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Abstract. In this paper, we study the Dirichlet problem of the
geodesic equation in the space of Kähler cone metrics Hβ ; that
is equivalent to a homogeneous complex Monge-Ampère equation
whose boundary values consist of Kähler metrics with cone sin-
gularities. Our approach concerns the generalization of the func-
tion space defined in Donaldson [25] to the case of Kähler mani-
folds with boundary; moreover we introduce a subspace HC of Hβ

which we define by prescribing appropriate geometric conditions.
Our main result is the existence, uniqueness and regularity of C1,1

β

geodesics whose boundary values lie in HC . Moreover, we prove
that such geodesic is the limit of a sequence of C2,α

β approximate

geodesics under the C1,1
β -norm. As a geometric application, we

prove the metric space structure of HC .
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1. Introduction

We shall always denote by X a smooth compact Kähler manifold
without boundary of complex dimension n ≥ 1, by [ω0] a Kähler class
of X, and by H the space of Kähler metrics in [ω0]. In their pioneering
works, Mabuchi [41], Donaldson [23] and Semmes [49], independently
defined the famous Weil-Peterson type metric in H, under which H

becomes a non-positive curved infinite-dimensional symmetric space.
(For the study of other such metrics, compare [10, 12, 11].) Semmes
[49] pointed out that the geodesic equation in H is a homogeneous
complex Monge-Ampère (HCMA) equation,

(1.1)

{
(Ω0 +

√
−1
2
∂∂̄Ψ)n+1 = 0 in X ×R ,∑

1≤i,j≤n (Ω0 +
√
−1
2
∂∂̄Ψ)ij̄ dz

i ∧ dz j̄ > 0 in X × {zn+1} ;

here R is a cylinder with boundary, and Ω0 is the pull-back metric of
ω0 under the natural projection.

Geodesics are basic geometric objects in the infinite dimensional
manifold H. The relation between the geodesics of H and the ex-
istence and the uniqueness of the cscK metrics was pointed out by
Donaldson in [23]. He also conjectured that H endowed with the Weil-
Peterson type metric is geodesically convex and is a metric space. Chen
[13] established the existence of C1,1 geodesic segments (of bounded
mixed derivatives) under smooth Dirichlet conditions and thus verified
that the space of Kähler metrics is a metric space. Later, Blocki [7]
proved that any C1,1 geodesic segment has bounded Hessian when (X×
R,Ω0) has nonnegative bisectional curvature. Phong-Sturm [45], Song-
Zeltdich [53, 52, 54] approximated the C1,1 geodesic by the Bergman
geodesics in finite-dimensional symmetric spaces. Later Chen and
Tian in [16] improved the partial regularity of the C1,1 geodesic, then
proved the uniqueness of the extremal metrics. Donaldson [24], Darvas-
Lempert [21] and Lempert-Vivas [39] showed that a C1,1 geodesic does
not need to be smooth in general. On the other hand, the geodesic
ray induced by the test configuration is constructed in Arezzo-Tian [1],
Chen-Tang [17], Phong-Sturm [46, 47] and Phong-Sturm [46, 47]. The
C1,1 geodesic ray parallel to a given one is constructed in Chen [14] un-
der the geometric condition “tamed by a bounded ambient geometry”.
We would like to remark that the existence of C1,1 geodesics has been
proved by Chen-He [15] in the space of volume forms on a Riemannian
manifold, by P.-F. Guan-X. Zhang [33] in Sasakian manifolds and by
B. Guan-Q. Li [30] in Hermitian manifolds.

In this paper, our aim is to construct the natural geodesics in the
moduli space of all Kähler metrics singular along the divisor D for
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future study. Let us isolate now the concept, central to our aim, of
Kähler cone metric.

Definition 1.1. Let X and [ω0] as at the beginning of the paper, and
let D =

∑m
i=1 (1− βi)Vi be a normal crossing, effective smooth divisor

of X with 0 < βi ≤ 1 for 1 ≤ i ≤ m, where Vi ⊂ X are irreducible
hypersurfaces. Set β := (β1, . . . , βm) and call the βi’s the cone angles.
Given a point p in D, label a local chart (Up, z

i) centered at p as
local cone chart where z1, . . . zk are the local defining functions of the
hypersurfaces where p lies. A Kähler cone metric ω of cone angle 2πβi
along Vi, for 1 ≤ i ≤ m, is a closed positive (1, 1) current and a smooth
Kähler metric on the regular part M := X \D. In a local cone chart
Up its Kähler form is quasi-isometric to the cone flat metric, which is

ωcone :=

√
−1

2

k∑
i=1

β2
i |zi|2(βi−1)dzi ∧ dz ī +

∑
k+1≤j≤n

dzj ∧ dz j̄ .(1.2)

Let Hβ be the space of Kähler cone metrics of cone angle 2πβi along
Vi in [ω0]. It is clear that when βi = 1 for all i, Hβ consists of all
cohomologous smooth Kähler metrics on a compact Kähler manifold.
Let s be a global meromorphic section of [D]. Let h be an Hermitian
metric on [D]. It is shown in Donaldson [25] that, for sufficiently small
δ > 0,

ω = ω0 + δ
m∑
i=1

√
−1

2
∂∂̄|si|2βihΛ

(1.3)

is a Kähler cone metric. Moreover, ω is independent of the choices of
ω0, hΛ, δ up to quasi-isometry; we call it model metric.

In this paper, we study the geometry of the space of Kähler cone
metrics, in particular, the geodesic in Hβ. Now we clarify the con-
cept of geodesic in Hβ. A cone geodesic is a curve segment ϕ ∈ Hβ

for 0 ≤ t ≤ 1 which satisfies the natural generalization of the prob-
lem (1.1); i.e. we are requiring that ωϕ(t) is a Kähler cone metric
for any 0 ≤ t ≤ 1. In this article, we find the geometric boundary
conditions which assure the existence and the uniqueness of the cone
geodesic. Those lead to an appropriate choice of a subspace of Hβ. As
we will show in Section 2, the geodesic equation leads to the Dirich-
let problem of the HCMA equation with the boundary potentials of
cone singularities. The Dirichlet problem of HCMA was studied in-
tensively by many authors under various analytic boundary conditions
(see [3, 18, 32, 44, 9]). In our particular environment, the underly-
ing manifold is a product manifold and the curvature conditions on the
background metrics play an important role as in the geometric-analysis
problems (see the useful tricks we explain at the beginning of Section
3 and Remark 3.1).
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The slight difference between our equation and the standard HCMA
is that in our case the boundary values allow cone singularities. So
the problem is how to choose the appropriate function spaces where
the solutions lies. A possible function space could be the edge space.
The corresponding elliptic theory is investigated by many authors (see
Mazzeo [42], Melrose [43], Schulze [48] and references therein). In our
environment, the problem is that the edge space is defined for mani-
folds without boundary; which is not our case. So, we do not use edge
space in this paper. We overcome this problem by generalizing Don-
aldson’s space to the boundary case (see Definition (2.3)), that is more
natural for our geometric problem. However, it would be interesting
to understand whether the edge space (with some modification) could
be defined near the boundary and how to improve the regularity in
such space. Finally, it is interesting to see that the cone geodesics are
translated as solutions of the HCMA, and then the cone singularities
on the boundary travel naturally to the interior of the domain. We
hope this phenomenon will be helpful to understand the solution of the
complex Monge-Ampère equation.

Now we specify the geometric conditions on the boundary metrics.
(The space C3

β is introduced in Definition 2.2.)

Definition 1.2. Assume D is disjoint union of smooth hypersurfaces
and the cone angles β belong to the interval (0, 1

2
). Then, we denote

as H3
β the space of C3

β ω0-plurisubharmonic potentials. Moreover, we

label as HC ⊂ H3
β one of the following spaces;

I1 = {ϕ ∈ H3
β such that supRic(ωϕ) is bounded};

I2 = {ϕ ∈ H3
β such that inf Ric(ωϕ) is bounded}.

In general the Kähler cone metrics do not have bounded geometry.
The Riemannian curvature of ω is bounded when the cone angle is less
than 1

2
. We will compute that the Levi-Civita connection of the model

cone metric defined in (1.3) under the cone coordinates (see (4.3)) is
bounded when the cone angle is less than 2

3
. The curvature conditions

of the boundary metrics are used to improve the regularities of the
weak geodesics. The space HC at least contains all Kähler-Einstein
cone metrics with the cone angle between 0 and 1

2
(see Proposition

6.7 in Brendle [8]). The further discussion on the properties of the
subspace HC will be in the forthcoming paper. In the present work,
our main aim is to prove the following result (cf. Theorem 4.5).

Theorem 1.1. Any two Kähler cone metrics in HC are connected by
a unique C1,1

β cone geodesic. More precisely, it is the limit under the

C1,1
β -norm by a sequence of C2,α

β approximate geodesics.

The notion of approximate geodesic is given in Lemma 6.2. As an
application, we prove the following result.
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Theorem 1.2. HC is a metric space.

Concerning geodesics with weak regularity, we should compare the
construction in Berndtsson’s remarkable paper [4] with our result. It
is easy to compute that the volume of the Kähler cone metric be-
longs to Lp with p(βi − 1) + 1 > 0 for any 1 ≤ i ≤ k. According
to Kolodziej’s theorem in [37], there exists a unique Hölder continu-
ous ω0-plurisubharmonic potential. Berndtsson [4] proved that given
two bounded ω0-plurisubharmonic potentials, there is a bounded ge-
odesic connecting them. Then since the advantage of using the Ding
functional (cf. Ding [22]) is that it requires less regularity of the po-
tentials, as observed by Berndtsson, the convexity of the Ding func-
tional along the bounded geodesic is applied to prove the uniqueness of
Kähler-Einstein cone metrics (generalizing the Bando-Mabuchi unique-
ness theorem [2]). However the cone geodesic we construct here has
more regularity across the divisor in a subspace HC which still con-
tains the critical metrics. The regularity of the cone geodesic across
the divisor is important not only to prove the metric structure as we
show in this paper, but also to our further application on existence and
uniqueness of cscK cone metrics.

Now we state an application of our main theorem to the smooth
Kähler metrics with slightly less geometric conditions than the C1,1

geodesic in Chen’s theorem [13].

Corollary 1.3. If the C3 norm and Ricci curvature upper (or lower)
bound of two Kähler potentials are uniformly bounded, then the geodesic
connecting them has uniform C1,1 bound.

Now we describe the structure of our paper. In Section 2, we recall
the notation and the function spaces introduced by Donaldson [25].
In particular, we define the boundary case. Then, we generalize the
Riemannian structure to the space of Kähler cone metrics. The delicate
part here is the growth rate near the divisor. In the function space
introduced by Donaldson, we derive that the geodesic equation is a
HCMA with cone singularities by integration by parts and we explain
the construction of the initial metric for the continuity method.

In Section 3, we obtain the a priori estimates of the approximate
Monge-Ampère equation. It is divided into several steps. The L∞

estimate is derived from a cone version of the maximum principle and
the super-solution of the linear equation obtained in Section 4. In
order to find out the proper geometric global conditions, the interior
Laplacian estimate is obtained using the techniques of Yau’s second
order estimate [56] and the Chern-Lu formula (see [19, 40, 55]). In order
to prove the boundary Hessian estimate near the divisor, we can not use
the the distance function as the barrier function which is introduced in
Guan-Spruck [31], since we need a uniform estimate independent of the
distance to the divisor. So we choose the auxiliary function by solving
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the linear equation provided by Section 4. We hope this method could
have potentially further applications to the Monge-Ampère equation
on manifold with boundary which arises in other geometric problems.
In order to obtain the interior gradient estimate near the divisor, we
carefully choose an appropriate test function near the divisor.

In Section 4, we solve the linearized equation and prove the C2,α
β

regularity of the approximate geodesic equation. Both the interior and
the boundary Schauder estimates are of the general form. Note that the
right hand side of the approximation equation (4.1) contains log Ωn+1.
When applying the Evans-Krylov estimate, we need to bound the first
derivative of log Ωn+1. We will show that it is bounded when the cone
angle is less than 2

3
. Thus with these estimates, the existence and

the uniqueness of the C1,1
β cone geodesic are proved. Moreover, the

approximate geodesic is in C2,α
β . There is an direct application of the

interior Schauder estimate to the regularity of the Kähler-Einstein cone
metrics. When applying the Evans-Krylov estimate, it is necessary
to bound the first derivative of the term on the right hand side of
the Kähler-Einstein equation of cone singularities. We show that the
gradient of this term is bounded when the cone angle is less than 2

3
.

When the cone angle is less than 1
2
, Brendle [8] derived Calabi’s third

order estimate to prove the existence of Ricci flat Kähler cone metrics.
Section 5 contains the maximum principle and the Hölder continuity

of the linearized equation. In particular, the weak Harnack inequality is
used to prove the C2,α

β regularity of the approximate geodesic equation.
In Section 6, we apply our cone geodesic to prove the metric structure

of HC . Once we establish the C1,1
β regularity of cone geodesic, the proof

of the metric structure is immediate.
Acknowledgments: Both authors would like to warmly thank Xiux-
iong Chen who brought this problem to their attention. Part of this
work was done, while the second author was visiting Institut Fourier in
2011-2012, he is grateful to Gérard Besson for his warm encouragement
during his stay. He also thanks Claudio Arezzo for helpful discussions,
when he visited ICTP in 2011.

Both authors would like to express their gratitude to the referee for
helpful comments to improve the exposition of this paper.

2. The space of Kähler cone metrics

In this section, we first introduce some pieces of notation and knowl-
edge of Donaldson’s program [25], which we will stick to in the remain-
der of the paper. Let Up be a local cone chart as in Definition 1.1. Let
W : Up \D → Up \D be the change of coordinates given by
(2.1)
W (z1, · · · , zn) := (w1 = |z1|β1−1z1, · · · , wk = |zk|βk−1zk, zk+1, · · · , zn) .
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Now, for any 1 ≤ i ≤ k let 0 ≤ θi < 2π, zi := ρie
√
−1θi and ri := |zi|βi =

|wi|; meanwhile, for any k+ 1 ≤ j ≤ n let zj := xj +
√
−1yj. Then, let

the polar coordinate transformation of (w1, · · · , wk, zk+1, · · · , zn) be

P : (w1, · · · , wk, zk+1, · · · , zn)→ (r1, θ1, · · · , rk, θk, xk+1, yk+1, · · · , xn, yn) .

Thus we obtain that the expression of the push-forward cone flat metric
(1.3) is

((P ◦W )−1)∗g =
∑

1≤i≤k

[dr2
i + β2

i r
2
i dθ

2
i ] +

∑
k+1≤j≤n

[(dxj)2 + (dyj)2] .

(2.2)

This flat metric is uniformly equivalent to the standard Euclidean met-
ric. However, letting µi := β−1

i − 1, we have wi = rie
√
−1θi = |wi|−µizi;

moreover, we define

εi := dri +
√
−1βiridθi = βi|wi|1−µi(wi)−1dzi

= βi

[(
1 +

µi
2

)
|wi|(wi)−1dwi +

µi
2
|wi|−1widwī

]
,

and we notice that it is not a holomorphic 1-form, since ∂wīεi 6= 0.
Consequently, εi and dzj merely form a local orthonormal basis of the
(1, 0)-forms.

Now we present the function spaces which are introduced by Don-
aldson in [25]. The Hölder space Cα

β consists in those functions f which
are Hölder continuous with respect to a Kähler cone metric. Also, Cα

β,0

denotes the subspace of those functions in Cα
β for which their limit is

zero along Vi for any 1 ≤ i ≤ m. The Hölder continuous (1, 0)-forms,
in local coordinates Up, can be expressed as

ξ = fiεi + fjdz
j ,

where the Einstein notation is adopted, fi ∈ Cα
0 and fj ∈ Cα. Mean-

while, a Hölder (1, 1)-form η in local coordinates Up is of the shape

η = fi1 ī2εi1εī2 + fij̄εidz
j̄ + fījεīdz

j + fj1j̄2dz
j1dz j̄2 ;

here the coefficients satisfy fij̄, fīj ∈ Cα
0 and fi1 ī2 , fj1j̄2 ∈ Cα . Note

that according to this Definition, for any Kähler cone metric ω ∈ Cα
β ,

around the point p ∈ D, we have a local normal coordinate such that
gij(p) = δij.

Definition 2.1. The Hölder space C2,α
β is defined by

C2,α
β = {f | f, ∂f, ∂∂̄f ∈ Cα

β } .

Note that the C2,α
β space, since it concerns only the mixed derivatives,

is different from the usual C2,α space. The definition of higher order
space Ck,α

β depends on the background metrics. In this paper, we use

the flat cone metric ωcone (1.2) to define Ck,α
β . It is not hard to see

that, by the quasi-isometric mapping W , ∂∂̄f ∈ Cα
β is equivalent to
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∂2

∂wi∂wj̄
∈ Cα for any 1 ≤ i, j ≤ n under the coordinate {wi}. So we say

the third derivative of a function belongs to Cα
β if

∂3

∂wk∂wi∂wj̄
f ∈ Cα

for any 1 ≤ i, j, k ≤ n. In particular,

Definition 2.2. The Hölder space C3 is defined by

C3
β = {f |f ∈ C2,α

β and the third derivative of f w.r.t ωcone is bounded} .

Thus the higher order spaces are defined by induction on the index
k. Now we postpone the discussion of the function space for a while, we
will continue after introducing the product manifold where the geodesic
equation is defined.

We then approach some considerations on the Riemannian geometry
of the space of Kähler cone metrics. Recall that H2,α

β is the space of C2,α
β

ω0 plurisubharmonic-functions. It is a convex, open set in C2,α
β . The

tangent space of H2,α
β at a point ϕ is C2,α

β . We generalize the Donaldson

[23], Mabuchi [41], Semmes [49] metric to H
2,α
β by associating to ϕ ∈

H
2,α
β and tangent vectors ψ1, ψ2 ∈ TϕH2,α

β , the real number

(2.3)

∫
M

ψ1 · ψ2ω
n
ϕ .

The definition makes sense for Kähler cone metrics, since the volume of
the Kähler cone metrics is finite. Furthermore, we choose an arbitrary
differentiable path ϕ ∈ C1([0, 1],H2,α

β ) and along it, differentiable vec-

tor field ψ ∈ C1([0, 1], C2,α
β ). We thus define the following derivation of

the vector field on M = X\D

(2.4) Dtψ :=
∂ψ

∂t
− (∂ψ, ∂

∂ϕ

∂t
)gϕ .

We claim that (2.4) is the Levi-Civita connection of (2.3). The fact that
(2.4) is torsion free comes from a point-wise computation on M . Thus,
the claim will be accomplished after verifying the metric compatibility,
which is done in Proposition 2.2. We first prove an integration by parts
formula.

Lemma 2.1. Assume that ϕ1, |∂ϕ1|ω, |∂ϕ2|ω, |∆ϕ2|L1(ω) are bounded.
Then the following formula holds∫

M

ϕ1∆ϕ2ω
n = −

∫
M

(∂ϕ1, ∂ϕ2)ωω
n .

Proof. Choose a cut-off function χε which vanishes in a neighborhood
of D. Then,∫

M

χεϕ1∆ϕ2ω
n = −

∫
M

χε(∂ϕ1, ∂ϕ2)ωω
n −

∫
M

ϕ1(∂χε, ∂ϕ2)ωω
n .
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The convergence of the first two terms follows from the Lebesgue dom-
inated convergence theorem. So, it suffices to find a χε such that∫

M

|∂χε|ωωn → 0

as ε→ 0. Choose

χε := χ

(
1

ε2

∏
i

|si|2
)
,

where si are the defining functions of Di and χ is a smooth non-
decreasing function such that χ = 0 in [0, 1]

0 ≤ χ ≤ 1 in [1, 2]
χ = 1 in [2,+∞) .

Now,

|∂χε|ω ≤ χ′ · 1

ε2
|si||si|1−βi =

C

ε2
|si|2−βi .

So, as ε→ 0 we get in the cone chart∫
M

|∂χε|ωωn ≤
∫
|s|=r

∫ 2π

0

∫ 2ε

ε

2π

ε2
|r|2−βi |r|2(βi−1)rdrdθdz2 ∧ · · · ∧ dzn

≤ 2π

ε2

∫ 2ε

ε

|r|1+βidr ≤ Cεβi → 0 .

This completes the proof of the lemma. �

As an application of the above formula, we have

Proposition 2.2. The connection (2.4) is compatible with the metric
(2.3).

Proof. We compute

1

2

d

dt

∫
M

ψ2ωnϕ =
1

2

∫
M

(2ψψ′ + ψ2∆ϕϕ
′)ωnϕ .

Since ψ2, |∂(ψ2)|gϕ , |∂ϕ′|gϕ , ∆ϕϕ
′ are all bounded with respect to gϕ,

we are allowed to apply Lemma 2.1 and we get

1

2

d

dt

∫
M

ψ2ωnϕ =
1

2

∫
M

[2ψψ′ − 2ψ(∂ψ, ∂ϕ′)gϕ ]ωnϕ .

This completes the proof of the proposition. �

Next, we derive the geodesic equation.

Proposition 2.3. The geodesic equation satisfies the following equa-
tion on M point-wise

ϕ′′ − (∂ϕ′, ∂ϕ′)gϕ = 0 .(2.5)
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Proof. Assume that ϕ(t)|10 is a path from ϕ0 to ϕ1, and that ϕ(s, t) ∈
C1([0, 1] × [0, 1], C2,α

β ) is a 1-parameter variation of ϕ(t)|10 with fixed
endpoints. We minimize the length function

L(ϕ(s, t)) =

∫ 1

0

√∫
M

(
∂ϕ(s, t)

∂t

)2

ωnϕ dt .

We are going to compute the variation of ∂
∂s
L(ϕ(s, t)); denote ϕ′ = ∂ϕ

∂t
and

E =

∫
M

ϕ′2ωnϕ .

Then, using (2.4) and the compatibility property we get

∂

∂s
L(φ(s, t)) =

∫ 1

0

1

E

∫
M

Dsϕ
′ · ϕ′ωnϕdt =

∫ 1

0

1

E

∫
M

Dt
∂

∂s
ϕ · ϕ′ωnϕdt

=

∫ 1

0

1

E

[
∂

∂t

∫
M

∂

∂s
ϕ · ϕ′ωnϕ −

∫
M

Dt
∂

∂s
ϕ · ϕ′ωnϕ

]
dt

= −
∫ 1

0

1

E

∫
M

∂

∂s
ϕ ·Dtϕ

′ωnϕdt .

The first term in the second line vanishes since the endpoints are fixed.
So the geodesic condition reads

0 =
∂

∂s
L(φ(s, t)) = −

∫ 1

0

1

E

∫
M

∂

∂s
ϕ ·Dtϕ

′ωnϕdt

which implies that the geodesic equation is

Dtϕ
′ ≡ 0 on M .

�

Consider the cylinder

R = [0, 1]× S1

and introduce the coordinate

zn+1 = xn+1 +
√
−1yn+1

on R. Define

ϕ(z′, zn+1) = ϕ(z1, · · · , zn, xn+1) = ϕ(z1, · · · , zn, t)
on the product manifold X × R and let π be the natural projection
form X ×R to X. We also denote

z = (z′, zn+1) = (z1, · · · , zn, zn+1) ,

Ω0 = (π−1)∗ω0 + dzn+1 ∧ dz̄n+1 ,

Ω = (π−1)∗ω + dzn+1 ∧ dz̄n+1 ,

Ψ = ϕ− |zn+1|2 .
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It is a matter of algebra to show that (2.5) could be reduced to a
degenerate Monge-Ampère equation. A path ϕ(t) with endpoints ϕ0,
ϕ1 satisfies the geodesic equation (2.5) on X if and only if Ψ satisfies
the following Dirichlet problem involving a degenerate complex Monge-
Ampère equation

(2.6)


det(Ωij̄ + Ψij̄) = 0 in M ×R ,
Ψ(z) = Ψ0 on X × ∂R ,∑

1≤i,j≤n(Ωij̄ + Ψij̄)dz
idz j̄ > 0 in X × {zn−1} .

Here the following Dirichlet boundary conditions Ψ0 are satisfied
(2.7){

Ψ0(z′, 0)
.
= Ψ(z′,

√
−1yn+1) = ϕ0(z′)− (yn+1)2 on X × {0} × S1,

Ψ0(z′, 1)
.
= Ψ(z′, 1 +

√
−1yn+1) = ϕ1(z′)− 1− (yn+1)2 on X × {1} × S1.

Now we are given a (n+ 1)-dimensional Kähler manifold X = X×R
with boundary; the given data of the Dirichlet problem are put on two
disjoint copies of X. We also have a divisor D = D × R, with D as
in Definition (1.1), which intersects transversely the boundary. Let fi
be the local defining function of each irreducible analytic component
Vi of D. Then the transition functions fi

fj
give a line bundle [D] in X.

Let s be a global meromorphic section of [D]. Let hΛ be the Hermitian
metric on [D]. There is a small positive δ such that, on X,

Ω = Ω0 + δ
m∑
i=1

√
−1

2
∂∂̄|si|2βihΛ

(2.8)

is a Kähler cone metric (cf. (1.3)). Moreover, it is also independent of
the choices Ω0, hΛ, δ up to quasi-isometry.

We can define the Hölder space C3
β in the interior of (X,D) as that

one defined on (X,D). On the boundary, near a point p we choose a
local holomorphic coordinate chart

{U+
p ; zi = xi + iyi}, 1 ≤ i ≤ 2n+ 2

centered at p. From the discussion above, we see that the boundary of
X is xn+1 = 0. When U+

p does not intersect the divisor D, the Hölder
space is defined in the usual way. So it is sufficient to define a new
Hölder space in the coordinates which contain the points of the divisor.
We first note that the solution of geodesic equation is independent
of the variable yn+1, so the partial derivative on the variable xn+1 is
the same to the one on the variable zn+1. Next, the quasi-isometric
mapping W is still well defined in U+

p as follows,

W (z1, · · · , zn+1) := (w1 = |z1|β1−1z1, · · · , wk = |zk|βk−1zk, zk+1, · · · , zn+1) .

So we can define the Hölder space Cα
β (U+

p ) to be the set of functions

which are Hölder continuous under {zi}n+1
i=1 with respect to a Kähler

cone metric. Also, Cα
β,0(U+

p ) denotes the subspace of those functions
in Cα

β (U+
p ) for which their limit is zero along Vi for any 1 ≤ i ≤ m.
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The Hölder continuous (1, 0)-forms, in local coordinates U+
p , can be

expressed as

ξ =
∑
i

fiεi +
∑
j

fjdz
j ,

where fi ∈ Cα
0 (U+

p ) and fj ∈ Cα(U+
p ). Meanwhile, a Hölder (1, 1)-form

η in local coordinates U+
p is of the shape

η = fi1 ī2εi1εī2 + fij̄εidz
j̄ + fījεīdz

j + fj1j̄2dz
j1dz j̄2 ;

here the coefficients satisfy fij̄, fīj ∈ Cα
0 (U+

p ) and fi1 ī2 , fj1j̄2 ∈ Cα(U+
p ) .

The Hölder space C2,α
β (U+

p ) is similarly defined as

C2,α
β (U+

p ) = {f | f, ∂f, ∂∂̄f ∈ Cα
β (U+

p )} .

Then we use the flat cone metric ωcone (1.2) to define the higher order

space Ck,α
β (U+

p ). The boundary C3 space is defined in the same manner.

Definition 2.3. The Hölder space C3(U+
p ) is defined by

C3
β(U+

p ) = {f |f ∈ C2,α
β (U+

p ) and the 3nd derivative of f w.r.t ωcone is bounded} .

Thus the higher order spaces are also defined by induction on the
index k in the same way.

In order to apply the maximum principle, we require that the max-
imum point does not lie on the divisor. On a compact manifold, the
technique is used by Jeffres in [36] to overcome this trouble. With
the discussion above, we prove this technical auxiliary lemma in our
product manifold X with boundary. The following lemma will be used
several times in this paper. The idea is to choose a appropriate κ, the
exponent of the test function S, such that the gradient of S is larger
than the gradient of the given function f . Meanwhile, on D the value
of S is zero, so f and f̃ = f + S have the same value on D. Then the
value of f̃(z) increases when the point z leaves D. That implies that

f̃ must have maximum points outside D. We would like to point out
an example such as Proposition 3.1 to show how to use it.

Lemma 2.4. There is a positive constant κ such that S = ||s||2κ sat-
isfies the following properties

(1)
√
−1
2
∂∂̄S ≥ κ

√
−1
2
∂∂̄ log ||s||2 ≥ −CΩ,

(2) for any a > 0, when 2κ < aβ, |∇aS|2Ω(z) goes to infinity as z
approaches the divisor D.

Proof. Since
√
−1

2
∂∂̄S =

√
−1

2
S(κ∂∂̄ log ||s||2 + ∂ logS ∧ ∂̄ logS)

≥ κ

√
−1

2
S∂∂̄ log ||s||2,
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and since −
√
−1
2
∂∂̄ log ||s||2 is the curvature form of the line bundle un-

der the Hermitian metric h, there is a constant C such that
√
−1
2
∂∂̄ logS ≥

−CΩ. So we have
√
−1

2
S∂∂̄ logS ≥ −CκSΩ ≥ −CκΩ.

In order to derive the second conclusion, we compute the first derivative
of S along the singular direction. Choosing the basis e, we have ||s||2κ =
|z|2κ||e||2κ, then the main term of |∇aS|2Ω is

|z1|4κ−2a+2a(1−β).

So it is sufficient to choose 2κ < aβ to get that this main term becomes
unbounded as z approaches D. Furthermore, when Ψ ∈ Ca

β , |∇aΨ|Ω is
bounded, so ∇aS grows faster than ∇aΨ near D. �

In order to apply the continuity method, we first construct the start-
ing metric of the solution path such that it satisfies the boundary con-
ditions. Since Ψ0 may not be convex along the direction ∂

∂zn+1 , we have

to extend Ψ0 to the whole X as follows. Let Ψ̃0 be the line segment
between the boundary Kähler cone potentials ϕ0 and ϕ1; namely, (cf.
(2.7))

Ψ̃0 = tΨ0(z′, 1) + (1− t)Ψ0(z′, 0) + t+ (yn+1)2 = tϕ1 + (1− t)ϕ0 .

Then we choose a function Φ which depends only on zn+1 such that{
Φ(zn+1) = 0 on ∂X ,
Φzn+1z̄n+1 > 0 in X .

We denote the new potential by

Ψ1 := Ψ̃0 +mΦ.(2.9)

Next we verify that Ψ1 is a Kähler cone potential on X.

Proposition 2.5. Suppose that ϕ0, ϕ1 ∈ Hβ. Then there exists a large
number m such that

Ω1 := Ω +

√
−1

2

∑
1≤i,j≤n+1

∂i∂j̄Ψ1(2.10)

is a Kähler cone metric on (X,D).

Proof. The local expression of ΩΨ1 is

Ω +

√
−1

2

∑
1≤i,j≤n+1

∂i∂j̄(Ψ̃0 +mΦ)

= tωϕ1 + (1− t)ωϕ0 +

√
−1

2
(1 +m∂n+1∂n+1Φ)dzn+1 ∧ dz̄n+1

+
1√
2

(∂iϕ1 − ∂iϕ0)dzidzn+1 +
1√
2

(∂īϕ1 − ∂īϕ0)dz īdzn+1 .
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We call ωt := tωϕ1 + (1− t)ωϕ0 the line segment and ψ := ϕ1 − ϕ0 the
difference of the boundary Kähler cone potentials.

In order to show that ΩΨ1 is a Kähler cone metric on X, it suffices
to verify two conditions; that it is positive on the regular part M and
that ΩΨ1 is locally quasi-isometric to

Ωcone =

√
−1

2

k∑
i=1

(β2
i |zi|2(βi−1)dzi ∧ dz ī) +

n+1∑
i=k+1

(dzi ∧ dz ī) .

Since the determinant of ΩΨ1 is

det(gt)[1 +mΦn+1,n+1 − g
ij̄
t ψiψj̄],

the former condition is true once we choose m large enough. The latter
condition is verified as ϕ0, ϕ1 ∈ Hβ. �

3. A priori estimates

In this section, we derive uniform a priori estimates for the degener-
ate equation. With the same background as (2.6), we let M = M ×R
and recall that Ψ1 in (2.9) is a Kähler potential in M, that is

Ω1 := Ω +

√
−1

2
∂∂̄Ψ1 > 0,

we consider the family of Dirichlet problems for 0 ≤ τ ≤ 1,

(3.1)

{
det(Ωij̄ + Ψij̄) = τeΨ−Ψ1 det(Ωij̄ + Ψ1ij̄) in M ,
Ψ(z) = Ψ0 on ∂X ,

in the space C2,α
β . We will specify the conditions on Ψ0 in each estimate.

Since the curvature conditions of the background metrics are required
when we derive the a priori estimates, we explain an observation on
how to choose appropriate background metrics. If we take Ω1 as the
background metric, we obtain an equivalent equation

(3.2)

{
det(Ω1ij̄ + Ψ̃ij̄) = τfeΨ̃ det(Ωij̄) = τeΨ̃ det(Ω1ij̄) in M ,

Ψ̃(z) = 0 on ∂X ,

where

Ψ̃ := Ψ−Ψ1 and f :=
det(Ωij̄ + Ψ1ij̄)

det(Ωij̄)
.

In general, given a Kähler cone potential Φ we could take

ΩA := Ω +

√
−1

2
∂∂̄Φ,ΨA := Ψ− Φ,ΨA

1 := Ψ1 − Φ,ΨA
0 := Ψ0 − Φ.

The new family of Dirichlet problems becomes

(3.3)

{
det(ΩA

ij̄ + ΨA
ij̄) = τeΨA−ΨA1 det(ΩA

ij̄ + ΨA
1ij̄) in M ,

Ψ(z) = ΨA
0 on ∂X .
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The above observation will be particularly useful when we will derive
the a priori estimates later. Note that the right hand side of the
equation is positive as long as τ is positive. When τ = 1, Ψ1 solves the
equation. When τ is zero, (3.1) as well as (3.2) provide a solution of
the degenerate equation (2.6).

3.1. L∞ estimate. We will see later that the L∞ estimate follows
from the cone maximum principle (Lemma 5.1) and the global bounded
weak solution (Proposition 5.9) provided in Section 5. Applying the
logarithm on both sides of (3.2), we have

log
det(Ω1ij̄ + Ψ̃ij̄)

det(Ω1ij̄)
= log τ + Ψ̃ .(3.4)

Proposition 3.1. (Lower bound of Ψ) For any point x ∈ X, the fol-
lowing estimate holds

Ψ(x) ≥ Ψ1(x) .

Proof. We first apply the second conclusion of Lemma 2.4. Since Ψ̃ ∈
C2,α
β , |∇Ψ̃|2Ω is bounded; while, choose 2κ < β, then |∇S|2Ω(z) goes to

infinity as z approaches D. So ∇S is larger than ∇Ψ̃. Meanwhile,
the value of Ψ̃ and U = Ψ̃ − εS are the same due to the choice of S.
Therefore, U = Ψ̃ − εS achieves its minimum point p on the regular
part M.

There are two cases, one when p is on the boundary M × ∂R and
the other one when p is in the interior of M. In the first case, since p
is on the regular part of the boundary, then the minimal value is just
the boundary value. Thus the inequality holds automatically. Now we
explain the second case. The equation (3.4) is rewritten as

log
(Ω1 +

√
−1
2
∂∂̄(U + εS))n+1

Ωn+1
1

= log τ + Ψ̃ .(3.5)

At the point p the Hessian of U is non-negative Uīi ≥ 0; so, after

diagonalizing Ω1 and Ω1 +
√
−1
2
∂∂̄(U+ εS) simultaneously, (3.5) implies

τeΨ̃(p)Πn+1
i=1 Ω1īi ≥ Πn+1

i=1 (Ω1īi + εSīi) ≥ (1− εC)n+1Πn+1
i=1 Ω1īi ,

where, at the second inequality, we use the first conclusion of Lemma 2.4.
Then we have

Ψ̃(p) ≥ log(1− εC)n+1 .

Then for any x ∈ X, (1) in Lemma 2.4 implies

Ψ̃(x) = U(x) + εS(x) ≥ U(p)

= Ψ̃(p)− εS(p) ≥ log(1− εC)n+1 − ε ,

which gives the lower bound of Ψ̃ as ε goes to zero. �



16 SIMONE CALAMAI AND KAI ZHENG

Proposition 3.2. (Upper bound of Ψ) For any point x ∈ X, the fol-
lowing estimate holds

Ψ(x) ≤ h(x) .

Proof. From (3.1) the solution is non-negative Ω +
√
−1
2
∂∂̄Ψ ≥ 0, after

taking trace it implies

−4Ψ ≤ n+ 1 .

In order to obtain the lower bound, we then consider the linear equation{
4h = −n− 1 in M ,
h = Ψ0 on ∂X .

It is solvable by means of Propositions 5.6 and 5.9. Then the lemma
follows from the weak maximum principle of cone metrics (Lemma 5.5).

�

Remark 3.1. We could consider the family of equations with parameter
a ∈ R as

(3.6)

{
det(Ω1ij̄ + Ψ̃ij̄) = τeaΨ̃ det(Ω1ij̄) in M ,

Ψ̃(z) = 0 on ∂X .

The approximate equation (3.2) is the former with a = 1. That is
slightly different from the family considered by Chen [13] with a = 0.
We would like to indicate that using the estimate in Section 5, the lower
bound of the solution of Chen’s approximate equation can be proved
by applying the maximum principle with respect to the Kähler cone
metric Lemma 5.5 to{

det(Ω1ij̄ + Ψ̃ij̄) ≤ det(Ω1) in M ,

Ψ̃ = 0 on ∂X .

The upper and the lower bound of Ψ imply the boundary gradient
estimate

sup
M×∂R

|∇Ψ|Ω ≤ sup
X
|∇Ψ1|Ω + sup

X
|∇h|Ω .(3.7)

3.2. Interior Laplacian estimate. The content of the present sub-
section is the statement and proof of three different interior Laplacian
estimates (Proposition 3.3).

We remark that in Lemma 3.4 below, we could choose different back-
ground metrics. As a result, constants would have different dependence
on geometric quantities.

Proposition 3.3. There are three constants Ci, for i = 1, 2, 3 such
that

sup
X

(n+ 1 +4Ψ) ≤ Ci sup
∂X

(n+ 1 +4Ψ) .(3.8)
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The constants respectively depend on

C1 = C1( inf Riem(Ω), sup Ric(Ω1), sup trΩΩ1, Osc Ψ, Osc Ψ1) ;

C2 = C2( |Riem(Ω1)|L∞ , sup trΩΩ1, sup trΩ1Ω, Osc Ψ) ;

C3 = C3( supRiem(Ω), inf Ric(Ω1), sup trΩΩ1, Osc Ψ, Osc Ψ1) .

Remark 3.2. The estimates work for any given Kähler cone metric Ω.

We first consider the equation (3.1). We denote

F := log τ + log f + Ψ−Ψ1 = log
det(Ωij̄ + Ψij̄)

det(Ωij̄)
.(3.9)

We calculate ∆′(n+ 1 + ∆Ψ) of our equation and explain later how to
change the background metric.

Lemma 3.4. The following formula holds

∆′(n+ 1 + ∆Ψ) = gij̄g′
kl̄
g′
pq̄
∂l̄g
′
pj̄∂kg

′
iq̄ − trΩ Ric(Ω1)

+ ∆Ψ−∆Ψ1 + g′
kl̄
Rij̄

kl̄
g′ij̄ .

Proof. Since g′ij̄ = gij̄ + Ψij̄, when we take −∂k∂l̄ on both sides we get

−∂k∂l̄g′ij̄ = Rij̄kl̄ −Ψij̄kl̄ .(3.10)

Since the Riemannian curvature is defined by

R′ij̄kl̄ = −∂k∂l̄g′ij̄ + g′
pq̄
∂l̄g
′
pj̄∂kg

′
iq̄,

inserting the latter in (3.10) and taking the trace with respect to g′kl̄

and gij̄ we have

gij̄R′ij̄ = gij̄g′
kl̄
g′
pq̄
∂l̄g
′
pj̄∂kg

′
iq̄ + g′

kl̄
Rkl̄ − gij̄g′

kl̄
Ψij̄kl̄ .(3.11)

Since

∆′(n+ 1 + ∆Ψ) = g′
kl̄
gil̄Ψij̄kl̄ + g′

kl̄
Rij̄

kl̄
Ψij̄ ,

inserting the latter in (3.11) we get

∆′(n+ 1 + ∆Ψ) = gij̄g′
kl̄
g′
pq̄
∂l̄g
′
pj̄∂kg

′
iq̄ − gij̄R′ij̄ + g′

kl̄
Rkl̄ + g′

kl̄
Rij̄

kl̄
Ψij̄ .

Since (3.9) implies R′ij̄ = Rij̄ − Fij̄ we therefore have

∆′(n+ 1 + ∆Ψ) = gij̄g′
kl̄
g′
pq̄
∂l̄g
′
pj̄∂kg

′
iq̄ − S(Ω) + ∆F + g′

kl̄
Rij̄

kl̄
g′ij̄ .

Then the lemma follows from the formula

∆F = ∆(log f + Ψ−Ψ1) = −trΩ Ric(Ω1) + S(Ω) + ∆Ψ−∆Ψ1 .

This completes the proof of the lemma. �

The following formula follows from the Schwarz inequality. See Yau
[56], and Siu [51, page 73].

gij̄g′
kl̄
g′
pq̄
∂l̄g
′
pj̄∂kg

′
iq̄ ≥

|∂(n+ 1 + ∆Ψ)|2

n+ 1 + ∆Ψ
.(3.12)
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Lemma 3.5. There is a constant C depending on sup Ric(Ω1), sup trΩΩ1, inf i6=k Rīikk̄

such that

∆′(log(n+ 1 + ∆Ψ)) ≥ −C(1 + trΩ′Ω).

Proof. We compute

∆′(log(n+ 1 + ∆Ψ)) =
∆′(n+ 1 + ∆Ψ)

n+ 1 + ∆Ψ
− |∂(n+ 1 + ∆Ψ)|2

n+ 1 + ∆Ψ
.

Thus, by combining Lemma 3.4 with (3.12), we have

∆′(log(n+ 1 + ∆Ψ)) ≥
−trΩ Ric(Ω1) + ∆Ψ−∆Ψ1 + g′k̄lRīj

k̄l
g′ īj

n+ 1 + ∆Ψ

≥ −C(1 +
1

n+ 1 + ∆Ψ
+ trΩ′Ω) .

Thus the lemma follows from 1
n+1+∆Ψ

≤ 1
1+Ψīi

≤ trΩ′Ω. �

Proof. (proof of constant C1) Denote

Z := log(n+ 1 + ∆Ψ)−KΨ + εS ,

with K to be chosen. According to Lemma 2.4, with appropriate κ,
the maximum point p of Z stays in the interior of M. Since ∆′Ψ =
n+ 1− trΩ′Ω, and ∆′S ≥ −CtrΩ′Ω (Lemma 2.4), then at p there holds

0 ≥ ∆′Z ≥ −C(1 + trΩ′Ω)−K(n + 1− trΩ′Ω)− εCtrΩ′Ω .

Now we choose K such that −C + K − εC > 0 to obtain the upper
bound of trΩ′Ω(p). From the arithmetic-geometric-mean inequality we
have

(n+ 1 + ∆Ψ)
1
n · e−

F
n =

(
n+1∑
i=1

1∏n+1
k=1,k 6=i(1 + Ψkk̄)

) 1
n

≤
n+1∑
k=1

1

1 + Ψkk̄

= trΩ′Ω .

Since F = log τ + log f + Ψ − Ψ1, so, n + 1 + ∆Ψ is bounded from
above at p depending on sup Ric(Ω1), sup trΩΩ1, infi 6=k Rīikk̄, sup Ψ,
and inf Ψ1. For any x ∈ X, there holds Z(x) ≤ sup∂X Z+Z(p). Hence,

n+ 1 + ∆Ψ = eZ+KΨ−εS

≤ esup∂X Z+Z(p)+K sup Ψ

≤ sup
∂X

(n+ 1 + ∆Ψ)e−K infX Ψ0+1+Z(p)+K sup Ψ .(3.13)

This formula gives precisely the claimed inequality (3.8) for the first
constant C1. �
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Proof. (proof of constant C2) Now the same argument as in Lemma
3.4, applied to equation (3.2), gives the following formula

∆′(n+ 1 + ∆1Ψ̃) = g1
ij̄g′

kl̄
g′
pq̄
∂l̄g
′
pj̄∂kg

′
iq̄ − S(Ω1) + ∆1Ψ̃ + g′

kl̄
R1

ij̄

kl̄
g′ij̄ .

Then, still following an argument similar to that used in the first part
of this subsection, we get a constant C which depends on supS(Ω1),
infi 6=k Rīikk̄(Ω1), Osc Ψ, such that

n+ 1 + ∆1Ψ̃ ≤ C sup
∂X

(n+ 1 + ∆1Ψ̃) .

Since Ω and Ω1 are L∞ equivalent, we have

n+ 1 + ∆Ψ ≤ C(sup trΩ1Ω)(sup trΩΩ1) · sup
∂X

(n + 1 + ∆Ψ) .(3.14)

This formula gives precisely the second constant C2 for claimed in-
equality (3.8). Here the conditions inf Riem(Ω1) and supS(Ω1) are
bounded are equivalent to the L∞ bound of the Riemannian curvature
of Ω1. �

Proof. (proof of constant C3) Now we use the Chern-Lu formula (see
[19, 40, 55]) to derive the second order estimate. We get the formula
of

trΩ′Ω = n + 1−∆′Ψ.

This following identity is interpreted as the energy identity of the har-
monic map id between (M, g′) to (M, g).

∆′(trΩ′Ω) = R′
īj
gīj − g′

īj
g′

k̄l
Rījk̄l − gījg′

k̄l
g′

pq̄
∂̄lg
′
p̄j∂kg′iq̄ .(3.15)

The Schwarz inequality implies

g′kl̄∂kg
′ij̄gij̄∂l̄g

′pq̄gpq̄ ≤ −(g′kl̄g′pj̄gij̄∂l̄g
′
pq̄∂kg

′iq̄)(g′ij̄gij̄) .(3.16)

Now we use the equation (3.4).

Lemma 3.6. The following formula holds

4′(log trΩ′Ω) ≥ −(n+ 1)− C(trΩ′Ω),

with C that depends on inf Ric(Ω1), supi 6=k Rīikk̄(Ω), sup trΩΩ1.

Proof. We apply (3.15) and (3.16) to obtain

4′[log trΩ′Ω] =
4′(trΩ′Ω)

trΩ′Ω
−
g′kl̄∂kg

′ij̄gij̄∂l̄g
′pq̄gpq̄

(trΩ′Ω)2

≥
R′ij̄gij̄ − g′ij̄g′kl̄Rij̄kl̄

trΩ′Ω
.

From (3.4) we have

Ric′ = Ric(Ω)−
√
−1

2
∂∂̄F

= Ric(Ω) + Ric(Ω1)− Ric(Ω)− Ω′ + Ω1 ,
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then Ric′ ≥ (inf Ric(Ω1) + 1)Ω1 − Ω′ and

R′
ij̄
gij̄ ≥ (inf Ric(Ω1) + 1)g′

il̄
g′
kj̄
g1,kl̄g1,ij̄ − g′

il̄
g′
kl̄
g′kl̄gij̄

≥ −C(trΩ′Ω)2 · (trΩΩ1)2 − (n + 1)trΩΩ1 ,

where C is a positive constant depending on inf Ric(Ω1). Then we have

∆′(log trΩ′Ω) ≥ −(n + 1)− C(trΩ′Ω) ,

where C depends on inf Ric(Ω1), supi 6=k Rīikk̄, sup trΩΩ1. This com-
pletes the proof of the lemma. �

Consider Z1 := log trΩ′Ω − C′Ψ + εS, such it has a maximum point
p which stays away from D, and with C ′ to be chosen. Then

∆′Z1 ≥ −(n+ 1)− CtrΩ′Ω− C′((n + 1)− trΩ′Ω)− CεtrΩ′Ω .

Now we choose C ′ such that C ′ − C − Cε > 0 and we have at p,
trΩ′Ω ≤ C. In the same vein as the first part of the subsection we
compute that for any x ∈ X there holds

log trΩ′Ω(x) = Z1(x) + C ′Ψ− εS + sup
∂X

log trΩ′Ω

≤ Z1(p) + C ′ sup Ψ + sup
∂X

log trΩ′Ω

Using the arithmetic-geometric-mean inequality we have

(trΩΩ′)
1
n ≤ trΩ′Ωe

F
n ≤ C sup

∂X
trΩ′Ω ,(3.17)

where C depends on inf Ric(Ω1), supi 6=k Rīikk̄(Ω), sup trΩΩ1, Osc Ψ,
inf Ψ1. This formula gives precisely the third constant of formula
(3.8). �

We could choose Ω1 as the background metric and repeat the esti-
mate, but it would not provide more information. The three constants
Ci are determined by the formulas (3.13), (3.14) and (3.17), respec-
tively. This concludes the proof of Proposition 3.3.

3.3. Boundary Hessian estimate. The boundary Hessian estimate
for real and complex Monge-Ampère equation is developed in [9, 35,
31, 29, 13]. The difficulty that arises in our problem is the estimate
near the singular varieties Vi. The distance function can not be used
in our problem, since we need the uniform estimate which is indepen-
dent of the distance to the divisor D. We overcome this difficulty by
multiplying singular terms with proper weight and using the linear the-
ory developed in Section 5 to construct an appropriate barrier function
which is independent of the distance function.

Proposition 3.7. The following boundary estimate holds

sup
X×∂R

|
√
−1∂∂̄Ψ|Ω ≤ C(sup

X
|∂Ψ|Ω + 1) .

The constant C depends on |∂g̃1αβ̄|, |Ψ|, |∂Ψ1|Ω, |∂Ψ0|Ω, |∂∂̄Ψ0|.
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Proof. Fix a point p ∈ M × ∂R, and consider Up ⊂ M × R an open
neighborhood of p. Recall that we denote by Ψ an a priori solution of
the equation

det(Ωij̄ + Ψij̄) = τfeΨ−Ψ1 det(Ωij̄) ,

whose boundary values are given by the datum Ψ0. The tangent-
tangent term of the boundary Hessian estimate follows from the bound-
ary value directly. Since the boundary is flat, the normal-normal term
follows from the construction of the approximate geodesic equation

[ϕ′′ − (∂ϕ′, ∂ϕ′)gϕ ] detωϕ = Ωn+1
Ψ = τeΨ−Ψ1 det(Ω1ij̄) ,

i.e. ∣∣∣∣ ∂

∂zn+1

∂

∂zn+1
Ψ

∣∣∣∣
Ω;X×∂R

≤
∑
i

∣∣∣∣ ∂

∂zn+1

∂

∂zi
Ψ

∣∣∣∣
Ω;X×∂R

+ C .(3.18)

The constant C depends on |Ψ1|, |Ψ0|, |∂∂̄Ψ0|Ω, and det(Ω1ij̄). The
quantity det(Ω1ij̄) depends on the boundary value and the chosen func-
tion Φ in Proposition 2.5. Then the aim of the present subsection is to
derive the mixed tangent-normal estimate on the boundary.

We put

4′ :=
n+1∑
α,β=1

g′
αβ ∂2

∂zα∂zβ
.

The elliptic operator 4′ allows the use of the maximum principle in
Section 5.1.

Our idea is to construct a barrier function and apply the maximum
principle locally in a small neighborhood of the point p ∈ M × ∂R.
Since the second order derivatives of Ψ blow up near the singular points
where D intersects X×∂R, we need to prove that the estimates do not
depend on the choice of the diameter of the small neighborhood Up.

Let us suppose that the open neighborhood Up ⊂ X ×R is a coordi-
nate chart near p (cf. Definition 1.1) for the first n variables; moreover,
the coordinate zn+1 := x +

√
−1y in Up locally parametrizes the Rie-

mann surface R. Next, let us define the function v : Up → R as

v := (Ψ−Ψ1) + sx−Nx2 ,(3.19)

where N, s are constants which depend only on M×R, the background
metric g and the datum Ψ0, and they will be determined later in (3.21)
and (3.22) respectively. Also, let us fix the small neighborhood of the
origin Ωδ := (M ×R)∩Bδ(0)⊂ Up with small radius δ < 1. We require
that Ωδ does not intersect D. We will show that the estimate does not
depend on the choice of δ.

We first prove the following lemma.
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Lemma 3.8. The following inequalities hold{
4′v ≤ − ε

4

(
1 +

∑n+1
α,β=1 g

′αβ̄gαβ̄

)
in Ωδ

v ≥ 0 on ∂Ωδ ,
(3.20)

where ε > 0 is a constant depending on the lower bound of ΩΨ0.

Proof. By means of the equation (3.19) and the linearity of 4′, let us
first consider the term 4′(Ψ− Ψ1). Here the remark to do is that, as
the metric gαβ̄ + Ψ1αβ̄ is L∞ equivalent to gαβ̄ in X × R, then we can
find a uniform constant ε such that gαβ̄ + Ψ1αβ̄ > εgαβ̄ holds point-wise
in Ωδ (could be in the whole X). Notice that the lower bound of ΩΨ1

depends on the lower bound of ΩΨ0 . We conclude, using the remark,
that just by definition there holds

4′(Ψ−Ψ1) =
n+1∑
α,β̄=1

g′
αβ̄ [(

gαβ̄ + Ψαβ̄

)
−
(
gαβ̄ + Ψ1αβ̄

)]
= n+ 1−

n+1∑
α,β̄=1

g′
αβ̄
gΨ1αβ̄ ≤ n+ 1− ε

n+1∑
α,β̄=1

g′
αβ̄
gαβ̄ .

It is clear that 4′x = 0 and 4′x2 = 2g′(n+1)n+1. Thus, we have

4′v = 4′(Ψ−Ψ1) + s4′x− 2Ng′
(n+1)n+1

≤ n+ 1− ε
n+1∑
α,β̄=1

g′
αβ̄
gαβ̄ − 2Ng′

(n+1)n+1

= n+ 1 +
(
− ε

2

) n+1∑
α,β̄=1

g′
αβ̄
gαβ̄ − 2Ng′

(n+1)n+1 − ε

2

n+1∑
α,β̄=1

g′
αβ̄
gαβ̄ .

Without loss of generality we can prove the inequality in the local
normal coordinate such that, at the origin, there holds gαβ̄ = δαβ̄. We
have, at the origin,

Ng′
(n+1)n+1

+
ε

4

n+1∑
α,β̄=1

g′
αβ̄
gαβ̄

=
(
N +

ε

4

) 1

1 + Ψ(n+1)n+1

+
ε

4

n∑
j=1

1

1 + Ψjj̄

≥ (n+ 1)

[(
N +

ε

4

)
·
( ε

4

)n n+1∏
α=1

1

1 + Ψαᾱ

] 1
n+1

.

Since, still at the origin, there holds

n+1∏
α=1

1

1 + Ψαᾱ

=
Ωn+1

Ωn+1
Ψ

=
1

τf
eΨ1−Ψ ≥ einf(Ψ1−Ψ) 1

sup f
,
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then we choose the constant N large enough so that

−2(n+ 1)

[(
N +

ε

4

)( ε
4

)n
einf(Ψ1−Ψ) 1

sup f

] 1
n+1

+ n+ 1 < − ε
4
.

(3.21)

Here N depends on inf(Ψ1 −Ψ), sup f = sup
Ωn+1

1

Ωn+1 and ε.
To fully achieve the claim (3.20), we have to verify the condition on

∂Ωδ. On ∂Ωδ ∩ ∂(M × R), there holds v = 0. On ∂Ωδ ∩ Int (M × R),
there holds, since Ψ ≥ Ψ1,

v ≥ (s−Nx)x ≥ (s−Nδ)x.

So we choose s = 2N such that

(s−Nδ)x ≥ 0.(3.22)

This completes the proof of the lemma. �

Now, we come to construct the auxiliary function u. We construct a
nonnegative boundary value φ such that φ only vanishes on the point
p. For example, φ = Ψ0 − Ψ0(p) + e|Ψ0−Ψ0(p)| − 1. Then we solve the
equation 4gu‖ = −n − 1 with the boundary value φ. According to
the maximum principle for the cone metrics (cf. Proposition 5.5), we
have u‖ ≥ 0. Meanwhile, we choose a smooth nonnegative function u⊥
of zn+1 monotonic along ∂

∂zn+1 such that it vanishes on the boundary
and strictly larger than u‖+ 1 in the interior of X, since u‖ is bounded.
Now, we define the function u by adding up u‖ and u⊥.

We need to change the variables via the map W defined at (4.3),
extended as the identity on the variable zn+1; we mark functions and
operators transformed under W with ˜ on the top. Finally, under W
coordinate functions become, for 1 ≤ i ≤ n, wi = xi+

√
−1yi; then, we

define Di := ∂
∂xi

, for 1 ≤ i ≤ 2n. With the above notations, we define
the function h : Up → R as

h := λ1ṽ + λ2ũ+ λ3 ·Di(Ψ̃− Ψ̃1) ,

for one fixed 1 ≤ i ≤ n and three constants λ1, λ2 and λ3 determined
below.

We emphasize that till the end of the subsection, the index 1 ≤ i ≤ n
is fixed; we recall that the cone angle βi is equal to one for the directions
corresponding to k + 1 ≤ i ≤ n.

We notice that at the origin (or point p), the value of h is zero. We
define ρi as the distance from p to the divisor only along the coordinate
wi. We shrink Ωδ to be the set containing such points whose distance
to p less than half the distance from p to D. So, on ∂Ωδ ∩ ∂(M × R)
there holds ρi

2
≤ |wi| ≤ 2ρi and ũ ≥ 1; then, letting λ3 be the smallest

eigenvalue of the inverse matrix of W∗Ω, there holds for q ∈ ∂Ωδ ∩
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Int (M ×R)

h(q) ≥ λ2ũ(q)− λ3|Di(Ψ̃− Ψ̃1)(q)|
≥ λ2 − C|∂(Ψ−Ψ1)(q)|Ω
≥ 0 ,

where the last inequality is true provided λ2 = 1 + C|∂(Ψ − Ψ1)(q)|Ω
with C that depends on background metric Ω. Let us come to analyze
4̃′h.

Lemma 3.9. There exist λ1 depending on λ2, λ4 = |Di log Ω̃n+1
1 | +

|∂Ψ|Ω + |∂Ψ1|Ω, λ5 = |Dig̃1αβ̄|Ω, such that

4̃′h ≤ 0.

Proof. By our preliminary work, we read off (3.20) an estimate for

4′v = 4̃′ṽ. About 4̃′ũ, we compute

4̃′ũ =4′u =
n+1∑
α,β=1

g′
αβ̄
uαβ̄ ≤ C

n+1∑
α,β=1

g′
αβ̄
gαβ̄ ,(3.23)

where C is a constant depending on Ψ0 and u⊥. Finally, as Ψ is
a solution to Ωn+1

Ψ = eFΩn+1 with F = log τ + log f + Ψ − Ψ1, we
differentiate this equation under coordinate wi, and we get

4̃′Di(Ψ̃− Ψ̃1)

=
n+1∑
α,β=1

Di log Ω̃n+1
1 +DiΨ̃−DiΨ̃1 −

n+1∑
α,β=1

(g̃)′
αβ̄
Dig̃1αβ̄ .

We end up with the estimate for 4̃′Di(Ψ̃− Ψ̃0),

4̃′Di(Ψ̃− Ψ̃1) ≤ λ4 + λ5

n+1∑
α,β=1

g′
αβ̄
gαβ̄ .(3.24)

There, λ4 := |∂ log Ω̃n+1
1 |+|∂Ψ|Ω+|∂Ψ1|Ω , λ5 := |∂g̃1αβ̄|Ω. We conclude

the following estimate for 4̃′h by means of (3.23) and (3.24);

4̃′h = λ14̃′ṽ + λ24̃′ũ+ λ34̃′Di(Ψ̃− Ψ̃1)

≤ −λ1
ε

4

(
1 +

n+1∑
α,β=1

g′αβ̄gαβ̄

)
+ λ2·C

n+1∑
α,β=1

g′
αβ̄
gαβ̄ +

[
λ4 + λ5

n+1∑
α,β=1

g′
αβ̄
gαβ̄

]

≤
[
− ε

4
λ1 + λ2 · C + λ4 + λ5

]
·

(
1 +

n+1∑
α,β=1

g′
αβ̄
gαβ̄

)
< 0 ,

after choosing λ1 properly. �
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(Completion of the proof of Proposition 3.7.) To summarize, we get

h ≥ 0 on ∂Ωδ and 4̃′h < 0 in Ωδ in the weak sense. So, by the weak
maximum principle, we get that h ≥ 0 in Ωδ. Since h(0) = 0, then we
have (recall zn+1 = x+

√
−1 y)

∂h

∂x
(0) ≥ 0,

∂h

∂y
(0) ≥ 0 .

In particular, we compute

∂h

∂x
= λ1

∂(Ψ̃− Ψ̃1)

∂x
+ s− 2Nx+ λ2

∂ũ

∂x
+ λ3

∂

∂x
Di(Ψ̃− Ψ̃1) ,

which leads to

λ3
∂

∂x
Di(Ψ̃− Ψ̃1)(0) ≥ −s− λ1

∂(Ψ̃− Ψ̃1)

∂x
(0)− λ2

∂ũ

∂x
(0) .

Combining the above inequality with ∂
∂y
Di(Ψ̃ − Ψ̃1) = 0, and adding

the inequalities, we get that for any 1 ≤ i ≤ n

∂

∂zn+1

∂

∂wī
(Ψ̃− Ψ̃1)(0) ≥ −C ,

where C depends on λ1, λ2, |∂Ψ|Ω, |∂Ψ1|Ω and |∂u|Ω. We repeat the
same argument for Di = − ∂

∂xi
and for Di = − ∂

∂yi
and we conclude that

the tangent-normal derivative is bounded, for 1 ≤ i ≤ n, by

∣∣∣∣ ∂

∂zn+1

∂

∂z ī
Ψ

∣∣∣∣
Ω

(0) =

∣∣∣∣ ∂

∂zn+1

∂

∂wī
Ψ

∣∣∣∣ (0) ≥
∣∣∣∣ ∂

∂zn+1

∂

∂wī
Ψ0

∣∣∣∣ (0) + C ,

(3.25)

where again C depends on λ1, λ2, |∂Ψ|Ω, |∂Ψ1|Ω and |∂u|Ω. Note from
the construction of Ψ1 that the derivatives of Ψ1 are controlled by the
corresponding derivatives of Ψ0. As (3.25) clearly coincides with (3.18),
this completes the proof of the proposition. �

3.4. Interior gradient estimate. We directly calculate the norm of
the gradient to obtain the differential inequality in Proposition 3.14.
Gradient estimates were obtained by Cherrier and Hanani [20, 34] for
Hermitian manifolds and later by Blocki [6] for the Kähler case. Since
(3.2) has singularity along the divisor, in order to apply the maximum
principle, we need to choose an appropriate test function near the di-
visor.

We define the following functions, where ε > 0 and γ : R → R are
not yet specified

B := |∂Ψ|2 = gij̄ΨiΨj̄ , D := |∂Ψ|2g′ = g′kl̄ΨkΨl̄,

Z := logB − γ(Ψ), K := Z − sup
D
Z + εS .

Consider κ and S = ||s||2κ as in Lemma 2.4. Recall that 0 < α < µ =
β−1 − 1.
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Lemma 3.10. Suppose that Ψ ∈ C2,α
β with α > 0 and βi <

1
2
, for all

1 ≤ i ≤ k. Then for any κ which satisfies βi ≤ 2κ < (1 + α)βi, for all
1 ≤ i ≤ k, the function K = Z − supD Z + εS achieves its maximum
away from D and |∂S|Ω ≤ C.

Proof. The second claim follows directly from the formula (cf. Lemma
2.4)

g11̄
Ω

∂

∂z1
S
∂

∂z1̄
S = O(|z1|2(1−β)+4κ−2)

and the fact that the exponent is non-negative.
Now we verify the first statement. We only concern one direction

∂
∂z1 perpendicular to one component of the divisor defined by z1 = 0,
as other directions are verified similarly. We have

∂1Z = B−1gij̄(∇1∇iΨ ·Ψj̄ + Ψi · ∂1∂j̄Ψ)− γ′Ψ1 .

In order to prove Z ∈ C1,α
β , it suffices to prove that ∇1∇iΨ ∈ Cα

β ,

which follows from [8, Proposition A.1]. On the other hand, |∂1+α
1 S| =

O(|z1|2κ−(1+α)β) with negative power. Thus we see that S grows ex-
tremely faster than Z − supD Z near the divisor. Since Z − supD Z
is non-positive on D while S vanishes along D, we obtain that the
maximum point of Z − supD Z + εS must be achieved on M. �

With the lemmas above, we could assume that p in the interior of
M is the maximum point of K and choose normal coordinates around
p. We get at p,

gij̄ = δij and
∂gij̄
∂zk

=
∂gij̄
∂z j̄

= 0 ;

so

Ψij̄ = Ψīiδij and g′ij̄ =
δij

1 + Ψīi

.

We have

4′K = B−1
∑
k,i,j

1

1 + Ψkk̄

[Rij̄kk̄ΨjΨī + Ψkk̄iΨī + ΨiΨkk̄ī + ΨikΨīk̄ + Ψik̄Ψīk]

− γ′4′Ψ− γ′′D −B−2g′kl̄BkBl̄ + ε4′S .
We deal with these terms by means of the next lemmas.

Lemma 3.11. The following inequality holds

B−1
∑
k,i,j

1

1 + Ψkk̄

Rij̄kk̄ΨiΨj̄ − γ′4′Ψ ≥
∑
k,i,j

1

1 + Ψkk̄

(inf Rij̄kk̄ + γ′)− (n+ 1)γ′ .

Proof. From

4′Ψ =
∑
k

Ψkk̄

1 + Ψkk̄

= n+ 1−
∑
k

1

1 + Ψkk̄

,

we have the lemma. �
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Lemma 3.12. The following formula holds

B−1
∑
k,i

1

1 + Ψkk̄

ΨiΨkk̄ī = B−1
∑
k,i

1

1 + Ψkk̄

ΨīΨkk̄i ≤ 1 + |∂ log f |Ω + |∂Ψ1|Ω .

Proof. Differentiating the equation (3.9), we have

g′ij̄(∂kgij̄ + Ψij̄k)− gij̄∂kgij̄ = ∂kF ,

or ∑
i

Ψīik

1 + Ψīi

= Fk = ∂kΨ + ∂k(log f −Ψ1) .(3.26)

Then (3.26) implies

B−1
∑
k,i

1

1 + Ψkk̄

ΨiΨkk̄ī = B−1
∑
k,i

1

1 + Ψkk̄

ΨīΨkk̄i

= B−1ΨiFī

= 1 +B−1ΨiF̃ī

≤ 1 + |∂F̃ |Ω .

Here F̃ = log f −Ψ1, and this completes the proof of the lemma. �

Lemma 3.13. The following formula holds

−B−2g′kl̄BkBl̄ +B−1
∑
k,i,j

1

1 + Ψkk̄

[ΨikΨīk̄ + Ψkk̄Ψk̄k] ≥ −(γ′ + ε)− εB−1|∂S|Ω .

Proof. At p we have

0 = (Zk + εSk)(p) = B−1Bk − γ′Ψk + εSk
′

i.e.
B−1Bk = γ′Ψk − εSk .

Also,
0 = (Zl̄ + εSl̄)(p) = B−1Bl̄ − γ′Ψl̄ + εSl̄ ,

i.e.
B−1Bl̄ = γ′Ψl̄ − εSl̄ .

Since at p we have
Bk = ΨikΨī + ΨiΨīk ,

and
Bl̄ = Ψil̄Ψī + ΨiΨīl̄ ,

we obtain

ΨikΨī = B(γ′Ψk − εSk)−ΨiΨīk

and

ΨiΨīl̄ = B(γ′Ψl̄ − εSl̄)−Ψil̄Ψī .
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So

g′kl̄BkBl̄ = g′kl̄[ΨikΨīΨjl̄Ψj̄ + ΨiΨīkΨjΨj̄ l̄ + ΨikΨīΨjΨj̄ l̄ + Ψil̄ΨīΨjΨj̄k]

= g′kl̄{B(γ′Ψk − εSk)Ψjl̄Ψj̄ −Ψil̄ΨīΨjΨj̄k + ΨikΨīΨjΨj̄ l̄} ′

using the normal coordinates at p and assuming γ′ > 0 we have

g′kl̄BkBl̄ =
∑
k,i,j

1

1 + Ψkk̄

{B(γ′Ψk − εSk)Ψkk̄Ψk̄ − (Ψkk̄Ψk̄)
2 + ΨikΨīΨjΨj̄k̄}

≤ B
∑
k,i,j

1

1 + Ψkk̄

{(γ′Ψk − εSk)(Ψkk̄ + 1)Ψk̄ − (Ψkk̄)
2 + Ψ2

ik}

≤ (γ′ + ε)B2 + εB|∂S|Ω +B
∑
k,i

1

1 + Ψkk̄

{−(Ψkk̄)
2 + Ψ2

ik} .

So

−B−2g′kl̄BkBl̄ +B−1
∑
k,i,j

1

1 + Ψkk̄

[ΨikΨīk̄ + Ψkk̄Ψk̄k]

≥ −(γ′ + ε)− εB−1|∂S|Ω + 2B−1
∑
k

(Ψkk̄)
2

1 + Ψkk̄

.

�

Proposition 3.14. We have the gradient estimate

sup
X
|∂Ψ|2Ω ≤ Ci for i = 1, 2 .

The constants Ci depend on, respectively,

C1 = C1(inf
i 6=k

Rīikk̄(Ω), sup |∂ log f |Ω, sup |∂Ψ1|Ω,OscX Ψ,Osc∂X Ψ1) ,

C2 = C2(inf
i 6=k

Rīikk̄(Ω1), sup |∂Ψ1|Ω, sup trΩΩ1, sup trΩ1Ω,OscX Ψ,OscX Ψ1) .

Proof. We assume B(p) ≥ 1, otherwise we are done. We compute

∆′(Z − sup
D
Z + εS) ≥

∑
i,j,k

1

1 + Ψkk̄

(
inf
i 6=k

Rīikk̄ + γ′
)
− (n+ 1)γ′ − γ′′D − 1

− |∂ log f |Ω − |∂Ψ1|Ω − |γ′ + ε| − εB−1|∂S|Ω − CεtrΩ′Ω

=

(
inf
i 6=k

Rīikk̄ + γ′ − Cε
)

trΩ′Ω− γ′′D− 1− |∂ log f|Ω − |∂Ψ1|Ω

− (n+ 1)γ′ − (n+ 2)γ′ − ε− ε|∂S|Ω .
We choose an appropriate γ, for example

γ(t) := −C ′esup Ψ−t, where C ′ := inf
i 6=k

Rīikk̄ − Cε+ 1 .

We notice that |∇S| is bounded by means of Lemma 3.10. Then,

D + trΩ′Ω(p) ≤ C = C(inf
i 6=k

Rīikk̄, sup |∂ log f|Ω, sup |∂Ψ1|Ω) .
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Since

(trΩΩ′)
1
n = (n+ 1 + ∆Ψ)

1
n ≤ trΩ′Ω · e

F
n ,

so B ≤ trΩΩ′ ·D ≤ C. Moreover, for any x ∈ Int (X), there holds

logB(x) = K(x) + γ(Ψ)(x)− εS(x) + sup
D
Z

≤ K(p) + sup
∂X

K + γ(Ψ)(x)− εS(x) + sup
D
Z

= logB(p)− γ(Ψ)(p)− sup
D
Z + εS(p) + sup

∂X
K + γ(Ψ)(x)− εS(x) + sup

D
Z

≤ logB(p)− γ(Ψ)(p) + γ(Ψ)(x) + sup
∂X

(logB − sup
D

logB − γ(Ψ)) + C .

Here we use the assumption that B ≥ 1, so logB ≥ 0. Similarly to
former arguments, we change the background metric and we consider

log
det(Ω1,ij̄ + Ψ̃ij̄)

det(Ω1,ij̄)
= F1 = log τ + Ψ̃ .

We arrive at

sup
X
|∂Ψ̃|2Ω1

≤ C .

As a result, the proof of the proposition follows from

sup
X
|∂Ψ|Ω ≤ sup

X
trΩΩ1 · (sup

X
|∂Ψ̃|Ω1 + sup

X
|∂Ψ1|Ω1) .

�

4. Solving the geodesic equation

In this section, we assume that the components of D are smooth and
disjoint.

4.1. Existence of the C1,1
β cone geodesic. In the present subsection

we are dealing with the Dirichlet problem for the family of approximate
geodesic equation (3.2). In order to apply the a priori estimates in
Section 3, we require that the pair (Ω,Ω1) satisfies that |∂ log Ω̃n+1

1 |,
|∂ log

Ωn+1
1

Ωn+1 | are bounded and one of the following conditions hold

• |Riem(Ω1)| is bounded;
• inf Riem(Ω1) and supRiem(Ω) are bounded;
• sup Ric(Ω1) and inf Riem(Ω) are bounded;
• inf Ric(Ω1) and |Riem(Ω)| are bounded.

Then we reduce these conditions to geometric conditions on the bound-
ary potentials ϕ0 and ϕ1 as follows.

The boundedness of the connection of the background cone metric
ω in (1.3) is computed in the following lemma for 0 < β1 <

2
3
. It was

also computed for 0 < β1 <
1
2

in Brendle [8].

Lemma 4.1. The connection of ω is bounded for 0 < β1 <
2
3

under
the coordinate chart {wi}.
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Proof. Since there exists a smooth function ρ such that δ|s|2β1

hΛ
= ρ|z1|2β1 ,

we can rewrite (1.3) as

ω = ω0 +

√
−1

2
|z1|2β1ρkl̄dz

k ∧ dz l̄

+

√
−1

2
β1|z1|2(β1−1)(z1ρkdz

k ∧ dz1̄ + z1̄ρl̄dz
1 ∧ dz l̄)

+

√
−1

2
β2

1ρ|z1|2(β1−1)dz1 ∧ dz1̄

for k, l from 2 to n. By means of the change of coordinates (4.3), as
wi = |zi|β1−1zi, we have, for i ∈ {1, · · · , n}

∂wi

∂zi
=
βi + 1

2
|zi|βi−1;

∂wi

∂z ī
=
βi − 1

2
|zi|βi−3zizi.

Meanwhile,

∂zi

∂wi
=

1 + βi
2βi

|wi|
1−βi
βi ;

∂zi

∂wī
=

1− βi
2βi

|wi|
1−3βi
βi wiwi.

The components of the model cone metrics under the variables wi be-
come

g̃11̄ = [(
1 + β1

2β1

)2|w1|
2
β1
−2

+ (
1− β1

2β1

)2|w1|
2
β1
−2

]g11̄ ◦W−1

=
1 + β2

1

2β2
1

|w1|
2
β1
−2

[g011̄ ◦W−1 + |w1|2ρ11̄

+ β1|w1|
2
β1
−2

(|w1|
1
β1
−1
w1ρ1 + |w1|

1
β1
−1
w1̄ρ1̄) + β2

1ρ|w1|2−
2
β1 ]

=
1 + β2

1

2β2
1

[g011̄ ◦W−1|w1|
2
β1
−2

+ |w1|
2
β1 ρ11̄ + β1(w1ρ1 + w1̄ρ1̄ + β2

1ρ)],

g̃1l̄ =
1 + β1

2β1

[|w1|
1
β1
−1
g01l̄ ◦W−1 + |w1|

1
β1

+1
ρ1l̄ ◦W−1 + β1w

1ρl̄ ◦W−1],

g̃kl̄ = g0kl̄ ◦W−1 + |w1|2ρkl̄ ◦W−1.

Now, the connection of ω depends on the first derivative with respect
to wi. We check them one by one. Note that ρ is smooth on wk for
1 ≤ k ≤ n.

∂

∂w1
g̃11̄ = O(|w1|

2
β1
−3

+ |w1|
2
β1
−1

);

∂

∂wi
g̃11̄ = O(1);

∂

∂wi
g̃1l̄ = O(1);

∂

∂w1
g̃kl̄ =

∂

∂wi
g̃kl̄ = O(1).
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Now let us check ∂
∂w1 g̃1l̄. It contains three terms. The first term is

∂

∂w1
(|w1|

1
β1
−1
g01l̄ ◦W−1)

=
∂

∂w1
[(|w1|

1
β1
−1|w1|)(|w1|−1g01l̄ ◦W−1)].

Since g01l̄ ◦ W−1 is also smooth and converges to zero as w1 goes to

zero, then this first term is O(|w1|
1
β1
−1

). The second and third term are
both O(1). Thus we conclude that when 0 < β1 <

2
3
, the connection is

bounded. �

As a corollary, we arrive at the boundedness of the connection of Ω1.

Corollary 4.2. When 0 < β1 <
2
3

and ϕ0, ϕ1 ∈ C3
β, the connection of

Ω1 is bounded.

Proof. From Lemma 4.1 and the expression of Ω in (2.8), we know that
the connection of Ω is bounded for 0 < β1 <

2
3
. Recall the formula

(2.10) of Ω1; we have

Ω1 = tωφ + (1− t)ωϕ +

√
−1

2
(1 +m∂n+1∂n+1Φ)dzn+1 ∧ dz̄n+1

+
1√
2
∂i(φ− ϕ)dzidzn+1 +

1√
2
∂ī(φ− ϕ)dz īdzn+1.

We have that the components of Ω1 are, for 2 ≤ i, j ≤ n,

(g1)11̄ = t(gϕ0)11̄ + (1− t)(gϕ1)11̄;

(g1)1̄i = t(gϕ0)1̄i + (1− t)(gϕ1)1̄i;

(g1)1n+1 = ∂1(ϕ0 − ϕ1);

(g1)ij̄ = t(gϕ0)ij̄ + (1− t)(gϕ1)ij̄;

(g1)in+1 = ∂i(ϕ0 − ϕ1);

(g1)n+1n+1 = 1 +m∂n+1∂n+1Φ.

Thus the corollary follows from ϕ0, ϕ1 ∈ C3
β. �

Lemma 4.3. Suppose that ϕ0, ϕ1 ∈ C3
β have curvature lower (resp.

upper) bound. Then Ω1 has also curvature lower (resp. upper) bound.

Proof. Since the formula of the bisectional curvature is

Rij̄kl̄ = −
∂2gij̄

∂zk∂z l̄
+ gpq̄

∂gpj̄

∂z l̄
∂giq̄
∂zk

,
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we have for 1 ≤ i, j, k, l ≤ n and φ = tϕ1 + (1− t)ϕ0,

Rij̄kl̄(g1) = tRij̄kl̄(g(ϕ1)) + (1− t)Rij̄kl̄(g(ϕ0))

− tg(ϕ1)pq̄∂l̄g(ϕ1)pj̄∂kg(ϕ1)iq̄

− (1− t)g(ϕ0)pq̄∂l̄g(ϕ0)pj̄∂kg(ϕ0)iq̄

+
∑

1≤p,q≤n

gpq̄1 ∂l̄g(φ)pj̄∂kg(φ)iq̄

+
∑

1≤p≤n

gpn+1
1 ∂l̄g(φ)pj̄

1√
2
∂k∂i[ϕ1 − ϕ0]

+
∑

1≤q≤n

gn+1q̄
1 ∂kg(φ)iq̄

1√
2
∂l̄∂j̄[ϕ1 − ϕ0]

+
1

2
gn+1n+1

1 ∂k∂i[ϕ1 − ϕ0]∂l̄∂j̄[ϕ1 − ϕ0].

Also,

Rij̄kn+1(g1) = −∂k(ϕ1 − ϕ0)ij̄

+
∑

1≤p,q≤n

gpq̄1 (ϕ1 − ϕ0)pj̄∂kg(φ)iq̄

+ gpn+1
1 (ϕ1 − ϕ0)pj̄

1√
2
∂k∂i[ϕ1 − ϕ0];

Rij̄(n+1)n+1(g1) =
∑

1≤p,q≤n

mgpq̄1 (ϕ1 − ϕ0)pj̄(ϕ1 − ϕ0)iq̄;

Rin+1(n+1)n+1(g1) =
n∑
q=1

mgn+1q̄
1 ∂̄n+1∂n+1∂̄n+1Ψ(ϕ1 − ϕ0)iq̄;

Rn+1n+1(n+1)n+1(g1) = −m∂n+1∂̄n+1∂n+1∂̄n+1Ψ

+m2gn+1n+1
1 ∂̄n+1∂̄n+1∂n+1Ψ∂n+1∂̄n+1∂n+1Ψ.

The connection and the lower bound of the curvature of ϕ0 and ϕ1 are
bounded. So the curvature of Ω1 is also bounded below. The upper
bound follows in the same way. �

Corollary 4.4. Suppose that 0 < β1 <
2
3
, ϕ0, ϕ1 ∈ C3

β and their Ricci
curvature have lower (upper) bound. Then the Ricci curvature of Ω1

also has lower (resp. upper) bound.

Proof. We use the formulas of the Riemannian curvature in Lemma 4.3,
and we take the trace to obtain the Ricci curvature. Then the lemma
follows directly. �

Since inf Riem(Ω1) is bounded for 0 < β1 <
1
2

(see [8]), we introduce

the following subspaces of Kähler cone metrics. When 0 < β1 <
1
2
, we
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define

I1 := {ϕ ∈ H3
β| sup Ric(ωϕ) is bounded};

I2 := {ϕ ∈ H3
β| inf Ric(ωϕ) is bounded}.

Theorem 4.5. Assume that two Kähler cone potentials ϕ0, ϕ1 are both
in Ii i = 1, 2. Then they are connected by a C1,1

β cone geodesic.

Proof. Note that the right hand side of the equation is positive as long
as τ is positive. When τ is zero, (3.1) provides a solution of the geodesic
equation (2.6).

We denote the set of solvable times of (3.1) by

I = {τ ∈ (0, 1]|(3.1)τ is solvable in C2,α
β } .

Automatically, Ψ = Ψ1 satisfies the equation at τ = 1 , so the set I is
not empty.

For any 0 < τ ≤ 1, assuming that ω(τ0) solves the equation (3.1),
Proposition 5.21 provides a unique solution in C2,α

β to the following
linearized equation {

4τ0v − v = f in M ,
v = u on ∂X ,

for any f ∈ Cα
β and u ∈ C2,α

β . So the linearized operator at τ0 is
invertible, and thus I is open. So the solvable time can be extended
beyond τ0.

The a priori estimates in Section 3, with one of the geometry con-
ditions in I1 or I2 assures the uniform C1,1

β bound of ϕ(t) which is

independent of τ . Two estimates in the next subsections improve C2,α
β

regularity of the solution of (3.1) before τ = 0. Thus, we can solve th
approximate equation till τ = 0. With the uniform C1,1

β bound, after
taking a subsequence ti we have a weak limit ϕ = limti→0 ϕ(ti) under a
C1,α
β norm. In Section 4.4, we prove the uniqueness of a weak solution.

Hence the theorem is proved completely. �

4.2. Interior Schauder estimate: τ > 0. We first prove the C2,α
β

estimate for a general equation.

log Ωn+1
Ψ = log Ωn+1 + F.(4.1)

Proposition 4.6. Assume that we have the second order estimate of
Ψ. Then the following estimate holds for the solution of (4.1) on any
small ball B ⊂ X

|
√
−1∂∂̄Ψ|Cαβ (B) ≤ C ,(4.2)

where C depends on |∂ log Ω̃n+1|Lq , | log Ωn+1|Cαβ , |∂Ψ|∞,|4Ψ|∞, |∂F̃ |Lq ,
|F |Cαβ , where q > 2n+ 2.
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Proof. Choose a small ball Bd(p) around p in the interior of X. When
Bd(p) does not intersect D, this proposition follows directly from the
standard Evans-Krylov estimate. So it’s sufficient to fix a point p ∈ D.
We consider (4.1) in Bd(p). The distance d is measured with respect
to the flat cone metric g.

In Bd(p) \D, we use the local holomorphic coordinate chart

f i(zi) = (zi)βi

and
(4.3)
W (z1, · · · , zn) := (w1 = f 1(z1), · · · , ws = f s(zs), zi+1, · · · , zn+1) .

Here above, for 1 ≤ i ≤ s we have that zi is the singular direction with
cone angle βi. Then on C \ 0, f i is holomorphic when the right hand
is restricted to the principal branch and the coordinate transformation
satisfies 

∂wi

∂zi
= βi(z

i)βi−1, 1 ≤ i ≤ s;

∂wi

∂zi
= 1, s ≤ i ≤ n+ 1;

∂wī

∂zi
=
∂wi

∂zj
=
∂wī

∂zj
= 0, j 6= i, 1 ≤ i, j ≤ n+ 1.

We rewrite (4.1) in the coordinate system {wi}, we use the notation
∗̃ over the quantities to denote the corresponding ones after pulling
back or pushing forward. Under (4.3), (4.1) becomes

log Ω̃n
ϕ̃ := h̃.(4.4)

So, we fix a 1 ≤ k ≤ n and, by taking ∂
∂wk

on both sides of (4.4) we get

g̃′
ij̄

(g̃ij̄k + ϕ̃ij̄k) = h̃k .

Taking ∂
∂wl̄

on both sides of the above equation, we have

− g̃′pj̄ g̃′iq̄(g̃pq̄l̄ + ϕ̃pq̄l̄)(g̃ij̄k + ϕ̃ij̄k) + g̃′
ij̄

(g̃ij̄kl̄ + ϕ̃ij̄kl̄) = h̃kl̄ .

Let g be the local potential of gij̄ in Bd(p), the existence of such g is
guaranteed by the linear theory in Section 5. We introduce the notation

V := g + ϕ and Ṽ := g̃ + ϕ̃.

Then

g̃′
ij̄
Ṽkl̄ij̄ = g̃′

pj̄
g̃′
iq̄
Ṽpq̄kṼij̄l̄ + h̃kl̄.

In conclusion, we have

4̃′Ṽkl̄ ≥ h̃kl̄.(4.5)
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Then we pull back the differential inequality above by the map W ,

Ṽkl̄ =
∂zk

∂wk
∂z l̄

∂wl̄
Vkl̄ and h̃kl̄ =

∂zk

∂wk
∂z l̄

∂wl̄
hkl̄

and denote the weight

σkl̄ =
∂zk

∂wk
∂z l̄

∂wl̄
.

Under the coordinate transformation, we see that for 1 ≤ i ≤ s and
s+ 1 ≤ j ≤ n

(4.6)


σīi = β−2

i (zi)2−2βi = O(|zi|2−2βi)

σij̄ = β−1
i (zi)1−βi = O(|zi|1−βi),

σjj̄ = 1.

Thus the weight σ is equivalent to gcone as well as to g′, according to
the second order estimate of ϕ. Thus, (4.5) becomes in Bd(p)\D under
the coordinate system {zi},

4′[σkl̄Vkl̄] ≥ σkl̄hkl̄.(4.7)

At last given any direction η ∈ Cn, with |η| = 1, we denote

∂η :=
∑
k

ηk
∂

∂zk
.

Also, we set

Vηη̄ := ∂2
ηη̄V =

∑
k,l

ηkη l̄
∂

∂zk
∂

∂z l̄
V.

We then define
uη :=

∑
k,l

ηkη l̄σkl̄Vkl̄.

By using (4.7) , we have the following differential inequality in Bd(p)\D
in coordinate system {zi},

4′(uη) =
∑
k,l

ηkη l̄4′(σkl̄Vkl̄) ≥
∑
k,l

ηkη l̄σkl̄hkl̄ .(4.8)

We emphasize again that the differential inequality (4.8) is defined
outside the divisor and its coefficient is a Kähler cone metric.

Let us now introduce the following symbols. We denote, for λ ∈ N
Mλ·η := sup

Bλ·d(p)

uη, mλ·η := inf
Bλ·d(p)

uη .

Applying Proposition 5.11 (weak Harnack inequality) to M2η − uη, we
have that there exists a q > 2n+ 2 such that{

d−2n−2

∫
Bd(p)

(M2η − uη)pΩn+1

} 1
p

≤ C {M2η −Mη +K} .(4.9)
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Here
K := d1− 2n+2

q ‖∂zh‖q
We denote h̃l̄ := gkl̄h̃k on the coordinate system {wi}. Using the

coordinate change from {zi} to {wi}, we need to cut the cone point.
While, along the cutting line in the one branch w-disk Dw, the value
of h̃ might not be equal. We let

‖∂wh̃‖q = ‖∂w log Ω̃n+1 + ∂wF̃‖q.

Now let us check the term ‖∂z log Ωn+1‖q. We could choose a ε-tubular
neighbourhood of the cutting line as Dε. Thus from Corollary 4.2, we
have that there is a uniform constant C which is independent of ε such
that

‖∂z log Ωn+1‖q;Dw\Dε
= ‖∂w log Ω̃n+1‖q;Dw\Dε
≤ CV ol(Dw \Dε)

≤ CV ol(Dw).

So we could take ε→ 0, and the integral above is still finite. Meanwhile,
‖∂zF‖q;Dw\Dε = ‖∂wF̃‖q;Dw\Dε is bounded by means of Lebesgue’s dom-

inated convergence theorem, when ‖∂wF̃‖q;Dw is finite.
In order to obtain the inverse inequality for

uη −m2η

we use the concavity of the Monge-Ampère operator. Fix any two
points

Q2 ∈ B2d(p) and Q1 ∈ Bd(p),

without loss of generality, we assume that the distance from Q2 to D
is longer than the distance from Q1 to D. From the formula of the flat
metric (1.2), we see that

σij̄(Q2) > σij̄(Q1).

We set
g′(t) := (1− t)g′(Q2) + tg′(Q1),

and

aij̄ =

∫ 1

0

g′
ij̄

(t)dt.

When Q1, Q2 are on D, we choose and sequence of points Qk
1, Ql

2 which
are outside D such that Qk

1 → Q1 and Ql
2 → Q2. From the equation

(4.1), we have

h(Qk
1)− h(Ql

2) = log det(g′ij̄(Q
k
1))− log det(g′ij̄(Q

l
2))

=

∫ 1

0

g′(t)
ij̄
dt(V (Qk

1)− V (Ql
2))ij̄ = aij̄(V (Qk

1)− V (Ql
2))ij̄ .(4.10)
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Now, we define

(g̃′)ij̄(t) = (1− t)(σ(Ql
2))ij̄(g′(Ql

2))ij̄ + t(σ(Qk
1))ij̄(g′(Qk

1))ij̄

ãij̄ :=

∫ 1

0

(g̃′)−1(t)dt, if one of i, j is in 1, · · · , s;

ãij̄ := aij̄, s+ 1 ≤ i, j ≤ n+ 1.

Since g′(t) is L∞-equivalent to g, for 1 ≤ i, j ≤ n + 1, the matrix
ãij̄ is positive definite and its eigenvalues range between the positive
constants λ and Λ. Thus, we can apply [28, Lemma 17.13] (see also
[50, Section (4.3)]); we get that there exists a finite set of unit vec-
tors γ1, · · · , γN ∈ Cn+1 and positive numbers λ∗,Λ∗ depending only on
n, λ,Λ such that the matrix ãij̄ can be written as

ãij̄ =
N∑
ν=1

bνγνiγνj̄ .

Here λ∗ ≤ bν ≤ Λ∗ for any 1 ≤ ν ≤ N . As a result, we can express the
matrix aij̄ in terms of bν and the vectors γν . Thus, we continue from
(4.10) and we write

h(Qk
1)− h(Ql

2) =
∑
i,j

ãij̄[(σ(Qk
1))ij̄(V (Qk

1))ij̄ − (σ(Ql
2))ij̄(V (Ql

2))ij̄]

=
N∑
ν=1

bν
∑
i,j

γνiγνj̄[(σ(Qk
1))ij̄(V (Qk

1))ij̄ − (σ(Ql
2))ij̄(V (Ql

2))ij̄]

= C
N∑
ν=1

bν(uγν (Q
k
1)− uγν (Ql

2)) .

Since both end sides are Cα
β , letting Qk

1 → Q1 and Ql
2 → Q2, we have

h(Q1)− h(Q2) = C

N∑
ν=1

bν(uγν (Q1)− uγν (Q2)) .

From the final decomposition of the cone matrix above, we conclude
that for a fixed 1 ≤ l ≤ N ,

Cbl(uγl(Q1)− uγl(Q2)) ≤ h(Q1)− h(Q2) + C
∑
ν 6=l

bν(uγν (Q2)− uγν (Q1)) .

(4.11)

We now fix 1 ≤ ν ≤ N , λ = 1, 2 and we denote

w(λ · d) :=
N∑
ν=1

OscBλ·d(p) uγν .
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From (4.11), since Q1 ∈ Bd(p) and Q2 ∈ B2d(p) we get

uγl(Q1)−m2l ≤ C{dα|h|Cαβ +
∑
ν 6=l

(M2γν − uγν (Q1))}.

Applying the inequality (4.9), we have{
d−2n−2

∫
Bd(p)

(
∑
ν 6=l

M2γν − uγν )pΩn+1

} 1
p

≤ N
1
p

∑
ν 6=l

{
d−2n−2

∫
Bd(p)

(M2γν − uγν )pΩn+1

} 1
p

≤ C

{∑
ν 6=l

(M2γν −Mγν ) +K

}
≤ C {w(2d)− w(d) +K}(4.12)

which entails, by integrating of (uγl(Q1)−m2l)
p on Bd(p) with respect

to Ω and using (4.12){
d−2n−2

∫
Bd(p)

(uγl(Q1)−m2l)
pΩn+1

} 1
p

≤ C

{
dα|h|Cαβ + {d−2n−2

∫
Bd(p)

(
∑
ν 6=l

M2γν − uγν )pΩn+1}
1
p

}

≤ C
{
dα|h|Cαβ + w(2d)− w(d) +K

}
.

(4.13)

At the last inequality we used (4.12). Now, we combine (4.9) and (4.13)
to obtain

w(2d) ≤ C
{
dα|h|Cαβ + w(2d)− w(d) +K

}
.

Then, using the Iteration Lemma 8.23 in [28], we have uη ∈ Cα
β , for

all η ∈ Cn+1. So ∆V ∈ Cα
β and V ∈ C2,α

β follows from Proposition
5.20. This gives (4.2) and completes the proof of the proposition. �

In conclusion, we obtain the conical Evans-Krylov estimate of the
geodesic equation (3.1).

Proposition 4.7. Assume 0 < β < 2
3

and that ϕ0, ϕ1 are in Ii, i = 1, 2.

Then the C1,1
β solution Ψ of the approximate geodesic equation (3.1)

belongs to C2,α
β in the interior of X.

Proof. Considering the geodesic equation (3.1), then F = log τ+log
Ωn+1

1

Ωn+1 +

Ψ−Ψ1. Since Ω ∈ Cα
β , we have log Ωn+1 ∈ Cα

β . Moreover, ϕ0, ϕ1 ∈ C2,α
β ,
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so log Ωn+1
1 ∈ Cα

β . Thus we have F ∈ Cα
β . When 0 < β1 < 2

3
,

Lemma 4.1, Lemma 4.2 and ϕ0, ϕ1 ∈ C3
β imply that ∂F̃ is bounded. �

Our argument presented above follows Evans-Krylov’s estimate [26,
27, 38]. We also used Blocki’s observation in [5] that F ∈ W 1,q is
sufficient to get the estimate. In our problem, since Vkl̄ is singular
along the direction which is perpendicular to D, we multiply by the
weight. In the next Section, we will develop the linear theory including
the weak Harnack inequality for the linear equation and with cone
coefficient which is used in the proof above.

4.3. Boundary Schauder estimate: τ > 0. We adapt Krylov’s
method [38] (also cf. [28]) for the boundary estimate to our cone
case. We notice that the linear equation is of divergence form, so
the Harnack inequality and maximum principle proved in the next
section can be applied here. The boundary of X is X × ∂R, which
is a manifold with 2n + 1 real dimension. Under the local coordi-
nate zi = xn+1 + iyn+1, the boundary is defined by xn+1 = 0. Denote
x′ = {x1, y1, · · · , xn, yn, yn+1}.

Proposition 4.8. Assume 0 < β1 < 2
3

and that ϕ0, ϕ1 are in Ii,

i = 1, 2. Then the C1,1
β solution Ψ of the approximate geodesic equation

(3.1) belongs to C2,α
β on the boundary of X.

Proof. Recall that the approximate geodesic equation is
(4.14){

log det(ΩΨ1ij̄ + Ψ̃ij̄) = h = log τ + Ψ̃ + log det(ΩΨ1ij̄) in M ,

Ψ̃(z) = 0 on ∂X .

We first see that the tangent-tangent direction of the boundary esti-
mate equals to the same estimate of the boundary values. Then the
normal-normal estimate follows from the approximate geodesic equa-
tion

[ϕ′′ − (∂ϕ′, ∂ϕ′)gϕ ] detωϕ = Ωn+1
Ψ = τeΨ−Ψ1 det(Ω1ij̄)

with the estimates of the tangent-normal direction and the tangent-
tangent direction. We differentiate (4.1) with respect to ∂k for a fixed
k ∈ 1, · · · , n, and we get

4′Ψ̃k = hk − gij̄Ψg(Ψ1)ij̄k .

We use the flat metric as the weighted metric to derive the differential

equation of u =
√
gkk̄Ψ̃k. Then we obtain that u satisfies

4′u =

√
gkk̄(hk − gij̄Ψg(Ψ1)ij̄k) .

We denote the right hand side as f . According to Lemma 4.2, f is
bounded when 0 < β < 2

3
and ϕ0, ϕ1 ∈ C3

β. Note that u vanishes
on the boundary ∂X. We fix a point p on the boundary, and we take
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coordinates zi centered at p. We introduce the following domains for a
small radius d.

|x′|2β1
= |z1|2β1 +

n∑
i=2

|zi|2 + |yn+1|2, Bd(p) = {z ∈M ||z − p|β1 ≤ d},

B1 = Bd(p)× {xn+1|0 ≤ |xn+1| ≤ δd, xn+1 ≥ 0},
B3

1 = Bd(p)× {xn+1|δd ≤ |xn+1| ≤ 3δd, xn+1 ≥ 0},
S2 = Bd(p)× {|xn+1| = 2δd, xn+1 ≥ 0},
B2 = B2d(p)× {xn+1|0 ≤ |xn+1| ≤ 2δd, xn+1 ≥ 0},
B4 = B4d(p)× {xn+1|0 ≤ |xn+1| ≤ 4δd, xn+1 ≥ 0}.

Here, δ � 1 is a small positive constant such that v := u
xn+1 is strictly

positive on S2. We assume that v is nonnegative on B4; then u ≥ 0.
We use the barrier function

w =

[
(4−

|x′|2β1

d2
) inf
S2

v + (1 + d sup |f |)
xn+1

2d
− δ
√
δ

]
xn+1.

We first prove that on the boundary of B2, w ≤ u. On |xn+1| = 2δd,
we have w ≤ 4xn+1 infS2 v ≤ u; on |xn+1| = 0, we have w = 0 ≤
u; on |x′|2β1

= 2d, w ≤ 0 ≤ u. Then, in B2 we compute 4′w =

− infS2
v

d2 xn+1 + (1 + d sup |f |) 1
2d
√
δ
≥ f . According to the maximum

principle Lemma 5.1, we have w ≤ u on B2. As a result, we obtain in
B1,

v ≥ (4−
|x′|2β1

d2
) inf
S2

v + (1 + d sup |f |)
xn+1

2d
− δ
√
δ

≥ 2 inf
S2

v − d sup |f |.(4.15)

Note that δ only needs to be an arbitrarily small constant.
Now, notice that 4′u is of the divergence form, we could apply the

interior Harnack inequality (Proposition 5.12) to 4′u = f on B3
1 ; since

now u
3δd
≤ v ≤ u

δd
we obtain

sup
B3

1

v ≤ C(inf
B3

1

v + sup |f |).

Here C depends on ω. Since infB3
1
v ≤ infS2 v, using (4.15), we have

sup
B3

1

v ≤ C(inf
B1

v + d sup |f |).(4.16)

Replacing in the former arguments, v by v − infB4 v and then by
supB4

v − v, noticing that they are both positive, and finally adding
the resulting inequalities (4.16), we arrive at the following inequality,

OscB1 v ≤
C − 1

C
OscB4 v + 2d sup |f |.
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Then by the iteration Lemma 8.23 in [28], we have the Hölder estimate
of v for any d ≤ d0,

OscBd v ≤ C
dα

dα0
(OscBd0 v + d0 sup |f |).

For any q in X, choose d = |p− q|β1 and d0 = diam(X), we obtain the
Hölder continuity of v as

|v(p)− v(q)|
|p− q|αβ1

≤ C(d−α0 sup
Bd0

|v|+ d0 sup |f |).

Since u vanishes on the boundary and depends trivially on the variable
yn+1, we have ∂zn+1u is Cα

β . Thus the proposition is proved. �

4.4. Uniqueness of the C1,1
β cone geodesic. In Theorem 4.5, we

have obtained the existence of a C1,1
β cone geodesic. Our present goal

is to prove its uniqueness. Suppose that Φi for i = 1, 2 are two cone
geodesic segments, which correspond to the solutions Ψτi ∈ C

2,α
β of{

det(ΩΨτi
)

det(Ω1)
= τie

a(Ψτi−Ψ1) in M ,

Ψτi = Ψ0i on ∂X ,

for i = 1, 2 and τi ∈ [0, 1]. Since Ψτi → Ψi in C1,α
β as τi → 0, then for

any ε > 0 we can find two values τ1, τ2 such that

sup
X
|Ψi −Ψτi | ≤ ε .

So, we compute

log det(ΩΨτ1
)− log det(ΩΨτ2

) =

∫ 1

0

gij̄t dt(Ψτ1 −Ψτ2)ij̄ > a(Ψτ1 −Ψτ2) ,

where gt = tgΨτ1
+ (1 − t)gΨτ2

and a ≥ 0. Now, applying Lemma 5.5
we have,

sup
X

(Ψτ1 −Ψτ2) ≤ sup
∂X

(Ψ01 −Ψ02) .

So we have

sup
X

(Ψ1 −Ψ2) ≤ sup
X

(Ψτ1 −Ψ1) + sup
X

(−Ψτ2 + Ψτ1) + sup
X

(Ψτ2 −Ψ2)

≤ 2ε+ sup
∂X

(Ψ01 −Ψ02) .

Then, switching Ψ1 and Ψ2 and letting ε→ 0, we end up with

sup
X
|Ψ1 −Ψ2| ≤ sup

∂X
|Ψ01 −Ψ02| .

The above inequality proves the uniqueness of a cone geodesic segment
with prescribed boundary values.
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5. Linearized equation

In this section we consider the general linear elliptic equation

(5.1)

{
Lv = gij̄vij̄ + bivi + cv = f + ∂ih

i

v = v0

in the space (X,D) defined in Section 2. Here gij̄ is the inverse matrix
of a Kähler cone metric Ω in H2,α

β . Moreover, we are given the following
data.

bi, hi ∈ C1,α
β ; c, f ∈ Cα

β and v0 ∈ C2,α
β .(5.2)

We also denote the vector field hi∂i to be h.
This type of equation has been studied via the general edge calculus

theory (cf. Mazzeo [42] and references therein). However, we consider
in this paper a Kähler manifold with boundary. The edge space is not
defined near the boundary. Recently, Donaldson introduced a function
space on a closed Kähler manifold which fits well with our geometric
problem. In Section 2, Definition 2.3, we generalized Donaldsons space
to the boundary case and thus introduced a Hölder space. Now we
study (5.1) in this Hölder space. We collect here the analytic results on
the linear equation (5.1) which are not only used in previous arguments
above but also for our further applications.

5.1. The maximum principle and the weak solution. We say
that v is the solution of (5.1) if it satisfies this equation on X \D and
belongs to C2,α

β . From the theory of the elliptic equation, we know that
V is smooth outside D. The delicate part here is always the estimate
near the divisor. We first prove a maximum principle for the Kähler
cone metric.

Lemma 5.1. Assume that v satisfies Lv ≥ 0 (resp. Lv ≤ 0) with
c < 0, then the maximum (minimum) is achieved on the boundary i.e.

sup
X
v = sup

∂X\∂D
v

(
inf
X
v = inf

∂X\∂D
v

)
.

Proof. Set u = v + εS and S = ‖s‖2κ with (1 + α)β > 2κ ≥ β.
Then |∂S|g is bounded. Suppose that p is the maximum point of u.
According to Lemma 2.4, p cannot be on D. So either p stays on the
boundary ∂X \ ∂D or in the interior of X \D. Then in the latter case,
at the maximum point p we have

0 ≤ Lv = Lu− εLS ≤ cu− ε(4gS + biSi + cS) ≤ cu+ εC .

Here we use biSi ≥ −|bi|2g−|∂S|2g and the first conclusion in Lemma 2.4,
4gS ≥ −C . Combining these inequalities we obtain

u(p) ≤ εC .
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Then at any point x ∈ X, we have the following relation

v(x) = u(x)− εS ≤ u(p) ≤ sup
∂X\∂D

v + εC ,

since S is nonnegative. Similarly, we shall use u = v − εF instead of
Lv ≤ 0. As a result, the proposition follows as ε→ 0. �

Now we use the maximum principle to deduce the uniqueness of
solutions of the elliptic equation (5.1).

Corollary 5.2. If v1, v2 are two solutions of the linearized equation
(5.1) with c < 0, then v1 = v2.

The singular volume form ωn+1 with respect to the cone metric gives
a measure on the manifold X. As a consequence, the Lp(X, g) space is
defined in the usual way. The W 1,p(X, g) space furthermore requires
that the derivatives satisfy

∫
X
|∇f |pΩωn+1 <∞.

Definition 5.1. The weak solution in W 1,2 of (5.1) is defined, for any
η ∈ W 1,2

0 , in the sense of distributions;

L(v, η) =

∫
X

[gij̄viηj̄ − biviη − cvη]ωn+1 =

∫
X

[−ηf − hiηi]ωn+1.(5.3)

Note that our weak solution is defined globally.

The following lemmas follow directly from the local lifting P ◦W (cf.
(2.2)).

Lemma 5.3. (Sobolev imbedding) Assume that f ∈ W 1,2
0 . Then there

is a constant C depending on n, β such that

||f || 2n+2
n
≤ C||f ||W 1,2 .

Lemma 5.4. (Kondrakov compact imbedding) The imbedding W 1,2
0 →

Lp for 1 ≤ p < 2n+2
n

is compact.

Lemma 5.5. (Weak maximum principle) Let v ∈ W 1,2 satisfy Lv ≥
0(≤ 0) in X with c ≤ 0. Then

sup
X
v ≤ sup

∂X
v+

(
inf
X
v ≥ sup

∂X
v−
)
.

Proof. From the definition of weak solution we have that Lv ≥ 0 implies
L(v, η) ≤ 0. Then for η ≥ 0, we have∫

X+

[gij̄viηj̄ − biviη]ωn+1 ≤ 0 ,

where X+ = {x ∈ X|v(x) ≥ 0}. Let v+ = max{0, v}. If bi = 0, letting
η = sup{0, v − sup∂X v

+}, we have∫
X+

|∇η|2ωn+1 ≤ 0 .
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So |∇η|2 = 0 on X+ \ D. Since η = 0 at the maximum point on the
boundary of X+, we obtain η = 0 on X+ \ D. Since the measure of
D is zero, we could modify the value of η such that η = 0 on the
whole X. Then the lemma follows for bi = 0. When bi 6= 0, using the
Sobolev inequality (5.3), the proof is the same as that of Theorem 8.1
in [28]. �

Then this lemma and a standard argument by means of the Fredholm
alternative theorem implies the uniqueness and the existence of the
weak solution.

Proposition 5.6. The linear equation (5.1) with c ≤ 0 has a unique
weak solution in W 1,2.

5.2. Hölder estimates. We remark that in this subsection, all results
hold for normal-crossing divisors D with more than one component.
The normal crossing condition means that at each point, the divisor
locally looks like the intersection of coordinate hyperplanes. So at each
intersection point, we can have a coordinate system {zi; 1 ≤ i ≤ n+ 1}
such that {zi; 1 ≤ i ≤ k}, for some k, denote the singular directions
and the reminders are the smooth directions. In the following proofs,
we mainly check one singular direction, since for the case of multiple
singular directions, the proof still holds by checking multiple integrals.
We shall emphasize this point in each proof.

The Hölder estimates derived in this subsection are used in the proof
of both the interior and boundary Schauder estimates of the approxi-
mate geodesic equation. Before stating the proposition on the global
and local boundedness, we require some technical lemmas which will
be useful later. Denote

ω0 = dz1 ∧ dz1 + · · ·+ dzn+1 ∧ dzn+1.

Then locally in a neighborhood Up near p ∈ D,

ωn+1
0 = n! · dz1 ∧ dz1 ∧ · · · ∧ dzn+1 ∧ dzn+1,

and then we have that there is a bounded function h such that

ωn+1 = β2|z1|2(β−1)ωn+1
0 eh .

n the case of k singular directions,

ωn+1 = Π1≤i≤kβ
2
i |zi|2(βi−1)ωn+1

0 eh .

Finally, let m = 2n+ 2.

Lemma 5.7. There is a constant C depending on |h|∞ such that, for
any s > 1

β
, the following inequality holds(∫

Up

fpωn+1

) 1
p

≤ C

(∫
Up

f spωn+1
0

) 1
sp

.
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Proof. Let z1 = ρeiθ and compute(∫
Up

fpωn+1

) 1
p

=

(∫
Up(z′)

∫ r2

0

∫ 2π

0

fpβ2ρ2(β−1)ehωn+1
0

) 1
p

≤

(∫
Up(z′)

∫ r2

0

∫ 2π

0

f spehωn+1
0

) 1
sp

·

(∫
Up(z′)

∫ r2

0

∫ 2π

0

(ρ2β−2)tehωn+1
0

) 1
tp

.

Here 1
s

+ 1
t

= 1. Since t < 1
1−β , the second term is bounded, we have

s > 1
β
, which concludes the proof. In the case of multiple singular

directions, the proof is accomplished by means of continuing the above
argument inductively along the direction zi ranging from 2 to k in
Up(z

′). �

Lemma 5.8. There is a constant C depending on β and |h|∞ such
that, for any s > 1, the following formula holds(∫

Ul

fpωn+1
0

) 1
p

≤ C

(∫
Ul

f spωn+1

) 1
sp

.

Proof. Again we compute in polar coordinates(∫
Up

fpωn+1
0

) 1
p

=

(∫
Up(z′)

∫ r2

0

∫ 2π

0

fpρ
2(β−1)

s ρ−
2(β−1)

s ωn+1
0

) 1
p

≤

(∫
Up

f spβ−2e−hωn+1

) 1
sp
(∫

Up(z′)

∫ r2

0

∫ 2π

0

ρ−
2(β−1)t

s ωn+1
0

) 1
tp

.

Here s, t are two positive constants such that 1
s

+ 1
t

= 1. The second

term is bounded as t
s
> 1

β−1
which is trivially satisfied. In the case

of multiple singular directions, the proof is accomplished again by the
iteration of the argument. �

The proofs of the following propositions is in the same vein as the
proofs in Chapter 8 in [28]. However, by the lemmas stated above, we
need a careful analysis in the charts which intersect the divisor.

Proposition 5.9. (Global boundedness) If v is a W 1,2 sub-solution
(respectively super-solution) of (5.1) in X satisfying v ≤ 0 (resp.v ≥ 0)
on ∂X; moreover, if f ∈ L q

2 and hi ∈ Lq, i = 1, · · · , n + 1 with q > m
then there is a constant C depending on |bi|g, |c|∞, q, β such that

sup
X
v(−v) ≤ C(‖v+(v−)‖2 + ‖f‖ q

2
+ ‖hi‖q).

Proof. Assume that v is a W 1,2 sub-solution of (5.1). We are going
to use the De Giorgi-Nash-Moser iteration as in [28, Theorem 8.15].
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Denote k = ‖f‖ q
2

+ ‖hi‖q. Choose w = v+ + k and η =
∫ w
k
a2s2(a−1)ds

for a ≥ 1 in L(v, η). With the Sobolev inequality Lemma 5.3, we have

‖w‖ (2n+2)a
n

;ω
≤ (C(a+ 1))

1
a‖w‖2a;ω .

We use Lemma 5.7 and Lemma 5.8 on the coordinates which intersect
the divisor D and the Hölder inequality in the remainder coordinates.
After patching them together via a partition of the unity we have, for
s > 1

β
≥ 1,

‖w‖ (2n+2)as
n

;ω0
≤ (C(a+ 1))

1
a‖w‖2as;ω0 .

Now we follow a standard iteration argument; using the interpolation
inequality we have with χ = n+1

n

‖w‖χN2s

n
;ω0
≤ C‖w‖ 2

s
;ω0

.

Finally, letting N →∞ and using Lemma 5.8 again, we get the propo-
sition. �

Denote as d the distance measured via the Kähler cone metric ω.

Proposition 5.10. (Local boundedness) Suppose that v is a W 1,2 sub-
solution of (5.1) and suppose that f ∈ Lq, and hi ∈ Lq, i = 1, · · · , n+1
with q > m. Then for any ball B2d(y) ⊂ X and any p > 1 there is a
constant C depending on (|bi|g + |c|∞)d, q, β, p such that

sup
Bd(y)

v(−v) ≤ C(d−
m
p ‖v+(v−)‖Lp(B2d(y)) + d2(1−m

2q
)‖f‖ q

2
+ d1−m

q ‖hi‖q) .

Proof. We will prove the local boundedness of the homogeneous equa-
tion. The general case follows by means of using v + d2(1−m

2q
)‖f‖ q

2
+

d1−m
q ‖hi‖q instead of v. Then v would be a weak sub-solution of (5.1)

with f = 0 and hi = 0; namely L(v, η) ≤ 0. Assume d = 1 and take
the test function to be η2vα for η ∈ C1

0(B4) and α > 0. Then we have

for w := v
α+1

2

‖ηw‖ 2n+2
n

;ω ≤ C · (‖w∂η‖2;ω + ‖wη‖2;ω) .

Using Lemma 5.7 and Lemma 5.8 we obtain, on any open set Up which
intersects the divisor D for s > 1

β

‖ηw‖ 2n+2
s(n)

;ω0
≤ C[‖w∂η‖2;ω + ‖wη‖2s;ω0 ] .

We claim that for the first addendum on the right hand side it holds

‖w∂η‖2;ω ≤ C‖w∂η‖2s;ω0
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with s > 1
β
. Again, by means of Lemma 5.7 and Lemma 5.8 we compute

‖w∂η‖2;ω =

[∫
Up

w2(
k∑
i=1

∂ziη∂ziη|z
i|2(1−βi) 1

β2
+

n+1∑
i=k+1

∂ziη∂ziη)ωn+1

] 1
2

≤

∫
Up

w2(
k∑
i=1

∂ziη∂ziη)ehωn+1
0 + C

(∫
Up

n+1∑
i=k+1

w2s(∂ziη∂ziη)sωn+1

) 1
s


1
2

≤ C

(∫
Up

w2s|∂η|2sω0
ωn+1

0

) 1
2s

,

where to get the last step we used the Hölder inequality on the first
term.

So standard argument with Lemma 5.8 implies

‖v‖∞;B1,ω0 ≤ C‖v‖ps;B2,ω0 ≤ C‖v‖ps2;B2,ω .

The local boundedness follows from the next observation; B1(0, ω) ⊂
B1(0, ω0) which follows from the distance inequality,√√√√ k∑

i=1

|z1|2 +
n∑

i=k+1

|zi|2 ≤

√√√√ k∑
i=1

|z1|2βi +
n∑

i=k+1

|zi|2 ≤ 1.

�

Proposition 5.11. (Weak Harnack inequality) Suppose that v is a
W 1,2 super-solution of (5.1), non-negative in a ball B4d(y) ⊂ X and
suppose that f ∈ L q

2 and hi ∈ Lq, i = 1, · · · , n + 1 with q > m. Then,
for any n+1

n
> p > 1 there is a constant C depending on (|bi|g + |c|∞)d,

q, β, p such that

d−
m
p ‖v‖Lp(B2d(y)) ≤ C

{
inf
Bd(y)

v + d2(1−m
q

)||f || q
2

+ d1−m
q ‖hi‖q

}
.(5.4)

Proof. We assume d = a and argue as in the proof of the local bound-
edness with different test function. Thus it suffices to prove, for the
weak super-solution of (5.1) with vanishing right hand side, that there
is a p > 0 and constant C such that∫

B2

v−pωn+1

∫
B2

vpωn+1 ≤ C .(5.5)

Choose a test function of the form η2vα and let w := log v and α = −1.
Here η is the cut-off function defined in Lemma 2.1. We have by the
Cauchy Schwarz’s inequality for small ε1 and ε2,∫

Br

|∂w|2ωn+1 ≤ 2

ε1

∫
X

|∂η|2ωn+1 + 2

(
|bi|0
4ε2

+ |c|0
)∫

X

η2ωn+1 .
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Since (X, ω) has finite volume, the second term is bounded. Concerning
the first term, we compute,∫

Up

|∂η|2ωn+1 ≤ C

∫ 2π

0

∫ r

0

t4−2β+2(β−1)dtdθ ≤ Cr3.

We conclude that
∫
Br
|∂w|ωn+1 is bounded.

Next we claim that
∫
Br
|∂w|0ωn+1

0 is also bounded. To prove the
claim, let’s compute∫
Br

|∂w|0ωn+1
0 =

∫
Br

(|
k∑
i=1

∂ziw|20 +
n+1∑
i=k+1

|∂ziw|20)
1
2β−2Π1≤i≤k|zi|2(1−βi)e−hωn+1.

The second term is bounded, since h and |zi| are bounded. For the first
term, when i = 1, · · · , k, we first consider the case when |∂ziw|0 ≤ 1.
Then its boundedness follows from the finiteness of the volume. The
second case is when |∂ziw|0 > 1. In this second case |∂ziw|0 < |∂ziw|20
and so its integral is bounded by

∫
Br
|∂w|2ωn+1. The claim thus holds.

Now we apply the Moser-Trudinger inequality (see [28, Theorem
7.21]) with respect to ω0. Thus there exists a constant p0 such that∫

B3

ep0|w−w0|ωn+1
0

is bounded and so is ∫
B3

vp0ωn+1
0

∫
B3

v−p0ωn+1
0 .

From Lemma 5.7 we have, for some s0 > β−1,∫
B3

v
p0
s0 ωn+1

∫
B3

v
−p0
s0 ωn+1 ≤ C

(∫
B3

vp0ωn+1
0

∫
B3

v−p0ωn+1
0

) 1
s0

≤ C .

The above inequality gives the wanted inequality (5.5) with p = p0

s0
.

The proof of the proposition is therefore achieved. �

As a result we have the following estimates.

Proposition 5.12. (The Harnack inequality) For any B4d(y) ⊂ X,
suppose that v is a non-negative W 1,2 solution of (5.1) with homoge-
neous right hand side in a ball B4d(y) ⊂ X. Then, there is a constant
C depending on (|bi|g + |c|∞)d, β such that

sup
Bd

v ≤ C inf
Bd
v.(5.6)

Proposition 5.13. (Interior Hölder estimate) Suppose that v is a W 1,2

solution of (5.1) in X and suppose that f ∈ L
q
2 and hi ∈ Lq with
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q > m. Then, for any Bd0(y) ⊂ IntX and d ≤ d0, there is a constant
C(|bi|g, |c|∞, d0, q) and α((|bi|g + |c|∞)d0, q) such that

oscBd(y)v ≤ Cdα(d−α0 sup
Bd0 (y)

|v|+ d2(1−m
q

)||f || q
2

+ d1−m
q ‖hi‖q).

5.2.1. Local estimates at the boundary. Consider a point y ∈ ∂X and
using the local holomorphic coordinate in the half space R̄2n+2

+ =
{x|xn+1 ≥ 0}, here xn+1 is the real part of the variable zn+1. Then
the coordinate chart near y becomes a domain T in R̄2n+2

+ . Recall that
we assumed v0 in Cα

β (∂X) in (5.2). We let

M := sup
∂X
∩B2dv , m := inf

∂X
∩B2dv .

Moreover we extend v from the half space to the whole space R2n+2.

v+
M :=

{
sup{v(x),M}, x ∈ T

M x 6∈ T .

v−m :=

{
inf{v(x),m}, x ∈ T

m x 6∈ T .

Just by following the proof of interior estimates, we obtain the following
results.

Proposition 5.14. (Local boundedness at the boundary) Suppose that
v is a W 1,2 sub-solution of (5.1) and suppose that f ∈ Lq, and hi ∈ Lq,
i = 1, · · · , n + 1 with q > m. Then for any ball B2d(y) and any p > 1
there is a constant C depending on (|bi|g + |c|∞)d, q, β, p such that

sup
Bd(y)

v+
M ≤ C(d−

m
p ‖v+

M‖Lp(B2d(y)) + d2(1−m
q

)||f || q
2

+ d1−m
q ‖hi‖q).

Proposition 5.15. (Weak Harnack inequality at the boundary) Sup-
pose that v is a W 1,2 super-solution of (5.1), non-negative in a ball
B4d(y)∩T and suppose that f ∈ L q

2 and hi ∈ Lq, i = 1, · · · , n+ 1 with
q > m. Then, for any n+1

n
> p > 1 there is a constant C depending on

(|bi|g + |c|∞)d, q, β, p such that

d−
m
p ‖v−m‖Lp(B2d(y)) ≤ C( inf

Bd(y)

v−m + d2(1−m
q

)||f || q
2

+ d1−m
q ‖hi‖q).

Proposition 5.16. (Höder estimate at the boundary) Suppose that
v is a W 1,2 solution of (5.1) in X and f ∈ L

q
2 and hi ∈ Lq, i =

1, · · · , n+1 with q > m. Suppose that y is on the boundary of X. Then,
for any Bd0(y) and d ≤ d0, there is a constant C(|bi|g, |c|∞, d0, q) and
α((|bi|g + |c|∞)d0, q) such that

OscBd(y)∩X v ≤ C{dα(d−α0 sup
Bd0 (y)∩T

|v|+ d2(1−m
q

)||f || q
2

+ d1−m
q ‖hi‖q) + OscB√

d0d
(y)∩∂X v}.
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5.3. The Dirichlet problem of the linearized problem. Fix 0 <
β < 1, and write

µ := β−1 − 1.

Denote by G the Green function of the standard cone metric

dr2 + β2r2dθ2 +
∑

3≤i≤m

ds2
i

and by T one of the second order operators

∂2

∂si∂sj
, r−1 ∂2

∂θ∂si
,
∂2

∂r∂si
.

It is shown by Donaldson in [25, Proposition 4] that the polyhomo-
geneous expansion of the Green function around the singular set D
is

G =
∑
j,k

aj,k(s)r
ν+2j cos k(θ − θ′) .(5.7)

Donaldson proved the following Schauder estimate.

Proposition 5.17. (Donaldson [25]) Suppose that α ∈ (0, µ), then
there exists a constant C which depends only on α, m, β such that for
all functions ρ ∈ C∞c (Rm), we have

[i∂∂̄(Gρ)]Cαβ ≤ C[ρ]Cαβ .

In our problem, the interior Schauder estimate follows by applying
Proposition 5.17.

Lemma 5.18. Supposing that α ∈ (0, µ), then there exists a con-
stant C which depends only on α, n, β such that for all functions
ρ ∈ C∞c (R2n+2), we have

[v]Cαβ ≤ C[[ρ]Cαβ + [hi]C1,α
β

] .

Proof. The weak solution of 4gv = f + ∂ih
i has the form

v =

∫
R2n+2

[G(x, y)f(y)+ < ∇G(x, y),h(y) >g]dg(y).

We need to deal with the divergence term on the left hand side of (5.1).
We estimate the second derivatives of this term, we put one derivative
on G and the other one on h. Thus the lemma holds. �

When we consider the Schauder estimate near the boundary, we
notice that our manifold is a product manifold X×R, and R = [0, 1]×
S1. Since the solution

Ψ(z1, · · · , zn, xn+1 +
√
−1yn+1) = Ψ(z1, · · · , zn, xn+1)

along yn+1 ∈ S1, we work on R̄m+1
+ , which is the closure of the upper

half space of Rm+1 when we consider the local model near the bound-
ary. Letting B2(x0), B1(x0) be the balls with center x0 on R̄m+1

+ , we
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want to consider the Schauder estimate for the Dirichlet problem of
the Laplacian operator 4g with respect to the standard cone metric

g = dr2 + β2r2dθ2 +
∑

3≤i≤m

ds2
i + ds2

on R2×Rm−2× R̄+. Letting f ∈ Cα
c (R̄m+1

+ ), h ∈ C1,α
c (R̄m+1

+ ), we would
look for the solution v which satisfies the Laplacian equation

4gv = f + ∂ih
i

and the boundary condition v = 0 on Rm × {xn+1 = 0}. Note that
the standard cone metric is equivalent to the Euclidean metric. We
declare v a weak solution if it satisfies the following identity, for any
φ ∈ C∞c (R̄m+1

+ ),∫
R̄m+1

+

< ∇φ,∇v >g dg =

∫
R̄m+1

+

fvdg +

∫
R̄m+1

+

< h,∇v >g dg.

The left hand side is a bounded coercive bilinear form and the right
hand side is bounded by ||φ||L2||v||W 1,2 . So the Lax-Milgram theorem
shows that there exists a weak solution of the Laplacian equation. The
Green function is defined to be the kernel function G(x, y) such that

v =

∫
R̄m+1

+

[G(x, y)f+ < ∇G(x, y),h(y) >g]dg(y).(5.8)

Since ρ has compact support within R̄m+1
+ , the asymptotic behavior of

this Green function is the same as (5.7). Also, the second derivative of
the second term is obtained by putting one derivative on h.

Now we consider the Schauder estimate of v.

Lemma 5.19. Supposing that α ∈ (0, µ), then there exists a con-
stant C which depends only on α, n, β such that for all functions
ρ ∈ C∞c (R̄m+1

+ ), we have

[v]Cαβ ≤ C[[ρ]Cαβ + [hi]C1,α
β

] .

Proof. On the whole space R2 ×Rm−1, we use G0 to denote the Green
function defined by (5.7). So on the half space R2 × Rm−2 × R̄+, our
Green function is written down by the reflexion method for any x, x′ ∈
R2 × Rm−2, s, s′ ∈ R̄+,

G(x, xn+1;x′, xn+1′) = G0(x, s;x′, xn+1′)−G0(x, xn+1;x′,−xn+1′).

(5.9)

So G has the same asymptotic behaviour of G0 around the divisor.
Furthermore, when i or j is not equal to the singular direction 1, the
∂i∂̄j estimate follows exactly the same line of [25, Theorem 1]. The
∂1∂̄1 estimate follows from the equation (see [28, Section 4.4]). �

Now we patch the local estimates together to the whole manifold by
the partition of unity in the standard way.
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Proposition 5.20. Fix α with 0 < α < µ = β−1 − 1. Then there
is a constant C depending on β, n, α, |bi|g, |c|∞ such that for all the

functions f ∈ Cα
β and hi ∈ C1,α

β we have the Schauder estimate of the
weak solution of the equation (5.1)

|v|C2,α
β
≤ C(|v|L∞ + |f |Cαβ +

∑
i

|hi|C1,α
β

) .

Combining the existence and uniqueness of the weak solution Propo-
sition 5.6, we obtain

Proposition 5.21. There exists a unique solution of (5.1) with data
as (5.2) in C2,α

β .

The linear theory in this section immediately implies the ∂∂̄-lemma
with cone singularities.

6. The metric space structure

In this section we apply our geodesic to study the geometry of the
space of Kähler cone metrics. We equip the space of Kähler cone met-
rics with the following normalization condition; we ask any Kähler cone
potential ϕ with respect to the background model metric ω to satisfies
I(ϕ) = 0, where

Iω(ϕ) =
1

V

∫
M

ϕωn − 1

V

n−1∑
i=0

i+ 1

n+ 1

∫
M

∂ϕ ∧ ∂̄ϕ ∧ ωi ∧ ωn−i−1
ϕ .

In particular, the functional I(ϕ) is well defined along any C1,1
β geodesic.

We show that the space of cone metrics has a structure of metric space
following the approach in [13]. We said that ϕ(t) is an ε-approximate
geodesic if it solves

(ϕ′′ − |∂ϕ′|2gϕ) det gϕ = εf det g,(6.1)

where f = det Ω1

det Ω
= |mΦn+1,n+1 − ∂(ϕ(1) − ϕ(0))|Ω. Recall that the

energy is defined as E :=
∫ 1

0

∫
M
ϕ′(t)ωnϕ(t)dt. Along any C1,1

β geodesic,
there holds

1

2

∣∣∣∣ ddtE
∣∣∣∣ =

∣∣∣∣∫
M

ϕ′(ϕ′′ − |∂ϕ|2gϕ)ωnϕ

∣∣∣∣ ≤ ε sup
X
|φ′| · sup

X
|f | · Vol .(6.2)

We show the positivity of the length of any non-trivial geodesic seg-
ment and the geodesic approximation lemma. We omit the proof here,
since along any C1,1

β geodesic, all the inequalities are well defined.

Proposition 6.1. Let ϕ(t) be a C1,1
β geodesic from 0 to ϕ, and I(ϕ) =

0. Then the following inequality holds∫ 1

0

√∫
M

(ϕ′)2
ωnϕ
n!
dt ≥ Vol−

1
2

(
sup

(∫
ϕ>0

ϕ
ωnϕ
n!
,

∫
ϕ<0

ϕ
ωn0
n!

))
.
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In particular, the length of any non-constant C1,1
β geodesic is positive.

Lemma 6.2. Let HC ⊂ Hβ be as in Definition 1.2. Also, let Ci :=
ϕi(s) : [0, 1] → HC, for i = 1, 2, be two smooth curves. Then, for a
small enough ε0, there is a two-parameter family of curves

C(s, ε) : ϕ(t, s, ε) : [0, 1]× [0, 1]× (0, ε0]→ H

such that the following properties hold:

(1) Fixed s, ε, then C(s, ε) ∈ C2,α
β is an ε-approximate geodesic from

ϕ1(s) to ϕ2(s).
(2) There exists a uniform constant C such that

|ϕ|+
∣∣∣∣∂ϕ∂t

∣∣∣∣+

∣∣∣∣∂ϕ∂s
∣∣∣∣ < C; 0 ≤ ∂2ϕ

∂t2
< C;

∂2ϕ

∂s2
< C .

(3) Fixed any s, the limit in C1,1
β of C(s, ε) as ε→ 0 is the unique

geodesic arc from ϕ1(s) to ϕ2(s).
(4) There exists a uniform constant C such that, about the energy

E(t, s, ε) along the curve C(s, ε), there holds

sup
t,s

∣∣∣∣∂E∂t
∣∣∣∣ ≤ ε · C · Vol .

With the geodesic approximation lemma above, the triangular in-
equality and the differentiability property of the distance function fol-
low immediately.

Theorem 6.3. Suppose that φ = ϕ(s) : [0, 1]→ Hβ is a smooth curve,
and let p be a base point of H. Then, the length of the geodesic arc
between p and ϕ is less than the sum of the length of the geodesic arc
between from p to φ(0) and the length of the curve from φ(0) to φ(s).

Theorem 6.4. The distance function given by the length of the geodesic
arc is a differentiable function.
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[20] P. Cherrier. Équations de Monge-Ampère sur les variétés hermitiennes com-
pactes. Bull. Sci. Math. (2), 111(4):343–385, 1987.

[21] T. Darvas and L. Lempert. Weak geodesics in the space of Kähler metrics.
Math. Res. Lett., 19(5):1127–1135, 2012.

[22] W. Y. Ding. Remarks on the existence problem of positive Kähler-Einstein
metrics. Math. Ann., 282(3):463–471, 1988.

[23] S. K. Donaldson. Symmetric spaces, Kähler geometry and Hamiltonian dy-
namics. In Northern California Symplectic Geometry Seminar, volume 196 of
Amer. Math. Soc. Transl. Ser. 2, pages 13–33. Amer. Math. Soc., Providence,
RI, 1999.

[24] S. K. Donaldson. Holomorphic discs and the complex Monge-Ampère equation.
J. Symplectic Geom., 1(2):171–196, 2002.

[25] S. K. Donaldson. Kähler metrics with cone singularities along a divisor. In
Essays in mathematics and its applications, pages 49–79. Springer, Heidelberg,
2012.

[26] L. C. Evans. Classical solutions of fully nonlinear, convex, second-order elliptic
equations. Comm. Pure Appl. Math., 35(3):333–363, 1982.

[27] L. C. Evans. Classical solutions of the Hamilton-Jacobi-Bellman equation for
uniformly elliptic operators. Trans. Amer. Math. Soc., 275(1):245–255, 1983.

[28] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second
order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the
1998 edition.



GEODESICS IN THE SPACE OF KÄHLER CONE METRICS, I 55
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