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Abstract—In this paper, we propose a novel iterative
convolution-thresholding method (ICTM) that is applicable
to a range of variational models for image segmentation. A
variational model usually minimizes an energy functional
consisting of a fidelity term and a regularization term. In
the ICTM, the interface between two different segment
domains is implicitly represented by their characteristic
functions. The fidelity term is usually written as a linear
functional of the characteristic functions and the regular-
ized term is approximated by a functional of character-
istic functions in terms of heat kernel convolution. This
allows us to design an iterative convolution-thresholding
method to minimize the approximate energy. The method
is simple, efficient and enjoys the energy-decaying property.
Numerical experiments show that the method is easy
to implement, robust and applicable to various image
segmentation models.

Index Terms—Convolution, thresholding, image segmen-
tation, heat kernel

I. INTRODUCTION

Image segmentation is one of the fundamental tasks in
image processing. In broad terms, it is the process of par-
titioning a digital image into many segments according
to a characterization of the image. The motivation behind
this is to determine automatically which part of an image
is meaningful for analysis, which also makes it one
of the fundamental problems in computer vision. Many
practical applications require image segmentation, like
content-based image retrieval, machine vision, medical
imaging, object detection and traffic control systems [1].

Variational methods have enjoyed tremendous success
in image segmentation. A successful variational model
for image segmentation is the Mumford—Shah (MS)
model [2] which starts with choosing an energy func-
tional over the space of piecewise smooth functions on
segments, minimizing which gives a segmentation with
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desired properties. Despite its descriptiveness, the non-
convexity of the energy functional makes the minimiza-
tion problem difficult to analyze and solve numerically
[3]. A useful simplification is to restrict the minimization
to functions (i.e. segmentations) that take a finite number
of values. The resulting model is commonly referred to
as the Chan—Vese (CV) model [4], [5].

When the intensity inhomogeneity of the image
serves, a local intensity fitting (LIF) model [6], [7] was
proposed to overcome the segmentation difficulty caused
by intensity inhomogeneity. Wang et al. [8] proposed a
model combining the advantages of the CV model and
the LIF model by taking into account the local and global
intensity information.

Recently, several locally statistical active contour
(LSAC) models have also been proposed for image
segmentation with intensity inhomogeneity. For example,
Zhang et al. [9] propose a statistical energy functional
based on the distribution of each local region in the
transformed domain, which combines the bias field, the
level set function, and the piecewise constant function
approximating the true image signal. The method has
shown to be quite effective for image segmentation with
intensity inhomogeneity.

Over the years, various numerical methods have been
developed to solve above problems [3], [5], [10], [11].
For example, instead of solving the optimization problem
directly, Bae et al. [12] solved a dual formulation of
the continuous Potts model based on its convex relax-
ation. Cai et al. [13] proposed a two-stage segmenta-
tion method combining the split Bregman method [14]
for finding the minimizer of a convex variant of the
Mumford-Shah functional with a K-means clustering
algorithm to segment the image into k£ segments. Dong
et al. [15] introduced a frame-based model in which the
perimeter term was approximated by a term involving
framelets. The model can be quickly implemented using
the split Bregman method [14].

The level-set method has been used by many authors
to successfully implement the image segmentation mod-
els, which allowed automatic detection of interior con-
tours (e.g., [8], [16], [17]). However, reinitialization is



usually needed to keep the level-set function regularized.
In addition, the method introduces an artificial time step
which must be relatively small for stability reasons. It
is also difficult to generalize the method to multiphase
segmentations.

A phase-field approximation of the energy was pro-
posed in [18] for the two-phase CV model, in which the
Ginzburg-Landau functional is used to approximate the
perimeter of the domain. The resulting gradient flow, an
Allen—Cahn-type equation, can be solved efficiently by
many existing methods such as the convex splitting ap-
proach. It was also generalized to the Ginzburg-Landau
energy functional on graphs using the graph Laplacian
for semi-supervised learning models in a series of papers
[19]. In Wang et al. [20], we proposed a new iterative
thresholding method for the image segmentation based
on the multi-phase CV model.

Usually, the binary segmentation problem consists in
estimating a binary mask u: x € Q — {0,1} that
separates the image into two different areas. Chan et
al. [21] relaxed the binary problem so that u(z) takes its
values in the interval [0, 1], the relaxed energy is usually
convex in u defined over the convex function set. Then
a global optimal solution u* may be computed using
a gradient descent scheme. Pock et al. [22] proposed a
convexification technique to write the non-linearities of
the functional in a convex way by introducing an aux-
iliary variable. Many applications and extensions have
been introduced to refine and extend the convexification
methods for image segmentation (see e.g. [23]-[27]).

Novelty and contributions of this paper: We propose a
novel framework that is applicable to a range of models
for image segmentation. We consider a rather general
energy functional consisting of a fidelity term and a
regularized term for the m-phase image segmentation
problem:

5:2/52‘F1-(f,®1,-..,®n) dz+ A [0Q] (1)
i=1 “ i=1

where ©;, = (0;1,0,2,...,0,,,) contains all possible
variables or functions in fidelity terms. The F; are quite
general that will include the CV, LIF, LGIF, LSAC
models and many other models as special cases. The key
step in this method is to approximate the regularization
term by a functional of characteristic functions in terms
of heat kernel convolution. This allows us to design
an iterative convolution-thresholding method (ICTM) to
minimize the approximate energy (1) in a simple way.
We further prove the unconditionally energy-decaying
property of the proposed algorithm. The proposed ICTM
is also easy to implement. Numerical results show that
the ICTM converges rapidly and is efficient, robust and

applicable to a range of models for image segmentation.
In particular, we compare the performance of our method
with that of the level-set method on several popular
image segmentation models in [4], [5], [7], [9]. Numer-
ical results show that the number of iterations needed
to reach the stationary state is greatly reduced using
ICTM, and seems insensitive to the levels of the intensity
inhomogeneity.

II. BACKGROUND

Mumford and Shah [2] approximated an image with
a piecewise smooth function u in each segement and
proposed to minimize the following energy with respect
to v and I' to get the segmentation:

8MS(ua F) (2)
:/\/ (u— f)’dz + u/ |Vu|?dz + Length(T),
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where I' is a closed subset of D given by the union of
a finite number of curves representing the set of edges
(i.e. boundaries of homogeneous regions) in the image
f, u is a piecewise smooth approximation to f, and u
and \ are positive constants.

Chan and Vese [4], [S] proposed an active contour
model restricting the minimization to functions (i.e.
segmentations) that take a finite number of values. That
is, the n segments Q; (i € [n]) can be obtained by
minimizing the following n-phase Chan-Vese (CV)
functional:

Eov(, ..

>0+ > [ 16— 4 da
i=1 i=17 %
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where 05, is the boundary of the i-th segment €;, |0€;]
denotes the perimeter of the domain €);, \ is a positive
parameter, and C; is the average of the image f within
; and is defined as follow:

_ Jo, | dx

C; .
fQi 1 dz
Here and in the subsequent text, we use the notation
i€ [n]todenote i =1,2,...,n.

When the intensity inhomogeneity of the image
serves, Li et al. [6], [7] proposed to minimize the follow-



ing local intensity fitting LIF energy with regularized
terms:
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is a two-dimensional Gaussian kernel with standard
derivation o, C;(z) are intensity fitting functions, and
A and p; are fixed parameters of the model.

Zhang et al. [9] considered the following locally
statistical active contour (LSAC) model of intensity
inhomogeneity:

f(@) = b(x)I(2) +i(x) (6)

where b(z) is the bias field, I(z) is the true signal to be
restored, and i(x) is the noise. Zhang et al. [9] proposed
to minimize the following energy functional:
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(log(vi) + | f(z) — b(y)Ci|*/2v7) dydx

where v; is the standard variance of the noise i(x),

1if |z| < p,
Ip(x) = { .

0 otherwise,

and p is a parameter in the kernel I,. One can also
consider the following energy with regularized terms:
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Our proposed numerical method is motivated by a
threshold dynamics method developed by Merriman,
Bence, and Osher (MBO) [28], [29] for simulating the
motion of an interface driven by the mean curvature.
The MBO method has been shown to converge to the
continuous motion by mean curvature [30]. Esedoglu
and Otto generalized this type of method to multiphase
flow with arbitrary surface tensions [31]. The method has
attracted much attention thanks to its simplicity and un-
conditional stability. It has subsequently been extended

Ersac(,. ..,

b(y)C’i|2/21/i2) dydz.

to many other applications including the problem of
area- or volume-preserving interface motion [32], image
processing [18], [20], [33], the wetting problem on solid
surfaces [34], [35], topology optimization [36], foam
bubbles [37], graph partitioning and data clustering [38],
and so on. Adaptive methods based on non-uniform
fast Fourier transform (NUFFT) have also been used
to accelerate this type of method [39]. Generalized
target-valued diffusion-generated methods are recently
developed in [40]-[42].

III. DERIVATION OF THE METHOD

In this section, we derive the ICTM to minimize
(1). For simplicity, we first derive the proposed ICTM
for the two phase segmentation in Section III-A. The
generalization of the method to the multi-segment case
is quite straightforward as we show in Section III-B.

A. Derivation of the ICTM for the two-segment case

For simplicity, we describe the ICTM in the case of
two-phase segmentation. The ICTM is a region-based
method. In our method, the first segment €2y is denoted
by its characteristic function u(z), i.e.,

1ifxz € Qq,
= 9
u(x) {0 otherwise. ©

Then the characteristic function of the second segment
Qf is 1 — u(x). Note that the interface between two
segments is now implicitly represented by u(z).

As pointed by Esedoglu and Otto [31], when 7 < 1,
the length of 9Q2; can be approximated by

|8Ql|%\/?/ uGr * (1 —u) dz,
T Ja

where * represents convolution and G is defined in (5).
The rigorous proof of the convergence as 7 \, 0 can be
found in Miranda et al. [43]. The MBO method can be
interpreted as implementing minimizing movements on
the energy functional (10) [31].

The fidelity terms in £ can then be written into an
integral on the whole domain 2 by multiplying the
integrand by w or 1 — u. That is,

/ o dz:/uFl dx, / 3 dz:/(lfu)Fg dx.
Qq Q Qo Q

Hence the total energy (1) can be approximated by
ExE(u,0): =&¢(u,0)+ & (u,O)

(10)

(1)

where

£4(u,0) = /QuFl(f,@) + (1= wh(f,0) dz



and

Ef(u,@))\\/f/ uG, * (1 —u) dz.
Q

The I" convergence of £7 to £ when 7\, 0 can be proved
similar to that in Esedoglu and Otto [31] or Wang et al.
[35] and thus the solution for the segmentation can be
approximated by finding «™* such that

(u™*,07") =arg min &"(u,O)

ueB,0cS

12)

where
B: ={ue BV(,R) | u={0,1}}

and BV (€2, R) denotes the bounded-variation functional
space.

Now, we apply the coordinate descent method to
minimize £7 (u, ©); that is, starting from an initial guess:
u%, we find the minimizers iteratively in the following

order:
@0,u1,®1,...,uk,@k,....

Without loss of generality, assuming that u* is calcu-
lated, we fix «* and find the minimizer of £ (u*, ©) to
obtain ©F. That is,

k _ : Tk
(] —arggngc‘) (u®,0). (13)

€
Here and in the subsequent sections, we generally as-
sume that for the n-phase case, the global minimizer of

Z/ Fi(fvgla"'a(—)n)dx
i=1 7%

exists and is unique on S = &1 X S X ... x §,, where
S; are the admissible sets for O;.

Remark 11.1. This assumption is reasonable for models
for image processing because most of these models use
strictly convex fidelity terms, such as those in (3), (4),
and (8).

Because & is independent of ©, one only needs to
find the global minimizers of £y with respect to © to
obtain ©F. That is,

k_ : k
© —argglelggf(u ,0) (14)

= arg min/ uFF(f,0) + (1 — u)Fy(f, 0) dz.
ecsS Q

This optimization problem can be solved in different
ways for different types of functionals. For example, if
&y is strictly convex and differentiable with respect to
each element in O, then each element ©; ; (¢ = 1,2, €

[m]) in ©F can be obtained via solving the following
system of equations:

0E; 0E;

=0, ... =0
0011 ’ " 001 m ’ (15)
oy o 0
8@271 Sy a(")2,m, -
Remark II1.2. We use the notation % to denote either

variation (when ©; ; are scalar functions) or derivative
(when ©;; are scalar variables). Then, (15) can be
efficiently solved using the Gauss—Seidel strategy similar
to that in [44] (see examples in Section IV).

After solving ©F, we then solve u**! by

M1 — arg min €7 (u, ©F). (16)

ueB

u

Note that the set 5 contains the boundary points of
the following convex set K:

K={ue BV(,R) | uecl0,1]}.

In other words, K is the convex hull of B.

When ©F is fixed, it is easy to check that £7 (u, OF)
is a concave functional because & (u, ©F) is linear and
&7 (u, ©F) is concave. Using the fact that the minimizer
of a concave functional on a convex set can only be
attained at the boundary points of the convex set and
by finding a minimizer on a convex set K, we relax
the original problem (16) to the following equivalent
problem (17):

uk+1

_ : T k
—argznellrég (u, OF). a7

The sequential linear programming then leads to the
following linearized problem:

uF! = argmin L7(f, CLRTLE w)
uel

(18)

where L7(f,0F u¥, u) is the linearization of £7 (u, OF)
at u®,

L7(f,0F u* u): :/ugb dx (19)

Q
and

= Fi(f,0%) — Fy(f,0F) + )\\/fGT * (1 —2u”).

After the above relaxation and linearization, the opti-
mization problem (16) is approximated by minimizing a
linear functional over a convex set. Because u(z) > 0,
it can be carried out in a pointwise manner by checking
whether ¢(z) > 0 or not. That is, the minimum can be
attained at

) (20)
0 otherwise.

(@) = {1 if 9(2) <0,



Algorithm 1: An iterative convolution-
thresholding method (ICTM) for approximating
minimizers of the energy in (1).

Input: Let €2 be the image domain, f be the
image, 7 > 0, and u° € B.
Output: A scalar function u® € B that
approximately minimizes (1).
Set k=1
while not converged do
1. For the fixed u*, find

2. Use ©F from Step 1 and evaluate

3. Set
uk+1($) — {1 if ¢k(x) < 07

0 otherwise.

Setk=k+1

Now, combining (14) and (20) yields Algorithm 1.

Remark 1I1.3. In Theorem II.4 below, we will prove
that Algorithm 1 is unconditionally stable for any 7 >
0. Since we are using characteristic functions to im-
plicitly represent the interface between two segments,
the criterion on the convergence of Algorithm 1 is
Jo [u* — uF71] dz < tol for a relatively small value
of tol. In practice, because the image is defined in a
discrete domain, the criterion for the convergence is that
no pixel switches from one segment to the other between
two iterations.

Theorem II.4 below shows that the total energy
E™(u,©) decreases in the iteration for any 7 > 0.
Therefore, our iteration algorithm always converges to
a stationary partition for any initial partition.

Theorem IIL4 (Stability). Let (u® ©F) be the k-th
iteration derived in Algorithm 1. We have

8T(uk+1, ®k+1) < ET(uk7 @k)
for any T.
Proof. See Appendix A. O

As we will show by numerical examples in Section IV,
the ICTM converges very fast and the number of it-
erations for convergence is greatly reduced. One can
understand this advantage of the ICTM as the follows:

" (x) = Fi(f, 0%)—Fy(f, @’“)H\/fGT*(lzuk).

The approximate energy functional (11) is the summa-
tion of a strictly convex functional (or, more generally,
a functional with a global minimizer) with respect to ©
(i.e., &) and a concave functional only dependent on
u (i.e., ET). At the first step, OF is the optimal choice
to decrease the energy. At the second and the third step,
we find the minimizer of the linear approximation which
is also the optimal choice to minimize the linearized
functional. Moreover, the minimizer can give a smaller
value in (11) because the graph of the functional &7 is
always below its linear approximation. This accelerates

OF = arg glig/ uF Fy(f, ©)+(1—u®)Fy(f, ©) dz. the convergence of the ICTM.
€S Jq

B. Derivation of the ICTM for the multi-segment case

To derive the ICTM for the n-segment case, we use
n characteristic functions and define

1if 2 € Q,

0 otherwise,

ui(x) = xq, () = { (1)

., uy,) and define

B={ueBV(QR") | u ={0,1}, i€ [n],

and Zuz(az) =1}

Then, we denote u = (u1, uz, ..

In the n-segment case, similar to (10), the measure of
08; N 02, can be approximated by

|0 N OQY| ~ \/?/ w;Gr * u; de,
T Ja

and thus the perimeter of €2; is approximated by

T n
|082;| ~ \/: > ,/Q“iGT xuj do.  (22)

J=1j#i

Then, the total energy (1) can be approximated by

E™(u,0) =& (u,0) + & (u,0) (23)
where .
£7(u,0) = Z/ wE(f,0) do
=179
and

Sf(u,@):)\\/fzn: z”: /QuiGT*uj dx.

i=1j=1j#i

Again, we apply the coordinate descent method to
minimize £7 (u, ©); that is, starting from an initial guess
u®, we find the minimizers iteratively in the following
order:

0% ut, et ... uk ek ...



is fixed, ©F can be obtained via

k_ . k
© —argglelgé'f(u ,0).

When u*
(24)

Using the same relaxation and linearization procedure as
in Section III-A, we arrive at

w1l = argmin £7(f, ©F, u”*, u)
ue

(25)

where

L7(f, 0%, u u)
_Z:/uz ﬁ@k +2)\\/7 Z G, *u dx
J=1,37#i
:Z/ ui ¥ da
=179

is a linear functional and

K:{(ul,u%...,
i € [n], and Zul(az
i=1

is the convex hull of 3. Then, the minimum is attained
at

(26)

up) € BV(Q,RY) | u; €

) =1}

[0,1],

27)

kol _J 1 if i =argming[y (b’;,
u; T (x) = .
0 otherwise.

Remark 1IL5. Note that in (27), argmingepy) qS’Z may
have more than one solution. In this case, we simply set
i = min{arg ming¢; (;55}

Now, we have Algorithm 2 below which is applicable
to cases with an arbitrary number of segments and we
have Theorem III.7 which is same as Theorem IIl.4 in
Section III-A above to guarantee that the total energy
E7(u,O) decreases in the iteration for any 7 > 0.
Therefore, the ICTM always converges to a stationary
partition for any initial partition and an arbitrary number
of segments.

Remark 111.6. The ICTM for the case with two segments
is a special case of Algorithm 2. Also, the ICTM for
multiple segments is almost identical to the ICTM for
two segments. Similarly, the criterion on the convergence
of Algorithm 2 is >0 | [, |uf — uf™'| dz < tol. In
practice, the criterion for the convergence is that no
pixel switches from one segment to another between two
iterations.

Theorem IIL7 (Stability). Let (u*,©F) be the k-th
iteration derived in Algorithm 2. We have

g‘r(uk+1’ ®k+1) < ST(Uk, @k:)

Algorithm 2: An iterative convolution-
thresholding method (ICTM) for approximating
minimizers of the energy in (1).

Input: Let €2 be the image domain, f be the
image, 7 > 0, and u° € B.
Output: A vector-valued function u® € B that
approximately minimizes (1).
Set k=1
while not converged do
1. For the fixed u*, find

k : k
arg min ;_1‘/(1% (f,0)dx

2. For i € [n], evaluate

oF = Fi(f,0%) 4 2A Z \/>G b,

Jj=1,j#i

3. For i € [n], set

() = 1 if i = min{argminscp, ¢}},
i 0 otherwise.
| Setk=Fk+1
for any T.
Proof. See Appendix B. [

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the efficiency of the
proposed algorithms by numerical examples. We im-
plemented the algorithms in MATLAB installed on a
laptop with a 2.7GHz Intel Core i5 processor and 8GB
of RAM. We apply our methods to different models and
also compare our results with those obtained from the
level-set methods in Li et al. [7] and Zhang et al. [9].
Our results show a clear advantage of ICTM in terms of
simplicity and efficiency.

A. Applications to the Chan—Vese model (CV) (3)

The first application of the proposed ICTM is to
recover the scheme in Wang et al. [20] for the
CV model. Specifically, in (3), the corresponding
Fi(fa@h@%"'v@n): 27 0; =C;, S; =R,
and S? =R for i € [n].

In Step 1 in Algorithm 1, when u* is fixed,

/Qu|01 IR (- w)|Cy— f? da



is strictly convex with respect to C; and Cs. Hence,
direct calculation of the stationary points yields

fQukf dx ok fQ(l —uF)f dx

k_
1 = JouF dx”’ 2 Jol—uF dx ’

which are the average intensities of the image f in €2y
and €25, respectively.

For the n-phase case in Algorithm 2, in Step 1, when
u is fixed, Y1 [, uF|Ci — fI* da is strictly convex
with respect to C;, @ € [n]. Hence, the minimizer is given
by

ok — Joulf dx
! fQ uf dx’
which are the average intensities of the image f in
Q;. They are all consistent with the definition of C;
in the CV model (3). Then, in both Algorithm 1 and
Algorithm 2, using C¥ and uf, one can calculate ¢*
(or qbf in Algorithm 2) with heat kernel convolution
using the fast Fourier transform (FFT), followed by the
thresholding step (i.e., Step 3) to obtain u**!. This
exactly recovers the scheme we derived in Wang et
al. [20]. We show examples from [20], where more
numerical experiments on the CV can also be found.

In Figure 1, we show the results of the ICTM applied
to the classic flower image. The figures are initial con-
tour, final contour, and final segments from left to right.
In the first row, we use Algorithm 1| to have the two
phase segmention of the image and in the second row,
we use Algorithm 2 to obtain four phase segmention of
the image. In this simulation, we set the domain of the
image to be [—m, 7| X [—m, ] and the convolutions are
efficiently evaluated using FFT. The parameters (7, \)
are (0.02,0.05) and (0.02,0.02) and the numbers of
iterations are 15 and 14. The code for the ICTM on the
CV model can be downloaded from https://www.math.
utah.edu/~dwang/ICTM_CV.zip. The results show that
the ICTM converges to the stationary solutions in very
few steps.

B. Applications to the locally statistical active contour
(LSAC) (8)

In this section, we use two-phase segmentation ex-
amples to demonstrate the efficiency of the ICTM. The
n-phase case can be implemented in a similar way. We
now apply the proposed ICTM to the LSAC model (8).
That is, we choose

Fi(f,01,02,...,0,)

- /Q L(z — ) (log() + |f(x) — b(y)Ci[2/2v2) dy

and ©; = (v;,b(x),C;) for any ¢ € [2]. Direct calcula-
tion shows that the global minimizer of

/Qu’“Fl(f, 01,0:) + (1 —u*)Fy(f,01,0,) dz

occurs at its unique stationary point. Since Fj is inde-
pendent of v; and C; for j # ¢, Step 1 in Algorithm 1
is simplified to

Sfqu* x)lp z —y)b(y)[f(x) — b(y)C1] dydz = 0,

S 1 —uk (2))I,(z — y)b()[f(z) — b(y)Ca] dydz = 0,
ffg Ip xr — y)[z/l [f($) - b(y)01]2} dydz = 0,

Sl 1 —uk (@), (z — y)[v3 — [f (&) — b(y)Ca]?] dydz =0,
Sfquk(z Ip x —y)[f(z) — b(y)C1]C1 /v dydzx

+ [Jo(1 = u* @), (z — y)[f (z) — b(y)C2]C2/v3 dydz = 0.

(28)

Then, one can use the Gauss—Seidel strategy to obtain
(v, b,Cy) for i € [2]:
oF — Jop * 6"~ 1) fu® da

! Jo(Ip % bE=12)yk dz’

v Jop xbF "N F(1 — uF) da

2T [+ bE12)(1 — wk) da

\/fg Jo Io(@ — y)u* (@)(f(@) —b" T ()CP)? dydz
Jo Jo Io(z — y)uk(y) dyde

y Jo JaIol@ —9)A — u (@) (f (@) — b (y)C5)? dydz
& Jo Jo To(z = 9)(1 — uk(y) dyde
b () = (Cr /(D)) *(fu ) +1[C3/(3)?), + (F(1 — u¥))

[(Ck/vE)21I, « uk + [(Ck/vE)2])T, « (1 — uF)
(29)

We then evaluate ¢* according to Step 2 in Algo-
rithm 1, which is then followed by the thresholding step
(i.e. Step 3) to determine u**1.

We now show numerical examples and compare our
results with those in Zhang et al. [9] where level-set
approach is used. In this numerical computation, we use
the image domain 2 = [—m,7]2. The convolutions are
efficiently evaluated by FFT.

1) A star-shaped image with intensity inhomogeneity:
We start from a classical star-shaped image with ground-
truth. Figure 2 shows the segmentation results for five
images with different levels of intensity inhomogeneity.
The table in Figure 2 shows the efficiency and robustness
of the proposed ICTM when compared with the level-
set method [9]. The number of iterations needed for the
ICTM to converge remains almost the same at 7 for
different intensity inhomogeneity, while the number of
iterations increases from 7 to about 240 for the level-
set method in Zhang et al. [9]. We also use the Jaccard
similarity (JS) as an index to measure the accuracy of
our segmentation. The JS index between two regions Sy
and Sy is calculated as JS(S1, S2) = [S1NS2|/]S1US2],
which describes the ratio between the intersection areas
of S; and Ss. In the five experiments in Figure 2, we
have JS(S1,S52) = 1,1,0.9997,0.9985, and 0.9985,
respectively, when we set S7 as the numerical result
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Fig. 1. First row: two-phase segmentation with (7, A\) = (0.02,0.05). The number of iterations is 15. Second row: four-phase segmentation
with (7, A) = (0.02,0.02). The number of iterations is 14. From left to right: initial contour, final contour, and final segments. The code for
the ICTM can be downloaded from https://www.math.utah.edu/~dwang/ICTM_CV.zip. See Section IV-A for details.

and Ss as the ground truth. The parameters in the five
experiments are all fixed as (p,~,7) = (15,0.1,0.001).

2) Noisy intensity inhomogeneity images: We then
apply the ICTM to five different, noisy intensity-
inhomogeneous images. The results in Figure 3
again show that our ICTM is efficient and accu-
rate. The parameters for the five figures from left
to right are (p,~v,7) = (15,0.1,0.02), (5,0.15,0.03),
(10,0.02,0.01), (10,0.7,0.03), and (10,0.035,0.002).
Numbers of iterations in the ICTM are 5, 30, 28, 35,
and 18. However, the numbers of iterations in the level-
set method are 57, 219, 670, 290, and 230. The table in
Figure 3 shows that the ICTM is an order of magnitude
faster than the level-set method.

C. Applications to the Local Intensity Fitting (LIF)
model (4)

Finally, we apply the ICTM to the LIF model
(4) for the two-phase case. In this case, we choose
Fi(f7@1792ﬂ"'7®n) = :U/ifQGU(x - y)|CZ(x) -
f()|? dz and ©; = C;(x) for any i € [2]. When
(uk, ..., uk) are fixed,

& = [ RS.C1Ca) + (1= i) Fa(1.C1. Co) dy
Q

is strictly convex with respect to C;(z), ¢ € [2]. Then,
direct calculations reduce Step 1 in Algorithm 1 to

J[[ #w6ata = icato) = 1) duz =0,
/ /Q (1= (1)) Go — 9)[Cala) — ()] dydz =0

whose solutions are given by

_ Gy * (ka) Cc*

*((1—ub
2 08) gy = Ge(Uowtls)

Gy * (1 —uk)
(30)
Remark TV.1. In (30), C¥ () may not be defined at some
x € Q since G, *u” or G, *(1—u*)can be zero (at least
numerically). Since G, xuf >0 and G, % (1 —uk) >0,
we add a small number £ > 0 in both the numerator and
the denominator as follows,
Gox (uFf)+e
k o o
Crlz) = Gy xuk +¢
Gy * (1 —uF
Oy~ Got (L=u5)) +
Go*(1—uF)+e

Ct(x)

In the subsequent examples, we set £ = 1076,

Again, the evaluation of ¢* in Step 2 of Algorithm 1
from (29) is followed by the thresholding step (i.e. Step
3) to determine u*tT.

We now show numerical examples and compare our
results with those in Li et al. [7] using the level set
method. To be consistent with the code of [7] from
http://www.imagecomputing.org/~cmli/code/, we use the
two-dimensional Gaussian low-pass filter instead of the
Gaussian kernel G, to avoid specifying the domain size
of Q. The filter can be generated by the MATLAB’s
fspecial function. Figure 4 displays several numer-
ical experiments on different intensity-inhomogeneous
images. In all five experiments, we set 3 = po = 1.
In Figure 4, from left to right, we set (o,7,\) =
(20, 15,500), (3,5,150), (3,3,245), (3,10,110), and
(3,2,90). In the table in Figure 4, we compare the [CTM
and the level-set method in Li et al. [7] in terms of
the number of iterations for convergence. In the first
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# of iterations of the ICTM

8| 7 |7 7 7

# of iterations of the level-set method [9] | 7

35 ] 186 | 239

Fig. 2. First row: Initial contour of the same image with different intensity inhomogeneity. Second row: The segmented region. Table: Comparison
of the number of iterations for each case from left to right between the ICTM and the level-set method used in Zhang et al. [9]. In all five
experiments, we set p = 15, v = 0.1, and 7 = 0.001. The results for the level-set method are obtained using the software code from
https://www4.comp.polyu.edu.hk/~cslzhang/LSACM/LSACM.htm. See Section IV-B for details.

# of iterations of the ICTM

530 | 28 | 35

# of iterations of the level-set method [9]

57 | 219 | 670 | 290 | 230

Fig. 3. Initial contour and segmented region using the ICTM in the LSAC model. The parameters from left to right are (p, v, 7) = (15, 0.1,0.02),
(5,0.15,0.03), (10,0.02,0.01), (10,0.7,0.03), and (10, 0.035,0.002). The results for the level-set method are obtained using the software
code from https://www4.comp.polyu.edu.hk/~cslzhang/LSACM/LSACM.htm. See Section IV-B for details.

example from the left, the method in Li et al. [7] does not
even converge. In all other examples, ICTM converges
in significantly fewer iterations, demonstrating its very
high efficiency.

V. CONCLUSIONS AND DISCUSSION

In this paper, we proposed a novel iterative
convolution-thresholding method (ICTM) that is appli-
cable to a range of models for image segmentation. We
considered the image segmentation as the minimization
of a general energy functional consisting of a fidelity
term of the image and a regularized term. The interfaces
between different segments are implicitly determined by
the characteristic functions of the segments. The fidelity

term is then written into a linear functional in character-
istic functions and the regularized term is approximated
by a concave functional of characteristic functions. We
proved the energy-decaying property of the method.
Numerical experiments show that the method is simple,
efficient, unconditionally stable, and insensitive to the
number of segments. The ICTM converges in significant
fewer iterations than the level-set method for all the
examples we tested. We expect that the ICTM will be
applicable to a large class of image segmentation models.
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# of iterations of the ICTM

47

# of iterations of the level-set method [7]

131 | 117 | 209

Fig. 4. Initial contour and segmented region using the ICTM in the LIF model. In all five experiments, 11 = p2 = 1. From left to right:
(o,7,A) = (20,15,500), (3,5,150), (3,3,245), (3,10,110), and (3,2,90). The results for the level-set method are obtained using the
software code from http://www.imagecomputing.org/~cmli/code/. See Section IV-C for details.

and 16303318.

APPENDIX A
PROOF OF THEOREM II1.4

The proof consists of two parts: (1) to show that

ET (M, 0F) < £7(u", %) (31)
and (2) to show that
g'r(uk-i-l7 (__)k-l-l) < (c/’T(,u/k:-f—l7 @k) (32)

(32) is a direct consequence of (14). Therefore we only
need to prove (31).
To prove (31), we write

L7(f, 08, ub, uk)

=£7(uk, 0F) — )%E/gzukGT s uP da
and

L7(f, 0F ub, ub 1) = £7(uhF1, OF)

+ )\\\//;r /Q uF LG, (WP — 2uP) da.
From (20), we have

ET(f? ®k7uk’uk+1) S ET(f’ ®k’uk’uk)'

That is,
g'r (U/k—‘,-l7 @k)
<E7(u*,0")

)\ﬁ / (¥ — NG (WF — bt da
Q

A\/’TT 2
_er( k oky _ ko k+1

=& (u",0%) NG /Q[GT/2*(U "] da
<E7(u*, 0F).

(33)

APPENDIX B
PROOF OF THEOREM II1.7

Similar to the proof in Appendix A, we only need to
prove

E™(uF L 0% < £7(uF, 0F). (34)
Again, we write
L7(f, 0% u* u)
)\\/77_ n n
=E7(u*,0%) + = Z Z / ub G xu® da
a i=1 jij=1" !
and
£T(f7 @k, ’U,k, uk+1) — (c/w'(uk-i-l7 @k)
MW~ k+1 k+1
_ sz Z /Qul Gr*uj " dr

i=1 j#i,j=1

Zn: Zn: /ufHGT*uf dx.
Q

i=1 ji,j=1

+2A\\?
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From (27), we have

‘CT(f’ ®k7uk’ uk+1) S ET(f’ ®k7uk’uk)'

That is,

gr(uk—o—l’ @k) < ST(uk, @k)

(35)

~ < AWT e kg k. k+l
+Z Z / (uf —u; ™G * (uf —uith) da.
i=1 j=1,j#i" ¢ VT ’

Direct calculation yields

S Y [ AT -G =) da
i=1 j=1,j7i
22/9 \\g(uf —uPhHG, « Z (ué€ —uf“)dax
i=1 j=1,j7i
3 [ kG Tl
=170 VT
- AT 2
Z / \/\? (G * (uf ™ —uf)]” dz (36)
i=1"9

<0.

Combining (35) and (36) gives
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