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1. Introduction

Schur–Weyl reciprocities set up close relationship between polynomial representa-
tions of general linear groups GLn over C and representations of symmetric groups 
Sr [15]. Such results have been generalized to several other cases. Brauer [4] studied 
similar problems for symplectic groups and orthogonal groups. A class of associative 
algebras Br(δ), called Brauer algebras, came into the picture, which play the same im-
portant role as that of symmetric groups in Schur’s work.

Walled Brauer algebras Br,t(δ) (cf. Definition 2.2) are subalgebras of Brauer algebras 
Br+t(δ). They first appeared independently in Koike’s work [22] and Turaev’s work [35], 
which were partially motivated by Schur–Weyl dualities between walled Brauer algebras 
and general linear groups arising from mutually commuting actions on mixed tensor 
modules V ⊗r ⊗ (V ∗)⊗t of the r-th power of the natural module V and the t-th power 
of the dual natural module V ∗ of GLn for various r, t ∈ Z

≥0. Benkart et al. [3] used 
walled Brauer algebras to study decompositions of mixed tensor modules of GLn. Since 
then, walled Brauer algebras have been intensively studied, e.g., [8–11,26,32], etc. In 
particular, blocks and decomposition numbers of walled Brauer algebras over C were 
determined in [9,10]. Recently, Brundan and Stroppel [8] obtained Z-gradings on Br,t(δ), 
proved the Koszulity of Br,t(δ) and established Morita equivalences between Br,t(δ)
and idempotent truncations of certain infinite dimensional versions of Khovanov’s arc 
algebras [19].

In 2002, by studying mixed tensor modules of general linear Lie superalgebras glm|n, 
Shader and Moon [32] set up super Schur–Weyl dualities between walled Brauer alge-
bras and general linear Lie superalgebras. By studying tensor modules Kλ ⊗ V ⊗r of 
Kac modules Kλ with the r-th power V ⊗r of the natural module V of glm|n, Brundan 
and Stroppel [7] further established super Schur–Weyl dualities between level two Hecke 
algebras Hp,q

r (also denoted as H2,r) and general linear Lie superalgebras glm|n, which 
provide powerful tools enabling them to obtain various results including a spectacular one 
on Morita equivalences between blocks of categories of finite dimensional glm|n-modules 
and categories of finite-dimensional left modules over some generalized Khovanov’s dia-
gram algebras. A natural question is, what kind of algebras may come into the play if one 
replaces the tensor modules Kλ⊗V ⊗r by the tensor modules Mr,t := V ⊗r⊗Kλ⊗(V ∗)⊗t

of Kac modules Kλ with the r-th power of the natural module V and the t-th power of 
the dual natural module V ∗ of glm|n. This is one of our motivations to introduce a new 
class of associative algebras Baff

r,t (cf. Definition 2.7), referred to as affine walled Brauer 
algebras, over a commutative ring containing 1.

The new algebra Baff
r,t (defined with parameters ωa’s and ω̄a’s satisfying Corollary 4.3) 

can be realized as the free R-module R[xr] ⊗Br,t(ω0) ⊗R[x̄t] (the tensor product of the 
walled Brauer algebra Br,t(ω0) with two polynomial algebras R[xr] := R[x1, x2, · · · , xr]
and R[x̄t] := R[x̄1, ̄x2, · · · , ̄xt]), such that R[xr] ⊗RSr and RS̄t ⊗R[x̄t] are isomorphic 
to the degenerate affine Hecke algebras H aff

r and H aff
t respectively (where Sr and S̄t
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are symmetric groups contained in Br,t(ω0) generated by si’s and s̄j ’s respectively), and 
further, the following relations are satisfied (cf. Theorem 4.16 and Proposition 4.18)

(1) e1(x1 + x̄1) = (x1 + x̄1)e1 = 0, s1e1s1x1 = x1s1e1s1, s̄1e1s̄1x̄1 = x̄1s̄1e1s̄1,
(2) six̄1 = x̄1si, s̄ix1 = x1s̄i, x1(e1 + x̄1) = (e1 + x̄1)x1,
(3) e1x

k
1e1 = ωke1, e1x̄

k
1e1 = ω̄ke1, ∀k ∈ Z

≥0.

In this sense, the appearing of affine walled algebras Baff
r,t is very natural.

Surprisingly, there is a super Schur–Weyl duality (SSWD) between affine walled alge-
bras Baff

r,t and general linear Lie superalgebras glm|n over C. In this case, level two walled 
Brauer algebras Bp,q

r,t (m, n) (defined as cyclotomic quotients of affine walled Brauer al-
gebras Baff

r,t with special parameters, cf. (5.37) and Definition 5.11) come into the play 
(cf. Theorem 5.12) under the assumption that r + t ≤ min{m, n} (we remark that the 
general case will be discussed in [30]): they can be realized as endomorphism algebras of 
Mr,t under some “reasonable” conditions (see the next paragraph). Moreover, they have 
weakly cellular structures (cf. Theorem 6.12), which enable us to give a classification 
of their simple modules (cf. Theorem 7.6). The result in turn allows us to classify the 
indecomposable direct summands of Mr,t (cf. Theorem 7.7). We would like to mention 
that the SSWD is in fact the first and second fundamental theorems of invariant theory 
for the endomorphism algebra Endg(Mr,t) (see, e.g., [24]). In a sequel [30], we will show 
that the SSWD can provide us a powerful tool to tackle various problems associated with 
level two walled Brauer algebras, such as the determinations of decomposition numbers. 
On the other hand, the SSWD in turn enables us to study the category of finite dimen-
sional glm|n-modules, in particular we can use it to determine all glm|n-singular vectors 
(or highest weight vectors) in Mr,t (we remark that the determination of singular vectors 
in Lie superalgebra modules is an interesting but cumbersome problem).

At this point, we wish to mention that in establishing the SSWD, although we choose 
the highest weights λ of the Kac modules Kλ to be very special (cf. (5.6)), this is enough 
and reasonable for our purpose as in this case Mr,t is a tilting module and every inde-
composable projective module can be realized as a direct summand of Mr,t for various 
r and t. With these special choices of λ’s, level two walled Brauer algebras appear very 
naturally. We would also like to mention that in contrast to level two Hecke algebras 
Hp,q

r (or H2,r) in [7, IV], which only depend on p − q and r, level two walled Brauer 
algebras Bp,q

r,t (m,n) heavily depend on parameters p − q, r, t, m, n (cf. Remark 5.14). 
Nevertheless, one may expect that level two walled Brauer algebras will play the role sim-
ilar to that of level two Hecke algebras and that there should be some close connections 
between level two walled Brauer algebras and cyclotomic Khovanov–Lauda–Rouquier 
algebras [20,27,28] (cf. [6,7] for level two Hecke algebras). We remark that higher level 
walled Brauer algebras will appear if we consider arbitrary typical integral dominant 
weight λ of glm|n. However, in this case, we cannot expect anything new from the view-
point of representation theory of glm|n (see Remark 5.8). In fact, it is a simple routine 
to generalize level two walled-Brauer algebras to higher level walled-Brauer algebras.



H. Rui, Y. Su / Advances in Mathematics 285 (2015) 28–71 31
Another motivation of introducing affine walled Brauer algebras comes from Nazarov’s 
work [25] on the Jucys–Murphy elements of Brauer algebras and affine Wenzl algebras. 
We construct a family of Jucys–Murphy-like elements of walled Brauer algebras (cf. Def-
inition 3.2), which have close relationship with certain central elements. By studying 
properties of these elements in details, we are not only able to give the precise defini-
tion of affine walled Brauer algebras Baff

r,t (which can also be regarded as analogues of 
Nazarov’s affine Wenzl algebras [25] in this sense), but also able to set up a family of 
homomorphisms φk from affine walled Brauer algebras Baff

r,t to walled Brauer algebras 
Bk+r,k+t(ω0) for any k ∈ Z

≥1 (cf. Theorem 3.12). This then enables us to use the free-
ness of walled Brauer algebras to prove that affine walled Brauer algebras Baff

r,t are free 
with infinite rank over a commutative ring containing 1 (cf. Theorems 4.14 and 4.16).

We organize the paper as follows. In Section 2, after recalling the notion of walled 
Brauer algebras, we introduce affine walled Brauer algebras over a commutative ring R
containing 1. In Section 3, we introduce a family of Jucys–Murphy-like elements of walled 
Brauer algebras and establish a family of homomorphisms from affine walled Brauer al-
gebras to walled Brauer algebras. Using these homomorphisms and the freeness of walled 
Brauer algebras, we prove the freeness of affine walled Brauer algebras in Section 4. In 
Section 5, we study the super Schur–Weyl duality between affine walled Brauer algebras 
(more precisely, level two walled Brauer algebras Bp,q

r,t (m, n)) with special parameters 
and general linear Lie superalgebras glm|n under the assumption that r+ t ≤ min{m, n}. 
In Section 6, we construct a weakly cellular basis of level two walled Brauer algebras. 
Finally in Section 7, we give a classification of their simple modules, and a classification 
of the indecomposable direct summands of the aforementioned tensor modules.

2. The walled Brauer algebra BBBr,t and its affinization

Throughout this section, let R be a commutative ring containing 1. The walled Brauer 
algebra is an associative algebra over R spanned by so-called walled Brauer diagrams as 
follows.

Fix two positive integers r and t. A walled (r, t)-Brauer diagram is a diagram with 
(r+t) vertices on the top and bottom rows, and vertices on both rows are labeled from left 
to right by r, · · · , 2, 1, ̄1, ̄2, · · · , ̄t. Every vertex i ∈ {1, 2, · · · , r} (resp., ī ∈ {1̄, ̄2, · · · , ̄t}) 
on each row must be connected to a unique vertex j̄ (resp., j) on the same row or a 
unique vertex j (resp., j̄) on the other row. In this way, we obtain 4 types of pairs [i, j], 
[i, ̄j], [̄i, j] and [̄i, ̄j]. The pairs [i, j] and [̄i, ̄j] are called vertical edges, and the pairs [̄i, j]
and [i, ̄j] are called horizontal edges. If we imagine that there is a wall which separates 
the vertices 1, 1̄ on both top and bottom rows, then a walled (r, t)-Brauer diagram is a 
diagram with (r+ t) vertices on both rows such that each vertical edge cannot cross the 
wall and each horizontal edge has to cross the wall. For convenience, we call a walled 
(r, t)-Brauer diagram a walled Brauer diagram if there is no confusion.
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Example 2.1. The following are (r, t)-Brauer diagrams:

Fig. 1. e1.

Fig. 2. si.

Fig. 3. s̄i.

Throughout, we denote by e1, si, s̄i the diagrams in Figs. 1–3, respectively.

In order to define the product of two walled Brauer diagrams, we consider the compo-
sition D1 ◦D2 of two walled Brauer diagrams D1 and D2, which is obtained by putting 
D1 above D2 and connecting each vertex on the bottom row of D1 to the corresponding 
vertex on the top row of D2. If we remove all circles of D1 ◦ D2, we will get a walled 
Brauer diagram, say D3. Let n(D1, D2) be the number of circles appearing in D1 ◦D2. 
Then the product D1D2 of D1 and D2 is defined to be δn(D1,D2)D3, where δ is a fixed 
element in R. For instance, in Example 2.1, e2

1 = δe1.

Definition 2.2. (See [22,35].) The walled Brauer algebra Br,t(δ) with respect to the 
parameter δ is the associative algebra over R spanned by all walled (r, t)-Brauer diagrams 
with product defined as above.

Remark 2.3. If we allow vertical edges can cross the wall and allow horizontal edges may 
not cross the wall (namely, a vertex can be connected to any other vertex), then we obtain 
(r + t)-Brauer diagrams. The Brauer algebra Br+t(δ) [4] is the free R-modules spanned 
by all (r + t)-Brauer diagrams with product defined as above. Thus a walled Brauer 
diagram is a Brauer diagram, and the walled Brauer algebra Br,t(δ) is a subalgebra of 
the Brauer algebra Br+t(δ).

The following result can be found in [16, Corollary 4.5] for a special case and [26, 
Theorem 4.1] in general.
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Theorem 2.4. Let R be a commutative ring containing 1 and δ. Then Br,t(δ) is an 
associative R-algebra generated by e1, si, s̄j with 1 ≤ i ≤ r− 1 and 1 ≤ j ≤ t − 1 subject 
to the following relations

(1) s2
i = 1, 1 ≤ i < r,

(2) sisj = sjsi, |i − j| > 1,
(3) sisi+1si = si+1sisi+1, 1 ≤ i < r − 1,
(4) sie1 = e1si, 2 ≤ i < r,
(5) e1s1e1 = e1,
(6) e2

1 = δe1,
(7) sis̄j = s̄jsi,

(8) s̄2
i = 1, 1 ≤ i < t,

(9) s̄is̄j = s̄j s̄i, |i − j| > 1,
(10) s̄is̄i+1s̄i = s̄i+1s̄is̄i+1, 1 ≤ i < t − 1,
(11) s̄ie1 = e1s̄i, 2 ≤ i < t,
(12) e1s̄1e1 = e1,
(13) e1s1s̄1e1s1 = e1s1s̄1e1s̄1,
(14) s1e1s1s̄1e1 = s̄1e1s1s̄1e1.

In particular, the rank of Br,t(δ) is (r + t)!.

We remark that Jung and Kang gave a presentation of walled Brauer superalgebras
in [17, Theorem 5.1], and the presentation of walled Brauer algebras in Theorem 2.4 can 
be obtained from those of walled Brauer superalgebras by removing the generators of 
Clifford algebras inside walled Brauer superalgebras.

The following two results can be deduced from Theorem 2.4, easily.

Lemma 2.5. There is an R-linear anti-involution σ : Br,t(δ) → Br,t(δ) fixing generators 
si, s̄j and e1 for all possible i, j’s.

Proof. The result follows from the symmetry of relations in Theorem 2.4, immediately. 
In particular, the image of a walled Brauer diagram D under the map σ is the diagram 
which is obtained from D by reflecting along a horizontal line. �
Lemma 2.6. We have Br,t(δ) ∼= Bt,r(δ). In particular, the corresponding isomorphism 
sends si, e1, s̄j of Br,t(δ) to s̄i, e1, sj of Bt,r(δ).

Proof. One can easily observe that the automorphism can be obtained by the reflection 
with respect to the imaginary wall in the middle. �

In the present paper, we shall introduce a new class of associative algebras called 
affine walled Brauer algebras. Such algebras can also be considered as the analogues of 
Nazarov’s affine Wenzl algebras in [25]. This is one of our motivations to introduce these 
algebras. Another motivation originates from super Schur–Weyl dualities in [7,32] and 
ours in Section 5.

Definition 2.7. (cf. Theorem 4.16) Let R be a commutative ring containing 1, ω0, ω1. 
Fix r, t ∈ Z

≥0. The affine walled Brauer algebra Baff
r,t (ω0, ω1) is the associative R-algebra 

generated by e1, x1, x̄1, si (1 ≤ i ≤ r− 1), s̄j (1 ≤ j ≤ t − 1), and two families of central 
elements ωk (k ∈ Z

≥2), ω̄k (k ∈ Z
≥0), subject to the following relations
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(1) s2
i = 1, 1 ≤ i < r,

(2) sisj = sjsi, |i − j| > 1,
(3) sisi+1si = si+1sisi+1, 1 ≤ i < r− 1,
(4) sie1 = e1si, 2 ≤ i < r,
(5) e1s1e1 = e1,
(6) e2

1 = ω0e1,
(7) sis̄j = s̄jsi,
(8) e1(x1 + x̄1) = (x1 + x̄1)e1 = 0,
(9) e1s1x1s1 = s1x1s1e1,

(10) six1 = x1si, 2 ≤ i < r,
(11) six̄1 = x̄1si, 1 ≤ i < r,
(12) e1x

k
1e1 = ωke1, ∀k ∈ Z

≥0,
(13) x1(s1x1s1 − s1) = (s1x1s1 − s1)x1,

(14) s̄2
i = 1, 1 ≤ i < t,

(15) s̄is̄j = s̄j s̄i, |i − j| > 1,
(16) s̄is̄i+1s̄i = s̄i+1s̄is̄i+1, 1 ≤ i < t − 1,
(17) s̄ie1 = e1s̄i, 2 ≤ i < t,
(18) e1s̄1e1 = e1,
(19) e1s1s̄1e1s1 = e1s1s̄1e1s̄1,
(20) s1e1s1s̄1e1 = s̄1e1s1s̄1e1,
(21) x1(e1 + x̄1) = (e1 + x̄1)x1,
(22) e1s̄1x̄1s̄1 = s̄1x̄1s̄1e1,
(23) s̄ix̄1 = x̄1s̄i, 2 ≤ i < t,
(24) s̄ix1 = x1s̄i, 1 ≤ i < t,
(25) e1x̄

k
1e1 = ω̄ke1, ∀k ∈ Z

≥0,
(26) x̄1(s̄1x̄1s̄1 − s̄1) = (s̄1x̄1s̄1 − s̄1)x̄1.

Remark 2.8. Later on we shall be mainly interested in the case when all central elements 
ωa, ω̄b with a ∈ Z

≥2, b ∈ Z
≥0 are specialized to some elements in R (cf. Theorem 4.16).

Remark 2.9. The reason we put ωa’s into generators is that in order to be able to prove 
the freeness of Baff

r,t (cf. Theorem 4.14), we need to construct a family of homomorphisms 
φk (cf. Theorem 3.12), which requires ωa’s to be generators.

For simplicity, we use Baff
r,t instead of Baff

r,t (ω0, ω1) later on. In other words, we always 
assume that Baff

r,t is the affine walled Brauer algebra with respect to the parameters ω0

and ω1.
In the next two sections, we shall prove that Baff

r,t is a free R-algebra with infinite 
rank.

3. Homomorphisms from BBBaff
r,t to BBBk+r,k+t(ω0)

The purpose of this section is to establish a family of algebra homomorphisms φk

from Baff
r,t to Bk+r,k+t(ω0) for all k ∈ Z

≥1. Then in the next section, we will use these 
homomorphisms and the freeness of walled Brauer algebras to prove the freeness of Baff

r,t . 
We remark that Nazarov [25] used the freeness of Brauer algebras to prove the freeness 
of affine Wenzl algebras.

Unless otherwise indicated, all elements considered in this section are in the walled 
Brauer algebra Br,t(δ) for some r, t ∈ Z

≥0 with parameter δ = ω0.
Denote by Sr (resp., S̄t) the symmetric group in r letters 1, 2, · · · , r (resp., t letters 

1̄, ̄2, · · · , ̄t). It is well-known that the subalgebra of Br,t(δ) generated by {si | 1 ≤ i < r}
(resp., {s̄j | 1 ≤ j < t}) is isomorphic to the group algebra RSr (resp., RS̄t) of Sr

(resp., S̄t).
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Let (i, j) ∈ Sr (resp., (̄i, ̄j) ∈ S̄t) be the transposition which switches i and j (resp., 
ī and j̄) and fixes others. Then si and s̄j can be identified with

si = (i, i + 1) and s̄j = (j, j + 1).

Set L1 = L̄1 = 0 and

Li =
i−1∑
j=1

(j, i), L̄i =
i−1∑
j=1

(j̄, ī) for i ≥ 2. (3.1)

Then Li for 1 ≤ i ≤ r are known as the Jucys–Murphy elements of RSr, and L̄j for 
1 ≤ j ≤ t are the Jucys–Murphy elements of RS̄t. We will need the following well known 
result.

Lemma 3.1. In RSr and RS̄t, for all possible i, j’s, we have

(1) Lisj = sjLi, L̄is̄j = s̄jL̄i if i 
= j, j + 1.

(2) siLi = Li+1si − 1, s̄iL̄i = L̄i+1s̄i − 1.

(3) (Li + Li+1)si = si(Li + Li+1), (L̄i + L̄i+1)s̄i = s̄i(L̄i + L̄i+1).

For convenience, we define the following cycles in Sr, where 1 ≤ i, j ≤ r,

si,j = sisi+1 · · · sj−1 = (j, j − 1, . . . , i) for i < j, (3.2)

and si,i = 1. If i > j, we set si,j = s−1
j,i = (j, j + 1, . . . , i). Similarly, for 1 ≤ i, j ≤ t, 

we define s̄i,j = (j̄, j − 1, . . . , ̄i) ∈ S̄t if i < j, or 1 if i = j, or s̄−1
j,i else. Let ei,j be the 

element whose corresponding diagram is the walled Brauer diagram such that any of its 
edge is of form [k, k] or [k̄, ̄k] except two horizontal edges [i, ̄j] on both top and bottom 
rows. Namely,

ei,j = s̄j,1si,1e1s1,is̄1,j for i, j with 1 ≤ i ≤ r and 1 ≤ j ≤ t. (3.3)

We also simply denote ei = ei,i for 1 ≤ i ≤ min{r, t}.
It follows from [8, Lemma 2.1] and [29, Proposition 2.5] that

cr,t =
∑

1≤i≤r, 1≤j≤t

ei,j −
r∑

i=1
Li −

t∑
j=1

L̄j , (3.4)

is a central element in Br,t(δ). Such a central element has already been used in [10, 
Lemma 4.1] to study blocks of Br,t(δ) over C. Motivated by (3.4), we define Jucys–
Murphy-like elements yi, ȳ� below such that for any k ∈ Z

≥1, elements yk+1, ȳk+1 in the 
image of the homomorphism φk (to be defined in Theorem 3.12) will play the same roles 
as those of x1, x̄1 in Baff

r,t .
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Definition 3.2. Fix an element δ1 ∈ R. For 1 ≤ i ≤ r and 1 ≤ � ≤ t, let

yi = δ1 +
i−1∑
j=1

ei,j − Li, and ȳ� = −δ1 +
�−1∑
j=1

ej,� − L̄�. (3.5)

Lemma 3.3. Let i ∈ Z with 1 ≤ i ≤ min{r, t}.

(1) eiyi = ei(δ1 + L̄i − Li), eiȳi = ei(−δ1 + Li − L̄i).
(2) ei(yi + ȳi) = 0, (yi + ȳi)ei = 0.
(3) eisiyisi = siyisiei, eis̄iȳis̄i = s̄iȳis̄iei.

(4) yi(ei + ȳi) = (ei + ȳi)yi.
(5) yi(siyisi − si) = (siyisi − si)yi, ȳi(s̄iȳis̄i − s̄i) = (s̄iȳis̄i − s̄i)ȳi.
(6) sjyi = yisj , s̄j ȳi = ȳis̄j if j 
= i− 1, i.
(7) sj ȳi = ȳisj , s̄jyi = yis̄j if j 
= i− 1.
(8) ei+1yi = yiei+1, ei+1ȳi = ȳiei+1 if i < min{r, t}.
(9) yiyi+1 = yi+1yi, ȳiȳi+1 = ȳi+1ȳi if i < min{r, t}.

Proof. We remark that the second assertion of (2) follows from the first assertion of (2) 
by applying the anti-involution σ in Lemma 2.5. By Lemma 2.6, we need only check (4) 
and the first assertions of others.

Since eiei,j = ei(j̄, ̄i) and eiej,i = ei(j, i) for j 
= i, we have (1) and (2). Further, (3) 
follows from the equalities eiek,j = ek,jei, ei(k, j) = (k, j)ei if i /∈ {k, j} together with 
the following:

siyisi =
i−1∑
j=1

ei+1,j −
i−1∑
j=1

(j, i + 1) + δ1 = yi+1 − sieisi + si. (3.6)

By Definition 3.2, we have

yiyi+1 − yi+1yi =
i−1∑
j=1

ei,j

i∑
k=1

ei+1,k −
i∑

k=1

ei+1,k

i−1∑
j=1

ei,j −
i−1∑
j=1

ei,jLi+1 + Li+1

i−1∑
j=1

ei,j

=
i−1∑
j=1

ei,jsi − si

i−1∑
j=1

ei,j −
i−1∑
j=1

ei,jsi + si

i−1∑
j=1

ei,j ,

which is equal to zero, proving (9).
Recall that σ is the anti-involution on Br,t(δ) in Lemma 2.5. We have σ(yj) = yj and 

σ(sj) = sj . Using (3.6) and σ, we have

yi(siyisi − si) = yiyi+1 − yisieisi, (siyisi − si)yi = yi+1yi − sieisiyi. (3.7)
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By (3), we have yisieisi = sieisiyi. So, (5) follows from (9).
We remark that (6) and (7) can be checked easily by using Theorem 2.4(2)–(4). Since 

ei+1ei,j = ei,jei+1 and ei+1(j, i) = (j, i)ei+1 for 1 ≤ j ≤ i − 1, we have (8).
Finally, we check (4). We have (y1 + e1)ȳi+1 = ȳi+1(y1 + e1) by e1ȳi+1 = ȳi+1e1. By 

induction on j, we have (yj + ej)ȳi+1 = ȳi+1(yj + ej) and ej ȳi+1 = ȳi+1ej for all j with 
1 ≤ j ≤ i. So,

yiȳi+1 = ȳi+1yi. (3.8)

By (3.6) and Lemma 2.6, ei + ȳi = s̄iȳi+1s̄i + s̄i. So, (4) follows from (3.8) and (7). �
The following result is a special case of [10, Proposition 2.1].

Proposition 3.4. Let Br,t(δ) be defined over a field F . For any fixed k with 2 ≤ k ≤
min{r, t}, let e = ek if δ 
= 0 or e = eksk−1 otherwise. Let Bk,k(δ) be the subalgebra 
of Br,t(δ) generated by e1, si, s̄i, 1 ≤ i ≤ k. Then eBk,k(δ)e = eBk−1,k−1(δ), which is 
isomorphic to Bk−1,k−1(δ) as an F -algebra.

The following result immediately follows from Proposition 3.4, where elements ωa,k, 
ω̄a,k will be crucial in obtaining the homomorphisms φk in Theorem 3.12.

Corollary 3.5. Assume ω0 
= 0. For a ∈ Z
≥0, there exist unique ωa,k, ω̄a,k ∈ Bk−1,k−1

such that

eky
a
kek = ωa,kek, ekȳ

a
kek = ω̄a,kek.

Furthermore, ω1,k = −ω̄1,k = δδ1 and ω0,k = ω̄0,k = δ.

Lemma 3.6. For any k ∈ Z
≥1, we have eiȳ

k
i =

∑k
j=0 a

(i)
k,jeiy

j
i for some a

(i)
k,j ∈

Br,t such that

(1) a
(i)
k,k = (−1)k,

(2) a
(i)
k,j = ω0,ia

(i)
k−1,j − a

(i)
k−1,j−1, 1 ≤ j ≤ k − 1,

(3) a
(i)
k,0 = − 

∑k−1
j=1 a

(i)
k−1,jωj,i.

In particular, a(i)
k,j ∈ R[ω2,i, ω3,i . . . , ωk−1,i] for any j with 1 ≤ j ≤ k such that each 

monomial of a(i)
k,j is of form ωj1,i · · ·ωj�,i with 

∑�
i=1 ji ≤ k − 1.

Proof. By Lemma 3.3(2), the result holds for k = 1. In general, by Lemma 3.3(4),

eiy
j
i ȳi = ei(ei − yi)yji − ωj,iei = ω0,ieiy

j
i − eiy

j+1
i − ωj,iei.

Now, the result follows from induction on k. �
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Lemma 3.7. For k, a ∈ Z
≥2, we have ω̄a,k ∈ R[ω2,k, ω3,k, · · · , ωa,k]. Furthermore, both 

ωa,k and ω̄a,k are central in Bk−1,k−1.

Proof. The first assertion follows from Lemma 3.6. To prove the second, note that any 
h ∈ {e1, si | 1 ≤ i ≤ k − 2} commutes with ek, yk. So, ek(hωa,k) = ek(ωa,kh). By 
Proposition 3.4, hωa,k = ωa,kh. Finally, we need to check ek(hωa,k) = ek(ωa,kh) for any 
h ∈ {s̄1, ̄s2, · · · , ̄sk−2}. In this case, we use Lemma 3.6. More explicitly, we can use ȳk
instead of yk in ekyakek. Therefore, hωa,k = ωa,kh, as required. �

The following result follows from (3.6) and induction on a.

Lemma 3.8. For k, a ∈ Z
≥1, we have

sky
a
k+1 = (yk + ek)ask −

a−1∑
b=0

(yk + ek)a−1−bybk+1.

The elements zj,k, z̄j,k defined below will be crucial in the description of ωa,k (cf. 
Lemma 3.10). For 1 ≤ j ≤ k − 1, let

zj,k = sj,k−1(yk−1 + ek−1)sk−1,j , z̄j,k = s̄j,k−1(ȳk−1 + ek−1)s̄k−1,j . (3.9)

Then the following result can be verified, easily.

Lemma 3.9. For 1 ≤ j ≤ k − 1, we have

(1) zj,k =
∑k−1

�=1 ej,� −
∑

1≤s≤k−1,s �=j(s, j),
(2) z̄j,k =

∑k−1
�=1 e�,j −

∑
1̄≤s̄≤k−1,s̄ �=j̄(s̄, ̄j).

Note that ω0,k = δ and ω1,k = δδ1, and ekh = 0 for h ∈ Bk−1,k−1 if and only if 
h = 0. We will use this fact freely in the proof of the following lemma, where we use the 
terminology that a monomial in zj,k+1’s and z̄j,k+1’s is a leading term in an expression 
if it has the highest degree by defining deg zi,j = deg z̄i,j = 1.

Lemma 3.10. Suppose a ∈ Z
≥2. Then ωa,k+1 can be written as an R-linear combination 

of monomials in zj,k+1’s and z̄j,k+1’s for 1 ≤ j ≤ k such that the leading terms of ωa,k+1
are 

∑k
j=1(−za−1

j,k+1 + (−1)a−1z̄a−1
j,k+1).

Proof. By Corollary 3.5 and Lemma 3.3(1), we have (cf. Lemma 3.1(1))

ωa,k+1ek+1 = ek+1y
a
k+1ek+1 = ek+1(L̄k+1 − Lk+1)ya−1

k+1ek+1 + δ1ek+1y
a−1
k+1ek+1. (3.10)

Note that the second term in the right-hand side of (3.10) does not contribute to the 
leading term. Considering the first term in the right-hand side of (3.10) and expressing 
Lk+1 by (3.1), using (j, k+1) = sj,ksksk,j (cf. (3.2)) and the fact that sj,k, sk,j commute 
with yk+1, ek+1 (cf. (3.3) and Lemma 3.3(6)), we see that a term in the right-hand side 
of (3.10) becomes
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−sj,kek+1sky
a−1
k+1ek+1sk,j

= sj,kek+1

(
− (yk + ek)a−1 +

a−2∑
b=0

(yk + ek)a−2−bωb,k+1

)
sk,j , (3.11)

where the equality follows from Lemma 3.8 and Corollary 3.5. By Lemma 3.7, ωb,k+1
commutes with sk,j . Now by inductive assumption, the right-hand side of (3.11) can be 
written as an R-linear combination of monomials with the required form such that the 
leading term is −za−1

j,k+1.
Now we consider terms in (3.10) concerning L̄k+1, namely we need to deal with 

ek+1(j̄, k + 1)ya−1
k+1ek+1. We remark that it is hard to compute it directly. However, 

by Lemma 3.6 and induction on a, we can use (−1)a−1ȳa−1
k+1ek+1 to replace ya−1

k+1ek+1
in ek+1(j̄, k + 1)ya−1

k+1ek+1 (by forgetting lower terms). This enables us to consider 
(−1)a−1ek+1(j, k + 1)ȳa−1

k+1ek+1 instead. As above, this term can be written as the re-
quired form with leading term (−1)a−1z̄a−1

j,k+1. The proof is completed. �
Lemma 3.11. For a ∈ Z

≥0, k ∈ Z
≥1, both ωa,k+1 and ω̄a,k+1 commute with yk+1 and ȳk+1.

Proof. By Lemmas 2.6, 3.7 and 3.10, it suffices to prove that both zj,k+1 and z̄j,k+1
for 1 ≤ j ≤ k, commute with yk+1. By Lemma 3.3(9) and yk+1ek = ekyk+1, we have 
yk+1(ek + yk) = (ek + yk)yk+1. Note that zk,k+1 = yk + ek, we have yk+1zk,k+1 =
zk,k+1yk+1. In general, by Lemma 3.3(6), yk+1zj,k+1 = zj,k+1yk+1. By (3.8) and 
Lemma 2.6, yk+1ȳk = ȳkyk+1. Since ȳk+ek = z̄k,k+1 (cf. (3.9)), yk+1z̄k,k+1 = z̄k,k+1yk+1. 
So, by Lemma 3.3(7), yk+1z̄j,k+1 = z̄j,k+1yk+1. The result follows. �

The following is the main result of this section. It follows from Theorem 2.4, Lem-
mas 3.3, 3.11 and Corollary 3.5.

Theorem 3.12. Let F be a field containing ω0, ω1 with ω0 
= 0. For any k ∈ Z
>0, let 

Br+k,t+k(ω0) be the walled Brauer algebra over F . Then there is an F -algebra homo-
morphism φk : Baff

r,t → Br+k,t+k(ω0) sending

si, s̄j , e1, x1, x̄1, ωa, ω̄a �→ si+k, s̄j+k, ek+1, yk+1, ȳk+1, ωa,k+1, ω̄a,k+1, (3.12)

respectively such that δ1 = ω−1
0 ω1.

4. A basis of an affine walled Brauer algebra

Throughout this section, we assume that R is a commutative ring containing 1, ω0
and ω1. The main purpose of this section is to prove that Baff

r,t is free over R with infinite 
rank.

Lemma 4.1. There is an R-linear anti-involution σ : Baff
r,t → Baff

r,t fixing generators si, 
s̄j, e1, x1, x̄1, ωa and ω̄b for all possible a, b, i, j’s.
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Proof. This follows from the symmetry of the defining relations in Definition 2.7
(cf. Lemma 2.5). �

The following can be proven by arguments similar to those for Lemma 3.6.

Lemma 4.2. For any k ∈ Z
≥1, we have e1x̄

k
1 =

∑k
i=0 ak,ie1x

i
1 for some ak,i ∈ Baff

r,t such 
that

(1) ak,k = (−1)k,
(2) ak,i = ω0ak−1,i − ak−1,i−1, 1 ≤ i ≤ k − 1,
(3) ak,0 = − 

∑k−1
i=1 ak−1,iωi.

In particular, ak,i ∈ R[ω2, ω3, . . . , ωk−1] for all i with 1 ≤ i ≤ k such that each monomial 
of ak,i is of form ωj1 · · ·ωj� with 

∑�
i=1 ji ≤ a − 1.

Recall that an element a ∈ Baff
r,t is called R[ω2, ω3, · · · , ω̄0, ω̄1, · · · ]-torsion-free if ab 
=

0 for all non-zero b ∈ R[ω2, ω3, · · · , ω̄0, ω̄1, · · · ].

Corollary 4.3. Assume e1 is R[ω2, ω3, · · · , ω̄0, ω̄1, · · · ]-torsion-free. Then ω̄0 = ω0, ω̄1 =
−ω1 and ω̄k =

∑k
i=0 ak,iωi ∈ R[ω2, ω3, · · · , ωk] for k ≥ 2.

Proof. Applying e1 on the right hand side of e1x̄
k
1 and using Lemma 4.2 yield the result 

as required. �
Remark 4.4. By Corollary 4.3, Baff

r,t can be generated by si, s̄j , e1, x1, x̄1, ωa for all possi-
ble i, j, a if e1 is R[ω2, ω3, · · · , ω̄0, ω̄1, · · · ]-torsion-free. In fact, when we prove the freeness 
of Baff

r,t , we do not need to assume that e1 is R[ω2, ω3, · · · , ω̄0, ω̄1, · · · ]-torsion-free. What 
we need is that ω̄k’s are determined by ω2, · · · , ωk in Corollary 4.3 with ak,i being deter-
mined in Lemma 4.2. If so, Baff

r,t is free over R, forcing e1 to be R[ω2, ω3, · · · ]-torsion-free, 
automatically.

The elements defined below will play similar roles to that of x1 and x̄1:

xi = si−1xi−1si−1 − si−1, x̄j = s̄j−1x̄j−1s̄j−1 − s̄j−1, (4.1)

for 2 ≤ i ≤ r, 2 ≤ j ≤ t. The following result can be checked easily.

Lemma 4.5. We have

(1) sixi = xi+1si + 1, xixj = xjxi for 1 ≤ i < j ≤ r.
(2) s̄ix̄i = x̄i+1s̄i + 1, x̄ix̄j = x̄j x̄i for 1 ≤ i < j ≤ t.
(3) Let φk : Baff

r,t → Br+k,t+k(ω0) be the homomorphism in Theorem 3.12. Then (recall 
notation ei,j in (3.3))
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(i) φk(x�) =
∑k

j=1 ek+�,j − Lk+� + ω−1
0 ω1,

(ii) φk(x̄�) =
∑k

j=1 ej,k+� − L̄k+� − ω−1
0 ω1.

Lemma 4.6. For 1 ≤ i ≤ r and 1 ≤ j ≤ t, we have

(1) xi(x̄j + ei,j) = (x̄j + ei,j)xi, x̄j(xi + ei,j) = (xi + ei,j)x̄j.
(2) ei,j(xi + x̄j) = −ei,j(L̄j + Li), (xi + x̄j)ei,j = −(L̄j + Li)ei,j.

Proof. By symmetry and Lemma 4.1, we need only check the first assertions of (1)–(2). 
In fact, if i = 1, then (1) follows from Definition 2.7(21), (24). In general, it follows from 
induction on i. By Definition 2.7(8), e1,2(x1 + x̄2) = −e1,2L̄2. Using Definition 2.7(24) 
and induction on j yields e1,j(x1 + x̄j) = −e1,jL̄j . This is (2) for i = 1. The general case 
follows from induction on i. �

Lemma 4.7. Suppose 1 ≤ i, j ≤ r and 1 ≤ k, � ≤ t.

(1) If i 
= j, then ei,k(xj + Lj) = (xj + Lj)ei,k.
(2) If k 
= �, then ei,k(x̄� + L̄�) = (x̄� + L̄�)ei,k.

Proof. By symmetry, we need only to check (1). By Definition 2.7(9), we have e1(x2 +
L2) = (L2 + x2)e1. Using induction on j yields e1(xj + Lj) = (xj + Lj)e1 for j ≥ 3. 
This is (1) for i = k = 1. By induction on k, e1,k(xj + Lj) = (xj + Lj)e1,k. If i < j, by 
Lemmas 3.1 and 4.5, we have ei,k(xj + Lj) = (xj + Lj)ei,k.

In order to prove (1) for i > j, we need e2,1x1 = x1e2,1, which follows from Defini-
tion 2.7(9). By Definition 2.7(4), (24), we have ei,kx1 = x1ei,k. By induction on j, we 
have ei,k(xj + Lj) = (xj + Lj)ei,k for all j with j < i, as required. �

Lemma 4.8. Suppose 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ t − 1.

(1) si(xi + Li) = (xi+1 + Li+1)si, s̄j(x̄j + L̄j) = (x̄j+1 + L̄j+1)s̄i.
(2) ei,j(xi + Li)aei,j = ωaei,j, ei,j(x̄j + L̄j)aei,j = ω̄aei,j for a ∈ Z

≥0.

Proof. By symmetry, it suffices to check the first assertions of (1) and (2). We remark that 
(1) follows from Lemmas 3.1 and 4.5, and (2) follows from (1) together with induction 
on i. �

We consider Baff
r,t as a filtrated algebra defined as follows. Set

deg si = deg s̄j = deg e1 = degωa = 0 and deg xk = deg x̄� = 1,
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for all possible a, i, j, k, �’s. Let (Baff
r,t )(k) be the R-submodule spanned by monomials 

with degrees less than or equal to k for k ∈ Z
≥0. Then we have the following filtration

Baff
r,t ⊃ · · · ⊃ (Baff

r,t )(1) ⊃ (Baff
r,t )(0) ⊃ (Baff

r,t )(−1) = 0. (4.2)

Let gr(Baff
r,t ) = ⊕i≥0(Baff

r,t )[i], where (Baff
r,t )[i] = (Baff

r,t )(i)/(Baff
r,t )(i−1). Then gr(Baff

r,t ) is 
a Z-graded algebra associated to Baff

r,t . We use the same symbols to denote elements in 
gr(Baff

r,t ). We remark that we will work with gr(Baff
r,t ) when we prove the freeness of Baff

r,t .
Fix r, t, f ∈ Z

>0 with f ≤ min{r, t}. We define the following subgroups of Sr, Sr×S̄t

and S̄t respectively,

Sr−f = 〈sj | f + 1 ≤ j < r〉,
Gf = 〈s̄isi | 1 ≤ i < f〉,
S̄t−f = 〈s̄j | f + 1 ≤ j < t〉. (4.3)

Observe that Gf is isomorphic to the symmetric group in f letters. The following result 
has been given in [29] without a detailed proof. We remark that Df

r,t in (4.4) was defined 
in [12, Proposition 6.1] via certain row-standard tableaux.

Lemma 4.9. (See [29, Lemma 2.6].) The following (recall notation si,j in (3.2))

Df
r,t = {sf,if s̄f,jf · · · s1,i1 s̄1,j1 | 1 ≤ i1 < · · · < if ≤ r, k ≤ jk}, (4.4)

is a complete set of right coset representatives for Sr−f ×Gf × S̄t−f in Sr × S̄t.

Proof. We denote by D̃f
r,t the right-hand side of (4.4), and by Df

r,t a complete set of right 
coset representatives. Then obviously D̃f

r,t ⊂ Df
r,t. In order to verify the inverse inclusion, 

it suffices to prove that |D̃f
r,t|, the cardinality of D̃f

r,t, is r!t!
(r−f)!(t−f)!f ! = Cf

r C
f
t f !, which 

is clearly the cardinality of Df
r,t, where Cf

r is the binomial number. This will be done by 
induction on f as follows.

If f = 0, there is nothing to be proven. Assume f ≥ 1. For any element in (4.4), we 
have if ≥ f . For each fixed i := if , there are t − f + 1 choices of jf with jf ≥ f , and 
further, conditions for other indices are simply conditions for Df−1

i−1,t. So,

|D̃f
r,t| = (t− f + 1)

r∑
i=f

|Df−1
i−1,t|

= (t− f + 1)
r∑

i=f

Cf−1
i−1 Cf−1

t (f − 1)!

=
r∑

Cf−1
i−1 Cf

t f ! = Cf
r C

f
t f !,
i=f
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where the second equality follows from inductive assumption on f , and the last follows 
from the well-known combinatorics formula Ci

r = Ci
r−1 + Ci−1

r−1. �
We denote

ef = e1e2 · · · ef for any f with 1 ≤ f ≤ min{r, t}. (4.5)

If f = 0, we set e0 = 1. In [12, Theorem 6.13], Enyang constructed a cellular basis for 
q-walled Brauer algebras. The following result follows from this result immediately.

Theorem 4.10. (See [12].) The following is an R-basis of Br,t(ω0),

M = {c−1efwd | 1 ≤ f ≤ min{r, t}, w ∈ Sr−f × S̄t−f , c, d ∈ Df
r,t}.

Definition 4.11. We say that

m :=
r∏

i=1
xαi
i c−1efwd

t∏
j=1

x̄
βj

j

∏
k∈Z≥2

ωak

k (4.6)

is a regular monomial if c, d ∈ Df
r,t, αi, βj ∈ Z

≥0 and ak ∈ Z
≥0 for k ≥ 2 such that 

ak = 0 for all but finitely many k’s.

Proposition 4.12. Suppose R is a commutative ring which contains 1, ω0, ω1. As an 
R-module, Baff

r,t is spanned by all regular monomials.

Proof. Let M be the R-submodule of Baff
r,t spanned by all regular monomials m ∈ Baff

r,t

given in (4.6). We want to prove

hm = h
r∏

i=1
xαi
i c−1efwd

t∏
i=1

x̄βi

i

∏
i∈Z≥2

ωai
i ∈ M for any generator h of Baff

r,t . (4.7)

If so, then M is a left Baff
r,t -module, and thus M = Baff

r,t by the fact that 1 ∈ M .
We prove (4.7) by induction on |α| :=

∑r
i=1 αi. If |α| = 0, i.e., αi = 0 for all possible 

i’s, then by Theorem 4.10, we have (4.7) unless h = x̄1.
If h = x̄1, by Lemma 4.5, we need to compute x̄ke

f for all k with 1 ≤ k ≤ t. 
If k ∈ {1, 2, · · · , f}, by Lemma 4.6(3), we can use −xk instead of x̄k. So, hm ∈ M . 
Otherwise, by Lemma 4.7(2), we can use ef x̄k instead of x̄ke

f . So, (4.7) follows from 
Lemma 4.5 and Theorem 4.10.

Suppose |α| > 0. By Lemma 4.5 and Theorem 4.10, we see that (4.7) holds for 
h ∈ {s1, · · · , sr−1, ̄s1, · · · , ̄st−1, x1}. If h = x̄1, then (4.7) follows from Lemma 4.6(1), 
and inductive assumption.
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Finally, we assume h = e1. If αi 
= 0 for some i with 2 ≤ i ≤ r, then (4.7) follows 
from Lemma 4.7(1) and inductive assumption. Suppose xα = xα1

1 with α1 > 0. We need 
to verify

e1x
α1
1 c−1efwd

t∏
i=1

x̄βi

i ∈ M for α1 > 0. (4.8)

Note that ce1c
−1 = ei,j for some i, j. By Lemma 4.5 and inductive assumption on |α|, 

we can use c−1xα1
i to replace xα1

1 c−1 in (4.8). So, we need to verify

ei,jx
α1
i efwd

t∏
i=1

x̄βi

i ∈ M. (4.9)

In fact, by Lemma 4.6(2) and inductive assumption, it is equivalent to verifying

ei,j x̄
α1
j efwd

t∏
i=1

x̄βi

i ∈ M. (4.10)

If j ≥ f + 1, (4.10) follows from Lemma 4.7(2) and Theorem 4.10. Otherwise, j ≤ f .
If i = j, by inductive assumption, we use (xi + Li)α1 instead of xα1

i in ei,jx
α1
i ej . So, 

(4.9) follows from Lemma 4.8(2). If i 
= j, we have

ei,jx
α1
i ej = ei,jejx

α1
i = (i, j)xα1

i ej = xα1
j (i, j)ej ,

which holds in gr(Baff
r,t ). By inductive assumption and our previous result on h ∈

{s1, · · · , sr−1, x1}, we have (4.9) and hence (4.8). This completes the proof. �
Assumption 4.13. In the remaining part of this paper, we always assume that ω̄i’s are 
given in Corollary 4.3 with ak,i being determined in Lemma 4.2.

Now we are able to prove the main result of this section. We remark that the idea of 
the proof is motivated by Nazarov’s work on affine Wenzl algebras in [25].

Theorem 4.14. Suppose R is a commutative ring which contains 1, ω0, ω1. Then Baff
r,t is 

free over R spanned by all regular monomials in (4.6). In particular, Baff
r,t is of infinite 

rank.

Proof. Let M be the set of all regular monomials of Baff
r,t . First, we prove that M

is F -linearly independent where F is the quotient field of Z[ω0, ω1] with ω0, ω1 being 
indeterminates.

Suppose conversely there is a finite subset S of M such that 
∑

m∈S rmm = 0 with 
rm 
= 0 for all m ∈ S. Recall from Definition 4.11 that each regular monomial is of the 
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form in (4.6). For each m ∈ S as in (4.6), we set

km = max
{
|α| +

∑
j

jaj , |β| +
∑
j

jaj

}
, k = max{km |m ∈ S}, (4.11)

where |α| =
∑r

i=1 αi, |β| =
∑t

i=1 βi. Consider the homomorphism φk : Baff
r,t →

Br+k,t+k(ω0) in Theorem 3.12. Then φk(m) can be written as a linear combination
of (r + k, t + k)-walled Brauer diagrams.

Using Lemma 4.5(3) to express φk(x�) and φk(x̄�), and using Lemma 3.10 to express 
ωa,k+1 for a ∈ Z

≥2, we see that some terms of φk(m) are of forms (we will see in the 
next paragraph that other terms of φk(m) will not contribute to our computations)

r∏
i=1

(k + i, i1) · · · (k + i, iαi
)φk(c−1efwd)

t∏
j=1

(k + i, j̄1) · · · (k + i, j̄βj
)
∏
i≥2

ci, (4.12)

where ci ranges over products of some disjoint cycles in Sk (or S̄k) with total length 
iai. We remark that such ci’s come from ωi,k+1. Further, the walled Brauer diagram 
corresponding to φk (c−1efwd) has vertical edges [i, i] and [j̄, ̄j] for all i, j with 1 ≤ i, 
j ≤ k. We call the terms of the form (4.12) the leading terms if

(i) either k = |α| +
∑

j jaj or k = |β| +
∑

j jaj (cf. (4.11)), and
(ii) the corresponding f in (4.12) is minimal among all terms satisfying (i), and
(iii) in the first case of (i), the juxtaposition of the sequences i1, i2, · · · , iαi

for 1 ≤ i ≤ r

and ci, i ≥ 2 run through all permutations of the sequences in 1, 2, · · · , k; while in 
the second case of (i), the juxtaposition of the sequences j1, j2, · · · , jβj

for 1 ≤ j ≤ r

and ci, i ≥ 2 run through all permutations of the sequences in 1̄, ̄2, · · · , ̄k.

If we identify the factor φk(c−1efwd) in the leading terms with the corresponding walled 
Brauer diagrams, we have

(1) there are exactly f horizontal edges in both top and bottom rows,
(2) no vertical edge of form [i, i], 1 ≤ i ≤ k in the first case,
(3) no vertical edge of form [̄i, ̄i], 1 ≤ i ≤ k in the second case,
(4) no horizontal edge of form [i, ̄j], 1 ≤ i ≤ k, 1̄ ≤ j̄ ≤ k̄ in both rows.

These leading terms exactly appear in φk(m) when conditions (i)–(iii) are satisfied.
Other terms in φk(

∑
m∈S rmm) are non-leading terms, which are terms obtained by 

(4.12) by using some ek+i,j ’s (resp., ej,k+i’s) or scalars instead of some (k+ i, ij)’s (resp., 
(k + i, ̄ij)’s) or using certain product of ei,j’s, 1 ≤ i, j ≤ k instead of some factors of 
some cycles ci’s. Thus such terms cannot be proportional to any leading terms. Therefore 
S is F -linearly independent. By Proposition 4.12, M is a Z[ω0, ω1]-basis.
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Now, for an arbitrary commutative ring R containing 1, ω0, ω1, we can regard R as 
a left Z[ω0, ω1]-module such that the indeterminates ω0, ω1 ∈ Z[ω0, ω1] act on R as the 
scalars ω0, ω1 ∈ R respectively. By standard arguments on specialization, Baff

r,t , which is 
defined over R, is isomorphic to A ⊗Z[ω0,ω1] R, where A is the algebra Baff

r,t defined over 
Z[ω0, ω1]. So, Baff

r,t is free over R with infinite rank. �
Let R be a commutative ring containing 1, ω̂a for a ∈ Z

≥2. Let I be the two-sided ideal 
of Baff

r,t generated by ωa−ω̂a, a ∈ Z
≥2. Then there is an epimorphism ψ : Baff

r,t → Baff
r,t/I. 

Let B̂r,t = Baff
r,t/I, namely B̂r,t is the specialization of Baff

r,t with ωa being specialized 
to ω̂a for a ∈ Z

≥2. Without confusion, we will simply denote elements ω̂a of R as ωa.

Definition 4.15. We say that the image of a regular monomial m of Baff
r,t (cf. (4.6)) is a 

regular monomial of B̂r,t if m does not contain factors ωi’s for i ≥ 2.

In the rest part of the paper, we will be interested in the above specialized algebra 
B̂r,t. Without confusion, we will use Baff

r,t to denote it.
The following result follows from Theorem 4.14, immediately.

Theorem 4.16. Suppose R is a commutative ring which contains 1, ωi with i ∈ Z
≥0 and 

keep Assumption 4.13. Then Baff
r,t is free over R spanned by all regular monomials. In 

particular, Baff
r,t is of infinite rank.

We close this section by giving some relationship between affine walled Brauer algebras 
and degenerate affine Hecke algebras [21], walled Brauer algebras, etc.

Definition 4.17. The degenerate affine Hecke algebra H aff
n is the unital R-algebra gen-

erated by S1, . . . , Sn−1, Y1, . . . , Yn and relations

SiSj = SjSi, YiYk = YkYi,

SiYi − Yi+1Si = −1, YiSi − SiYi+1 = −1,

SjSj+1Sj = Sj+1SjSj+1, S2
i = 1,

for 1 ≤ i < n, 1 ≤ j < n − 1 with |i − j| > 1, and 1 ≤ k ≤ n.

Proposition 4.18. Let R be a commutative ring containing 1, ωi with i ∈ Z
≥0. Let Baff

r,t

be the affine walled Brauer algebra over R. Let I (resp., J) be the two-sided ideal of Baff
r,t

generated by x1 and x̄1 (resp., e1).

(1) Baff
r,t/I

∼= Br,t.
(2) Baff

r,t/J
∼= H aff

r ⊗ H aff
t .

(3) The subalgebra of Baff
r,t generated by e1, s1, · · · , sr−1, ̄s1, · · · , ̄st−1 is isomorphic to 

the walled Brauer algebra Br,t over R.
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(4) The subalgebra of Baff
r,t generated by s1, · · · , sr−1 and x1 (resp., s̄1, · · · , ̄st−1 and x̄1) 

is isomorphic to the degenerate affine Hecke algebra H aff
r (resp., H aff

t ).

Note that the isomorphism in (4) sends x1 (resp., x̄1) to −Y1.

5. Super Schur–Weyl duality

The main purpose of this section is to set up the relationship between affine walled 
Brauer algebras Baff

r,t with special parameters and general linear Lie superalgebras glm|n. 
Throughout the section, we assume the ground field is C.

Denote g = glm|n. Let V = C
m|n be the natural g-module. As a C-vector superspace 

V = V0̄ ⊕ V1̄ with dimV0̄ = m and dimV1̄ = n. Take a natural basis {vi | i ∈ I} of V , 
where I = {1, 2, . . . , m + n}. For convenience we define the map [·] : I → Z2 by [i] = 0̄ if 
i ≤ m and [i] = 1̄ if i > m. Then vi has the parity [vi] = [i]. Denote by Eij the matrix 
unit, which has parity [Eij ] = [i] + [j]. The Lie bracket on g is defined by

[Eij , Ek�] = δjkEi� − (−1)([i]+[j])([k]+[�])δ�iEkj , (5.1)

where δjk = 1 if j = k and 0, otherwise. Let V ∗ be the dual space of V with dual basis 
{v̄i | i ∈ I}. Then V ∗ is a left g-module with action

Eabv̄i = −(−1)[a]([a]+[b])δiav̄b. (5.2)

Let h = span{Eii | i ∈ I} be a Cartan subalgebra of g, and h∗ the dual space of h
with {εi | i ∈ I} being the dual basis of {Eii | i ∈ I}. Then an element λ ∈ h∗ (called a 
weight) can be written as

λ =
∑
i∈I

λiεi = (λ1, . . . , λm |λm+1, . . . , λm+n) with λi ∈ C. (5.3)

Take

ρ =
m∑
i=1

(1 − i)εi +
n∑

j=1
(m− j)εm+j = (0,−1, . . . , 1 −m |m− 1,m− 2, . . . ,m− n),

and denote

|λ| :=
∑
i∈I

λi (called the size of λ), (5.4)

λρ = λ + ρ = (λρ
1, . . . , λ

ρ
m |λρ

m+1, . . . , λ
ρ
m+n), where,

λρ
i = λi + 1 − i if i ≤ m, and λρ

i = λi + 2m− i if i > m. (5.5)

A weight λ is called integral dominant if λi − λi+1 ∈ Z
≥0 for i ∈ I\{m, m + n}. It is 

called typical if λρ
i + λρ

j 
= 0 for any i ≤ m < j (otherwise it is called atypical) [18].
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Example 5.1. For any p, q ∈ C,

λpq = (p, . . . , p | − q, . . . ,−q), (5.6)

is a typical integral dominant weight if and only if

p− q /∈ Z or p− q ≤ −m or p− q ≥ n. (5.7)

(Note that the λpq defined in [7, IV] is the λp,q+m defined here.) In this case, the finite-
dimensional simple g-module Lλpq

with highest weight λpq coincides with the Kac-module 
Kλpq

[7, IV], [18].

Let M be any g-module. For any r, t ∈ Z
≥0, set Mr,t = V ⊗r ⊗ M ⊗ (V ∗)⊗t. For 

convenience we denote the ordered set

J = J1 ∪ {0} ∪ J2, where J1 = {r, . . . , 1}, J2 = {1̄, . . . , t̄}, (5.8)

and r ≺ · · · ≺ 1 ≺ 0 ≺ 1̄ ≺ · · · ≺ t̄. We write Mr,t as

Mr,t =
⊗
i∈J

Vi, where Vi = V if i ≺ 0, V0 = M and Vi = V ∗ if i � 0, (5.9)

(hereafter all tensor products will be taken according to the order in J), which is a left 
U(g)⊗(r+t+1)-module (where U(g) is the universal enveloping algebra of g), with the 
action given by

(⊗
i∈J

gi

)(⊗
i∈J

xi

)
= (−1)

∑
i∈J

[gi]
∑
j≺i

[xj ] ⊗
i∈J

(gixi) for gi ∈ U(g), xi ∈ Vi.

In particular, if we delete the tensor M (or take M = C), then Mr,t is the mixed tensor 
product studied in [32], and if t = 0 and M = Kλpq

, then Mr,t is the tensor module 
studied in [7, IV].

We denote

Ω = 1
2(Δ(C) − C ⊗ 1 − 1 ⊗ C) =

∑
i,j∈I

(−1)[j]Eij ⊗ Eji ∈ g⊗2, (5.10)

where Δ is the comultiplication of U(g), and C =
∑

a,b∈I(−1)[b]EabEba is the quadratic 
Casimir, which is a central element of U(g). Thus obviously,

[Δ(Eab),Ω] = 0 for all a, b ∈ I. (5.11)

Because of this well-known property, Ω is also called a Casimir element.
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For a, b ∈ J with a ≺ b, we define πab : U(g)⊗2 → U(g)⊗(r+t+1) by

πab(x⊗ y) = 1 ⊗ · · · ⊗ 1 ⊗ x⊗ 1 ⊗ · · · ⊗ 1 ⊗ y ⊗ 1 ⊗ · · · ⊗ 1, (5.12)

where x and y are in the a-th and b-th tensors respectively.

Notation 5.2. From now on, we always suppose M = Kλ is the Kac-module with highest 
weight λ = λpq in (5.6) for p, q ∈ C (at this moment, we do not impose any condition on 
p, q) and a highest weight vector vλ defined to have parity 0̄.

Note that

Eijvλ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pvλ if 1 ≤ i = j ≤ m,

−qvλ if m < i = j ≤ m + n,

0 if 1 ≤ i 
= j ≤ m or m ≤ i 
= j ≤ m + n,

(5.13)

and Kλ is 2mn-dimensional with a basis

B =
{
bσ :=

n∏
i=1

m∏
j=1

E
σij

m+i,jvλ

∣∣∣σ = (σij)n,mi,j=1 ∈ {0, 1}n×m
}
, (5.14)

where the products are taken in any fixed order (changing the order only changes the 
vectors by ±1). Then Mr,t is 2mn(m + n)r+t-dimensional with a basis

BM =
{
bM =

⊗
i∈J1

vki
⊗ b⊗

⊗
i∈J2

v̄ki

∣∣∣ b ∈ B, ki ∈ I
}
. (5.15)

Due to (5.11), the elements defined below are in the endomorphism algebra 
Endg(Mr,t) of the g-module Mr,t, which will be used throughout the section. We remark 
that the quadratic Casimir was also used to generate endomorphism algebras for some 
Lie algebras and their quantum groups (see e.g. [23]).

Definition 5.3. By (5.11), we can use (5.12) to define the following elements of the endo-
morphism algebra Endg(Mr,t),

si = πi+1,i(Ω)|Mr,t (1 ≤ i < r), s̄j = πj̄,j+1(Ω)|Mr,t (1 ≤ j < t),

x1 = −π10(Ω)|Mr,t , x̄1 = −π01̄(Ω)|Mr,t , e1 = −π11̄(Ω)|Mr,t . (5.16)

Note that the tensor space Mr,t already admits a left action by the Lie superalgebra g. 
Our purpose is to establish a super Schur–Weyl duality (cf. Theorem 5.12) such that Mr,t

also admits a right action by some associative algebra (namely, the affine walled-Brauer 
algebra Baff

r,t or its cyclotomic quotient, the level two walled Brauer algebra Bp,q
r,t (m,n), 
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cf. Definition 5.11). Thus as in literature (e.g., [7, IV]), elements defined above when 
regarded as elements in Baff

r,t or in Bp,q
r,t (m,n) are usually written as right actions on 

Mr,t. However one shall always keep in mind that all elements are defined by left mul-
tiplication of the Casimir element Ω such that the first and second tensors in Ω act on 
some appropriate tensor positions in Mr,t, and also one shall always do bookkeeping on 
the sign change whenever the order of two elements (factors) in a term are exchanged.

Lemma 5.4. We have the following.

(1) For w1 ∈ V ⊗(r−1), w2 ∈ (V ∗)⊗t and i ∈ I,

(w1 ⊗ vi ⊗ vλ ⊗ w2)x1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−pw1 ⊗ vi ⊗ vλ ⊗ w2

if i ≤ m,

−qw1 ⊗ vi ⊗ vλ ⊗ w2 −
m∑

a=1
w1 ⊗ va ⊗ Eiavλ ⊗ w2

if i > m.

(5.17)

(2) For w1 ∈ V ⊗r, w2 ∈ (V ∗)⊗(t−1) and i ∈ I,

(w1 ⊗ vλ ⊗ v̄i ⊗ w2)x̄1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pw1 ⊗ vλ ⊗ v̄i ⊗ w2 +
m+n∑

a=m+1
w1 ⊗Eaivλ ⊗ v̄a ⊗ w2

if i ≤ m,

qw1 ⊗ vλ ⊗ v̄i ⊗ w2

if i > m.

(5.18)

(3) For w1 ∈ V ⊗(r−1), w2 ∈ V ⊗(t−1), i, j ∈ I,

(w1 ⊗ vi ⊗ vλ ⊗ v̄j ⊗ w2)e1 = (−1)[i]δij
∑
a∈I

w1 ⊗ va ⊗ vλ ⊗ v̄a ⊗ w2. (5.19)

(4) For a, b ∈ I, and w1 ∈ V ⊗(r−1−i), w2 ∈ M i−1,t, w′
1 ∈ Mr,j−1, w′

2 ∈ (V ∗)⊗(t−1−j),

(w1 ⊗ va ⊗ vb ⊗ w2)si = (−1)[a][b]w1 ⊗ vb ⊗ va ⊗ w2,

(w′
1 ⊗ v̄a ⊗ v̄b ⊗ w′

2)s̄i = (−1)[a][b]w′
1 ⊗ v̄b ⊗ v̄a ⊗ w′

2. (5.20)

Proof. The results can be easily verified. We prove (1) as an example. Since the two 
tensors of Ω in x1 = −π10(Ω)|Mr,t act on vi and vλ respectively, the left-hand side of 
(5.17) is equal to

−w1 ⊗
∑

(−1)[b]+[i]([a]+[b])Eabvi ⊗ Ebavλ ⊗ w2

a,b∈I
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= −w1 ⊗
∑

a∈I, a≤i

(−1)[a][i]va ⊗ Eiavλ ⊗ w2,

which is equal to the right-hand side of (5.17) by (5.13). �
Proposition 5.5. There exists a C-algebra homomorphism Φ : Br,t(n − m) →
Endg(Mr,t)op, which sends generators e1, si, s̄j, 1 ≤ i ≤ r − 1, 1 ≤ j ≤ t − 1 of 
Br,t(n −m) in Theorem 2.4 to elements with the same symbols in Definition 5.3.

Proof. By Definition 5.3, e1, si, s̄j ’s act only on V ⊗r ⊗ (V ∗)⊗t and have no relationship 
with the Kac module Kλ. So, our result follows from [32, Proposition 3.2]. �
Lemma 5.6. Let x1, x̄1, e1 be defined in (5.16). Then

(x1 + x̄1)e1 = 0 = e1(x1 + x̄1), (5.21)

x1(e1 + x̄1) = (e1 + x̄1)x1, (5.22)

e1x
k
1e1 = ωke1, (5.23)

for k ∈ Z
≥0 and for some ωk ∈ C such that ω0 = m − n, ω1 = nq −mp.

Proof. To prove the results, it suffices to consider the case r = t = 1. By (5.17), we have

(vi ⊗ vλ ⊗ v̄j)x1e1 = −
(∑

a∈I

(−1)[i][a]va ⊗ Eiavλ ⊗ v̄j

)
e1

= (−1)1+[i][j](vj ⊗Eijvλ ⊗ v̄j)e1

= (−1)[i][j]
∑
a,b∈I

(−1)[b]+([a]+[b])[i]Eabvj ⊗Eijvλ ⊗ Ebav̄j

= (−1)[i][j]
∑
a∈I

(−1)[j]+([a]+[j])[i]+1+[j]([j]+[a])va ⊗Eijvλ ⊗ v̄a

=
∑
a∈I

(−1)1+[a]([i]+[j])va ⊗ Eijvλ ⊗ v̄a, (5.24)

and by (5.18),

(vi ⊗ vλ ⊗ v̄j)x̄1e1 = −
(∑

a∈I

(−1)1+[a][j]vi ⊗Eajvλ ⊗ v̄a

)
e1

= (−1)[i][j](vi ⊗ Eijvλ ⊗ v̄i)e1

= −(−1)[i][j]
∑
a,b∈I

(−1)[b]+([a]+[b])[j]Eabvi ⊗ Eijvλ ⊗Ebav̄i

= (−1)1+[i][j]
∑

(−1)[i]+([a]+[i])[j]+1+[i]([i]+[a])va ⊗ Eijvλ ⊗ v̄a

a∈I
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=
∑
a∈I

(−1)[a]([i]+[j])va ⊗Eijvλ ⊗ v̄a. (5.25)

Thus (x1 + x̄1)e1 = 0. Similarly, one has e1(x1 + x̄1) = 0. This proves (5.21). To prove 
(5.22), by (5.17),

(vi ⊗ vλ ⊗ v̄j)x1x̄1 = −
∑
b∈I

(−1)[i][b](vb ⊗ Eibvλ ⊗ v̄j)x̄1

=
∑
a,b∈I

(−1)[i][b]+[j]+([i]+[b])([j]+[a])vb ⊗ EajEibvλ ⊗ Ejav̄j

=
∑
a,b∈I

(−1)[i][b]+[j]+([i]+[b])([j]+[a])+1+[j]([j]+[a])vb ⊗ EajEibvλ ⊗ v̄a

=
∑
a,b∈I

(−1)1+[i][b]+[a][j]+([i]+[b])([j]+[a])vb ⊗ EajEibvλ ⊗ v̄a, (5.26)

and by (5.18),

(vi ⊗ vλ ⊗ v̄j)x̄1x1 = −
∑
a∈I

(−1)1+[a][j](vi ⊗ Eajvλ ⊗ v̄a)x1

=
∑
a,b∈I

(−1)1+[a][j]+[i]+[i]([i]+[b])Ebivi ⊗ EibEajvλ ⊗ v̄a)

=
∑
a,b∈I

(−1)1+[a][j]+[b][i]vb ⊗ EibEajvλ ⊗ v̄a. (5.27)

Using EibEaj = (−1)([i]+[b])([a]+[j])EajEib+δabEij+(−1)1+([i]+[b])([a]+[j])δijEab in (5.27), 
we obtain

(vi ⊗ vλ ⊗ v̄j)x̄1x1 = (vi ⊗ vλ ⊗ v̄j)x1x̄1 +
∑
a∈I

(−1)1+[a]([i]+[j])va ⊗ Eijvλ ⊗ v̄a

+ δij
∑
a∈I

(−1)[a][i]+[b][i]+([i]+[b])([a]+[i])vb ⊗ Eabvλ ⊗ v̄a.

By (5.19), we have

(vi ⊗ vλ ⊗ v̄j)e1x1 = −δij
∑
a,b∈I

(−1)[i]+[a]+[a]([a]+[b])Ebava ⊗ Eabvλ ⊗ v̄a

= δij
∑
a,b∈I

(−1)1+[i]+[a][b]vb ⊗Eabvλ ⊗ v̄a.

Comparing the above, we obtain x1(e1 + x̄1) = (e1 + x̄1)x1. To prove (5.23), for any 
k ∈ Z+, we have



H. Rui, Y. Su / Advances in Mathematics 285 (2015) 28–71 53
(vi ⊗ vλ ⊗ v̄j)e1x
k
1e1

= (−1)[i]δij
∑
�0∈I

(v�0 ⊗ vλ ⊗ v̄�0)xk
1e1

= δij
∑

�0,�1,...,�k∈I

(−1)
k+[i]+

k−1∑
p=0

[�p][�p+1]
(v�k ⊗ E�k−1,�kE�k−2,�k−1 · · ·E�0,�1vλ ⊗ v̄�0)e1

= ωk(vi ⊗ vλ ⊗ v̄j)e1 for some ωk ∈ C, (5.28)

where the last equality is obtained as follows: if �k 
= �0, the corresponding terms become 
zero after applying e1 by (5.19); otherwise E�k−1,�kE�k−2,�k−1 · · ·E�0,�1vλ is a weight 
vector in Kλ with weight λ, thus a multiple, denoted by ωk, of vλ.

In particular, if k = 0, from the first equality of (5.28), we immediately obtain ω0 =
m − n by (5.19). If k = 1, from the second equality of (5.28) and the above arguments, 
there is only one factor E�1,�0 with �1 = �0 we need to consider in the summand. Using 
(5.13), we obtain ω1 = nq −mp. �

Now we can prove the following.

Theorem 5.7. Let M = Kλ be the Kac-module with highest weight λ = λpq in (5.6) for 
p, q ∈ C, and let si, s̄j , x1, e1, ̄x1 ∈ Endg(Mr,t) be defined as in (5.16)–(5.20). Then all 
relations in Definition 2.7 hold with ωa’s being specialized to the complex numbers

ω0 = m− n, ω1 = nq −mp,

ωa = (m− p− q)ωa−1 − p(q −m)ωa−2 for a ≥ 2. (5.29)

Furthermore, x1, x̄1 satisfy

(x1 + p)(x1 + q −m) = 0, (x̄1 − p + n)(x̄1 − q) = 0. (5.30)

Proof. Note that those relations in Definition 2.7 which do not involve x1 and x̄1 are 
relations of the walled Brauer algebra Br,t(m − n) in Theorem 2.4, thus hold by Propo-
sition 5.5.

Definition 2.7(9)–(11),(22)–(24) can be verified, easily. By (5.21) and (5.22), we have 
Definition 2.7(8) and (21). Definition 2.7(12) and the first two equations of (5.29) follow
from (5.23). Similarly by symmetry, one can prove Definition 2.7(25).

The last equation of (5.29) follows from (5.30) by induction on a. Note that the first 
equation of (5.30) is [7, IV, Corollary 3.2] (here x1 is the −x1 in [7, IV, Corollary 3.2]), 
which can also be obtained directly by (5.17) by noting that x1 has two eigenvalues −p

and m −q as the summand in the second case of (5.17) is equal to − 
∑m

a=1 w1⊗(Eia(va⊗
vλ) − vi ⊗ vλ) ⊗ w2. Similarly, we have the second equation of (5.30).

To prove Definition 2.7(13), let xi with 2 ≤ i ≤ r be defined as in (4.1). Then xi

defined here are −xi defined in [7, IV, Lemma 3.1], in particular, they commute with 
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each other, i.e., we have Definition 2.7(13) as x2 coincides with s1x1s1− s1. Similarly we 
have Definition 2.7(26). �
Remark 5.8. If we use arbitrary typical integral dominant weight λ of glm|n instead of 
λpq, then higher level walled Brauer algebras appear. For example, let k = k1 + k2 and 

m1, . . . , mk1 , n1, . . . , nk2 ∈ Z
≥r+t and 

∑k1
i=1 mi = m, 

∑k2
j=1 nj = n. Assume p1, . . . , pk1 , 

q1, . . . , qk2 ∈ C such that pi − pi+1, qj+1 − qj ∈ Z
≥r+t for all possible i, j. Let

λ = (
m1︷ ︸︸ ︷

p1, . . . , p1, . . . ,

mk1︷ ︸︸ ︷
pk1 , . . . , pk1 |

n1︷ ︸︸ ︷
−q1, . . . ,−q1, . . . ,

nk2︷ ︸︸ ︷
−qk2 , . . . ,−qk2).

Then λ is a typical integral dominant weight if and only if

p1 − q1 /∈ Z or p1 − q1 ≤ −m or pk1 − qk2 ≥ n.

In this case a level k walled Brauer algebra appears, and x1, x̄1 satisfy 
∏k

c=1(x1−uc) = 0
and 

∏k
c=1(x̄1 − ūc) = 0 with

uc =
{

−(pc −m′
c−1) if 1 ≤ c ≤ k1,

−(qc−k1 −m + n′
c−k1−1) if k1 < c ≤ k,

ūc =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pc − n +

k1∑
j=c+1

mj if 1 ≤ c ≤ k1,

qc−k1 −
k2∑

j=c−k1+1
nj if k1 < c ≤ k,

where, m′
i =

∑
�≤i m�, n′

j =
∑

�≤j n�, and m′
k1+j = m + n′

j . We remark as stated in 
the Introduction that in this case, we cannot expect anything new from the viewpoint 
of representation theory of glm|n.

We need to introduce the following notion in order to prove the next result.

Definition 5.9. For an element b = bσ ∈ B as in (5.14), we denote |b| =
∑

i,j σi,j , called 
the degree of b. If σij 
= 0, we say Ei+m,j is a factor of b. For bM ∈ BM , we define its 
degree |bM | to be |b|, where b ∈ B is a unique tensor factor of bM .

For any α = (α1, . . . , αr) ∈ {0, 1}r, β = (β1, . . . , βt) ∈ {0, 1}t, we define the following 
elements of Endg(Mr,t):

xα =
r∏

i=1
xαi
i , x̄β =

t∏
j=1

x̄
βj

j , (5.31)

where xi, x̄j are elements of Endg(Mr,t) defined as in (4.1).
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Theorem 5.10. We keep the assumption of Theorem 5.7, and assume r+ t ≤ min{m, n}. 
Then the monomials

m := c−1xαef x̄βwd, (5.32)

with α ∈ {0, 1}r, β ∈ {0, 1}t and c, ef , w, d as in Theorem 4.10 and Definition 4.11, 
are C-linearly independent endomorphisms of Mr,t.

Proof. First we remark that for convenience we arrange factors of the monomial m in 
(5.32) in a different order from the corresponding monomial m in (4.6) (without factors 
ωa’s, cf. Definition 4.15). Note that changing the order only differs an element by some 
element with lower degree, where the degree of m is defined to be degm := |α| + |β|, 
and |α| =

∑r
i=1 αi, |β| =

∑t
i=1 βi.

Suppose there is a nonzero C-combination c :=
∑

m rmm of monomials (5.32) being 
zero. We fix a monomial m′ := c′ −1xα′

ef
′
x̄β′

w′d′ in c with nonzero coefficient rm′ 
= 0
which satisfies the following conditions:

(i) |α′| + |β′| is maximal;
(ii) f ′ is minimal among all monomials satisfying (i).

We take the basis element v = ⊗i∈J1vki
⊗ vλ ⊗ ⊗i∈J2 v̄ki

∈ BM (cf. (5.15)) such that 
(note that here is the place where we require condition r + t ≤ min{m, n})

(1) ki = i + α′
im if i ≺ 0;

(2) kī = i for 1 ≤ i ≤ f ′;
(3) kī = r + i + (1 − β′

i)m if f ′ < i ≤ t.

We define pv to be the maximal integer such that there exist pv pairs (i, ̄j) ∈ J1 × J2
satisfying ki − kj̄ ∈ {0, ±m}. Then from the choice of v, we have the following fact:

pv = f ′. (5.33)

Now take

u := (v)c′cd′ −1w′ −1 ∈ Mr,t, and b′ =
r∏

i=1
E

α′
i

i+m,i

t∏
i=1

E
β′
i

r+i+m,i+rvλ ∈ Kλ, (5.34)

such that b′ is a basis element in B with degree |α′| + |β′| by noting that 0 ≤ α′
i, β′

i ≤ 1. 
We denote Bb′

M to be the subset of BM consisting of elements with b′ being a tensor 
factor. We define the projection π̂b′ : Mr,t → ⊗i∈J\{0}Vi (cf. (5.9)) by mapping a basis 
element bM ∈ BM to zero if bM /∈ Bb′

M , or else to the element obtained from bM by 
deleting the tensor factor b′. Motivated by [7, IV, Corollary 3.3], we refer to π̂b′(u) as 
the b′-component of u. We want to prove π̂b′(u) 
= 0.
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Assume a monomial m in (5.32) appears in the expression of c with rm 
= 0. Consider 
the following element of Mr,t which contributes to u in (5.34),

u1 := (v)c′md′ −1w′ −1 = (v)c′c−1xαef x̄βwdd′ −1w′ −1

=
(⊗

i∈J1

vk(i)c′c−1 ⊗ vλ ⊗
⊗
i∈J2

v̄k(i)c′c−1

)
xαef x̄βwdd′ −1w′ −1, (5.35)

where the last equality follows by noting that elements in Sr × S̄t have natural right 
actions on J1 ∪ J2 by permutations. Write u1 as a C-combination of basis BM , and for 
bM ∈ BM , if bM appears as a term with a nonzero coefficient in the combination, then we 
say that u1 produces bM . By (5.17), (5.18), Definition 5.9 and condition (i), u1 cannot 
produce a basis element with degree higher than |α| + |β|. Thus the b′-component of u1
is zero if |α| + |β| < |α′| + |β′|. So we can assume |α| + |β| = |α′| + |β′| by condition (i). 
Then f ≥ f ′ by condition (ii).

Note from definitions (4.1) and (5.12) that

xi = −πi0(Ω)|Mr,t + some element of degree zero,

and ef = e1 · · · ef and ei = −πīi(Ω)|Mr,t (cf. (5.16)). By (5.19), we see that in order 
for u1 in (5.35) to produce a basis element bM in Bb′

M (note that bM ∈ Bb′

M has tensor 
factor b′ and all factors of b′ have the form Ei+m,i by (5.34)), we need at least f pairs 
(i, ̄j) ∈ J1 × J2 with ki − kj̄ ∈ {0, ±m} by (5.19). Thus we can suppose f = f ′ by (5.33)
and the fact that f ≥ f ′.

Set Jf ′ = (J1 ∪ J2) ∩ {i | f ′ � i � f̄ ′} (cf. (5.8)). If c 
= c′, then by definition (4.4), we 
have

j′ := (j)c′c−1 /∈ Jf ′ for some j ∈ Jf ′ . (5.36)

Say j′ ∈ J1 (the proof is similar if j′ ∈ J2), then f ′ < j′ ≤ r. Condition (1) shows that 
either f ′ < kj′ = j′ ≤ r or else f ′ + m < kj′ = j′ + m ≤ r + m. Then conditions (2) 
and (3) show that there is no �̄ ∈ J2 with kj′ − k�̄ ∈ {0, ±m}. Since all factors of b′ have 
the form Ei+m,i, we see that u1 cannot produce a basis element in Bb′

M . Thus we can 
suppose c = c′.

By conditions (1) and (2), we see that if αi 
= α′
i for some i with 1 ≤ i ≤ f , or 

αi = 1 
= α′
i for some i ∈ J1, then again u1 cannot produce a basis element in Bb′

M . Thus 
we suppose: αi = α′

i if 1 ≤ i ≤ f , and α′
i = 0 implies αi = 0 for i ∈ J .

Consider the coefficient χu1
b̃M

of the basis element ̃bM := ⊗i∈J1vi⊗b′⊗⊗i∈J2 v̄i+m in u1. 
If α′

i = 1 but αi = 0 for some i ∈ J , then u1 can only produce some basis elements which 
have at least a tensor factor, say v�, with � > m, and thus b̃M cannot be produced. Thus 
we can suppose α = α′. Dually, we can suppose β′ = β.

Now rewrite wdd′ −1w′ −1 as wdd′ −1w′ −1 = d̃d̃′ −1w′′, where d̃ = wdw−1, d̃′ = wd′w−1

and w′′ = ww′ −1. Note that w′′ ∈ Sr−f ′ × S̄t−f ′ , which only permutes elements of 
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(J1 ∪ J2)\Jf ′ . We see that if d̃ 
= d̃′, then as in (5.36), there exists some j ∈ Jf ′ with 
j′ := (j)d̃d̃′ −1w′′ /∈ Jj′ , thus b̃M cannot be produced. So assume d̃ = d̃′. Similarly we 
can suppose w′′ = 1.

The above has in fact proved that if the coefficient χu1
b̃M

is nonzero then u1 in (5.35)
must satisfy (c, α, f, β, d, w) = (c′, α′, f ′, β′, d′, w′), i.e., u1 = (v)xα′

ef
′
x̄β′ . In this case, 

one can easily verify that χu1
b̃M

= ±1. This proves that u defined in (5.34) is nonzero, 
a contradiction. The theorem is proven. �

Motivated by Theorems 5.7 and 5.10, we give the notion of level two walled Brauer 
algebras as follows.

Definition 5.11. For any m, n, r, t ∈ Z
≥1, p, q ∈ C, let Baff

r,t be the affine walled Brauer 
algebra defined over C with specialized parameters (5.29). The level two walled Brauer 
algebra Bp,q

r,t (m,n) is defined to be the cyclotomic quotient associative C-algebra

Bp,q
r,t (m,n) = Baff

r,t/〈(x1 + p)(x1 −m + q), (x̄1 − p + n)(x̄1 − q)〉. (5.37)

Without confusion, we use the same symbol to denote the corresponding element in 
Bp,q

r,t (m,n). Using arguments on the degree, we can easily see that the monomials in 
(5.32) span Bp,q

r,t (m,n) (as a space). Thus

dimC Bp,q
r,t (m,n) ≤ 2r+t(r + t)!, (5.38)

where the right-hand side is the total number of all monomials in (5.32).
As in [7, IV], we shall be mainly interested in the case when the Kac module Kλ

is typical, namely, either p − q /∈ Z or p − q ≤ −m or p − q ≥ n. In this case, the 
tensor module Mr,t is a tilting module. Using the vector space isomorphism Homg(M1⊗
V, M2) ∼= Homg(M1, M2 ⊗V ∗) for any two g-modules M1, M2, one can easily obtain the 
vector space isomorphism: Endg(Mr,t) ∼= Endg(Kλ⊗V ⊗(r+t)). Thus dimC Endg(Mr,t) =
2r+t(r + t)! by [7, IV].

Now we can state the main result of this section.

Theorem 5.12 (Super Schur–Weyl duality). Assume r+ t ≤ min{m, n}, and p − q /∈ Z or 
p − q ≤ −m or p − q ≥ n. The map φ : Bp,q

r,t (m,n) → Endg(Mr,t)op sending an element 
to the element with the same name is an algebra isomorphism. In particular, Bp,q

r,t (m,n)
is of dimension 2r+t(r + t)! over C with a basis consisting of monomials in (5.32).

Proof. Denote by A the subalgebra of Endg(Mr,t) generated by si, s̄j , x1, x̄1, e1. By 
Theorem 5.10, dimC A ≥ dimC Endg(Mr,t) = 2r+t(r + t)!, forcing Endg(Mr,t) = A. 
Using Theorem 5.7 yields an epimorphism from Baff

r,t to Aop killing the two-sided ideal 
〈(x1 + p)(x1 − m + q), (x̄1 − p + n)(x̄1 − q)〉 of Baff

r,t , thus induces an epimorphism φ :
Bp,q

r,t (m,n) → Aop. Thus dimC Bp,q
r,t (m,n) ≥ dimC A. This together with (5.38) implies 

that φ is an isomorphism. Thus monomials in (5.32) form a basis of Bp,q
r,t (m,n). �
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Remark 5.13. Theorem 5.12 is in fact the first and second fundamental theorems of 
invariant theory for the endomorphism algebra Endg(Mr,t) for the case r+t ≤ min{m, n}
(see, e.g., [24]).

Remark 5.14. Level two walled Brauer algebras Bp,q
r,t (m,n) heavily depend on parameters 

p − q, r, t, m, n, in sharp contrast to level two Hecke algebras Hp,q
r (or H2,r) in [7, IV], 

which only depend on p − q and r.

We are now going to determine when Bp,q
r,t (m,n) is semisimple. For this purpose, 

we need the following result, which is a slight generalization of [33, Lemma 5.2] and 
[34, Lemma 3.6], where a g-highest weight of Mr,t means a weight μ ∈ h∗ such that 
there exists a nonzero g-highest weight vector v ∈ Mr,t with weight μ (i.e., v is a vector 
satisfying Eiiv = μiv, Ejiv = 0 for 1 ≤ i < j ≤ m + n).

Lemma 5.15. We keep the assumption of Theorem 5.10, and assume μ ∈ h∗ is a g-highest 
weight of Mr,t. Then |μ| = |λ| + r− t and −t ≤

∑
i∈S(μi−λi) ≤ r for any subset S ⊂ I, 

where |λ|, |μ| are sizes of λ, μ (cf. (5.4)).

Proof. Let wμ be a g-highest weight vector with weight μ, and write wμ in terms of 
basis BM in (5.15). As in the proofs of [33, Lemma 5.2] and [34, Lemma 3.6], wμ must 
contain a basis element, say bM , with degree 0 (cf. Definition 5.9), i.e., bM has the form 
w1 ⊗ vλ ⊗ w2 for some w1 ∈ V ⊗r and w2 ∈ (V ∗)⊗t such that w1 (resp., w2) is a weight 
vector with some weight η (resp., ζ) of size r (resp., −t) satisfying ηi ∈ Z

≥0 (resp., 
ζi ∈ Z

≤0) for all i ∈ I. The result follows. �
Theorem 5.16. We keep the assumption of Theorem 5.12, then Bp,q

r,t (m,n) is semisimple 
if and only if p − q /∈ Z or p − q ≤ −m − r or p − q ≥ n + t.

Proof. First assume p − q ∈ Z and p − q ≤ −m − r. Let μ ∈ h∗ be a g-highest weight of 
Mr,t. For 1 ≤ i ≤ m < j ≤ m + n, by definition of (5.5), we have (hereafter we define 
the partial order on C such that a ≤ b if and only if b − a is a nonnegative real number)

μρ
i + μρ

j = μi + μj + 1 + 2m− i− j

≤ λi + λj + r + 1 + 2m− 1 − (m + 1)

= p + m + r − q − 1,

which is strictly less than zero, i.e., μ is a typical integral dominant weight, where the 
inequality follows from Lemma 5.15 and i ≥ 1, j ≥ m + 1. By [18], Mr,t is a completely 
reducible module which can be decomposed as a direct sum of typical finite dimensional 
simple modules: Mr,t = ⊕μ∈TL

⊕kμ
μ , where T is a finite set consisting of typical integral 

dominant weights, and kμ ∈ Z
≥1. Thus Bp,q

r,t (m,n) ∼= Endg(Mr,t)op ∼= ⊕μ∈TMkμ
is a 
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semisimple associative algebra, where Mkμ
is the algebra of matrices of rank kμ. The 

case p − q /∈ Z or p − q ≥ n + t can be proven similarly.
Now suppose p − q ∈ Z and q −m − r < p < q + n + t. This together with condition 

(5.7) shows that either |p − q +m|, the absolute value of difference of two eigenvalues of 
x1, is an integer < r, or, |p − q − n|, the absolute value of difference of two eigenvalues 
of x̄1, is an integer < t. Thus by [2, Theorem 6.1], either the level two degenerate 
Hecke algebra H2,r := H aff

r /〈(x1 + p)(x1 − m + q)〉 (cf. Proposition 4.18(3)) is not 
semisimple or else H̄2,t := H̄ aff

t /〈(x̄1 − p + n)(x̄2 − q)〉 is not semisimple. In any case, 
H2,r ⊗ H̄2,t = Bp,q

r,t (m,n)/〈e1〉 is not semisimple. As a result, Bp,q
r,t (m,n), the preimage 

of H2,r ⊗ H̄2,t, cannot be semisimple. �
In the next two sections, we shall study Bp,q

r,t (m,n) for given m, n (with the assumption 
r+t ≤ min{m, n}), thus we omit (m, n) from the notation, and simply denote it by Bp,q

r,t . 
When there is no confusion, the notation is further simplified to B.

6. Weakly cellular basis of level two walled Brauer algebras

In this section, we shall use Theorem 5.12 to construct a weakly cellular basis of 
B = Bp,q

r,t (m, n) over C for m, n, r, t ∈ Z
≥1, p, q ∈ C such that r + t ≤ min{m, n}.

First recall that a partition of k ∈ Z
≥0 is a sequence of non-negative integers λ =

(λ1, λ2, . . . ) such that λi ≥ λi+1 for all positive integers i and |λ| := λ1 + λ2 + · · · = k. 
Let Λ+(k) be the set of all partitions of k. A bipartition of k is an ordered 2-tuple of 
partitions λ = (λ(1), λ(2)) such that |λ| := |λ(1)| + |λ(2)| = k.

Let Λ+
2 (k) be the set of all bipartitions of k. Then Λ+

2 (k) is a poset with the dominance 

order � as the partial order on it. More explicitly, we say λ = (λ(1), λ(2)) is dominated 
by μ = (μ(1), μ(2)) and write μ � λ if

i∑
j=1

λ
(1)
j ≤

i∑
j=1

μ
(1)
j and |λ(1)| +

�∑
j=1

λ
(2)
j ≤ |μ(1)| +

�∑
j=1

μ
(2)
j , (6.1)

for all possible i, �’s. We write μ � λ if μ � λ and λ 
= μ.
For each partition λ of k, the Young diagram [λ] is a collection of boxes arranged in 

left-justified rows with λi boxes in the i-th row of [λ]. If λ = (λ(1), λ(2)) ∈ Λ+
2 (k), then the 

corresponding Young diagram [λ] is ([λ(1)], [λ(2)]). In this case, a λ-tableau s = (s1, s2)
is obtained by inserting i, 1 ≤ i ≤ k into [λ] without repetition.

A λ-tableau s is said to be standard if the entries in s1 and s2 increase both from left 
to right in each row and from top to bottom in each column. Let T std(λ) be the set of 
all standard λ-tableaux.

Definition 6.1. We define
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• tλ to be the λ-tableau obtained from the Young diagram [λ] by inserting 1, 2, · · · , k
from left to right along the rows of [λ(1)] and then [λ(2)];

• tλ to be the λ-tableau obtained from [λ] by inserting 1, 2, · · · , k from top to bottom 
along the columns of [λ(2)] and then [λ(1)].

For example, if λ = ((3, 2, 1), (2, 1)), then

tλ =

⎛⎝ 1 2 3
4 5
6

, 7 8
9

⎞⎠ and tλ =

⎛⎝ 4 7 9
5 8
6

, 1 3
2

⎞⎠ . (6.2)

The symmetric group Sk acts on a λ-tableau s by permuting its entries. For w ∈ Sk, 
if tλw = s, we write d(s) = w. Then d(s) is uniquely determined by s.

Given a λ ∈ Λ+
2 (k), let Sλ be the row stabilizer of tλ. Then Sλ (sometimes denoted as 

Sλ̄) is the Young subgroup of Sk with respect to the composition λ̄, which is obtained 
from λ by concatenation. For example, λ̄ = (3, 2, 1, 2, 1) if λ = ((3, 2, 1), (2, 1)).

Recall that H aff
r is the degenerate affine Hecke algebra generated by Si’s and Yj ’s 

(cf. Definition 4.17). Let H2,r = H aff
r /I, where I = 〈(Y1 − u)(Y1 − v)〉 is the two-sided 

ideal of H aff
r generated by (Y1−u)(Y1−v) for u, v ∈ C. Then H2,r is known as the level 

two degenerate Hecke algebra with parameters u, v. As mentioned in Proposition 4.18, 
our current elements x1, x̄1, which are two generators of Baff

r,t , correspond to −Y1 in 
Definition 4.17. Thus, when we use the construction of cellular basis for H2,r in [2], we 
need to use −Y1, −u, −v instead of Y1, u, v, respectively. By abusing of notations, we 
will not distinguish between them. The following definition on mλ

st is a special case of 
that in [2] for degenerate Hecke algebra Hr,m of type G(r, 1, m).

Suppose λ = (λ(1), λ(2)) ∈ Λ+
2 (r) with a = |λ(1)|. We set π0 = 1 if a = 0, and 

πa = (x1 − v)(x2 − v) · · · (xa − v) for a ≥ 1. Let

mλ
st = d(s)−1πamλ̄d(t), (6.3)

where s, t ∈ T std(λ) and mλ̄ =
∑

w∈Sλ̄
w. In the following, we shall always omit the λ

from notations mλ
st, Cλ

st, etc., and simply denote them as mst, Cst, etc.

Definition 6.2. (See [14].) Let A be an algebra over a commutative ring R containing 1. 
Fix a partially ordered set Λ = (Λ, �), and for each λ ∈ Λ, let T (λ) be a finite set. 
Further, fix Cst ∈ A for all λ ∈ Λ and s, t ∈ T (λ). Then the triple (Λ, T, C) is a cell 
datum for A if:

(1) C := {Cst | λ ∈ Λ, s, t ∈ T (λ)} is an R-basis for A;
(2) the R-linear map ∗ : A → A determined by (Cst)∗ = Cts for all λ ∈ Λ and all 

s, t ∈ T (λ) is an anti-involution of A;
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(3) for all λ ∈ Λ, s ∈ T (λ) and a ∈ A, there exist scalars rtu(a) ∈ R such that

Csta =
∑

u∈T (λ)

rtu(a)Csu (mod A�λ),

where A�λ = spanR{Cμ
uv | μ � λ, u, v ∈ T (μ)}. Furthermore, each scalar rtu(a) is 

independent of s.

An algebra A is a cellular algebra if it has a cell datum. We call C a cellular basis of A.

The notion of weakly cellular algebras in [13, Definition 2.9] is obtained from Defini-
tion 6.2 with condition (2) replaced by: there exists an anti-involution ∗ of A satisfying

(Cst)∗ ≡ Cts (mod A�λ). (6.4)

The results and proofs of [14] are equally valid for weakly cellular algebras, so in the 
remainder of the paper we will not distinguish between cellular algebras and weakly 
cellular algebras.

We remark that [2, Theorem 6.3] holds over any commutative ring containing 1. In 
this paper, we need its special case below.

Theorem 6.3. (See [2].) The set {mst | s, t ∈ T std(λ), λ ∈ Λ+
2 (r)} with mst defined in 

(6.3) is a cellular basis of H2,r over C.

Now, we construct a weakly cellular basis of B over C. Fix r, t, f ∈ Z
>0 with f ≤

min{r, t}. We need to introduce more notations. In contrast to (4.3), we define the 
following subgroups of Sr, Sr × S̄t and S̄t respectively,

Sr−f = 〈sj | 1 ≤ j < r − f〉,

Gf = 〈s̄t−isr−i | 1 ≤ i < f〉,

S̄t−f = 〈s̄j | 1 ≤ j < t− f〉. (6.5)

Let Df
r,t be the set consisting of the following elements:

c := sr−f+1,ir−f+1 s̄t−f+1,jt−f+1 · · · sr,ir s̄t,jt with r ≥ ir > · · · > ir−f+1 and jk ≤ t− k.

(6.6)

Then by arguments similar to those for Lemma 4.9, Df
r,t is a complete set of right coset 

representatives for Sr−f × Gf × S̄t−f in Sr × S̄t. Let

Λ2,r,t =
{
(f, (λ, μ)) | (λ, μ) ∈ Λ+

2 (r − f) × Λ+
2 (t− f), 0 ≤ f ≤ min{r, t}

}
. (6.7)
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Definition 6.4. For (f, λ, μ), (�, α, β) ∈ Λ2,r,t, we define

(f, (λ, μ)) � (�, (α, β)) ⇐⇒ either f > � or f = � and λ �1 α, μ �2 β,

where in case f = �, the orders �1 and �2 are dominance orders on Λ+
2 (r − f) and 

Λ+
2 (t − f) respectively (cf. (6.1)). Then (Λ2,r,t, �) is a poset.

For each c ∈ Df
r,t, as in (6.6), let κc be the r-tuple

κc = (k1, . . . , kr) ∈ {0, 1}r such that ki = 0 unless i = ir, ir−1, . . . , ir−f+1. (6.8)

Note that κc may have more than one choice for a fixed c, and it may be equal to κd

although c 
= d for c, d ∈ Df
r,t. We set xκc =

∏r
i=1 x

ki
i . By Lemma 4.5,

cxκc = sr−f+1,ir−f+1x
kir−f+1
ir−f+1

· · · sr−1,ir−1x
kir−1
ir−1

sr,irx
kir
ir

s̄t−f+1,jt−f+1 · · · s̄t,jt . (6.9)

For each (f, λ) ∈ Λ2,r,t (thus λ is now a pair of bipartitions), let

δ(f, λ) = {(t, c, κc) | t ∈ T std(λ), c ∈ Df
r,t and κc ∈ Nf}, (6.10)

where Nf = {κc | c ∈ Df
r,t}. We remark that in (6.10), λ = (λ(1), λ(2)) with λ(1) ∈

Λ+
2 (r − f) and λ(2) ∈ Λ+

2 (t − f), and t = (t(1), t(2)) with t(i) being a λ(i)-tableau for 
i = 1, 2. In contrast to (4.5), we define

ef = er,ter−1,t−1 · · · er−f+1,t−f+1 if f ≥ 1, and e0 = 1. (6.11)

Definition 6.5. For each (f, λ) ∈ Λ+
2,r,t and (s, κd, d), (t, κc, c) ∈ δ(f, λ), we define

C(s,κd,d)(t,κc,c) = xκdd−1efmstcx
κc , (6.12)

where mst is a product of cellular basis elements for H2,r−f and H2,t−f described in 
Theorem 6.3.

We remark that an element in H2,r−f (generated by s1, · · · , sr−f−1 and x1) may 
not commute with an element of H2,t−f (generated by s̄1, · · · , ̄st−f−1 and x̄1). So, we 
always fix mst as the product ab, such that a (resp., b) is obtained from the corresponding 
cellular basis element of H2,r−f (resp. H2,t−f ) described in Theorem 6.3 by using −x1, 
p, q −m (resp. −x̄1, −q, n − p) instead of Y1, u, v, respectively.

Let I be the two-sided ideal of B generated by e1. By Proposition 4.18(2), there is a 
C-algebra isomorphism εr,t : H2,r × H2,t ∼= B/I such that

εr,t(si) = si + I, εr,t(s̄j) = s̄j + I, εr,t(xk) = xk + I, εr,t(x̄�) = x̄� + I, (6.13)

for all possible i, j, k, �’s.
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For each f with 0 ≤ f ≤ min{r, t}, let B(f) be the two-sided ideal of B generated 
by ef . Then there is a filtration of two-sided ideals of B as follows:

B = B(0) ⊃ B(1) ⊃· · · ⊃ B(k) ⊃ B(k + 1) = 0, where k = min{r, t}.

Definition 6.6. Suppose 0 ≤ f ≤ min{r, t} and λ ∈ Λ+
2 (r−f) ×Λ+

2 (t −f). Define B�(f,λ)

to be the two-sided ideal of B generated by B(f + 1) and S, where

S = {efmst|s, t ∈ T std(μ) and μ ∈ Λ+
2 (r − f) × Λ+

2 (t− f) with μ � λ}.

We also define B�(f,λ) =
∑

μ�λ B�(f,μ), where μ ∈ Λ+
2 (r − f) × Λ+

2 (t − f).

By Theorem 5.12, Bp,q
r−f,t−f can be embedded into B, thus we regard it as a subalgebra 

of B.

Lemma 6.7. Suppose d ∈ Df
r,t with 0 ≤ f < min{r, t}. Then ef 〈e1〉 ⊂ B(f + 1), where 

〈e1〉 is the two-sided ideal of Bp,q
r−f,t−f generated by e1.

Proof. By assumption, we have r − f ≥ 1 and t − f ≥ 1. It is easy to check that ef
commutes with any element in Bp,q

r−f,t−f . Since er−f,t−f = s̄t−f,1sr−f,1e1s1,r−f s̄1,t−f , 
we have efe1 ∈ B(f + 1), proving the result. �

For 0 ≤ f ≤ min{r, t}, let πf,r,t : B(f) → B(f)/B(f + 1) be the canonical epimor-
phism. Since both B(f) and B(f + 1) are B-bimodules, πf,r,t is a homomorphism as 
B-bimodules. The following result follows from (6.13) and Lemma 6.7, immediately.

Lemma 6.8. For each f ∈ Z
≥0 with f < min{r, t}, there is a well-defined C-homo-

morphism σf : H2,r−f × H2,t−f → B(f)/B(f + 1) such that

σf (h) = efεr−f,t−f (h)′ + B(f + 1) for h ∈ H2,r−f × H2,t−f ,

where εr−f,t−f (h)′ is the preimage of the element εr−f,t−f (h) ∈ Bp,q
r−f,t−f/I in Bp,q

r−f,t−f , 
where I is the two-sided ideal of Bp,q

r−f,t−f generated by e1.

Lemma 6.9. Suppose λ ∈ Λ2,r,t and 0 ≤ f ≤ min{r, t}. For any s, t ∈ T std(λ),

(1) efmst = mste
f ∈ B(f).

(2) σf (mst) = πf,r,t(efmst).
(3) σ(efmst) ≡ efmst (mod B�(f,λ)), where σ is the anti-involution on B induced from 

that in Lemma 4.1.

Proof. By Lemma 4.7(1), ei,j(xk +Lk) = (xk+Lk)ej,n if i 
= k. Furthermore, ei,j(�, k) =
(�, k)ei,j if 1 ≤ � < k < i. So, ei,jLk = Lkei,j , forcing ei,jxk = xkei,j . Similarly, ei,j x̄k =
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x̄kei,j for k < j. So, efmst = mste
f . The second assertion is trivial. By Lemma 4.6(3), 

xix̄j ≡ x̄jxi (mod J), where J is the two-sided ideal of Bp,q
r−f,t−f generated by e1. Now, 

(3) follows from Lemma 6.7 and (1). �
Recall that the degree of a monomial m ∈ B in (5.32) is |α| +|β| =

∑r
i=1 αi+

∑t
j=1 βj . 

So, B is a filtered algebra, which associates to a Z-graded algebra gr(B) defined the same 
as in (4.2).

The following is motivated by Song and one of authors’ work on q-walled Brauer 
algebras [29].

Proposition 6.10. Fix r, t, f ∈ Z
>0 with f ≤ min{r, t}. Let Mf be the left Bp,q

r−f,t−f -module 
generated by

V f
r,t = {efdxκd | (d, κd) ∈ Df

r,t × Nf}. (6.14)

Then Mf is a right B-module.

Proof. We prove the result by induction on the degree of efdxκd . If the degree is 0, then 
efdxκd = efd. By the result on the walled Brauer algebra (which is the special case of 
[29, Proposition 2.9]), we have efdh ∈ Mf for any h ∈ Br,t(ω0). Note that Br,t(ω0) is a 
subalgebra of B.

Now, we consider efdx1, where d has the form in (6.6). If ij = 1 for some j ≥ r−f+1, 
then j = r − f + 1 and efdx1 ∈ V f

r,t. Otherwise, we have (1)d = 1, and dx1 = x1d. Note 
that r − f + 1 ≥ ir−f+1 > 1, we have efx1d = x1e

fd ∈ Mf .
We have efdx̄1 = ef x̄kd + efw for some k, 1 ≤ k ≤ t and some w ∈ CSr × CS̄t. By 

corresponding result for walled Brauer algebras, we have efw ∈ Mf . If k ≤ r − f , by 
Lemma 4.7, ef x̄kd can be replaced by x̄ke

fd ∈ Mf . If k ≥ r − f + 1, by Lemma 4.6(2), 
we can use xk instead of x̄k in ef x̄kd. So, the required result follows from our previous 
arguments on si, s̄j and x1. This completes the proof when the degree of efdxκ is 0.

Suppose the degree of efdxκd is not 0. We want to prove efdxκdh ∈ Mf for any 
generators h of B.

Case 1: h ∈ S̄t. We have xκdh = hxκd . By our previous result on degree 0, we have 
efdh ∈ Mf . Therefore, we need to check ef (dh)xκd ∈ Mf . If xj is a term of xκd , by 
induction on the degree, we have efdhx ∈ Mf , where x is obtained from xκd by removing 
the factor xj . So, efdhxκd ∈ Mf by inductive assumption on deg(efdhxκd) − 1.

Case 2: h ∈ Sr. We have xκdh = hx in gr(B), where x is obtained from xκd by permuting 
some indices. By inductive assumption, it suffices to verify efdhx ∈ Mf with deg(x) =
deg(xκd). This has already been verified in Case 1.

Case 3: h = x1. If x1 is a factor of xκd , we have x2
1 = (p +q−m)x1−p(q−m) (cf. (5.30)). 

So, efdxκdx1 ∈ Mf by inductive assumption on deg(efdxκd) − 1. If x1 is not a factor of 
xκd , and if ir−f+1 = 1, where d has the form in (6.6), then there is nothing to be proven. 
Otherwise, ir−f+1 > 1 and efdxκdx1 = x1e

fdxκd ∈ Mf .
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Case 4: h = x̄1. By Lemma 4.6(1), xκd x̄1 = x̄1x
κd in gr(B). So, the result follows from 

inductive assumption on degree and our previous results in Cases 2–3.

Case 5: h = e1. We can assume xκd = x1. Otherwise, the result follows from Lemma 4.7, 
inductive assumption and our previous results in Cases 1–3. In this case, ir−f+1 = 1 and 
er−f+1,t−f+1d = de1,j for some j, 1 ≤ j ≤ t. So, efdx1e1 = ef−1de1,jx1e1.

If j = 1, the required result follows from the equality e1x1e1 = (nq−mp)e1 (cf. (5.29)). 
Otherwise, by Lemmas 4.6 and 4.7,

e1,jx1e1 = −x̄1e1,je1 = −e1,j x̄1(1̄, j̄).

So, we need to verify ef−1de1,j x̄1(1̄, ̄j) = efdx̄1(1̄, ̄j) ∈ Mf , which follows from our 
previous results in Cases 1, 2 and 4. This completes the proof of Proposition 6.10. �
Proposition 6.11. Suppose (f, λ) ∈ Λ2,r,t. Then ΔR(f, λ) (resp., ΔL(f, λ)) is a right
(resp., left) B-module, where

• ΔR(f, λ) is C-spanned by {efmtλsdx
κd + B�(f,λ) | (s, d, κd) ∈ δ(f, λ), and

• ΔL(f, λ) is C-spanned by {d−1efmstλ + B�(f,λ) | (s, d, κd) ∈ δ(f, λ)}.

Proof. We remark that xix̄j = x̄jxi in ΔR(f, λ) (resp., ΔL(f, λ)) for all possible i, j’s. 
So, the result follows from Proposition 6.10 and Theorem 6.3 on the cellular basis of 
level two degenerate Hecke algebras H2,r−f × H2,t−f . �
Theorem 6.12. Let m, n, r, t ∈ Z

≥1, p, q ∈ C such that r + t ≤ min{m, n}. The set

C = {C(s,κc,c)(t,κd,d) | (s, κc, c), (t, κd, d) ∈ δ(f, λ),∀(f, λ) ∈ Λ2,r,t},

is a weakly cellular basis B = Bp,q
r,t (m, n) over C.

Proof. Suppose 0 ≤ f ≤ min{r, t}. By Proposition 6.11, B(f)/B(f + 1) is spanned by 
C(s,c,κc)(t,d,κd) + B(f + 1) for all (s, c, κc), (t, d, κd) ∈ δ(f, λ) and λ ∈ Λ2,r−f,t−f . So, 
B is spanned by C. Counting the cardinality of C yields |C| = 2r+t(r + t)!, which is the 
dimension of B, stated in Theorem 5.12. So, C is a C-basis of B. By Lemma 6.9(3) and 
Proposition 6.11, it is a weakly cellular basis in the sense of (6.4). �
Remark 6.13. If we consider level two walled Brauer algebras over a commutative ring 
containing 1, and if we know its rank is equal to 2r+t(r + t)!, then all results in this 
section hold. We will prove it in [30].

7. Irreducible modules for BBB

In this section, we classify simple B-modules over C via Theorem 6.12. So, we assume 
r + t ≤ min{m, n}.
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First, we briefly recall the representation theory of cellular algebras [14]. At moment, 
we keep the notations in Definition 6.2. So, R is a commutative ring R containing 1 and A
is a (weakly) cellular algebra over R with a weakly cellular basis {Cst | s, t ∈ T (λ), λ ∈ Λ}. 
We consider the right A-module in this section.

Recall that each cell module C(λ) of A is the free R-module with basis {Cs | s ∈ T (λ)}, 
and every simple A-module arises in a unique way as the simple head of some cell 
module [14]. More explicitly, each C(λ) comes equipped with the invariant form φλ

which is determined by the equation

CstCt′s ≡ φλ

(
Ct, Ct′

)
· Css (mod A�λ).

Consequently,

RadC(λ) = {x ∈ C(λ) |φλ(x, y) = 0 for all y ∈ C(λ)},

is an A-submodule of C(λ) and Dλ = C(λ)/RadC(λ) is either zero or absolutely simple. 
Graham and Lehrer [14] proved the following result.

Theorem 7.1. (See [14].) Let (A, Λ) be a (weakly) cellular algebra over a field F . The 
set {Dλ | Dλ 
= 0, λ ∈ Λ} consists of a complete set of pairwise non-isomorphic simple 
A-modules.

By Theorem 6.12, we have cell modules C(f, λ) with (f, λ) ∈ Λ2,r,t for B. In fact, 
it is ΔR(f, λ) in Proposition 6.11 up to an isomorphism. Let φf,λ be the corresponding 
invariant form on C(f, λ). We use Theorem 7.1 to classify the simple B-module over C.

Let H2,r−f (resp., H2,t−f ) be the level two Hecke algebra which is isomorphic to the 
subalgebra of Bp,q

r−f,t−f generated by s1, s2, · · · , sr−f−1 and x1 (resp., s̄1, ̄s2, · · · , ̄st−f−1

and x̄1). So, the eigenvalues of x1 (resp., x̄1) are given in (5.30). By Theorem 6.3,

{mst | s, t ∈ T std(λ), λ ∈ Λ+
2 (r − f) × Λ+

2 (t− f)}

is a cellular basis of H2,r−f ×H2,t−f . We remark that mst is a product of cellular basis 
elements of H2,r−f and H2,t−f described in Theorem 6.3.

Let C(λ) be the cell module with respect to λ ∈ Λ2,r−f ×Λ2,t−f for H2,r−f ×H2,t−f . 
Let φλ be the invariant form on C(λ). For simplicity, we use H(2, f) to denote H2,r−f ×
H2,t−f .

Proposition 7.2. Suppose r, t ∈ Z
≥2. We have er,tB

p,q
r,t er,t ⊆ er,tB

p,q
r−1,t−1.

Proof. Recall that Bp,q
r,t is a (weakly) cellular algebra with cellular basis given in Theo-

rem 6.12. So, it suffices to verify

er,tC(s,κd,d)(t,κc,c)er,t ∈ er,tB
p,q
r−1,t−1, (7.1)
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where C(s,κd,d)(t,κc,c) = xκdd−1efmstcx
κc (cf. (6.12)).

Let f = 0. Since mst is a combination of monomials of form 
∏r

i=1 x
αi
i w1w̄1

∏t
i=1 x̄

βi

i , 
it suffices to verify

er,t

r∏
i=1

xαi
i w1w̄1

t∏
i=1

x̄βi

i er,t ∈ er,tB
p,q
r−1,t−1 (7.2)

We prove (7.2) by induction on the degree of 
∏r

i=1 x
αi
i w1w̄1

∏t
i=1 x̄

βi

i . The case for 
degree 0 follows from [10, Proposition 2.1]. In general, we assume that αi = 0 for 
1 ≤ i ≤ r − 1 and βj = 0 for 1 ≤ j ≤ t − 1. Otherwise, (7.2) follows from induc-
tive assumption and the equalities er,txi = xier,t and er,tx̄j = x̄jer,t for i 
= r and 
j 
= t.

By symmetry, we assume αr = 1. Write w1 = sr,kw2 for some k, 1 ≤ k ≤ r and some 
w2 ∈ Sr−1. Since any element in Sr−1 commutes with s̄j ∈ S̄t, x̄t and er,t, we can 
assume w1 ∈ {1, sr−1}.

If w1 = 1, by Lemma 4.6 (2), it suffices to verify er,tx̄tw̄1x̄
βt

t er,t ∈ er,tB
p,q
r−1,t−1. In 

this case, we have x̄tw̄1 = w̄1x̄k + h for some h ∈ CS̄t and some k with (t̄)w̄1 = k̄. By 
induction on degree, we need to verify

er,tw̄1x̄kx̄
βt

t er,t ∈ er,tB
p,q
r−1,t−1. (7.3)

By Lemma 4.7 (2), and inductive assumption on degree, we have (7.3) if k 
= t. Otherwise, 
we have k = t and w̄1 ∈ S̄t−1. So, er,tw̄1 = w̄1er,t. By induction on degree, we use 
(x̄t + L̄t)1+βt instead of x̄tx̄

βt

t in er,tx̄tx̄
βt

t er,t. So, the result follows from Lemma 4.8(2). 
This verifies (7.2) provided f = 0.

Suppose f > 0. By (6.12), we rewrite (7.1) as follows:

er,tx
κdd−1efmstcx

κcer,t ∈ er,tB
p,q
r−1,t−1. (7.4)

Applying our previous result for f = 0 on er,txκdd−1ef and efmstcx
κcer,t and noting 

that ef = er,t · · · er−f+1,t−f+1, we have (7.4) as required. �
By recalling the definitions of ω0 and ω1 in (5.29), we see that ω0 = ω1 = 0 if and 

only if m = n and p = q. For any λ ∈ Λ+
2 (r− f) ×Λ+

2 (t − f) and t ∈ T std(λ), we define 
mt = mtλt + H(2, f)�λ, where H(2, f) is given above Proposition 7.2.

Lemma 7.3. Let B be the level two walled Brauer algebra defined over C. Suppose (f, λ) ∈
Λ2,r,t and f 
= r if r = t. Then φf,λ 
= 0 if and only if φλ 
= 0.

Proof. If r 
= t or if r = t and f 
= r, then either sr,r−f or s̄t,t−f is well-defined. We 
denote such an element by w. So, efwef = ef .
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If φλ 
= 0, then φλ(ms, mt) 
= 0 for some s, t ∈ T std(λ). We have φf,λ 
= 0 since

mtλse
fwefmttλ ≡ φλ(ms,mt)efmtλtλ (mod B�(f,λ)).

We remark that xix̄j = x̄jxi in C(f, λ) for 1 ≤ i ≤ r−f and 1 ≤ j ≤ t −f (cf. Lemma 4.6
and Lemma 6.7).

Conversely, if φf,λ 
= 0, then

φf,λ(efmsdx
κd , efmtcx

κc) 
= 0,

for some (s, d, κd), (t, c, κc) ∈ δ(f, λ). We have φλ 
= 0. Otherwise,

mtλshmttλ ≡ 0 (mod H(2, f)�λ),

for all h ∈ H(2, f). Using Proposition 7.2 repeatedly, we have

efmtλscd
−1efmttλ ≡ mtλshmttλe

f (mod B(f + 1)),

for some h ∈ H(2, f), forcing φf,λ(efmsdx
κd , efmtcx

κc) = 0, a contradiction. �
Lemma 7.4. Let B be the level two walled Brauer algebra defined over C with r = t. Then 
φr,0 
= 0 if at least one of ω0 and ω1 is non-zero. Otherwise, φr,0 = 0.

Proof. Suppose ω0 
= 0. We have φr,0 
= 0 since ef ef = ωf
0 e

f . Otherwise, ω0 = m −n = 0, 
forcing m = n and ω1 = n(q − p). We consider erer−1 · · · e1

∏r
i=1(xi + Li) (where the 

product is in any order) and erer−1 · · · e1 in the cell module C(r, 0). By Lemma 4.8(2),

erer−1 · · · e1

r∏
i=1

(xi + Li)erer−1 · e1 = ωr
1erer−1 · · · e1.

We have φr,0 
= 0 if ω1 
= 0.
Finally, we assume ω0 = ω1 = 0 and r = t. In this case, we have m = n and p = q. 

We claim that φr,0 = 0.
In fact, for any two basis elements ercxκc and erdxκd in C(r, 0) with c, d ∈ Dr

r,r, by 
using Proposition 7.2 repeatedly, we have

ercxκcxκdd−1er ∈ er−1e1B
p,q
1,1e1. (7.5)

However, since we are assuming that ω0 = ω1 = 0, it is routine to check e1B
p,q
1,1e1 = 0. 

So, φr,0 = 0, as required. �
In [21], Kleshchev classified the simple modules for degenerate cyclotomic Hecke al-

gebra Hr,n over an arbitrary field via Kleshchev multipartitions of n. As mentioned in 
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[2, page 130], one could not say that φλ 
= 0 if and only if λ is a Kleshchev multipartition. 
In our case, since level two walled Brauer algebras are only related to representations of 
cyclotomic degenerate Hecke algebras (more explicitly, level two Hecke algebras) over C, 
we can use Vazirani’s result [36, Theorem 3.4]. In fact, it is not difficult to prove that 
there is an epimorphism from a standard module in [36, Theorem 3.4] to a cell module 
for degenerate cyclotomic Hecke algebra. So, φλ 
= 0 if and only if λ is Kleshchev in the 
sense of [36, p273]. We recall the definition as follows. For our purpose, we only consider 
bipartitions.

Definition 7.5. Fix u1, u2 ∈ C with u1 − u2 ∈ Z. A bipartition λ = (λ(1), λ(2)) ∈ Λ+
2 (n)

of n is called a Kleshchev bipartition with respect to u1, u2 if

λ
(1)
u1−u2+i ≤ λ

(2)
i for all possible i.

If u1 − u2 /∈ Z, then we say that all bipartitions of n are Kleshchev bipartitions.

Since we consider a pair of bipartitions (λ(1), λ(2)), where λ(1) ∈ Λ+
2 (r − f) and 

λ(2) ∈ Λ+
2 (t − f) for all f, 0 ≤ f ≤ min{r, t}, we say that λ is Kleshchev if both 

λ(1) and λ(2) are Kleshchev with respect to the parameters u1 = p, u2 = q − m and 
u1 = −q, u2 = n − p respectively. The following result follows from Lemmas 7.3, 7.4 and 
our previous arguments immediately.

Theorem 7.6. Let B = Bp,q
r,t (m, n) be the level two walled Brauer algebra over C with 

condition r + t ≤ min{m, n}.

(1) Suppose either r 
= t or r = t and one of ω0, ω1 is non-zero. Then the set of pairwise 
non-isomorphic simple B-modules are indexed by

S = {(f, λ) ∈ Λ2,r,t | 0 ≤ f ≤ min{r, t}, λ being Kleshchev}.

(2) If r = t and ω0 = ω1 = 0, then the set of pairwise non-isomorphic simple B-modules 
are indexed by {(f, λ) ∈ Λ2,r,t | 0 ≤ f < r, λ being Kleshchev}.

We close the paper by giving a classification of non-isomorphic indecomposable direct 
summands of glm|n-modules Mr,t (cf. (5.9)) provided that M = Kλ is typical. Such 
direct summands are called indecomposable tilting modules of glm|n.

Theorem 7.7. Assume r + t ≤ min{m, n}.

(1) If p − q ∈ Z with either p − q ≤ −m or p − q ≥ n, then Mr,t (cf. (5.9)) is a tilting 
module and the non-isomorphic indecomposable direct summands of Mr,t are indexed 
by {(f, μ) ∈ Λ2,r,t | 0 ≤ f ≤ min{r, t}, μ being Kleshchev}.

(2) If p − q /∈ Z, then the non-isomorphic indecomposable direct summands of Mr,t are 
simple and indexed by Λ2,r,t.
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Proof. Under the assumptions in (1) and (2), the Kac module Kλpq
is typical and at 

least one of ω0 and ω1 is non-zero. In this case, Mr,t is a tilting module (see, e.g., [7, IV]
for the case t = 0, from which one sees that it holds in general). By Theorem 5.12 and 
arguments similar to those in [5, §2] or [1, §5], there is a bijection between the set of 
non-isomorphic indecomposable direct summands of Mr,t and the simple modules of B. 
So, (1)–(2) follows from Theorem 7.6(1). (In fact, we will give an explicit relationship 
between indecomposable direct summands of Mr,t and simple modules for Bp,q

r,t in [30], 
and further we will compute decomposition numbers of Bp,q

r,t arising from the super 
Schur–Weyl duality.) In particular, if p − q /∈ Z, all partitions λ ∈ Λ+

2 (r− f) ×Λ+
2 (t − f)

are Kleshchev. We remark that (2) also follows from Theorem 6.12 and Graham–Lehrer’s 
result in [14], which says that a cellular algebra is semisimple if and only if each cell 
module is equal to its simple head. �
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