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Figure 1: Starting from a polygonal region and user-prescribed design elements (top left), we hierarchically subdivide the input region using
streamline-based and template-based splitting operations. Selected templates are shown on the bottom left, the final layout in the middle, and
a simulated 3D construction on the right.

Abstract

We present a framework for generating street networks and parcel
layouts. Our goal is the generation of high-quality layouts that can
be used for urban planning and virtual environments. We propose a
solution based on hierarchical domain splitting using two splitting
types: streamline-based splitting, which splits a region along one
or multiple streamlines of a cross field, and template-based split-
ting, which warps pre-designed templates to a region and uses the
interior geometry of the template as the splitting lines. We combine
these two splitting approaches into a hierarchical framework, pro-
viding automatic and interactive tools to explore the design space.
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1 Introduction

We present a framework for generating street and parcel layouts
(see Fig. 1). Besides synthesizing virtual urban environments, our
work is useful for planning future developments. In contrast to ex-
isting work in urban modeling, e.g., [Chen et al. 2008a; Weber et al.
2009], we aim to generate solutions with high geometric quality
that respect some specified polygonal boundary conditions. Be-
cause of the slow and chaotic historical process of urban develop-
ment, many of our oldest cities have inefficient layouts, including
labyrinthine streets that meet at odd angles, and land parcels that
are oddly shaped and proportioned. Existing work in urban model-
ing, focused primarily on synthesizing virtual urban environments,
generates solutions that mimic many of these problems. For urban
planning, these artifacts are not acceptable: we do not want to recre-
ate the problems of the past when planning high-quality layouts for
the future. We therefore propose a new framework that generates
high-quality, user-controllable street and parcel layouts.

There are two reasons why we believe that this is an interesting
problem. First, existing subdivisions are currently generated with-
out computational design tools, which often leads to inefficient so-
lutions in the form of undesirable parcel shapes, parcel sizes, or too
much land devoted to roads. Given the limited availability and the
high cost of land in most urban areas, the financial impact of better
planning is significant. Second, the problem of urban layout gen-
eration is an interesting mesh generation problem in geometry that
has not been solved with high geometric quality.

In Fig. 11, left (CE1), we visualize a street and parcel layout that
was generated with a current state-of-the-art urban modeling tool
(CityEngine). We observe two major problems that we wish to
overcome. First, its street layout algorithm is based on growing
street segments and this strategy fails when more complex bound-
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aries are prescribed. Parts of the street network will grow together
from different sides and they do not match up well. Second, the
algorithm for parcel generation [Vanegas et al. 2012], while being
very general, leaves no significant opportunity for user control of
the style of a subdivision.

Problem Analysis: We discussed the problem with about 10 urban
planners and architects (in this paper we simply call all practition-
ers urban planners or planners). As a result of these discussions
we decided to focus on the layout of an area with up to a few thou-
sand parcels. That is the approximate scale that would be developed
within a single urban planning project. Further, almost all realistic
projects come with fixed boundary conditions that have to be re-
spected, e.g., defined by property rights. Additionally, it became
clear that urban planners wanted to maintain full control over key
design elements of a layout. We therefore include several interac-
tive tools in our framework. While our framework admits a larger
range of user interactions at all steps of the layout process, we focus
the exposition of the paper on a single type of workflow that mim-
ics a typical top-down design process employed in practice. In this
workflow, the user interactively provides key design elements as
constraints (e.g., main roads, a lake, a school, distinctively shaped
parks, an opera house, etc.) and our framework will create multiple
and different versions of complete designs by filling in the details
(in current practice, a lead designer gives the key elements and a
team of planners work on many variations of complete designs).
By focusing on this top-down design, we can separate the inter-
active and automatic design steps and provide a more meaningful
evaluation and comparison of our work.

The second part of the problem concerns the technical challenges
on how to generate a nice layout. There is a considerable amount of
literature on designing local subdivisions and street networks [Mar-
shall 2005; Southworth and Ben-Joseph 2003; Robinson et al.
2004], considering aspects such as traffic, safety, visual quality,
transportation efficiency, and noise. As solutions we can find many
interesting prototypical urban patterns that are considered desirable.
Examples include regular grids for efficient transportation, cul-de-
sacs for privacy, or curved roads for visual quality. As the recom-
mendations for good design differ, we do not want to limit ourselves
to one planning philosophy, but instead give the planner the option
to work with those patterns that the planner prefers (or that are re-
quired by a project).

Challenges and Contributions: The main idea of our proposed
framework is to let the user specify (draw) prototypical templates
and then deform these templates to tile the available space. Ur-
ban patterns are usually generated from basic building blocks such
as rows of parcels along streets or parcels arranged around cul-de-
sacs, called spikes (see Fig. 2). As we tried to draw a small set
of initial templates, we quickly noticed that even a minimal set of
templates for urban layouts is very large. This is due to the fact that
there is a combinatorial explosion in arranging different discrete
design elements (e.g., parcels). We therefore propose to use hier-
archical templates and templates that can repeat design elements to
combat this combinatorial explosion. The next question is how to
fill the domain with templates. Here, we identified two different
approaches. Our first attempt was to pack and deform the tem-
plates directly (similar in spirit to [Kim and Pellacini 2002]), but
that leads to unrealistic street networks with many short continuous
street segments connected by T-junctions. We therefore propose a
solution based on hierarchical domain splitting that proves to be
significantly more successful. If a region cannot be covered by a
template, we split it using one or multiple streamlines of a cross
field. The function of the field is to ensure proper spacing of the
new streets with respect to the boundary and other streets and to
give the user a global view of the design. Template-based split-
ting warps pre-designed templates to a region and uses the interior

geometry of the template as splitting lines. Template-based split-
ting is useful for generating unique and interesting urban patterns,
i.e., local street and parcel patterns according to the user’s design
preferences. The advantage of this solution is that the design pro-
cess only consists of drawing prototypical examples rather than pro-
gramming or writing grammars. To obtain a complete system, we
build a hierarchical framework, automatically combine streamline-
and template-based splitting using heuristic search and backtrack-
ing, provide a user interface for the integration of user feedback,
and suggest metrics to evaluate the quality of urban layouts. We
claim the following contributions:

• From the application side, we significantly improve the geo-
metric quality of street and parcel layouts presented in previ-
ous work, so that our layouts can also be useful for planning
purposes.

• From the methodology side, we make two contributions.
First, we present an overall framework to combine streamline-
based and template-based splitting operations. Second, we
propose a novel template warping algorithm for hierarchical
templates and templates with repeating design elements. This
is a significant extension to existing template warping algo-
rithms, e.g., Aliaga et al. [2008b].

Figure 2: Block subdivisions using parcel strips and spikes. We
show a real-world layout on top and use red lines to highlight the
structure and the breakdown of the region into typical parcel pat-
terns. The four most common patterns are shown on the bottom.

2 Related Work

Modeling streets and modeling parcels have been studied as sep-
arate problems such that all previous work first fixes the street
network and then further subdivides the induced partition of land
into parcels. The original version of CityEngine, inspired by
L-systems [Prusinkiewicz and Lindenmayer 1990] suggested a
growth-based system for street layouts that grows street segments
from active seed points [Parish and Müller 2001] and has been re-
fined and adapted by Weber et al. [2009]. Aliaga et al. [2008a] pro-
posed connecting points seeded by a synthesis algorithm and Chen



et al. [2008a] proposed generating streets as streamlines in a tensor
field. Chen et al. focused on coarser layouts with an eye toward
highways and major roads, whereas we are interested in residential
street and parcel layouts. In this problem domain, it is important
that the spacing between two parallel streets remains approximately
constant, and that land parcels are well shaped and proportional.
By tracing streamlines of low-divergence cross fields and filling in
the fine-scale design using template matching, we address for the
first time these additional desiderata. Editing and combining street
layouts has been studied by Lipp et al. [2011]. Existing parcel gen-
eration approaches heuristically mimic existing designs [Parish and
Müller 2001; Vanegas et al. 2012]. In contrast to our work, these
parceling techniques offer the user little control over the design and
they can generate undesirable layouts, e.g., parcels without street
access. An advantage of these alternative approaches is that they
can (in theory) generate parcel subdivisions for any region. An
important idea of Vanegas et al. [2009] was to include behavioral
aspects of a city to control the geometric layout. The design philos-
ophy of our work is similar in that we also consider functionality as
a factor in geometric design.

At a larger scale, modeling roads connecting individual
cities [Maréchal et al. 2010; Galin et al. 2011] also considers fac-
tors such as the topography, terrain, and the graph connectivity, but
the shapes of the polygons between roads are not considered. Com-
plementary to our work is procedural building generation [Wonka
et al. 2003; Müller et al. 2006; Merrell et al. 2010; Talton et al.
2011] and sketch-based design [Paczkowski et al. 2008]. We refer
the reader to a recent survey [Vanegas et al. 2010] for a broader
review of urban modeling.

We are also aware that commercial civil engineering software, e.g.,
Autodesk’s Civil3D [Civil3D 2013] or SiteOps [SiteOps 2013], has
nice semi-automatic tools for street and parcel generation. How-
ever, the automatic part of the software relies on simple, determin-
istic construction algorithms. For example, streets and sidewalks
can be generated by offset operations and parcels can be generated
by splitting a region along lines orthogonal from the main road.
This type of construction often creates undesirable leftover spaces
that cannot be subdivided by nicely shaped parcels. The difficult
part of the layout optimization is therefore left to the user.

3 Overview

Input: The first input to our system is a polygonal region,Rinput,
together with user-specified key design elements (or constraints) of
the layout, e.g., major roads, lakes, parks, landmark buildings, or
other unique subregions. These design elements may split Rinput

into multiple subregions or specify holes in Rinput. The second
inputs are user-designed (hierarchical) templates together with a
specification of different aspects of their deformation behavior. Our
framework provides interactive tools for modeling both inputs.

Hierarchical Splitting In the first stage, we use an automatic and
hierarchical splitting framework. The core of the framework is two
operations to split a region,R, in the hierarchy:

1. Template-based Splitting: Given a library of templates,
Ti, i = 1, . . . , nT , we would like to select those that can
be warped to a given region,R, by evaluating the warping en-
ergy (energy) that is necessary to deform the template region
of Ti to the region R. The energy not only considers the de-
formation of the template boundary, but also the deformation
of the interior geometry that specifies the split (see Sec. 4).

2. Streamline-based Splitting: A region, R, is split using one
or multiple streamlines of a cross field. We propose multi-
ple solutions for cross field design and a scoring function to
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Figure 3: Illustration of the splitting operations. The top row il-
lustrates streamline-based splitting: (a) a region, A, is selected for
splitting; (b) a cross field is computed; (c) streamlines are extracted
and ranked (the best one is highlighted in red); (d) the region is split
along the best streamline generating two subregions, B and C. The
middle row illustrates template-based splitting: (e) the subregion
B is selected for splitting and available templates are deformed to
evaluate how well they fit. Three candidate templates are shown in
(f), (g), and (h). Option (g) is selected as the best match. In the
bottom row, the example is finished with streamline-based splitting
(i,j) and template-based splitting (k,l).

evaluate and rank streamlines automatically (see Sec. 5).

We combine these two splitting algorithms in a hierarchical frame-
work as follows. The automatic algorithm always prefers template-
based splitting. Only if a suitable template (with energy <
threshold) cannot be found does the framework use streamline-
based splitting. In streamline-based splitting, the splitting line(s)
are randomly selected according to their quality function, qual. In
template-based splitting, the templates are randomly selected based
on a score that is the product of the deformation energy and a user-
defined probability. The user-defined probability is used to encode
the fact that some templates are less common than others and some
templates are more general and can more easily be matched with
lower error. Additionally, other constraints, e.g., a template should
occur a maximum of k1 times or a minimum of k2 times, can be met
by randomized search and backtracking. We typically generate 10
to 100 variations of a layout. If the framework is not successful in
generating variations, we invoke a rule-based assignment that either
uses the parceling algorithm based on the straight skeleton [Vane-
gas et al. 2012] or places a park or commercial area. In Fig. 3, we
illustrate the two splitting operations using a simple example.

During modeling, we provide statistics (quality metrics) and visu-
alization tools for assessing the layout quality. The most important
quality metrics are described in Sec. 7. We also mention an imple-
mentation detail necessary for integrating the two splitting strate-
gies. The streamlines conceptually correspond to road centerlines.
Before template matching, we therefore offset region boundaries
by half the street width if necessary (managed by flags stored with
half-edges of the polygonal regions).

Global Optimization: All variations are post-processed by a
global optimization algorithm (see Sec. 6) that improves the street
network with the goal of reducing the distortion of the template
warping.

Quality Metrics: The user can review the generated variations in



an interactive interface and analyze the layout quality using a set of
quality metrics (see Sec. 7).

Interactive Post-processing: In this optional step, the user can
change template assignments, delete subregions, recompute subre-
gions, and modify streets. One important use of this step is to mod-
ify template assignments of difficult regions (e.g., select a region to
be processed by the straight skeleton based parceling algorithm) or
place additional key elements like parks and parking lots.

We present example layouts together with comparisons to the state-
of-the-art and existing layouts in Sec. 8 and conclude in Sec. 9.

4 Template-based Splitting

In this section, we discuss templates, their selection, and best
matching.

We build on Aliaga et al.’s idea of using deformations for urban
templates [2008a; 2008b]. This previous solution leaves a lot of
room for technical improvement, which we will provide: 1) We
solve a non-linear optimization problem using known explicit so-
lutions of various types of 2D registration problems. 2) The defor-
mation can be controlled by specifying the type of admissible de-
formations locally within a template and enforcing it up to a given
tolerance. For example, a row of parcels can be easily stretched in
one direction where new parcels can be added, but it should not be
stretched in the other direction where all parcels will become longer
and have a different area as indicated by the template. 3) We have
hierarchical templates so that one template represents hundreds to
thousands of discrete variations. 4) We encode template compatibil-
ity, so that only compatible boundary edges and corners are allowed
to match. Our nonlinear solver is easy to implement and efficient
enough that there is no need to sacrifice accuracy and design quality
through a reduction to a single linear system. By contrast, Aliaga
et al. linearize a non-linear problem directly. In the best case, this
result is comparable to one search step of a non-linear solver and
therefore this approach would require an excellent initialization that
cannot be guaranteed in practice.

Given a library of templates, Ti, i = 1, . . . , nT , we would like to
select those that can be warped to a given region,R, while keeping
the essential user-defined properties of the split (described below
and illustrated in Fig. 4) stored with the respective template. The
core of our solution to this problem is an optimization algorithm for
the best warp, Ti →R.

Templates. A template, T , is a polygonal region, split into polyg-
onal subregions, Pk, where each Pk comes with an allowed range
of shapes it can assume. Instead of describing the space of admis-
sible shapes, we prefer to prescribe the type of transformations it
can undergo. In our current implementation, these are rigid body
motions, uniform scalings with a prescribed range of the scaling
factor, and affine maps with tolerances on the principal distortions.
The overall template may undergo a nonlinear deformation, while
its parts, Pk, deform within a tolerance according to the prescribed
affine deformation class. For each Pk, we store its vertices pk

i , its
deformation behavior and tolerances, and possibly some alignment
properties, expressing that certain vertices should map to corners,
to the boundary ofR or should lie on additional key elements of the
split, e.g., a straight line segment, Lj , or a smooth curve, Cj (see
Fig. 4 alignment curve). Hence, the key elements of a template are
these alignment elements and the vertices, pk

i , of the subregions,
Pk. Note that the Pk may be templates themselves, as illustrated
in Fig. 4 and Fig. 5.
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Figure 4: Examples of frequently used templates along with seman-
tics and notation. We show templates grouped into three approxi-
mate levels. In general, each template has a region label and all
subregions (faces) of a template also have region labels. The first
condition for a template to match is that the region labels agree.
We structure the templates into three levels so that in general level-
k templates are used to replace faces of level-(k − 1) templates.
The exception is the level-three parcel template (R) that also oc-
curs in the spike template (S). Regions labeled A are area templates
that can be replaced by level-two templates. Edges can be con-
strained to have certain neighbors (street, no street, unconstrained)
and they can also generate geometry (street). Vertices in a template
are automatically classified as convex, concave, or regular (bound-
ary), but the user can override this automatic classification. The
complete set of templates and their prototypes from Google Maps
can be found in the supplementary material. These templates are
designed in a custom-made editor. Note that one pentagon-shaped
template has a private park in the middle. This is an example of an
intentionally designed region that has no street access.

4.1 The Warping Algorithm

The unknowns of our optimization problem are the new positions
pk∗
i , C∗j , . . ., of the key elements, pk

i , Cj , . . ., of a template.

Initialization. Templates possess boundary points marked as cor-
ners (convex or concave), which should map to corners ofR. More-
over, their boundary segments have a semantic meaning depending
on the application, such as “street” or “no street”. Thus, we first de-
tect the convex and concave corners ofR. Then, for each template
with the right arrangement of corners and boundary curve seman-
tics, we look for compatible boundary matches and rank them ac-
cording to the distortions of boundary curve lengths. This results in
a number of candidate templates. To initialize the warping for a se-
lected candidate template, we warp boundary curves via arc length
scaling and subsequently map interior points using mean value co-
ordinates.

Basic Iteration: In order to keep the algorithm as local as possi-
ble and its implementation simple, we decided to proceed with an
alternating optimization:

• Registration: Register each subregion, Pk, of the template
within its allowed deformation type and constraints to the cur-
rent key vertex positions, pk∗

i .

• Regression: Find new positions of key elements, pk∗
i , through
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Figure 5: Hierarchical template matching. The optimization result
of one level determines the selection of templates for the next finer
level. In this example, the number of parcels per row. The parcel
rows are then optimally placed in the second level. The registered
and colored subregions of the templates visualize the effect of opti-
mization.

weighted least squares regression of the vertices of the warped
subregions Pk∗, respecting the alignment constraints.

We now provide the details on these two parts:

Registration. For each subregion, Pk, we have to compute a trans-
formation, α, within the allowed class such that the least squares
error,

Ek :=
∑
i

(α(pk
i )− pk∗

i )2, (1)

is minimized. All of our deformations can eventually be broken
down into affine maps, α : p 7→ a + A · p. Affine registration
is known to be simple: the barycenter of the vertices, pi (dropping
the upper index k for simplicity), maps to the barycenter of their
corresponding points, p∗i , which determines the translational com-
ponent, a, and leaves us with registration problems for linear maps,
p 7→ A · p. Now,

Ek =
∑
i

[pT
i A

TApi − 2p∗Ti Api + p∗Ti p∗i ],

is a quadratic function in the entries of the 2 × 2 matrix A, which
therefore can be found by solving a linear system. Registration by
a similarity is even simpler, with only two unknowns in A, namely
c = a11 = a22 and s = a21 = −a12; the scaling factor is λ =√
c2 + s2 and the rotational angle φ follows from c = λ cosφ, s =

λ sinφ. A rigid body motion is characterized by the constraint c2 +
s2 = 1; the corresponding registration problem can still be solved
explicitly, since then Ek is linear due to ATA = I .

Due to the iterative nature of the algorithm, it is not essential to
solve the registration subproblem with high accuracy; one iteration
of any appropriate numerical optimization algorithm suffices. This
is used when we have other constraints on the affine map. One ex-
ample is affine maps where the principal distortion directions and
intervals on the distortion factors are given. This problem arises
when a rectangle, Pk, should stay (close to) a rectangle. We first
perform the registration by a similarity and then append the regis-
tration by non-uniform scaling in the principal directions: this is
affine registration with a diagonal matrix, A, and linear inequali-
ties for the diagonal elements, resulting in a very simple quadratic

program in just 2 unknowns. Other examples are similarities with
bounded scaling factor and affine maps with area distortion con-
straints.

Regression. After the registration phase, vertices which are shared
in the template by adjacent regions, Pk,P l, . . ., will not agree,
nor will they lie on a boundary or a possibly prescribed alignment
curve. Let us first discuss the case where several points, now sim-
ply called p1, . . . ,pn, shall be merged to a single point, p. In view
of the constraints and tolerances on the deformed subregions, Pk,
we define a tolerance εi for each pi, and let p be the barycenter of
points, pi, with weights wi = 1/εi. If p is constrained to lie on a
given curve, we project it orthogonally onto the curve. If a series
of points should lie on a simple non-fixed curve (straight line, cir-
cle, etc.) we compute a weighted fit of all involved points, pi, and
project them onto the fitted curve. Finally, if the points should lie
on an unknown smooth curve, we perform a weighted moving least
squares projection.

Our matching algorithm shares some aspects with [Liu et al. 2008]
who parameterize triangle meshes via constrained affine deforma-
tions of faces. It could be implemented in a non-alternating fashion,
which would probably exhibit faster convergence. However, since
subregions may transform in many different ways and in view of
the presence of various types of alignment elements, our approach
is much easier to implement, while still achieving the performance
needed for the application. Currently, one matching takes about 30
iterations and we can approximately match 25 templates per sec-
ond.

Hierarchical Matching. Since subregions of templates may be
templates themselves, we proceed in a hierarchical fashion, starting
at the coarsest level. Each level has an initialization phase, followed
by optimization (see Fig. 5).

Best Warp Selection. In our implementation, the choice of a tem-
plate is made in the initialization phase, where we randomly pick a
template from the ones ranked most highly according to the defor-
mation of the boundary. This may still result in a warp that exceeds
certain tolerances on the deformation of its subregions. Although
we did not find it necessary in our application, one could decide on
the template after the complete matching algorithm has been per-
formed on all templates that passed the initialization criteria.

Comparison. We compare the results of our algorithm to warping
using only mean-value coordinates in Fig. 6. We can see that the
distortion of our framework is significantly lower.

avg=1.19862avg=1.98651

MVC only with warping

0 5m

Figure 6: Template matching based only on mean-value coordi-
nates (left) and our warping algorithm (right). The parcels are
color-coded based on the registration distance from the ideal par-
cel.



5 Streamline-based Splitting

While template warping works well for designing street and parcel
layouts at a fine scale, it is not ideally suited to coarse-scale design,
since the region boundary can be highly irregular, and it is diffi-
cult to capture the more freeform layouts of major road networks
with pre-designed templates. To accommodate common templates,
streets in these networks need to meet at approximately right an-
gles, with parallel streets staying a roughly constant distance apart.
To meet these design goals, placement of streets at a coarse level is
guided globally by a cross field overR. A cross at point p ∈ R is a
pair of orthogonal straight lines through p; streamlines through the
cross field correspond to potential road placements.

We design the road network by choosing a cross field over R, and
then choosing a streamline of the field. The streamline partitions
R into two subregions; recursively applying this approach yields a
hierarchical street network over R. In the supplemental materials,
we show that finding cross fields that are smooth, have low diver-
gence, and are adapted to the boundary of R satisfies the above
design goals, and we propose three algorithms, with different ad-
vantages, for generating such cross fields. Our framework is not
tied to any particular method of cross field design and many exist-
ing algorithms could be used. Once a cross field has been chosen,
our streamline evaluation algorithm selects one of its streamlines
along which to splitR.

The streamline evaluation algorithm takes as input a region R and
a cross field and computes a set of candidate streamlines as well as
a quality score for each streamline. Below, we discuss the genera-
tion of streamline candidates, the overall quality score, and the four
individual components of the quality score.

Figure 7: A visualization of the quality scores for streamlines. The
best three streamlines are highlighted by a thicker line width. Top
left: The divergence quality score. In this example we can see
that one direction is clearly preferred to the other. Top right: The
distance-to-boundary quality score. Bottom left: The distance-to-
singularities quality score. Bottom right: The combined (overall)
quality score. Note that we use a much denser set of streamlines for
the computation of the final results than in this visualization.

Streamline Candidate Generation: All inner vertices, vi, of the
constrained Delaunay triangulation of R are considered potential
seed points for a streamline. Each inner vertex has two associ-
ated orientations through the cross field and we store two binary
flags to mark each of these orientations as active or inactive. We
iteratively generate a streamline from a random seed point in a di-
rection that is still active, until all seed points are inactive in both

orientations. A streamline is computed from a seed point in both
directions associated with an orientation until it hits the bound-
ary of R, using Runge-Kutta as the streamline integration method
(similar to Alliez et al. [2003]). After a new streamline is placed,
we disable the orientation that is most similar to that of the new
streamline for all seed points within a Euclidean distance of dε
of the streamline. Streamlines that stop at singularities and self-
intersecting streamlines are not considered as candidates. The pa-
rameter dε is a tradeoff between the computation speed and layout
quality (we use dε = 0.3 ∗ parcellength for our results).

Quality Score: The quality score of a streamline qual(si) is a com-
bination of four components (see Fig. 7): divergence, DIV (si),
distance to the region boundary, DB(si), distance to singularities,
DS(si), and continuity, CT (si). The individual scores can be
combined by optionally normalizing each score to the range [0, 1]
and by controlling linear weights λ1, . . . , λ4 in the user interface.
For our results, we normalized the scores and set all weights to one.
Changing the weights from this default setting is one way to explore
different design variations for the same input region.

Divergence: The divergence score of a streamline, s, is computed
by integrating the divergence

DIV (s) = l(s)

∫
s

∇ · f(x)dx, l(s) = 1/length(s)p, (2)

where p = 0.9 and length(s) is the arc length of s. The parameter
p is set to favor longer streamlines. In our implementation, the
integral is discretized as a sum.

Distance to the Boundary: The distance to the boundary score
tries to estimate how well rectangular templates with given widths,
W1, . . . ,Wk, can be placed parallel to the streamline. We precom-
pute possible width combinations by an exhaustive search (up to a
threshold) and compute a function opt(y) that evaluates how well
a value y can be explained by a sum of Wi’s. We compute the
pointwise quality score, db(x) = opt(dist(x)). The final score,
DB(s), is then the average over the streamline of the pointwise
score, db(x).

Distance to Singularities: The distance to singularities, DS(s),
is the smallest Euclidean distance to a singularity in the field. This
component is based on the observation that streamlines close to sin-
gularities sometimes break the region R into two subregions (R1

and R2), so that after recomputing the field for both subregions
the number of singularities in R1 and R2 is smaller than the num-
ber of singularities in R. This is due to the fact that D-fields (the
most often used fields in our work) push singularities away from
the boundary to the center. Furthermore, we observed that we often
selected streamlines close to singularities when we experimented
with manual streamline selection.

Continuity: Continuity encourages streamlines that are the natural
continuation of existing splitting streamlines. We store all existing
streamline endpoints and their directions. An endpoint of a candi-
date streamline is considered to be continuous if it is within a Eu-
clidean distance threshold, ddist, and an angle threshold, ddir , of an
existing endpoint. A streamline with one continuous endpoint has
CT = 0.5, with two continuous endpoints, CT = 0, and CT = 1,
otherwise. In our implementation, we chose ddist = 4 meters and
ddir = 20.

The streamline ranking algorithm results in a ranked set of stream-
lines where each streamline has a quality score.



6 Global Optimization

In the following, we describe our algorithm to optimize the street
network. We propose an algorithm that iterates two phases: fit-
ting strips to the blocks induced by the street network and optimiz-
ing the network using convex optimization. This type of iterative
framework was also successfully used in the context of shape ap-
proximation [Cohen-Steiner et al. 2004] and deformation [Bouaziz
et al. 2012].

Problem statement: The input of the optimization is a street net-
work represented as polygonal mesh, M = (V,E, F ). The goal
of the optimization is to improve the fairness of the roads and the
regularity of the blocks, i.e., the block shape should be like a strip
bounded by one pair of offset curves. Fig. 8 presents an illustration
of what the global optimization aims to improve. After the global
optimization, the same templates are warped again to fit the opti-
mized regions. The energy function we want to optimize is defined
as:

F (V ) = wsfshape + wfffair + wcfclose, (3)

and we describe the individual terms below. In this paper, we use
ws = 1, wf = 0.8, and wc = 0.2.

unfair road
irregular block

Figure 8: An input road mesh for optimization (right) from hierar-
chical domain splitting (left). In order to improve the road network,
we collapse short road edges. This avoids continuity problems at
intersections, but the roads are no longer smooth (pink circles).

Regularity. The main idea of regularity is to lower the deforma-
tion error introduced by warping templates. In the following, we
describe the regularity term for the most common type of templates
that are designed as rectangles and are mapped to quad-shaped
blocks (faces ∈ F ). Each such block has two pairs of opposing
sides (p1 and p2) and we compute a target shape in the form of a
strip. A strip is a quad where one of the two pairs of opposing sides
is defined by two offset curves. We first need to decide which of the
pairs to select for fitting offset curves. For each pair, we compute
the offset deviation by uniformly sampling and then we select the
pair of polylines with less distance deviation (called (c1, c2) in the
following). We then construct the target strip as follows: (1) we
uniformly generate the same number of samples on c1 and c2 and
form a middle polyline, cm, by linking the middle points mi’s; (2)
the constant offset l is determined by the preferable template size
or estimated by averaging all the sampled distances between c1 and
c2; (3) the two target curves are generated by marching along the

block

fitted strip

overlayed

c1

c2

cm

Figure 9: Fitting a strip with two offset curves to a given block
(left) and the input layout overlayed with fitted strips (right).

normal of mi with distance l/2, −l/2, and connecting the two sets
of points; (4) the target strip is completed by connecting the end
points of the two offset curves. Then, we re-sample the target strip
so that it has the same number of vertices as the original block and
each vertex has the same arc length parameter on the corresponding
polyline. See Fig. 9 for an example.

It is easy to see that after strip fitting, a mesh vertex, vi, has a
preferable location, v̄j

i , on the target strip, b̄j . Suppose that vi

has multiple incident blocks. The preferable location, v̄i, is the
weighted average from all the target strips:

v̄i =
∑
j

wj v̄
j
i , (4)

where
∑

j wj = 1. We use equal weights in our test. Finally, the
regularity term is defined as the sum of squared distances to the
preferable locations of the mesh vertices:

fshape =
∑
i

(vi − v̄i)
2. (5)

Fairness. We extract all roads, rj , not fixed by boundary con-
straints. For each road, the fairness of a road vertex, vi, is mea-
sured by the squared second-order difference of three consecutive
vertices, i.e., (vi−1 − 2vi + vi+1)2. The total fairness term of the
road mesh is:

ffair =
∑
rj

∑
vi−1,vi,vi+1∈rj

(vi−1 − 2vi + vi+1)2. (6)

Closeness. The closeness is defined as the sum of the squared dis-
tances to the original mesh vertices, v0

i , i.e.,

fclose =
∑
i

(vi − v0
i )2. (7)

Optimization: We fix all mesh vertices defined in the input (e.g.,
on the boundary), except the ones that are road intersections (i.e.,



vertex valence > 2). The location of such road intersections can
slide on the boundary without crossing neighboring boundary ver-
tices. In each iteration, the energy function has a quadratic form
w.r.t. the unknown vertex locations. Thus, the closed-form global
optimum can be computed by solving a sparse linear system. We
use the CHOLMOD sparse solver [Chen et al. 2008b] in our imple-
mentation. We then update the vertex locations, re-fit target strips,
and iterate a fixed number of times (10 times for the results shown
in the paper). After road mesh optimization, we hierarchically re-
map the same templates. Fig. 10 presents an illustration of the effect
of the global optimization.

0 2 4 6 (m)

avg=0.838388

0 2 4 6(m)

avg=0.78989

Figure 10: Initial layout (left) and optimized layout (right) with
parcels color-coded by the registration distance from the ideal par-
cel.

7 Quality Metrics

We define several quality metrics to guide the layout design and
evaluate the results. These quality metrics can be divided into four
categories.

Land use metrics measure the land usage of the basic elements of
the layout in different categories. We use the percentage of land
used for streets (ls), residential parcels (lr), parks (lp), and other
uses including commercial (lo).

Block metrics measure the properties of the blocks: 1) The number
of blocks, bn, per km2; 2) the maximal boundary length of a block,
bmax; 3) the minimal boundary length, bmin, of a block; 4) the
average boundary length, bavg , of all of the blocks.

Street metrics measure the properties of the street graph. Each of
these metrics are densities, expressed per km2: 1) the street length,
sl; 2) the number of street intersections, si; 3) the number of dead-
end streets, sd.

Parcel metrics measures the geometric quality of the parcel shapes:
1) the number of parcels, pn, per km2; 2) the average angle devi-
ation from 90 degrees, pangle, for all parcel corners; 3) the aver-
age area distortion w.r.t. the parcel’s minimum bounding rectangle,
parea; 4) the average area distortion w.r.t. the ideal parcel shapes,
pideal (measured for our results only); 5) the average similarity dis-
tortion w.r.t. to the ideal parcel shapes, psimilarity . This is com-
puted as the average registration distance to the ideal parcel (also
measured for our results only).

The land use and street metrics are adapted from the literature,
e.g., [Southworth and Owens 1993]. The parcel metrics and block
metrics stem from our own analysis. A parcel’s shape should facili-
tate easy laying out of house and garden which suggests a rectangle
as the optimal shape. We try to capture the usefulness of a parcel
with pangle and parea. The block metrics are related to the accessi-
bility of the parcels. If the boundary length of a block is too small,
it means that too many streets are used to access it. If the bound-
ary length is too high, it will take too long to walk (or drive) around
and reach the other side. We also use and display other information,
such as the total number of parcels, a histogram of parcel sizes, and
a histogram of parcel deformations. We currently exclude distance-
based considerations, e.g., average walking distances of residen-
tial parcels to parks and driving distances to reach parcels from the
main roads.

8 Results

We show several qualitative and quantitative results and provide a
discussion of important aspects of our system. All boundary con-
straints were digitized from real-world examples.

Comparisons: We compared our work with real-world layouts and
state-of-the-art algorithms for generating street and parcel layouts.
For this comparison, we selected regions dominated by single fam-
ily homes and we only used a small subset of templates for these
types of parcels. Please note that we only compute a single au-
tomatic layout for our result. Instead of random streamline selec-
tion, we always use the one with the highest quality score. Map:
real-world layouts from internet mapping websites. CE1: results
generated with CityEngine. CityEngine uses segment-based street
growing similar to Parish and Müller [2001] and Weber et al. [2009]
and a parceling algorithm from Vanegas et al. [2012]. We set the
parameters of CityEngine to best match our street width and parcel
size. CE2: our street layout together with the parceling algorithm
from CityEngine. The results of the comparison for three regions
are listed in Table 1 and one comparison for the Salisbury example
is shown in Fig. 11 (see the supplemental materials for the other
two). In these three generated results we aim for a parcel length of
30 m, parcel width of 18 m, and a street width of 15 m. The cur-
rent focus of our work is the parcel quality. Looking at the metrics
pangle and parea, we can confirm that we can significantly improve
upon existing layouts and CityEngine. CityEngine uses a greedy
growing algorithm with no global control of the layout. As a result,
artifacts appear when two street networks grow together, or bound-
ary constraints are given. In Fig. 12, we highlight some of these
problems using color coding for parcel quality. We can also place
more parcels than CityEngine, but it is hard to compare this num-
ber to existing layouts as we did not model all existing constraints
(topographic, legal, special use, etc.). On the downside, we notice
that our street network has some disadvantages compared with real
layouts (see Limitations below). Additional comparisons (includ-
ing all field-related comparisons) are presented in the supplemental
materials.

Computation Time: Our experimental platform is a Windows 7
desktop PC with an Intel Xeon CPU clocked at 2.67GHz. Table 2
lists the time required for the results in Table 1.

data set splitting backtracking optimization
Salisbury 28.0 1.7 3.7
Hempstead 14.8 1.1 2.4
Villagepark 28.6 9.4 4.7

Table 2: Performance statistics. The timings are in seconds.



Model Method Landuse(%) Block Street Parcel
streets(ls) parcels(lr ) parks(lp) other(lo) bn bmax bavg bmin sl si sd pn pangle parea

Salisbury

Map 28.67 59.12 2.90 9.31 30.92 1192 721 145 13.46 62.9 1.0 879 5.840 1.118
CE1 34.24 54.23 11.53 0 77.29 1745 329 67 15.01 109.2 0 874 5.012 1.076
CE2 26.37 58.49 3.71 11.43 55.65 1454 566 326 18.51 107.2 3.1 958 3.681 1.071
Our 26.37 58.49 3.71 11.43 55.65 1454 566 326 18.51 107.2 3.1 1062 3.188 1.063

Hempstead

Map 27.69 66.93 3.96 1.40 46.38 2191 543 246 14.87 77.7 15.7 1152 7.502 1.112
CE1 36.15 63.85 0 0 79.22 1034 366 66 16.56 110.6 3.0 965 4.650 1.082
CE2 27.66 71.10 1.24 0 61.27 1108 559 308 19.47 115.82 2.24 1176 2.188 1.054
Our 27.66 71.10 1.24 0 61.27 1108 559 308 19.47 115.82 2.24 1271 2.136 1.042

Villagepark

Map 29.10 46.26 9.22 16.42 22.14 7468 1025 184 12.77 41.5 8.8 577 4.932 1.102
CE1 31.57 59.83 8.60 0 76.57 1100 349 47 27.37 107.0 1.8 986 4.321 1.076
CE2 27.78 70.04 2.18 0 62.74 955 550 290 19.64 117.2 6.0 1094 2.874 1.058
Our 27.78 70.04 2.18 0 62.74 955 550 290 19.64 117.2 6.0 1282 2.266 1.045

Table 1: Result comparison with real-world maps and CityEngine. CE1 uses the same boundary input to generate layout in CityEngine and
CE2 uses our streets to generate parcels in CityEngine.

CE1

CE2

Map

Our Result

Figure 11: A comparison of our results to CityEngine (CE1), our street network and CityEngine parcels (CE2), and the real-world layout
(Map) for Salisbury. Results for CE1 and Map have been flipped.

Our ResultCE2

CE1 Map

Figure 12: Visualization of good (blue) and undesirable (red) parcels. An undesirable parcel has pangle > 15 or parea > 1.2. The number
of undesirable parcels: CE1 (119), Map (138), CE2 (57) and our result (48).
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Figure 13: A layout combining commercial areas, a school, single
family parcels, townhouses, and apartments.

Template Variety: In general, we can use a larger variety of tem-
plates and generate patterns that cannot be modeled by existing
state-of-the-art methods. In Fig. 1 and Fig. 13 we show results
with additional templates for townhouses and apartment buildings.
Fig. 14 shows design variations generated by using different subsets
of single family house templates. Finally, our framework is also
suitable to model details of urban layouts, such as garden designs
(see Fig. 15, video, and supplemental materials for the used tem-
plates). A gallery of four additional examples is shown in Fig. 16.

Design Variations: Our system can be used to generate different
designs for one boundary by modifying the input constraints and us-
ing interactive editing (See Fig. 17). We use the following number
of interactions for each of the three layouts: 2/2 (left), 2/1 (middle),
and 1/1 (right). The former is the number of deleted subregions;
the latter is for land use reassignment. In the supplemental materi-
als and video, we show example variations generated by automatic
computation for the same input constraints. In these materials, we
also show layouts with different parcel sizes for one family houses,
example input constraints other than major roads, and examples
with different subsets of templates.

Limitations and Future Work: The major limitations of our work
are related to transportation and the street network. Our compar-
ison to existing layouts showed that our network might be more
efficient, because our blocks are smaller, although the total lengths
of roads and the number of intersections are higher (see Table 1).
While this is partially a design trade-off, we do not have sufficient
control over the street network. This area of design was also identi-
fied by our collaborators in planning as the most important area of
future work. We were encouraged to consider elements, such as the
generated traffic demand, different street designs, bike lanes, traffic
safety, and public parking. For example, it would be interesting if
the framework could control the number of T-junctions or minimize
through traffic on most but a few selected roads. Additionally, we
could incorporate the strategic placement of public places, parks,
and community life in the optimization. Currently, the placement
is done as a pre-process or a post-process and not a part of the op-
timization itself. Also, it would be interesting to consider lighting
and heat generation by the sun in future work.

Figure 15: Garden layouts, including bushes, trees, driveways,
swimming pools, and building footprints can also be modeled in
our framework (see the related templates in the supplemental ma-
terial).

9 Conclusions

We presented a solution for the geometric layout optimization of
streets and parcels for a new development or a virtual city. Our re-
sults show that we can achieve higher quality layouts than can pre-
vious work. We believe that this work is important for two reasons.
First, urban layout planning has a tremendous impact in everyday
life and still currently almost no geometric optimization tools are
available in this domain. Second, our layouts can be seen as a spe-
cific type of hierarchical quad mesh and we believe that their study
is interesting from a geometry processing view point.
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GALIN, E., PEYTAVIE, A., GUÉRIN, E., AND BENES, B. 2011.
Authoring hierarchical road networks. Computer Graphics Fo-
rum 29, 7, 2021–2030.

KIM, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. ACM
Trans. on Graph. 21, 3, 657–664.

LIPP, M., SCHERZER, D., WONKA, P., AND WIMMER, M. 2011.
Interactive modeling of city layouts using layers of procedural
content. Computer Graphics Forum 30, 2, 345–354.

LIU, L., ZHANG, L., XU, Y., GOTSMAN, C., AND GORTLER,
S. J. 2008. A local/global approach to mesh parameterization.
Computer Graphics Forum 27, 5, 1495–1504.
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P. A. 2009. Interactive design of urban spaces using geometrical
and behavioral modeling. ACM Trans. on Graph. 28, 5.

VANEGAS, C. A., ALIAGA, D. G., WONKA, P., MÜLLER, P.,
WADDELL, P., AND WATSON, B. 2010. Modelling the appear-
ance and behaviour of urban spaces. Computer Graphics Forum
29, 1, 25–42.

VANEGAS, C. A., KELLY, T., WEBER, B., HALATSCH, J.,
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