πi ◦ pr2)−1(YJ)

does not dominate Ai. This will be done by dimension count.
Fix J ⊂ {0, . . . , n}. Let us first suppose that k := n − #J > 0. Fix

[ξ] ∈ (p ◦ pi)−1(YJ) and set Bξ = B ∩ pr−1
2 ([ξ]). The projection pr1 induces

an isomorphism

Bξ ∼= pr1(Bξ) = ker∇ξi .

Thus by Lemma 3.5, we obtain, in view of our hypothesis on δi:

dimBξ = dimAi − rank∇ξi 6 dimAi −
(
k + δi
k

)
6 dimAi − (k + δi).

Therefore

dimBJ 6 dim(pi ◦ πi ◦ pr2)−1(YJ) + dimAi − k − δi
= 2n+ 1− k + dimAi − k − δi < dimAi.

Hence BJ can not dominate Ai.
Let us now suppose n −#J = 0. Recall that YJ is of dimension 0. Fix

y ∈ YJ . We will prove that B∩(pi◦πi◦pr2)−1(y) does not dominate Ai. This
will prove that BJ does not dominate Ai since there are only finitely many
points in Y . Without loss of generality, we may assume that J = {1, . . . , n}.
Take an open neighborhood U of y in Y with the coordinates (z1, . . . , zn)
centered at y such that (τj = 0) = (zj = 0) for all j ∈ {1, . . . , n}, and such
that (τ0 = 0)∩U = ∅. Then there exists natural coordinates (ti, z1, . . . , zn)
for p−1

i (U) ' C× U such that Y ∩ p−1
i (U) = (ti = 0). In this setting, one
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has an isomorphism

C× U × Pn '−→ Li,1(Y )

(ti, z, [ξ0, . . . , ξn]) 7−→
(
ti, z,

[
ξ0ti

∂

∂ti
+ ξ1

∂

∂z1
+ · · ·+ ξn

∂

∂zn

])
.

Let us now observe that for any ξ = ξ0ti
∂
∂ti

+ ξ1
∂
∂z1

+ · · · + ξn
∂
∂zn

, (3.4)
implies (let us drop here the local notation aU , τ IU for readability)

∇ξi,I(a) = ((r + 1)adτ I − τ Ida
)
(ξ′) + ξ0aτ

I ,

where ξ′ = ξ1
∂
∂z1

+ · · · + ξn
∂
∂zn

. This expression is independent of the
variable ti. Therefore, there exists By ⊂ Ai × Pn such that if one denotes
by pr14 : Ai×C×{y}×Pn → Ai×Pn the canonical projection, under our
choice of coordinates,

B ∩ (pi ◦ πi ◦ pr2)−1(y) ∼= pr−1
14 (By).

We are therefore reduced to prove that By does not dominate Ai. Take
I = (i0, . . . , in) ∈ I(δi) and ai ∈ Ai. If i0 6 δi − 2 then ∇ξi,I(ai,I)|y = 0. If
I = (δi, 0, . . . , 0) then

f0
y (ai, ξ) := ∇ξi,I(ai,I)|y = ((r+ 1)ai,Iδiτ δi−1

0 dτ0 − τ δi0 dai,I)(ξ′) + ξ0ai,Iτ
δ0
0 ,

and if there exists j ∈ {1, . . . , n} such I = (δ0 − 1, 0, . . . , 1, . . . , 0) where
the element “1” is at slot number j, then

f jy (ai, ξ) := ∇ξi,I(ai,I)|y = (r + 1)∂ai,I
∂zj

ξjτ
δi−1
0 .

With this notation one has

By = {(ai, [ξ]) ∈ Ai × Pn | f0
y (ai, ξ) = · · · = fny (ai, ξ) = 0}.

Hence, for any [ξ] ∈ Pn, one has By ∩ (Ai × {[ξ]}) = ker
(
fy( · , ξ)), where

fy( · , ξ) = (f0
y ( · , ξ), . . . , fny ( · , ξ)) : Ai −→ Cn+1

is the linear map induced by the different f jy ( · , ξ)’s. Let us now stratify Pn
as follows: for any K ⊂ {1, . . . , n} define

Σ(K) := {[ξ] ∈ Pn | ∀ j ∈ {1, . . . , n}, ξj = 0⇔ j ∈ K}.

One has dim Σ(K) = n − #K. Moreover, for any [ξ] ∈ Σ(K) one verifies
easily that rank fy( · , ξ) = 1 + n−#K, and therefore

dimBy ∩ (Ai × Σ(K)) = dimAi − (1 + n−#K) + dim Σ(K)
= dimAi − 1 < dimAi.
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Therefore, for any K ⊂ {1, . . . , n}, By∩(Ai×Σ(K)) does not dominate Ai,
and since the family Σ(K) stratifies Pn, the locus By does not dominate
Ai either, which implies the result. �

Remark 3.7. — In fact Proposition 3.6 still holds under the weaker as-
sumption δi > 3, but the proof would require the use of a more intricate
stratification, similar to the one used in [6]. Since we will soon suppose that
δi > 4n − 1 > 2n, we chose to present this non-optimal result in order to
avoid those complications.

Let us define

Adef := (Adef
1 × · · · × Adef

n ) ∩ Asm ⊂ A.

Recall that qi : (V, Di) → (Li, Y ) is a morphism of smooth log pairs and
therefore we obtain a morphism

tdqi : q∗i ΩLi(log Y ) −→ ΩV(logDi).

Composing this map with the map ΩV(logDi) ↪→ ΩV(logD), twisting it
by p∗VLεi+δi , and applying the global section functor, we obtain a C-linear
map

H0(Li,ΩLi(log Y )⊗ p∗iLεi+δi) −→ H0(V,ΩV(logD)⊗ p∗VLεi+δi)
∼= H0(V1(D),OV1(D)(1)⊗ π∗Vp∗VLεi+δi).

For any I ∈ I(δi) and any a ∈ H0(Y,Lεi), we denote by

∇′i,I(a) ∈ H0(V1(D),OV1(D)(1)⊗ π∗Vp∗VLεi+δi)

the image of ∇i,I(a) under the above composition. It follows from Propo-
sition 2.3 that this global section vanishes along the ideal Ji (with the
notation of Definition 2.2 for the log pair (V, D)), namely

(3.6) ∇′i,I(a) ∈ H0(V1(D),OV1(D)(1)⊗ π∗Vp∗VLεi+δi ⊗Ji).

Since the resolution algorithm defined in Proposition 2.9 provides in
particular a log resolution of Ji, one has

(3.7) µ∗Ji = OV̂1(D)(−Fi)

for some effective divisor Fi on V̂1(D). Since V̂1(D) is smooth, it follows
from (3.6) that there exists

∇̂i,I(a) ∈ H0(V̂1(D), µ∗(OV̂1(D)(1)⊗ π∗Vp∗VLεi+δi)⊗ OV̂1(D)(−Fi))

such that
∇̂i,I(a) = Fi · µ∗∇′i,I(a).
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Then, as in (3.2), we define a rational map

Φ̂i : Ai × V̂1(D) 99K |OPn(δi)|

(ai, ŵ) 7−→

 ∑
I∈I(δi)

∇̂i,I(ai,I)(ŵ)xI
 .

By Proposition 2.9, µ resolves the indeterminacies of the rational map
γi : V1(D) 99K V1(Di). Let us denote by νi = γi ◦ µ. By the definition of
∇̂i,I one can easily show that one has the following commutative diagram

(3.8)

Ai×V̂1(D)

1×µ
��

1×νi

''

Φ̂i

**
Ai×V1(D)

1×γi // Ai×V1(Di)
1×[tdqi]// Ai × Li,1(Y ) Φi // |OPn(δi)|,

where 1 denotes the identity on Ai. Let us now define V1(Di)◦ to be the
locus where [tdqi] is regular (i.e. the complement of the indeterminacy locus
of [tdqi]), and let us define

V̂1(D)◦,i := ν−1
i (V1(Di)◦).

Then we have the following.

Lemma 3.8. — For any a = (a1, . . . ,an) ∈ Asm, Ẑa,1(Da) ⊂ V̂1(D)◦,i.
In particular, the restriction of 1× ([tdqi] ◦ νi) to Ẑ rel

1 (D) is regular :

Ẑ rel
1 (D) ⊂ Asm × V̂1(D)◦,i−→Ai × Li,1(Y ).

Proof. — By Proposition 2.9, one has νi(Ẑa,1(Da)) = Za,1(Di,a). It thus
suffices to prove that Za,1(Di,a) ⊂ V1(Di)◦. Let [ξ] ∈ V1(Di) be in the inde-
terminacy locus of [tdqi]. This means that dqi(ξ) = 0 in TLi(− log Y ), from
which we deduce that ξ 6= 0 when seen as a vector in TV.
Assume moreover that [ξ] ∈ Za,1(Di,a). Then d(pV|Za)(ξ) 6= 0 in TY since
pV|Za : Za → Y is a biholomorphism. But then from the commutative
diagram

V
qi //

pV

��

Li

pi~~
Y

one deduces that dqi(ξ) 6= 0 in TLi, and a fortiori dqi(ξ) 6= 0 in
TLi(− log Y ), which is a contradiction. �
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Since we will be working simultaneously with all i ∈ {1, . . . , n} we define

V̂1(D)◦ :=
n⋂
i=1

V̂1(D)◦,i.

Define a rational map

Φ̂ : A× V̂1(D) 99K |OPn(δ1)| × · · · × |OPn(δn)|

(a, ŵ) 7−→ (Φ̂1(a1, ŵ), . . . , Φ̂n(an, ŵ))

then by Proposition 3.6, (3.8) and Lemma 3.8, its restriction to
Adef × V̂1(D)◦ is regular. In particular, the restriction of Φ̂ to Ẑ rel

1 (D)
is also regular.

3.5. Universal complete intersections

Let us define
G := |OPn(δ1)| × · · · × |OPn(δn)|

and let Y ⊂ G× Pn be the universal, smooth, complete intersection

Y := {(P1, . . . , Pn, [x]) ∈ G× Pn |P1(x) = · · · = Pn(x) = 0
}
.

This object was of critical importance in [5, 6, 16].
Let us define

Ψ̂ : Adef × V̂1(D)◦ −→ G× Pn

(a, ŵ) 7−→ (Φ̂(a, ŵ), [τ0(ŵ)r, . . . , τn(ŵ)r]).

where τi(ŵ) := τi
(
pV ◦πV ◦µ(ŵ)) for each i ∈ {0, . . . , n}. Let us also define

Ẑ rel
1 := Ẑ rel

1 (D) ∩ (Adef × V̂1(D)).

Proposition 3.9. — When restricted to Ẑ rel
1 ⊂ Adef × V̂1(D)◦, the

morphism Ψ̂ factors through Y :

Ψ̂ |
Ẑ rel

1
: Ẑ rel

1 −→ Y ⊂ G× Pn.

Proof. — We will prove that for any a ∈ Adef one has Ψ̂(Ẑa,1(Da)) ⊂ Y .
Recall the notation of Section 3.3 and Section 3.4. Fix a = (a1, . . . ,an) ∈
Adef . For any i ∈ {1, . . . , n} let us define

Ei := (TLi − p∗i σi(ai) = 0) ⊂ Li.

Observe that by definition of Za, one has

[tdqi] ◦ νi(Ẑa,1(Da)) ⊂ [tdqi](Za,1(Di,a)) ⊂ Ei1(Y |Ei).
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Consider the map Ψ i : Li,1(Y )→ |OPn(δi)| × Pn defined by

Ψ i([ξ]) := (Φi(ai, [ξ]), [τ0(y)r, . . . , τn(y)r])

where y = pi ◦ πi([ξ]). From Diagram (3.8) we are reduced to prove that
for any i ∈ {1, . . . , n} one has Ψ i(Ei1(Y |Ei)) ⊂ Y i where

Y i := {(Pi, [x]) ∈ |OPn(δi)| × Pn |P (x) = 0}.

To see this, we apply the tautological relation (2.12) to the connection ∇i
associated to TLi and obtain

∇i(TLi) = 0 ∈ H0(Li,ΩLi(log Y )).

When restricted to Ei, this implies that

0 = ∇i(TLi) = −∇i(p∗i σi(ai)) = −
∑

I∈I(δi)

∇i,I(ai,I)p∗i (τ rI)

when viewed as element in H0(Ei,ΩEi(log Y |Ei) ⊗ Lεi+δi). From this it
follows that for any [ξ] ∈ Ei1(Y |Ei) one has Ψ i([ξ]) ∈ Y i, hence the
result. �

We will need to consider a slightly modified version of Y on each strata
YJ . For any J ⊂ {0, . . . , n} we define

YJ := Y ∩ (G× PJ) ⊂ G× Pn.

Define also V̂1,J(D)◦ := V̂1(D)◦ ∩ (pV ◦ πV ◦ µ)−1(YJ) and Ẑ rel
1,J := Ẑ rel

1 ∩
V̂1,J(D)◦. Observe that by the very definition of YJ and PJ , we have that
for any y ∈ YJ , [τ0(y)r, . . . , τn(y)r] ∈ PJ . Therefore Ψ̂(Adef × V̂1,J(D)◦) ⊂
G× PJ and therefore, combining this with Proposition 3.9 we deduce that
Ψ̂ factors through YJ when restricted to Ẑ rel

1,J :

(3.9) Ψ̂ |
Ẑ rel

1,J
: Ẑ rel

1,J −→ YJ ⊂ G× PJ .

Observe that the morphism ρJ : YJ → G induced by the projection
G× PJ → G is generically finite. Let us define

G∞J := {∆ ∈ G |dim(ρ−1
J (∆)) > 0

}
⊂ G,

which is a closed subset of G.
Now we are ready to prove the following lemma:

Lemma 3.10. — Assume that δi > 4n− 1 for any i ∈ {1, . . . , n}. Then
there exists a non-empty Zariski open subset Anef ⊂ Adef such that for any
J ⊂ {0, . . . , n},

Φ̂−1(G∞J ) ∩ (Anef × V̂1,J(D)◦) = ∅.
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Proof. — Take J ⊂ {0, . . . , n}. Fix ŵ ∈ V̂1,J(D)◦ and set y =
(pV ◦πV ◦µ)(ŵ) ∈ YJ . For any i ∈ {1, . . . , n}, define `i = (qi ◦πV,Di ◦νi)(ŵ)
and let ξi ∈ TLi(− log Y )`i such that [ξi] = [tdqi] ◦ νi(ŵ). Then pi(`i) = y.
The following commutative diagram summarizes the maps between the dif-
ferent spaces under consideration.

V̂1(D)◦

µ

��

νi

%%
V1(D)

γi //

πV
%%

V1(Di)◦

πV,Di

��

[tdqi] // Li,1(Y )

πi

��
V

qi //

pV
&&

Li
pi

��
Y

Fix a neighborhood U ⊂ Y of y with a fixed choice of trivialization of L|U
and consider the map (recall (3.5))

resδiJ ◦∇
ξi
i : Ai −→ H0(PJ ,OPJ (δi))

ai −→
∑

I∈IJ (δi)

∇ξii,I(ai,I)x
I .

Define G̃J :=
∏n
i=1 H

0(PJ ,OPJ (δi)) and define

∇ŵJ := (resδ1
J ◦∇

ξ1
1 , . . . , resδnJ ◦∇

ξn
n ) : A −→ G̃J .

Consider moreover the complete intersection

ỸJ := {(P1, . . . , Pn, [x]) ∈ G̃J × PJ |P1(x) = · · · = Pn(x) = 0
}
,

and let us denote by ρ̃J : ỸJ → G̃J the morphism induced by the projection
on the first factor. Observe that ρ̃J is generically finite and let us define

G̃∞J := {∆ ∈ G̃J | dim(ρ̃−1
J (∆)) > 0

}
.

This is a closed algebraic subset of G̃J . Let us now denote by p̂r1 : Adef ×
V̂1,J(D)◦ → Adef and p̂r2 : Adef × V̂1,J(D)◦ → V̂1,J(D)◦ the projections
on the first and second factor. Then p̂r1 induces an isomorphism

Φ̂−1(G∞J ) ∩ p̂r−1
2 ({ŵ}) ∼−→ p̂r1

(
Φ̂−1(G∞J ) ∩ p̂r−1

2 ({ŵ})).

On the other hand, one has

p̂r1
(
Φ̂−1(G∞J ) ∩ p̂r−1

2 ({ŵ})) = (∇ŵJ )−1(G̃∞J ) ∩ Adef .
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Indeed, for any a ∈ Adef ,

Φ̂(a, ŵ) = (Φ1(a1, [ξ1]), . . . , Φn(an, [ξn])) = ([∇ξ1
1 (a1)], . . . , [∇ξnn (an)]).

Therefore one has ρ−1
J (Φ̂(a, ŵ)) = ρ̃−1

J (∇ŵJ (a)) and thus

a ∈ p̂r1
(
Φ̂−1(G∞) ∩ p̂r−1

2 ({ŵ}))⇔ a ∈ Adef and dim
(
ρ−1
J (Φ̂(a, ŵ))) > 0

⇔ a ∈ (∇ŵJ )−1(G̃∞J ) ∩ Adef .

It follows from a result of Benoist, [1, Lemma 2.3] (see [6, §3] for more
details), that

codimG̃J
(G̃∞J ) > min

16i6c
δi + 1 > 4n,

where the second inequality follows from our hypothesis on the δi’s. Since
pi(`i) = y ∈ YJ , by Lemma 3.5 this implies that for each i ∈ {1, . . . , n} the
linear map resδiJ ◦∇

ξi
i is surjective, and we obtain that

dim
(
(∇ŵJ )−1(G̃∞J )) = dimA + dim G̃∞J − dim G̃J

= dimA− codimG̃J
(G̃∞J ) 6 dimA− 4n.

Therefore we have

dim(Φ̂−1(G∞J ) ∩ p̂r−1
2 ({ŵ})) 6 dimA− 4n.

Since this holds for any ŵ ∈ V̂1,J(D)◦, and since dim(V̂1,J(D)◦) 6
dim

(
V̂1(D)) = 4n− 1 < 4n we obtain

dim
(
Φ̂−1(G∞J ) ∩ p̂r−1

2 (V̂1,J(D)◦)) 6 dimA− 4n+ dim V̂1,J(D)◦ < dimA.

It follows that Φ̂−1(G∞J ) ∩ p̂r−1
2 (V̂1,J(D)◦) does not dominate A, and thus

there exists an non-empty Zariski open subset AJ ⊂ Adef such that

Φ̂−1(G∞J ) ∩
(
AJ × V̂1,J(D)◦) = ∅.

It then suffices to take Anef =
⋂
J⊂{0,...,n} AJ . �

3.6. Proof of the main results

For G as above, and for a1, . . . , an ∈ Z we write

OG(a1, . . . , an) := O|OPn (δ1)|(a1)� · · ·� O|OPn (δn)|(an).

From Nakamaye’s Theorem on the augmented base locus, we know that
for any J ⊂ {0, . . . , n} and for any a1, . . . , an > 0, one has

B+(ρ∗JOG(a1, . . . , an)) = Exc(ρJ) ⊂ ρ−1
J (G∞J ),
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where Exc(ρJ) := {y ∈ Y |dimy(ρ−1
J (ρJ(y))) > 0

}
is certainly contained

in ρ−1
J (G∞J ). Recall that ρJ : Y → G is the map induced by the projection

on the first factor q1 : G×Pn → G. Let us also denote by q2 : G×Pn → Pn
the projection on the second factor.
In [16] the second named author established the following “effective

Nakamaye theorem” (which we present here in a weaker version):

Theorem 3.11. — For any n positive integers δ1, . . . , δn ∈ N∗, if
ai > bi := δ−1

i

∏n
j=1 δj for each i, then for any J ⊂ {0, . . . , n}, the base

locus of the line bundle q∗1OG(a1, . . . , an)⊗ q∗2OPn(−1)|YJ satisfies

(3.10) Bs (q∗1OG(a1, . . . , an)⊗ q∗2OPn(−1)|YJ ) ⊂ ρ−1
J (G∞J ).

We are now going to prove the following result.

Theorem 3.12. — Same notation as above. Suppose ε1, . . . , εn > 1 and
δ1, . . . , δn > 4n− 1. Write bi = δ−1

i

∏n
j=1 δj for all i ∈ {1, . . . , n}. If

r >

n∑
i=1

bi(εi + δi),

then, for any a ∈ Anef the pair (Za, Da) satisfies Property (∗).

Proof. — Let a ∈ Anef . Let us first prove that

(3.11) Ψ̂∗(q∗1OG(b1, . . . , bn)⊗ q∗2OPn(−1)|YJ )|
Ẑa,1(Da) is nef.

In order to prove that a line bundle is nef, it suffices to show that for
any irreducible curve, its intersection with the given line bundle is non-
negative. Let C ⊂ Ẑa,1(Da) be an irreducible curve. There exists a unique
J ⊂ {0, . . . , n} such that C◦ := C∩Ẑ rel

1,J is a non-empty Zariski open subset
of C. It follows from (3.9) that Ψ̂(C◦) ⊂ YJ , and since YJ is closed in Y ,
it follows that Ψ̂(C) ⊂ YJ . By Lemma 3.10, we have Ψ̂(C) 6⊂ ρ−1

J (G∞J ) in
view of our assumption of the δi’s. Then, from (3.10) one obtains that

Ψ̂(C) 6⊂ Bs
(
q∗1OG(b1, . . . , bn)⊗ q∗2OPn(−1)|YJ ).

Thus one has

Ψ̂∗(q∗1OG(b1, . . . , bn)⊗ q∗2OPn(−1)|YJ ) · C

> (q∗1OG(b1, . . . , bn)⊗ q∗2OPn(−1)|YJ ) · Ψ̂(C) > 0.

Since C is arbitrary, (3.11) is thus proved.
Form the definition of the map Ψ̂ and the definition of the exceptional di-

visors F1, . . . , Fn, see (3.7), we obtain that, with the notation b :=
∑n
i=1 bi,
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b′ :=
∑n
i=1 bi(εi + δi) and F ′ =

∑n
i=1 biFi,

Ψ̂∗(q∗1OG(b1, . . . , bn)⊗ q∗2OPn(−1)|YJ )|
Ẑa,1(Da)

= (µ∗(OV1(D)(b)⊗ π∗Vp∗VLb
′−r)⊗ OV̂1(D)(−F

′))|
Ẑa,1(Da).

Taking the 1
b -th power of this last line bundle, and writing θ = 1

b (r − b′),
we obtain that the Q-line bundle

µ∗(OV1(D)(1)⊗ π∗Vp∗VL−θ)⊗ OV̂1(D)

(
− 1
b
F ′
)∣∣∣
Ẑa,1(Da)

is nef. Our hypothesis on r precisely implies that θ > 0. On the other
hand, since pV|Za : Za → Y is a biholomorphism, there exists α ∈ N∗ and
another µ-exceptional effective Q-divisor F ′′ such that the Q-line bundle
µ∗(OV̂1(D)(1) ⊗ π∗Vp∗VLα) ⊗ OV̂1(D)(−F

′′)|
Ẑa,1(Da) is ample. Therefore the

line bundle

µ∗
(
OV1(D)

(
1 + θ

α

))
⊗ OV̂1(D)

(
− 1
b
F ′ − θ

α
F ′′
)∣∣∣
Ẑa,1(Da)

is ample as sum of an ample and a nef line bundle. Let us denote by
Fa =

(
α

b(θ+α)F
′+ θ

θ+αF
′′
)
|
Ẑa,1(Da), La := p∗VL|Za , πa : Za,1(Da)→ Za the

natural projection map, and µa : Ẑa,1(Da) → Za,1(Da) the restriction of
µ. By 2.9(2), µa is the minimal resolution of Za,1(Da) and one has

µ∗(OV1(D)(1))⊗ OV̂1(D)

(
− α

b(θ + α)F
′ − θ

θ + α
F ′′
)∣∣∣
Ẑa,1(Da)

= µ∗a(OZa,1(Da)(1))⊗ O
Ẑa,1(Da)(−Fa),

such that Fa is µa-exceptional. Whence the result. �

We can now prove Theorem 3.1.
Proof of Theorem 3.1. — Take a ∈ Anef . Since (Za, Da) is biholomorphic

to the pair (Y,Ha) and that (Za, Da) satisfies property (∗), it follows that
(Y,Ha) satisfies property (∗). Since Property (∗) is Zariski open, it follows
that for general H1 ∈ |Lm1 |, . . . ,Hn ∈ |Lmn |, writing H =

∑n
i=1 Hi the

pair (Y,H) satisfies (∗), and therefore, by Corollary 2, (Y,H) has almost
ample logarithmic cotangent bundle.
Let us now see that this implies that Y \ H is hyperbolically embed-

ded. First observe that the complement Y \H is Brody hyperbolic, which
means that Y \ H doesn’t contain any entire curve. This follows from a
well known result in the theory of entire curves (see for instance [14, 23,
26, 30]), which states that for any non-constant holomorphic morphism
f : C → Y \ H, one has f(C) ⊂ πY (B+(OY1(H)(1))). Since in our case
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πY (B+(OY1(H)(1)) = D, such entire curves cannot exist. Moreover, for
any I = {i1, . . . , ir} ⊂ {1, . . . , n} we can apply our result to the pair
(DI , D(I{)|DI ) where we recall that DI = Di1 ∩ · · · ∩ Dir and D(I{) =∑
i∈I{ Di. Therefore the previous argument implies that for any such I,

the variety DI \ D(I{) is Brody hyperbolic. A result of Green [22] now
insures that this implies that Y \H is hyperbolically embedded. �

4. Optimality on the number of components

In this section we mention two remarks concerning the number of com-
ponents c of the divisor D in the case Y = Pn. First we show that if the
ambient variety is Pn then our main result is optimal on the number of
components. And then we recall that the logarithmic irregularity of the
pair (Pn, D) is c− 1.
The following vanishing result, is a generalization to the logarithmic set-

ting of a vanishing result for symmetric differential forms which was first
established by Sakai [35] (see also [8, 36]). We provide here a logarithmic
adaptation of the arguments of [35] and [3]. The one component case c = 1
is a special case of a result proven in [19] and the case n = 2 was already
established in [21].

Proposition 4.1. — Let D :=
∑c
i=1 Di be a simple normal crossing

divisor in Pn. If c < n then for any m > 1

(4.1) H0(Pn, SmΩPn(logD)⊗ OPn(−1)) = 0

In particular, ΩPn(logD) can not be almost ample.

Proof. — For every i ∈ {1, . . . , c}, set di = degDi and let us denote by
si ∈ H0(Pn,OPn(di)) the homogeneous polynomials defining the hypersur-
faces Di. One can view Pn ⊂ Pn+c as the subspace in Pn+c defined by
zn+1 = · · ·= zn+c = 0. Set D′ =

∑c
i=1 D

′
i with D′i := {[z] ∈ Pn+c |zn+i = 0}

for any i ∈ {1, . . . , c}. Let H1, . . . ,Hc be c hypersurfaces in Pn+c defined by
{zdin+i− si(z1, . . . , zn) = 0}i∈{1,...,c}. Since D is simple normal crossing, the
sum of these hypersurfaces is a simple normal crossing divisor and therefore
there intersection X = H1∩· · ·∩Hc is a smooth complete intersection. Let
us define E := D′|X . Then (X,E) is a sub-log pair of (Pn+c, D′), and the
natural projection p : Pn+c 99K Pn induces a cover π : X → Pn ramified
along E. One has a natural inclusion induced by tdπ|X ,

H0(Pn, SmΩPn(logD)⊗ OPn(−1)) ↪→ H0(X,SmΩX(logE)⊗ OX(−1)).
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It then suffices to prove the vanishing of the right hand side. Set
N := n+ c. Observe that one also has a logarithmic Euler exact sequence
in this situation:

0 −→ ΩPN (logD′) −→ Ω̃PN (logD′) −→ OPN −→ 0,

where we denote

Ω̃PN (logD′) := OPN (−1)⊕n+1 ⊕ O⊕cPN .

This logarithmic Euler exact sequence is induced by the usual Euler
exact sequence by observing that one has a morphism of log pairs
p : (CN+1 \ {0}, D̃′) → (PN , D′), where p : CN+1 \ {0} → PN denotes the
canonical projection, D̃′i := p∗D′i for any i ∈ {1, . . . , c}, and D̃′ =

∑c
i=1 D̃

′
i.

It then suffices to observe that the inclusion ΩCN+1\{0} ↪→ΩCN+1\{0}(log D̃′)
descends on PN to the morphism O⊕N+1

PN → O⊕n+1
PN ⊕ O⊕cPN (1) given by

(ξ0, . . . , ξN ) 7→ (ξ0, . . . , ξn, zn+1ξn+1, . . . , zNξN ) and to twist this map by
OPN (−1) in order to make it fit in the following diagram

0 // ΩPN //

��

O⊕N+1
PN (−1) //

��

OPN //

��

0

0 // ΩPN (logD′) // Ω̃PN (logD′) // OPN // 0.

Let us denote by N∗ =
⊕c

i=1 OX(−di) the conormal bundle of X in PN .
Since (X,E) is a sub-log manifold of (PN , D′), one has the following exact
sequence:

0 −→ N∗ −→ ΩPN (logD′)|X −→ ΩX(logE) −→ 0,

which induces a locally free sheaf Ω̃X(logE) sitting in the following com-
mutative diagram

0

��

0

��
N∗

= //

��

N∗

��
0 // ΩPN (logD′)|X //

��

Ω̃PN (logD′)|X //

��

OX //

��

0

0 // ΩX(logE) //

��

Ω̃X(logE) //

��

OX // 0

0 0.
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We obtain an inclusion

H0(X,SmΩX(logE)⊗ OX(−1)) ⊂ H0(X,SmΩ̃X(logE)⊗ OX(−1))

and we are therefore reduced to prove that H0(X,SmΩ̃X(logE)⊗OX(−1))
vanishes.
Taking symmetric powers of the middle vertical exact sequence in the

above diagram, and twisting it by OPN (−1) we obtain a resolution

0 −→ Em −→ . . . −→ E1 −→ E0 −→ SmΩ̃X(logE)⊗ OX(−1) −→ 0,

where
Ei := ΛiN∗ ⊗ Sm−iΩ̃PN (logD′)⊗ OPN (−1).

Therefore the cohomology of SmΩ̃X(logE)⊗OX(−1) can be computed be
the hypercohomology spectral sequence (Ep,qr ) of the complex E•:

Ep,q1 = Hq(X,E−p)⇒ Hp+q(X,SmΩ̃X(logE)⊗ OX(−1)).

Observe that since N∗ is of rank c, one has Ep = 0 for all p > c. Moreover,
for any p > 0, the vector bundle Ep is a sum of duals of ample line bundles.
Therefore, by Kodaira’s vanishing theorem, we obtain Hq(X,Ep) = 0 for
any q < n. But since c < n, this implies that Ep,q1 = 0 if p + q = 0, and
therefore we obtain the desired vanishing. �

By contrast, one has the following result. This property is well known
(see for instance [28]), but we provide here a short proof for the reader’s
convenience.

Proposition 4.2. — Let D =
∑c
i=1 Di be a simple normal crossing

divisor in Pn. Then

h0(Pn,ΩPn(logD)) = c− 1

Proof. — From the residue exact sequence and the vanishing
H0(Pn,ΩPn) = 0 we get an exact sequence

0 −→ H0(Pn,ΩPn(logD)) −→
c⊕
i=1

H0(Di,ODi) ∼= Cc δ−→ H1(Pn,ΩPn).

Denoting ei ∈ H0(Di,ODi) the constant section equal to 1, we can compute
δ(ei) by a diagram chase in Cech cohomology and obtain that

δ(ei) = c1(OPn(Di)) = degDi · c1(OPn(1)).

In particular rank(δ) = 1 and therefore h0(Pn,ΩPn(logD)) = c− 1. �
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5. A resolution algorithm

In this section we give a proof of Proposition 2.9. To do so we will pro-
vide an explicit resolution algorithm for some particular configurations of
subvarieties in any ambient complex manifold.

5.1. Simple ideal sheaves

Let us start by a resolution procedure for some special configurations of
linear subspaces in an affine space. This is purely algebraic and could be
performed over any field. Fix an integerm > 2 and let Am be the dimension
m affine space over C. We say that an ideal J ⊂ C[x1, . . . , xm] is simple if
it is of the form

(5.1) J = 〈x1, . . . , xp, xp+1xr+1, xp+2xr+2, . . . , xrx2r−p〉.

Since J =
√
J , one has J = I

(
V(J)), where V(J) is the (not necessarily

irreducible) variety defined by J . In fact, one has

J =
⋂

K⊂{1,...,r−p}

〈x1, . . . , xp, xp+k1 , . . . xp+ks , xr+`1 , . . . , xr+`r−p−s〉

Where K = (k1, . . . , ks) and {1, . . . , r − p} \ K = {`1, . . . , `r−p−s}. We
say that a subvariety of Am is simple if its defining ideal is of the form
〈xi1 , . . . , xin〉 for some {i1, . . . , in} ⊂ {1, . . . ,m}. Therefore the above re-
lation shows that V(J) =

⋃N
i=1 Vi is the union of simple varieties of same

dimensions.

Lemma 5.1. — Take a simple ideal J ⊂ C[x1, . . . , xm] as (5.1) and
write V(J) =

⋃N
i=1 Vi as above. Let i ∈ {1, . . . ,m}. Let µ : X̃ → Am be the

blow-up of Vi. Let us write Ei := µ−1(Vi) the exceptional divisor and Ṽj
the strict transform of Vj for every j 6= i. Then µ∗J = O

X̃
(−Ei) ·Ji, where

Ji denotes the ideal sheaf of the variety
⋃
j 6=i Ṽj . Moreover, one can cover

X̃ by open sets which are all isomorphic to Am such that on every such
open set, the ideal Ji is either a simple ideal or the trivial ideal O(Am).

Proof. — Without loss of generality, we can take V1 = {(x1, . . . , xm) |
x1 = x2 = · · · = xr = 0}, and it suffices to prove the lemma for the blow-
up µ : X̃ → Am of V1. In the x1-direction, one can take an affine open set
X1 := specC[x1, x̃2, . . . , x̃r, xr+1, . . . , xm] of X̃, such that the blow-up µ is
given by

µ(x1, x̃2, . . . , x̃r, xr+1, . . . , xm) = (x1, x1x̃2, . . . , x1x̃r, xr+1, . . . , xm),
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and thus

µ∗J |X1 = x1 · 〈1, x̃2, . . . , x̃p, x̃p+1xr+1, x̃p+2xr+2, . . . , x̃rx2r−p〉 = 〈x1〉,

where {x1 = 0} defines the exceptional divisor E1 on X1. We then observe
that

J1|X1 = C[x1, x̃2, . . . , x̃r, xr+1, . . . , xm],
which is the trivial ideal. This implies that Ṽi ∩ X1 = ∅ for each
i = 2, . . . , N , which also holds on the affine open set Xj in the xj-direction
with j = 2, . . . , p by (5.1). In the xr direction, one can take an affine open
set Xr := specC[x̃1, . . . , x̃r−1, xr, . . . , xm] of X̃, such that the blow-up µ is
given by

µ(x̃1, x̃2, . . . , x̃r−1, xr, . . . , xm) = (x̃1xr, x̃2xr, . . . , x̃r−1xr, xr, . . . , xm).

We thus see that

µ∗J |Xr = xr · 〈x̃1, x̃2, . . . , x̃p, x̃p+1xr+1, . . . , x̃r−1x2r−p−1, x̃2r−p〉,

where {xr = 0} defines the exceptional divisor E1, and we see that

J1|Xr = 〈x̃1, x̃2, . . . , x̃p, x̃p+1xr+1, . . . , x̃r−1x2r−p−1, x̃2r−p〉.

Here V(J1|Xr ) =
⋃

1<j6N Ṽj |XrThus J1|Xr is still a simple ideal sheaf, and
Ṽj |Xr is either empty or a simple variety for any j 6= 1. This also holds on
the affine open sets X` in the x` directions with ` = p+ 1, . . . , r − 1. Since⋃r
i=1 Xi = X̃, this proves the lemma. �

The following lemma will be useful later.

Lemma 5.2. — Let {Vi}i=0,1,2,3 ⊂ Am be different simple varieties of
the same dimension. Assume that V1 ∩ V2 ⊂ V3. Let X̃ → Am be the
blowing-up of V0, with Ṽ1, Ṽ2, Ṽ3 the strict transforms of V1, V2, V3 and E
the exceptional divisor. Then Ṽ1 ∩ Ṽ2 ⊂ Ṽ3. Moreover, if V1 ∩V2 ⊂ V0, then
Ṽ1 ∩ Ṽ2 = ∅.

Proof. — Since µ : X̃ \ E → Am \ V0 is an isomorphism, it follows from
V1 ∩ V2 ⊂ V3 that

(Ṽ1 ∩ Ṽ2 \ E
)
⊂ Ṽ3.

Note that E can naturally be seen as the projectivization of the normal
bundle NV0/Am of V0 in Am. Then for any x̃ ∈ E, one can write x̃ = (x, [v])
with x ∈ V0 and v ∈ NV0/Am,x. If x̃ ∈ Ṽ1 ∩ Ṽ2 ∩E, one has x ∈ V1 ∩V2 ∩V0,
and v ∈ TV1,x∩TV2,x. Since V1 and V2 are simple varieties, by the definition,
one has TV1,x∩TV2,x = TV1∩V2,x ⊂ TV3,x. We then conclude that x̃ ∈ Ṽ3∩E,
and Ṽ1 ∩ Ṽ2 ⊂ Ṽ3. This proves the first claim. When V1 ∩ V2 ⊂ V0, for any
x ∈ V1 ∩ V2, one has TV1∩V2,x ⊂ TV0,x, and thus Ṽ1 ∩ Ṽ2 ∩ E = ∅. Since
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Ṽ1∩ Ṽ2 \E ' V1∩V2 \V0 = ∅, one has Ṽ1∩ Ṽ2 = ∅. This proves the second
claim, hence the lemma. �

5.2. Resolution of compatible systems

Definition 5.3. — Let X be a smooth (not necessarily compact) com-
plex manifold of dimensionm. A finite collection of subvarieties of X is said
to be a compatible system if this collection admits an indexation of the form
{Yij}j=1,...,ni

i=a,...,c such that, denoting by J the ideal sheaf of
⋃j=1,...,ni
i=a,...,c Yij ,

the following conditions are satisfied.
(1) For any j 6= `, either there exists i′ < i and j′ such that

Yij ∩ Yi` ⊂ Yi′j′ or Yij ∩ Yi` = ∅; in particular, Yaj ∩ Ya` = ∅.
(2) The manifold X can be covered by analytic open sets {Uα}, such

that each Uα is biholomorphic to some open set Wα ⊂ Cm contain-
ing the 0 ∈ Cm and satisfying the following. Let Ji,α :=
{j | Yij ∩ Uα 6= ∅}, then via the isomorphism Uα ∼= Wα ⊂ Cm,
{Yij ∩ Uα}

j∈Ji,α
i=a,...,c extends to {Y αij }

j∈Ji,α
i=a,...,cin Cm, such that Y αij is a

simple variety and the ideal sheaf Jα defined by
⋃j∈Ji,α
i=a,...,c Y

α
ij is a

simple ideal of the form (5.1).
We say that i is the index of Yij , that a is the lowest index, that c−a+1 is
the length of this compatible system, and that J the ideal sheaf associated
to this system.

Based on the Definition 5.3, we have the following observation.

Lemma 5.4. — With the notation of Definition 5.3. If Yij ∩ Yi′j′ ⊂ Yk`,
then for each α, one has Y αij ∩ Y αi′j′ ⊂ Y αk`. In particular, #Ja,α 6 1.

Proof. — By assumption, for any α, one has

(Yij ∩ Uα) ∩ (Yi′j′ ∩ Uα) ⊂ Yk` ∩ Uα.

By 5.3(2), this is equivalent to

(Y αij ∩Wα) ∩ (Y αi′j′ ∩Wα) ⊂ Y αk` ∩Wα.

Since Wα contains the origin, and Jα is a simple ideal, from the very
definition (5.1) we observes that

Y αij ∩ Y αi′j′ ⊂ Y αk`.

For any j ∈ Ji,α, Y αij contains the origin, and by 5.3(1) one has
#Ji,α 6 1. �
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Now we define a natural log resolution of the ideal sheaf J . We first
define µ1 : X̃1 → X to be the blow-up of

⋃na
j=1 Yaj , with E1 the exceptional

divisor and Ỹij the strict transform of Yij for i > a. By 5.3(1),
⋃na
j=1 Yaj is a

disjoint union of smooth submanifold of the same dimension, and thus X̃1
is also a smooth manifold. Write Ỹij for the strict transform of Yij under
the blow-up µ1 for any i > a, and j = 1, . . . , ni. Denote by J1 the ideal
sheaf of the variety

⋃j=1,...,ni
i=a+1,...,c Ỹij in X̃1.

Lemma 5.5. — If the index of Ỹij is defined to be i for any
i ∈ {a + 1, . . . , c} and any j ∈ {1, . . . , ni}, then family {Ỹij}j=1,...,ni

i=a+1,...,c
is a compatible system in X̃1. Moreover

(5.2) µ∗1J = O
X̃1

(−E1) ·J1.

Proof. — On each Uα, if Ji,α 6= ∅, define µ1,α : Z1
α → Cm to be the

blow-up of
⋃
j∈Ja,α Y

α
aj , let E1,α be exceptional divisor and for any i > a

and j ∈ Ji,α let Ỹ αij be the strict transform of Y αij . If Ji,α = ∅, set µ1,α
to be the identity map. Then via the isomorphism Uα ∼= Wα, one has
Jα|Wα

∼= J |Uα ,

(5.3) Ỹ αij |µ−1
1,α(Wα)

∼= Ỹij |µ−1
1 (Uα)

and by 5.3(2) one has the following isomorphism

µ−1
1,α(Wα)

µ1,α //

∼=
��

Wα

∼=
��

µ−1
1 (Uα)

µ1 // Uα.

(5.4)

It follows from Lemma 5.1 that

µ∗1,αJα = OZ1
α

(−E1,α) ·J1,α,

where J1,α denotes the ideal sheaf of the variety
⋃j∈Ji,α
i=a+1,...,c Ỹ

α
ij . By (5.4),

one has

(5.5) µ∗1J |Uα = Oµ−1
1 (Uα)(−E1) ·J1|µ−1

1 (Uα).

and (5.2) follows from that Uα is an open covering for X.
For any i > a any j 6= l, by 5.3(1) either Yij ∩Yi` = ∅, in which one also

has

(5.6) Ỹij ∩ Ỹi` = ∅;

or there exists i′ < i and j′ such that Yij ∩ Yi` ⊂ Yi′j′ . In the second case,
we claim that Ỹij ∩ Ỹi` ⊂ Ỹi′j′ when i′ > a, and (5.6) holds when i′ = a.
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since Uα is a covering of X and since the Yij ’s are irreducible, it suffices
to check this on each µ−1

1 (Uα). By Lemma 5.4, Y αij ∩ Y αi` ⊂ Y αi′j′ , and from
5.3(2) they are all simple varieties in Cm. Applying Lemma 5.2, one has

Ỹ αij ∩ Ỹ αi` ⊂

{
Ỹ αi′j′ if i′ > a and j′ ∈ Ji′α
∅ if i′ = a or j /∈ Ji′α.

The claim then follows immediately from (5.3). The set {Ỹij}j=1,...,ni
i=a+1,...,c sat-

isfies 5.3(1).
For any Z1,α, by the proof of Lemma 5.1 it can be covered by finitely

many open sets which are all isomorphic to affine spaces specC[x1, . . . , xm],
such that the restriction of J1,α to each affine space is still a simple ideal.
Since Wα contains the origin, the restriction of µ−1

1,α(Wα) to each affine
space still contains the origin. From (5.3), this gives an open covering which
verifies 5.3(2). We define i to be the index of Ỹij for any i = a+1, . . . , c and
any j = 1, . . . , ni. {Ỹij}j=1,...,ni

i=a+1,...,c is then a compatible system in X̃1. �

Observe that after the blow-up µ1 : X̃1 → X, and with our choice of
indices, the length of the compatible system is decreased by one. We then
blow up

⋃na+1
j=1 Ỹa+1,j to obtain µ2 : X̃2 → X̃1, and continuing in this way,

we obtain a sequence of blow-ups with smooth centers

(5.7) X̃c−a+1
µc−a+1−−−−−→ X̃c−a

µc−a−−−→ . . .
µ3−→ X̃2

µ2−→ X̃1
µ1−→ X,

such that their composition µ : X̂ := X̃c−a+1 → X gives rise to a log
resolution of J . Indeed, this algorithm is blowing-up the varieties of lowest
index in each newly obtained compatible system. Since after each blow-up,
the inverse image of the ideal sheaf is, up to some exceptional divisors, the
ideal sheaf associates to a compatible system whose length is decreased by
1, we see that after (c − a + 1)-blow-ups, one resolves the ideal sheaf J .
We say that µ : X̃c−a+1 → X the canonical log resolution of the ideal
sheaf J associated to the compatible system {Yij}j=1,...,ni

i=a,...,c in X. We will
now prove that this log resolution also resolves certain subsheaves of J

simultaneously.

Definition 5.6. — Same notation as Definition 5.3. We say that
{Yij}j=1,...,ri

i=a,...,b with b 6 c and ri 6 ni is a subsystem of {Yij}j=1,...,ni
i=a,...,c , if

it is also a compatible system in X, and satisfies that for any i = a, . . . , b,
j = ri+ 1, . . . , ni, k = i, i+ 1, . . . , b, and ` = 1, . . . , rk, either Yij ∩Yk` = ∅,
or there exists p < i and 1 6 q 6 rp such that

(5.8) Yij ∩ Yk` ⊂ Ypq.
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In particular, one has ⋃
j=ra+1,...,na

Yaj

 ∩
 ⋃

i=a,...,b
j=1,...,ri

Yij

 = ∅.(5.9)

Lemma 5.7. — Let {Yij}j=1,...,ni
i=a,...,c be a compatible system on a quasi-

projective variety X, and let {Yij}j=1,...,ri
i=a,...,b be a subsystem. Let J ′ be the

ideal sheaf of
⋃j=1,...,ri
i=a,...,b Yij , then µ : X̂ → X is also a log resolution for J ′.

Proof. — Since {Yaj}j=1,...,na are pairwise disjoint, it follows from (5.9)
and Lemma 5.5 that for the blow-up µ1 : X̃1 → X of

⋃na
j=1 Yaj , one has

µ∗1J
′ = O

X̃
(−E′1) ·J ′

1,

where E′1 is the inverse image of
⋃ra
j=1 Yaj and J ′

1 is the sheaf of the
variety

⋃j=1,...,ri
i=a+1,...,b Ỹij . By Lemma 5.5 again we note that {Ỹij}j=1,...,ri

i=a+1,...,b
is also a compatible system in X̃1. We will prove it is also a subsystem of
{Ỹij}j=1,...,ni

i=a+1,...,c.
For any i = a + 1, . . . , b, j = ri + 1, . . . , ni, k = i, i + 1, . . . , b, and

` = 1, . . . , rk, by Definition 5.6 either Yij ∩ Yk` = ∅, or there exists p < i

and 1 6 q 6 rp such that Yij ∩ Yk` ⊂ Ypq. As in the proof of Lemma 5.5,
we can prove that

Ỹij ∩ Ỹk` ⊂

{
Ỹpq if p > a

∅ if p = a or i = a+ 1.

This verifies the conditions in Definition 5.6. Thus {Ỹij}j=1,...,ri
i=a+1,...,b is a sub-

system of the compatible system {Ỹij}j=1,...,ni
i=a+1,...,c. We conclude by induction

on the length of the system of compatible subvarieties that for the compo-
sition of the blow-ups

X̃b−a+1
µb−a+1−−−−−→ X̃b−a

µb−a−−−→ . . .
µ2−→ X̃1

µ1−→ X,

it resolves the ideal sheaf J ′. This proves the lemma. �

5.3. Functorial properties

This resolution algorithm is functorial under restrictions.

Lemma 5.8. — Let Z be a regular subvariety of X. Assume that
{Yij ∩ Z}j=1,...,ni

i=a,...,c is also a compatible system in Z if we define the in-
dex of Yij ∩ Z to be i for each Yij . We emphasize here that we consider
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the scheme theoretic intersection Z ∩Yij . Denote by Z̃ the strict transform
of Z under µ. Then the restriction of the canonical log resolution µ asso-
ciated to {Yij}j=1,...,ni

i=a,...,c to Z̃ is also the canonical log resolution associated
to the compatible system {Yij ∩ Z}j=1,...,ni

i=a,...,c in Z. In particular, µ|
Z̃
is the

log resolution of the ideal sheaf of the subvariety
⋃j=1,...,ni
i=a,...,b (Yij ∩ Z).

Proof. — By induction on the length of the compatible system. Assume
that the lemma holds when the length is less than c−a. Since µ1 : X̃1 → X

is the blow-up of the variety
⋃
j=1,...,naYaj , we deduce that µ1|Z̃1

: Z̃1→Z

is the blow-up of the variety
⋃
j=1,...,na(Yaj ∩ Z), where Z̃1 denotes the

strict transform of Z under µ1. By our definition of the indices of the sub-
varieties Z ∩ Yij , µ1|Z̃1

is the first blow-up of the canonical log resolution
associated to the compatible system {Yij ∩ Z}j=1,...,ni

i=a,...,c in Z, such that the
strict transform of Yij ∩ Z is Ỹij ∩ Z̃1. Then {Ỹij ∩ Z̃1}j=1,...,ni

i=a+1,...,c is a com-
patible system in Z̃1, with the index Ỹij ∩ Z̃1 equal to i. By the induction
on the length, the canonical log resolution associated to the compatible
system {Ỹij}j=1,...,ni

i=a+1,...,c in X̃1, which is the composition of the blow-ups,
X̃b−a+1

µb−a+1−−−−−→ X̃b−a
µb−a−−−→ . . .

µ2−→ X̃1, gives rise to the canonical log
resolution associated to the compatible system {Ỹij ∩ Z̃1}j=1,...,ni

i=a+1,...,c in Z̃1.
The lemma is thus proved. �

This resolution algorithm is also compatible with families.

Definition 5.9. — Let f : X → S be a surjective smooth morphism
between regular quasi-projective varieties, and let Y be (non necessarily
irreducible) subvariety of X of pure dimension r such that its image under
f is surjective. We say that the family f : (X ,Y ) → S is locally analyti-
cally trivial if for any y ∈ Y , setting s := f(y) and Xs the fiber of f , the
following two conditions hold:

(1) There exists U ⊂X , Us ⊂ S open neighborhoods of y, s, such that
f(U ) = Us.

(2) Write U := U ∩ Xs, which is an analytic open set of Xs. There
exists a biholomorphism θ : U → U × Us such that the following
diagram is commutative:

(5.10)
U

θ

∼=
//

f $$

U × Us
pr2
��

pr1 // U

Us

such that (U ,Y ∩U) ∼= (U×Us,pr∗1(YU )) via θ, where YU := Y ∩U .

ANNALES DE L’INSTITUT FOURIER



POSITIVITY OF THE LOG COTANGENT BUNDLE 3045

Lemma 5.10. — Let f : (X ,Y ) → S be a locally analytically trivial
family. Suppose that Y =

⋃j=1...,ni
i=a,...,c Yij such that for any s ∈ S, setting

Ys,ij = Yij |Xs , the induced configuration {Ys,ij}j=1...,ni
i=a,...,c is a compatible

system on Xs. Then we can perform the algorithm of canonical resolu-
tion defined in (5.7) for {Yij}j=1...,ni

i=a,...,c , in order to obtain a birational map
µX : X̃ →X , such that, for any s ∈ S, the restriction

µX |Xs : µ−1
X (Xs) −→ Xs

is the canonical resolutions of the compatible system {Ys,ij}j=1...,ni
i=a,...,c , de-

noted by µs : X̃s → Xs. If one denotes the irreducible exceptional divisors
of µX by E1 . . . ,Er then, the set of irreducible exceptional divisor of µs is
{E1|µ−1

X
(Xs) . . . ,Er|µ−1

X
(Xs)}.

Proof. — We will also prove by induction on the length of the compatible
system. Assume that the lemma holds when the length is less than c − a.
We make same notation in 5.9(2). By the assumption of the lemma, one
observes that {Yaj}j=1,...,na is disjoint from each other since this holds on
each fiber. Define µX ,1 : X̃1 → X to be the blow-up of {Yaj}j=1,...,na ,
with {Ỹij}j=1...,ni

i=a+1,...,c the strict transforms of {Yij}j=1...,ni
i=a+1,...,c. By 5.9(2), its

restriction to each fiber Xs is precisely the first blow-up of the canonical
log resolution of the compatible system {Ys,ij}j=1...,ni

i=a,...,c . From Lemma 5.5,
the sets {Ỹij}j=1...,ni

i=a+1,...,c verify the conditions of the lemma with the length
decreased by 1. Hence we prove the lemma. �

5.4. Application to the projectivized logarithmic cotangent
bundle

In this section, we prove Proposition 2.9. From Proposition 2.4 we can
assume that c 6 n.

Lemma 5.11. — Let (X,D) be a log pair. The family {D̃J}∅(J⊂{1,...,c}
is a compatible system in X1(D) when the index of D̃J is defined to be
#J . Its lowest index is 1 and its length is c. Moreover, for any ∅ 6= I (
{1, . . . , c}, {D̃J}∅ 6=J⊂I is a subsystem of length #I. In particular, the
canonical log resolution provides a birational map µ̂ : X̃1(D)c → X1(D)
which is a simultaneous log resolution for the ideal sheaves
{JI}∅6=I⊂{1,...,c}.
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Proof. — For any ∅ 6= I, J ⊂ {1, . . . , c} with 1 6 #I = #J < c, and
I 6= J , note that #(I ∩ J) < #I = #J < #(I

⋃
J) and by (2.4) one has

(5.11) D̃I ∩ D̃J

{
= ∅ if I ∩ J = ∅
⊂ D̃I∩J if I ∩ J 6= ∅

where in the second case, 1 6 #(I ∩J). In particular, when #I = #J = 1,
we always have D̃I ∩ D̃J = ∅.
Now, for any ∅ 6= J ⊂ {1, . . . , c}, we define the index of D̃J to be #J .

For any i = 1, . . . , c, set Si := {I ⊂ {1, . . . , c} / #I = i}, equipped with
the lexicographical ordering, which is a total order. Then we can write
{D̃J}∅ 6=J⊂{1,...,c} = {Yij}j=1,...,ni

i=1,...,c with ni =
(
c
i

)
in a canonical way, such

that, for any I, J ∈ Si with I < J , there exists 1 6 a < b 6 ni such
that DI = Yia and DJ = Yib. With this setting, from (5.11) one can see
that, for any i > 1 and any 1 6 j < l 6 ni, either Yij ∩ Yi` = ∅, or
there exists 1 6 i′ < i and 1 6 j′ 6 ni′ such that Yij ∩ Yi` ⊂ Yi′j′ . Thus
the set {Yij}j=1,...,ni

i=1,...,c satisfies 5.3(1). Since we can cover X1(D) by open
sets with JI in the form of (2.7), which satisfies 5.3(2), we conclude that
{D̃J}∅ 6=J⊂{1,...,c} is a compatible system in X1(D). We thus prove the first
statement.
To prove the second statement, without loss of generality, we can assume

that I = {1, . . . , b} for some 1 6 b < c. From (2.4) we first observe that
{D̃J}∅ 6=J⊂I satisfies 5.3(1), and thus is a compatible system on X1(D).
Within the above representation {D̃J}∅ 6=J⊂{1,...,c} = {Yij}j=1,...,ni

i=1,...,c , one
has {D̃J}∅ 6=J⊂I = {Yij}j=1,...,ri

i=1,...,b , where ri =
(
b
i

)
. For any i = 1, . . . , b,

j = ri + 1, . . . , ni, k = i, i + 1, . . . , b, and ` = 1, . . . , rk, let us denote by
D̃J = Yij , D̃K = Yk`. If follows from the definition that J 6⊂ I, #J = i, and
K ⊂ I, #K = k > i, and from (2.4) that either D̃J ∩ D̃K = ∅, in which
case J ∩K = ∅, or D̃J ∩ D̃K = D̃J∩K , in which case 1 6 #(J ∩K) < #J .
Thus by Definition 5.6 {D̃J}∅ 6=J⊂I is a subsystem of {D̃J}∅ 6=J⊂{1,...,c}.
This proves the second statement.
Since the length of the compatible system {D̃J}∅(J⊂{1,...,c} is c, after

a successive blow-ups of the varieties of the lowest index in each newly-
obtained compatible system

X̃1(D)(c) µc−→ X̃1(D)(c−1) µc−1−−−→ . . .
µ2−→ X̃1(D)(1) µ1−→ X1(D),
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their composition µ̂ : X̃1(D)(c) → X1(D) is the canonical log resolution of
the ideal sheaf JD associated to the compatible system {D̃J}∅(J⊂{1,...,c}
in X1(D). The simultaneous log resolution for JI follows from Lemma 5.7
directly. This concludes the proof of the lemma. �

As we saw in (3.8), we only need to find a simultaneous resolution for
the indeterminacies of the rational maps X1(D) 99K X1(Di) for every
i = 1, . . . , c, which by 2.3(1) is equivalent to finding a simultaneous log
resolution for the ideal sheaves {Ji}i=1,...,c defined in Definition 2.2. Ob-
serve that for each i = 1, . . . , c, the length of the subsystem {D̃J}∅ 6=J⊂{i}{
is equal to c− 1 by Lemma 5.11. Thus by (5.7) the composition of (c− 1)-
steps of the blow-ups, µc−1 ◦µc−2 ◦ · · · ◦µ1 : X̃1(D)(c−1) → X1(D), is a log
resolution for each Ji. We will denote this simultaneous log resolution by
µ : X̂1(D)→ X1(D), and call it the minimal resolution.
From this definition, it follows that Lemma 5.11 already implies 2.9(1).

From Lemma 2.7, given a family of smooth pairs (X ,D) ρ→ S as defined
in Definition 2.6, denoting by (Xs, Ds) the fiber of ρ, one obtains a locally
analytically trivial family

P(ΩX /S(log D)),
⋃

I⊂{1,...,c}

D̃ rel
I

 ρ1−→ S

such that for any s ∈ S, the fiber of ρ1 is (Xs,1(Ds),
⋃
I⊂{1,...,c} D̃s,I). 2.9(3)

follows from Lemma 5.10.
Let us now see how to obtain the announced fonctoriality property in

2.9(2). Let Z be any regular subvariety of X, such that
∑c
i=1 Di|Z is

also a simple normal crossing divisor on Z. Denote by Ei := Di|Z , and
EI :=

⋂
i∈I Ei for any ∅ 6= I ⊂ {1, . . . , c}. Note that Z1(E) is a regular

subvariety of X1(D). Moreover, for ẼI ⊂ Z1(E) associated to EI as defined
in Section 2.6, one has ẼI = Z1(E) ∩ D̃I . Thus {D̃J ∩ Z1(E)}∅6=J⊂{1,...,c}
is a compatible system in Z1(E), with the index of D̃J ∩ Z1(E) equal to
#J . It then follows from Lemma 5.8 that the restriction of the canonical
log resolution (resp. minimal resolution) associated to {D̃J}∅ 6=J⊂{1,...,c} in
X1(D), gives rise to the canonical log resolution (resp. minimal resolution)
associated to {D̃J ∩ Z1(E)}∅ 6=J⊂{1,...,c} in Z1(E). In particular, for any
i = 1, . . . , c, let us denote by µZ : Ẑ1(E) → Z1(E) the minimal resolution
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of Z1(E), and one has the following commutative diagram

(5.12)

X1(D)
γi // X1(Di)

X̂1(D)

µ

GG
νi

77

Z1(E)
γZ,i //

?�

OO

Z1(Ei)
?�

OO

Ẑ1(E)
?�

OO

µZ
GG

νZ,i

77

Lastly, let us conclude by observing that this resolution procedure re-
solves the indeterminacies of the different maps γI defined in (2.5) step by
steps in the following sense. Say that

D ⊃
∑
i∈I1

Di ⊃
∑
i∈I2

⊃ · · · ⊃
∑
i∈Ic−1

Di

is a filtration of compatible divisors if I1 ⊃ I2 ⊃ · · · ⊃ Ic−1 is a sequence of
subsets of {1, . . . , c} with the cardinalities #Ii = c − i. From Section 2.2,
one then has a sequence of rational maps

X1(D) 99K X1
(
D(I1)) 99K . . . 99K X1

(
D(Ic−1)) 99K X1 := P(ΩX)

Since #I{j = j, by Lemmas 5.7 and 5.11, after taking j-blow-ups

X̃1(D)(j) µj−→ X̃1(D)(j−1) µj−1−−−→ · · · µ2−→ X̃1(D)(1) µ1−→ X1(D),

the composition resolves JI{
j

defined in Definition 2.2, and by Prop-
osition 2.3, it also resolves the indeterminacy of the rational map
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X1(D) 99K X1
(
D(Ij)). Namely, we have the following commutative dia-

gram for any filtration of compatible divisors:

X̃1(D)(c)

µc

��

##

X̂1(D) := X̃1(D)(c−1)

µc−1
��

µ

�� ##

...

µ2

��
X̃1(D)(1)

µ1

�� %%

. . .

X1(D)
γ
I{1 //

γ
I{
c−1

44
X1(D(I1)) // · · · // X1(D(Ic−1)) // P(ΩX).
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