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Abstract. We calculate a G2-period of a Fourier coefficient of a cuspidal Eisenstein series on the
split simply-connected group E6, and relate this period to the Ginzburg-Rallis period of cusp forms
on GL6. This gives us a relation between the Ginzburg-Rallis period and the central value of the
exterior cube L-function of GL6.

Introduction

Let F be a number field and A its ring of adeles. Let π be a cuspidal automorphic representation
of GL6(A) with trivial central character. For ϕ ∈ π, we define the Ginzburg-Rallis period as

PGR(ϕ) =

∫
GL2(F )\GL2(A)1

∫
(M2(F )\M2(A))3

ϕ

I2 x z
0 I2 y
0 0 I2

h 0 0
0 h 0
0 0 h

ψ(tr(x) + tr(y)) dxdydzdh

where GL2(A)1 is the subgroup of elements with norm of determinant 1, M2 is the space of 2 × 2
matrices and ψ : F\A→ C∗ is a non-trivial character.

In fact, one can also define the quaternion version of the Ginzburg-Rallis period for cusp forms
on GL3(D)(A) where D/F is a quaternion algebra. Let us denote this period by PDGR. In [GR00],
Ginzburg-Rallis made the following conjecture about the relation between this period and the
central value L

(
1
2 , π,Λ

3
)

of the exterior cube L-function L(s, π,Λ3).

Conjecture (Ginzburg-Rallis). Let π be a cuspidal automorphic representation of GL6(A) with
trivial central character. The following are equivalent:

(1) L(1
2 , π,Λ

3) 6= 0.
(2) There exists a unique quaternion algebra D over F (which may be split) and a cuspidal

automorphic representation πD of GL3(D), equivalent to π at almost all places of F (i.e.,
the global Jacquet-Langlands correspondence of π from GL6(A) to GL3(D)(A)), such that
PDGR does not vanish on the space of πD.

The purpose of this paper is to prove the following theorem which confirms one direction of the
Ginzburg-Rallis conjecture in the split case.

Theorem 0.1. Let π be a cuspidal automorphic representation of GL6(A) with trivial central
character. Assume that the exterior cube L-function L(s, π,Λ3) is nonzero at s = 3

2 ; this is always

the case if π is everywhere tempered. If there exists ϕ ∈ π with PGR(ϕ) 6= 0 then L(1
2 , π,Λ

3) 6= 0.

0.1. The strategy of the proof. Our proof relies on the fact that the exterior cube L-function for
GL6 is a Langlands-Shahidi L-function for the split, simply connected group of type E6. The idea
is to relate the period PGR to a suitable period of a residual representation on E6 whose existence
relies on the non-vanishing of L(1/2, π,Λ3). This idea has been used in multiple works of Ginzburg,
Jiang, Rallis and Soudry, see [Jia98, GJR04, GJR05, GJR09] to cite a few. The reference [GJS10]
contains a comprehensive account of the method and results that can and have been obtained
through it. See also [IY, GL07] for different approaches.
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Let us describe the method in more detail. Let Q be the parabolic subgroup of the split, simply
connected E6 whose Levi subgroup is of D4 type. In section 1.6 we define a certain generic character
ξ of the unipotent radical N of Q and we define a subgroup H of Q to which the character extends.
This group turns out to be isomorphic to N o G2, where G2 is the split exceptional group of type
G2. We can thus define the period

PG2(f) =

∫
H(F )\H(A)

f(h)ξ(h) dh

where f is an automorphic form on E6(A). Let now P denote the maximal parabolic subgroup
of E6 with Levi factor of type A5. Given a cuspidal representation π of GL6(A) we can consider
the Eisenstein series E(φ, s) which realizes the induction from π ⊗ |det |s to E6(A) (see 3.4 for
unexplained notation). By the Langlands-Shahidi theory, the non-vanishing of the residue at s =
1/2 of E(φ, s) implies that L(1

2 , π,Λ
3) 6= 0. The idea is to study PG2(Ress=1/2E(φ, s)) and relate

it to the Ginzburg-Rallis period. In fact, we essentially show the two are equal.
More specifically, one starts by computing the orbits P (F )\E6(F )/H(F ). This problem is chal-

lenging when working with exceptional groups and we do this using the explicit realization of E6

as determinant preserving linear transformations of the 27-dimensional exceptional Jordan alge-
bra. These computations allow us to compute PG2(ΛTE(φ, s)) explicitly. Here ΛT is the Arthur-
Langlands truncation operator [Art80]. The truncation operator brings us to the next difficulty in
this approach, namely convergence issues. In fact, these can be quite daunting, especially when
dealing with non-reductive periods. Indeed, unless we’re dealing with compact periods, then even
for cusp forms, convergence of periods requires a non-trivial argument, see for example [JS90]. In
[IY], Ichino and Yamana handle this using a truncation procedure adapted to their period. How-
ever, their case is reductive. Here, we do not introduce any new truncation. Instead, we extend the
analysis introduced in the appendix of [BP16] which is based on norms on adelic points of linear
algebraic groups and their quotients. In fact, as noticed in loc. cit., the key property is for the
quotient to be quasi-affine. We believe this approach should generalize to other periods.

The computation of PG2(ΛTE(φ, s)) allows us to easily deduce the following theorem.

Theorem 0.2. Let π be a cuspidal automorphic representation of GL6(A) with trivial central
character. Suppose that the Ginzburg-Rallis period PGR(ϕ) is non-zero on the space of π. Then,
there exists φ in the induced space of π such that Ress= 1

2
E(φ, s) 6= 0.

Corollary 0.3. Theorem 0.2 implies Theorem 0.1.

Proof. By Theorem 0.2 the intertwining operator associated to P has a pole at s = 1/2. By 2.5.3
in [Kim05], the normalizing factor of the intertwining operator is

L(s, π,Λ3)ζF (2s)

L(s+ 1, π,Λ3)ζF (2s+ 1)

where ζF (s) is the Dedekind zeta function. By Theorem 4.11 of [Kim05], the normalized intertwin-
ing operator is holomorphic at s = 1/2. Since we have assumed that L(3/2, π,Λ3) 6= 0 it follows
that the numerator L(s, π,Λ3)ζF (2s) has a pole at s = 1/2, which implies that L(1

2 , π,Λ
3) 6= 0. �

Remark 0.4. The L-function L(s, π,Λ3) is the completed L-function as defined by Shahidi [Sha90].
Ginzburg-Rallis [GR00] prove that the partial L-function L(s, π,Λ3) is holomorphic at s = 1/2.
Unless π is assumed everywhere tempered, it is unknown if the completed L-function is holomorphic
at s = 1/2. The non-vanishing statement makes sense in either case nonetheless.

0.2. Structure of the paper. In section 1 we introduce the groups we are working with together
with their natural realizations. The following section computes the orbits of H on a flag variety of
E6 associated to the parabolic subgroup of type A5. Then in section 3 we set up notations relating
to Eisenstein series and truncation. In section 4 we prove the main theorem (i.e. Theorem 0.2) by
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assuming the absolute convergence of certain integrals (i.e. Proposition 4.2). Finally in section 5
we prove Proposition 4.2.

0.3. Acknowledgments. Throughout the course of this work, we have benefited from the warm
hospitality of the Institute of Advanced Study. We thank the IAS for providing an atmosphere
conducive to research, and for making this collaboration possible. While at the IAS, A.P. has been
supported by the Schmidt fund at the IAS, C.W. has been supported by the NSF at the IAS, and
M.Z. has been supported by the Bell companies fellowship fund and the NSF at the IAS.

1. Preliminaries on exceptional groups and their embeddings

In this section we define the various reductive groups and parabolic subgroups involved in our
period calculation. We begin with the definitions of the octonions Θ and G2. We then discuss
the exceptional cubic norm structure J = H3(Θ) and the group E6. After defining E6, we discuss
parabolic subgroups of G2 and E6. We then define the formal period that we study. Throughout
this section, F denotes an arbitrary ground field of characteristic 0.

1.1. The octonions and G2. In this subsection we recall the split octonions Θ and G2. The
reader may see [SV00] for more background information pertinent to this subsection. We first
recall the Zorn model of the octonions, and then the Cayley-Dickson construction. The group G2

is defined as the automorphisms of Θ.

1.1.1. Zorn model. We recall the Zorn model of the octonions Θ over F . Denote by V3 the standard
three-dimensional representation of SL3, and V ∨3 the dual representation. So, V3 comes equipped
with an isomorphism ∧3V3 → F where F is the ground field. We fix a standard basis e1, e2, e3 in
V3, so that e1 ∧ e2 ∧ e3 7→ 1 under the identification ∧3V3 ' F , and denote by e∗1, e

∗
2, e
∗
3 the dual

basis in V ∨3 . The indentification ∧3V3 ' F induces an isomorphism ∧2V3 ' V ∨3 and ∧2V ∨3 ' V3.
Under these identifications, e1 ∧ e2 7→ e∗3, e2 ∧ e3 7→ e∗1, e∗1 ∧ e∗2 7→ e3, etc.

In the Zorn model, an octonion x is represented by a 2 × 2 matrix x = ( a vφ d ) where a, d ∈ F ,

v ∈ V3 and φ ∈ V ∨3 . One sets x∗ =
(

d −v
−φ a

)
and n(x) = ad − φ(v) the conjugate and norm of

x, respectively. The trace of x, tr(x), is defined to be tr(x) = a + d. One defines the symmetric
bilinear form ( , ) on Θ by (x, y) = n(x+ y)− n(x)− n(y). This form is non-degenerate.

The multiplication on Θ is given by the formula

x · x′ =
(
a v
φ d

)
·
(
a′ v′

φ′ d′

)
=

(
aa′ + φ′(v) av′ + d′v − φ ∧ φ′

a′φ+ dφ′ + v ∧ v′ φ(v′) + dd′

)
.

This multiplication is neither commutative nor associative, but satisfies the following three impor-
tant identities:

(1) n(x · x′) = n(x)n(x′);
(2) tr(x1(x2x3)) = tr((x1x2)x3);
(3) x∗(xy) = (x∗x)y = n(x)y.

In fact, the subalgebra generated by any two elements x, y of Θ is associative.

For later reference, we denote ε1 =

(
1 0
0 0

)
and ε2 =

(
0 0
0 1

)
in Θ, so that 1 = ε1 + ε2. We

sometimes abuse notation and write ej or e∗k for the corresponding element
(

0 ej
0 0

)
or
(

0 0
e∗k 0

)
of Θ.

1.1.2. Cayley-Dickson construction. One can also construct the octonions by “doubling” a quater-
nion algebra. This is called the Cayley-Dickson construction.

In general, if D is a quaternion algebra and γ ∈ GL1(F ), then ΘD,γ = D ⊕ D is an Octonion
algebra, with addition defined component-wise and multiplication given by

(x1, y1) · (x2, y2) = (x1x2 + γy∗2y1, y2x1 + y1x
∗
2).
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The conjugate of (x, y) is (x∗,−y) and the trace of (x, y) is trD(x). The norm of (x, y) is nD(x)−
γnD(y). Here nD and trD are the reduced norm and trace on D.

The octonions ΘD,γ are split precisely when γ is a (reduced) norm from D×. In particular, if
either D = M2(F ) is split, or if γ = 1, then ΘD,γ is split.

1.1.3. The group G2. The linear algebraic group G2 is by definition the automorphisms of the
octonion algebra Θ. That is, if g ∈ G2(F ), then g1 = 1, and for all x, y ∈ Θ, g(x∗) = (gx)∗,
(gx) · (gy) = g(x ·y). In fact, it can be shown that the first two statements follow from the last one.

1.2. The exceptional cubic norm structure J and the group E6. In this subsection we recall
the definition of the exceptional cubic norm structure J = H3(Θ) and the split simply-connected
group E6. We will also recall some facts about the Lie algebra of E6, which we will need later.

1.2.1. The exceptional cubic norm structure J . Define J = H3(Θ) to be the F vector space of
elements

X =

 c1 a3 a∗2
a∗3 c2 a1

a2 a∗1 c3


where c1, c2, c3 ∈ F and a1, a2, a3 ∈ Θ. Thus, J is 27-dimensional.

The space J comes equipped with a cubic norm map n : J → F and a quadratic adjoint map
# : J → J . The norm of X, n(X), is defined to be

(1.1) n(X) = c1c2c3 − c1n(a1)− c2n(a2)− c3n(a3) + tr(a1a2a3).

Polarizing the norm form, one obtains a symmetric trilinear form J ⊗ J ⊗ J → F , normalized by
the identity (X,X,X) = 6n(X).

This symmetric trilinear form gives rise to a bilinear map, denoted ×, from J⊗J to J∨. Namely,
if x, y, z ∈ J , then x × y ∈ J∨ is by definition the linear form given by (x × y)(z) = (x, y, z). For
x ∈ J , one sets x# = 1

2x× x. If one puts on J the pairing ( , ) : J ⊗ J → F given by

(1.2) (X,X ′) = c1c
′
1 + c2c

′
2 + c3c

′
3 + (a1, a

′
1) + (a2, a

′
2) + (a3, a

′
3),

then this pairing induces an identification J∨ ' J . Under this identification, the quadratic map
# : J → J and the bilinear map × can be written simply in the coordinates of J . Namely, one
obtains

X# =

 c2c3 − n(a1) a∗2a
∗
1 − c3a3 a3a1 − c2a

∗
2

a1a2 − c3a
∗
3 c3c1 − n(a2) a∗3a

∗
2 − c1a1

a∗1a
∗
3 − c2a2 a2a3 − c1a

∗
1 c1c2 − n(a3)


and X × Y = (X + Y )# −X# − Y #.

1.2.2. The algebraic group E6. The linear algebraic group E6 is by definition the linear automor-
phisms of J that preserve the norm form. We let E6 act on the right of J . That is,

E6 = {g ∈ GL(J) : n(Xg) = n(X) for all X ∈ J}.

Equivalently, E6 is the subgroup of GL(J) fixing the symmetric trilinear form on J :

E6 = {g ∈ GL(J) : (xg, yg, zg) = (x, y, z)∀x, y, z ∈ J}.

Note that E6 does not fix the pairing (1.2); the subgroup of E6 that also fixes this pairing is F4.
If g ∈ GL(J), denote by g̃ ∈ GL(J) the unique map satisfying (Xg, Y ) = (X,Y g̃) for all X,Y .
If g ∈ E6, one has (Xg) × (Y g) = (X × Y )g̃−1 for all X,Y ∈ J . In other words, g 7→ g̃−1 is an
involution on E6, whose fixed point set is F4.
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1.2.3. The Lie algebra of E6. Below we will need a few facts about the Lie algebra of E6, specifically
some nilpotent elements of it. The Lie algebra of E6 consists of the elements φ ∈ End(J) satisfying

(φ(x), y, z) + (x, φ(y), z) + (x, y, φ(z)) = 0

for all x, y, z ∈ J . If γ ∈ J∨, and v ∈ J , define Φγ,v ∈ End(J) as

Φγ,v(z) = −γ × (v × z) + (γ, z)v + (γ, v)z

and Φ′γ,v = Φγ,v − 2
3(γ, v). One has the following well-known proposition.

Proposition 1.1. Suppose γ ∈ J∨ and v ∈ J . We have the following facts.

(1) For γ ∈ J∨ and v ∈ J , one has

(Φγ,v(x), y, z) + (x,Φγ,v(y), z) + (x, y,Φγ,v(z)) = 2(v, γ)(x, y, z)

for all x, y, z ∈ J . Consequently, Φ′γ,v ∈ Lie(E6).

(2) If γ# = 0 and (γ, v) = 0, then Φ′γ,v = Φγ,v satisfies Φ2
γ,v(z) = −2(γ, z)γ× v# and Φ3

γ,v = 0.
Consequently, exp(Φγ,v) is a unipotent element of E6.

(3) Similarly, if v# = 0 and (γ, v) = 0, then Φγ,v = Φ′γ,v satisfies Φ2
γ,v(z) = −2(γ#× v, z)v and

Φ3
γ,v = 0. Consequently, exp(Φγ,v) is a unipotent element of E6.

Proof. The first item is essentially [Rum97, Equation (9)]. The second and third items are essen-
tially contained in [Spr62, Lemma 1 and Proposition 5]. �

1.3. Parabolic subgroups of G2. We will need some facts about parabolic subgroups of G2 and
E6. We begin with parabolic subgroups of G2. Let V7 ⊆ Θ be the subspace of traceless elements of
Θ, i.e.,

V7 = {x ∈ Θ : tr(x) = 0}.
Equivalently, V7 is the perpendicular space to 1 ∈ Θ.

The parabolic subgroups of G2 can be defined as the stabilizers of certain subspaces or flags
in V7. To setup the statement of this fact, we require a definition pertaining to two-dimensional
isotropic subspaces of V7.

Thus, suppose Ω ⊆ Θ is a two dimensional isotropic subspace. Note that if x, y is a basis of Ω,
then the line spanned by x∗ · y is independent of the choice of basis. Similarly, the line spanned by
x · y∗ is independent of the choice of basis.

Definition 1.2. Suppose that Ω ⊆ Θ is a two-dimensional isotropic subspace, and x, y is a basis
of Ω. Call Ω left null if x∗ · y = 0 for a basis x, y of Ω. Similarly, call Ω right null if x · y∗ = 0
for a basis x, y of Ω. If Ω ⊆ V7, then Ω is left-null if and only if it is right-null. We say Ω is null
(with no-modifier) if it is both left and right null.

For general isotropic Ω, it could be left-null but not right-null, right-null but not left-null, both,
or neither. We now have the following well-known proposition.

Proposition 1.3. The group G2 has three conjugacy classes of parabolic subgroups: two maximal
ones and a Borel. These parabolic subgroups and their flag varieties are characterized as follows.

(1) The group G2 acts transitively on the set of isotropic lines ` ⊆ V7. The stabilizer P (`) of
such a line is a maximal parabolic subgroup of G2, with reductive quotient isomorphic to
GL2, and whose unipotent radical N(`) is a 3-step unipotent group.

(2) The group G2 acts transitively on the set of null isotropic two spaces Ω ⊆ V7. The stabilizer
P (Ω) of such a two-space is a maximal parabolic subgroup of G2, with reductive quotient
isomorphic to GL2, and whose unipotent radical N(Ω) is a 2-step unipotent group.

(3) The group G2 acts transitively on the set of pairs (`,Ω) with ` ⊆ Ω ⊆ V7 an isotropic line
contained in a null isotropic two-space of V7. The stabilizer B(`,Ω) of such a pair is a Borel
subgroup of G2.
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1.4. Singular subspaces of J and parabolics of E6. We now recall facts pertaining to two of
the conjugacy classes of parabolic subgroups of E6 that we will compute with below. For more on
parabolics of E6 and their flag varieties, see [Gar01]. If V ⊆ J is a subspace, following [Gar01]
one says that V is totally singular if v# = 0 for all v ∈ V , or equivalently, if v1 × v2 = 0 for all
v1, v2 ∈ V .

1.4.1. The A5 parabolics. We now describe the flag variety of the maximal parabolics P ⊆ E6 whose
reductive quotient are of Dynkin type A5.

Proposition 1.4 ([SV68],[Gar01]). One has the following facts regarding the conjugacy class of
maximal parabolic subgroups of E6 of type A5.

(1) The group E6 acts transitively on the totally singular 6-dimensional subspaces V of J , and
the stabilizer P (V ) of such a V is a maximal parabolic subgroup of E6.

(2) The reductive quotient M(V ) of P (V ) is isomorphic to the group {(λ, g) ∈ GL1×GL(V ) :
λ3 = det(g)}.

Proof. The first item is [Gar01, Theorem 7.2], for which loc. cit. references [SV68, Proposition
3.14]. The second item follows from, for instance, [Kim05, 2.5.3]. �

For example, suppose Ω ⊆ V7 ⊆ Θ is a null-isotropic two space. Then

(1.3) V (Ω) =

x =

 0 u3 u∗2
u∗3 0 u1

u2 u∗1 0

 : u1, u2, u3 ∈ Ω


is a six-dimensional totally singular subspace of J .

1.4.2. The D4 parabolics. We now describe the flag variety of the (non-maximal) parabolic sub-
groups Q ⊆ E6 whose reductive quotients are of type D4. If ` ⊆ J is a one-dimensional totally
singular subspace, and `′ ∈ J∨ is a one-dimensional totally singular subspace, one says that ` and
`′ are incident if Φ′γ,v = 0 for v ∈ ` and γ ∈ `′.

Proposition 1.5 ([SV68],[Gar01]). The group E6 acts transitively on pairs (`, `′) of incident one-
dimensional singular subspaces of J , J∨. The stabilizer Q(`, `′) is a parabolic subgroup of E6 whose
reductive quotient is of type D4.

Proof. This proposition is contained in [Gar01, Theorem 7.2]. See also [SV68, Section 3]. To
compare with [Gar01], the singular line `′ ⊆ J∨ gives a subspace `′ × J∨ ⊆ J which is a “6-space”,
in the parlance of loc. cit.. �

For i = 1, 2, 3, denote eii the element of J with a 1 in the (i, i)-th place. Then, if γ = e11 is
considered as an element of J∨ via the pairing ( , ) on J , and v = e33 ∈ J , then the lines Fe11

and Fe33 are incident. Denote by Q the parabolic subgroup that stabilizes these lines. Defined in
terms of flags of J , Q is the subgroup of E6 that fixes the chain of subspaces

V1 =

 0 0 0
0 0 0
0 0 ∗

 ⊆
 0 0 0

0 ∗ ∗
0 ∗ ∗

 = V10.

Below we will use the fact that Q stabilizes a larger flag of J . We now describe this flag. We
begin with a piece of notation. Suppose V is a subspace of J , and I is a subset of the indices
{c1, c2, c3, a1, a2, a3}. We define V (I) to be the subspace of V consisting of elements x so that all
the nonzero coordinate entries of x are labelled by indices in I. Put another way, c1, c2, c3 define
linear functionals J → F , and a1, a2, a3 define linear functions J → Θ. Then

V (I) := {x ∈ V : α(x) = 0 for all α /∈ I}.
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With this notation, we define two increasing filtrations on J :

F1
• : 0 ⊆ J(c3) ⊆ J(c3, a1) ⊆ J(c3, a1, a2) ⊆ J(c3, a1, a2, c2) ⊆ J(c3, a1, a2, c2, a3) ⊆ J

and

F2
• : 0 ⊆ J(c3) ⊆ J(c3, a1) ⊆ J(c3, a1, c2) ⊆ J(c3, a1, c2, a2) ⊆ J(c3, a1, c2, a2, a3) ⊆ J.

That is, define F1
0 (J) = 0, F1

1 (J) = J(c3), F1
2 (J) = J(c3, a1) etc, and similarly for F2

i (J). For a
subspace V of J , set F?

i (V ) = F?
i (J) ∩ V for ? = 1, 2.

The parabolic Q fixes both of these flags on J . To ses this, note that since Q fixes V1, it fixes

V17 =

 0 0 ∗
0 0 ∗
∗ ∗ ∗


since V17 is the set of elements X ∈ J with X × V1 = 0. Since Q fixes V10, it fixes

V26 =

 0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


since V26 consists of the X ∈ J such that (V10, V10, X) = 0. One finds that Q fixes the flags above
by taking intersections of the spaces Vij above.

As a Levi subgroup L of Q, we take the subgroup of g ∈ E6 so that g fixes each of the spaces
J(c1), J(c2), J(c3), J(a1), J(a2) and J(a3).

1.5. The unipotent radical of Q. In this subsection, we describe explicitly the unipotent radical
N of Q. The material in this subsection is surely well-known. However, we are unaware of a
reference, so we include some sketches of the proofs.

First, denote by N(Θ) the “Heisenberg” group of Θ. By this we mean that elements of N(Θ)
consist of triples (x, y; z) with x, y, z ∈ Θ and multiplication is given by

(x, y; z)(x′, y′; z′) = (x+ x′, y + y′; z + z′ + xy′).

Then the inverse of (x, y; z) is

(x, y; z)−1 = (−x,−y;xy − z).
The unipotent radical N is isomorphic with N(Θ), as we now explain. First, we explain how

N(Θ) acts (on the right) of J . Namely,

(1.4)

 c1 a3 a∗2
a∗3 c2 a1

a2 a∗1 c3

 7→
 1

x∗ 1
z∗ y∗ 1


 c1 a3 a∗2

a∗3 c2 a1

a2 a∗1 c3

 1 x z
1 y

1

 .

Since the multiplication in Θ is not associative, it is not a priori clear that the element above is in
H3(Θ), that this defines an action of N(Θ) on J , or that this action preserves the norm. However,
all these facts are true, as we now explain.

First, multiplying the second and third terms, and then multiplying with the first term, one finds
by simple explicit computation that the resulting matrix is still Hermitian, i.e., is in H3(Θ). We
denote by n(x, y; z) the element of GL(J) prescribed by (1.4). To see that this matrix multiplication
defines an action, we require the following lemma, which describes the matrix product (1.4) in
coordinates.

Lemma 1.6. Under the matrix product (1.4), the ci and ai transform as follows:

• c1 7→ c1.
• c2 7→ c2 + (x, a3) + c1n(x).
• c3 7→ c3 + (a1, y) + c2n(y) + (a∗2, z) + c1n(z) + tr(z∗a3y).
• a1 7→ a1 + c2y + a∗3z + x∗a∗2 + x∗(a3y) + x∗c1z.
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• a2 7→ a2 + y∗a∗3 + z∗c1.
• a3 7→ a3 + c1x.

Proof. This is a direct computation. �

Using this lemma, one can check that the map N(Θ) → GL(J) given by (x, y; z) 7→ n(x, y; z)
defines a right-action of N(Θ) on J :

Lemma 1.7. If Z ∈ J , then (Z · n(x, y; z)) · n(x′, y′; z′) = Z · n(x+ x′, y + y′; z + z′ + xy′).

Proof. This is almost entirely a simple direct check, using Lemma 1.6. For the reader checking
this themselves, note that it is easy to see that c1, c2, a2 and a3 transform as required. To see
that c3 transforms in the right way, one must use the identity tr((x1x2)x3) = tr(x1(x2x3)) =
tr(x3(x1x2)) for x1, x2, x3 ∈ Θ. To see that a1 transforms in the right way, one must use the
identity x∗(a3y

′) + a∗3(xy′) = (x, a3)y′, which comes from (x∗ + a∗3)((x + a3)y′) = n(x + a3)y′ by
linearizing. �

We now explain why the n(x, y; z) are in E6, and make up the unipotent radical N of Q. For
x, y, z ∈ Θ, write

Y (x, y, z) =

 0 x z
x∗ 0 y
z∗ y∗ 0

 ∈ J.
Recall the elements e11, e33 defined above.

Lemma 1.8. One has n(0, y; z) = exp(Φ′V (0,y,z),e33
) and n(x, 0; z) = exp(Φ′e11,V (x,0,z)).

Proof. One computes easily how the coordinates ai and cj transform under the map Φ′V (0,y,z),e33
,

and the same for Φ′e11,V (x,0,z). That n(0, y; z) = exp(Φ′V (0,y,z),e33
) again follows directly from this

computation, by comparing with Lemma 1.6, and similarly for n(x, 0; z). �

We thus have the following corollary, which explicitly describes the unipotent radical N of Q.

Corollary 1.9. The elements n(x, y; z) are in N ⊆ E6, and the map N(Θ)→ N is an isomorphism.

Proof. Since n(x, y; z) = n(0, y; z)n(x, 0, 0), to check that the n(x, y; z) are in N it suffices to check
that the n(0, y; z) and n(x, 0; z) are in N . By Lemma 1.8, these elements are exponentials of
nilpotent elements of Lie(E6). Hence it suffices to check the corresponding Lie algebra statement.
Now, one immediately has Φ′V (0,y,z),e33

(e33) = 0. Furthermore, if Φ∨γ,v denotes how Φγ,v acts on the

dual representation, then

Φ∨γ,v(µ) = v × (γ × µ)− (v, µ)γ − (v, γ)µ

for µ ∈ J∨. Using the fact that e33 × (V (x, y, z) × e11) = 0, one sees that Φ∨V (0,y,z),e33
(e11) = 0.

Thus, Φ′V (0,y,z),e33
is in the Lie algebra of N . One similarly finds that Φ′e11,V (x,0;z) is in the Lie

algebra of N . Thus the map N(Θ)→ E6 lands in N , as claimed.
To see that N(Θ)→ N is an isomorphism, note that it is clear from Lemma 1.6 that N(Θ)→ E6

is injective. But N(Θ) and N are each unipotent groups of dimension 24, so the isomorphism
follows. �

1.6. The period. In this subsection we define the period that we study in this paper. Recall the
Levi subgroup L of Q, which acts on J fixing the “coordinate spaces” J(ai), J(ci), i = 1, 2, 3. We
map G2 → L ⊆ E6 by letting G2 act diagonally on the spaces J(ai) and trivially on the J(ci). That
is, if g ∈ G2 then  c1 a3 a∗2

a∗3 c2 a1

a2 a∗1 c3

 · g =

 c1 g−1(a3) g−1(a∗2)
g−1(a∗3) c2 g−1(a1)
g−1(a2) g−1(a∗1) c3

 .
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It is clear that this action preserves the norm on J , and thus G2 ⊆ L ⊆ E6.
Fix an additive character ψ : F\A→ C×. We put on N ' N(Θ) the character ξ : N(F )\N(A)→

C× defined by ξ(n(x, y; z)) = ψ(tr(x+ y)). Note that if g ∈ G2, then

(1.5) gn(x, y; z)g−1 = n(gx, gy; gz).

It follows that G2 stabilizes this character on N(Θ). In fact, one can show that G2 is the full
stabilizer in L of this character on N , but we do not need this fact, so we omit it.

If ϕ is an automorphic function on E6(F )\E6(A), then the period we study is

(1.6) PG2(ϕ) =

∫
G2(F )\G2(A)

∫
N(F )\N(A)

ξ(n)ϕ(nr) dn dr,

assuming that the integral converges. To simply the notation, we will sometimes use H = H0N to
denote the group G2N with H0 = G2 and we will extend the character ξ to H by making it trivial
on H0.

2. Orbits of H on a flag variety of E6

Let V be the variety of six-dimensional totally singular subspaces of J . The group E6 acts on
the right on V and Proposition 1.4 shows that this action is transitive with stabilizers being the
A5 parabolic subgroups of E6. As explained in the introduction, we want to compute the period
PG2 of a truncated Eisenstein series of E6 induced from an A5 parabolic subgroup. To this end, we
study in this section the orbits of H = G2N on V and we analyze the stabilizers of each orbit.

2.1. The Q orbits on V. Since Q preserves the filtration F = F1, it is easy to write down an
invariant of the orbits of Q on V. Namely, if V is a six-dimensional totally singular subspace of
J , then the dimensions Fi(V )/Fi−1(V ) are Q-invariants. Here recall that F1

i (V ) = F1
i (J) ∩ V ;

see subsection 1.4.2. We will see that there are 7 orbits, and that these dimensions completely
characterize the orbits.

We will first produce representatives for these seven orbits, and then explain why they are only
orbits. Now, and below, we will use the following notation. If W is a subspace of Θ, set

AnnR(W ) = {x ∈ Θ : w · x = 0 for all w ∈W}

and similarly

AnnL(W ) = {x ∈ Θ : x · w = 0 for all w ∈W}

the right and left annihilators of W . Note that the identity x∗(xw) = n(x)w implies that if W
is nonzero, then AnnL(W ) is isotropic. Similarly, if W is nonzero, then AnnR(W ) is isotropic. If
W ⊆ V7, then w∗ = −w for every w ∈ W . It follows that AnnR(W ) = AnnL(W )∗ when W is
traceless. If W is not contained in V7, then AnnR(W ) need not be related to AnnL(W ).

Suppose (V1, V2, V3) in Θ3 satisfies Vi · Vi+1 = 0 (indices taken modulo 3) and each Vi is two-
dimensional. Furthermore, suppose that ` ⊆ Θ is an isotropic line. In this case, AnnR(`) = `∗Θ,
AnnL(`) = Θ`∗, and both are four-dimensional. With this notation, the seven orbits of Q on the
totally singular six-dimensional subspaces of J are represented as follows.
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V =

 0 V3 ∗
∗ 0 V1

V2 ∗ 0

(2.1)

V =

 0 0 ∗
0 0 `

AnnR(`) ∗ ∗

(2.2)

V =

 ∗ AnnR(`) ∗
∗ 0 0
` 0 0

(2.3)

V =

 0 ` 0
∗ ∗ AnnR(`)
0 ∗ 0

(2.4)

V =

 0 AnnL(`) 0
∗ ∗ `
0 ∗ 0

(2.5)

V =

 0 0 ∗
0 0 AnnL(`)
` ∗ ∗

(2.6)

V =

 ∗ ` ∗
∗ 0 0

AnnL(`) 0 0

(2.7)

It is clear by considering the dimensions Fi(V )/Fi−1(V ) that the above V are in different Q-
orbits. We call spaces of the form (2.1) a “(2, 2, 2)” orbit, spaces of the form (2.2), (2.3), and (2.4)
“right (4, 1, 1)” orbits, and spaces of the form (2.5), (2.6), and (2.7) “left (4, 1, 1)” orbits.

We now show that these are the only orbits. Note that the V above are all direct sums of their
intersections with the coordinate space J(ai), J(ci). The Bruhat decomposition implies that every
Q orbit on V has such a representative.

Lemma 2.1. Suppose V is totally singular six-dimensional subspace of J . Then there exists q ∈ Q
so that V q is a direct sum of its intersections with with the coordinate spaces J(ai) and J(ci),
i = 1, 2, 3.

Proof. Let P be the stabilizer of V in E6. Denote by T ′ the diagonal maximal torus of GL(V ), and
set T = {(λ, t) ∈ GL1×T ′ : λ3 = det(t)}. It follows from Proposition 1.4 that T is a maximal torus
of a Levi subgroup of P , and thus a maximal torus of E6. By the Bruhat decomposition, there
exists q ∈ Q and w ∈ N(T ), the normalizer of T , so that V q = V (Ω)w := V ′. Here V (Ω) was the
singular space used to define P . Suppose t ∈ T . Since w normalizes T and T fixes V (Ω), V ′t = V ′.
It follows that V ′ is a direct sum of its T -eigenspaces. But the subtorus T0 ⊆ T consisting of the
(1,diag(t1, t1, t2, t2, t3, t3)) with t1t2t3 = 1 has the coordinate spaces J(ai), J(ci) as its eigenspaces.
The lemma follows. �

Using Lemma 2.1, the fact that the seven spaces V above represent all orbits of Q on V is now
an easy exercise using the following two well-known lemmas.

Lemma 2.2. Suppose V1, V2 ⊆ Θ are nonzero subspaces, and V1 ·V2 = 0. Then both Vi are isotropic,
and (at least) one of the following three things are true:

(1) V1 is one-dimensional, and V2 ⊆ AnnR(V1), which is four-dimensional. In particular,
dim(V1) + dim(V2) ≤ 5.



A G2-PERIOD OF A FOURIER COEFFICIENT OF AN EISENSTEIN SERIES ON E6 11

(2) V2 is one-dimensional, and V1 ⊆ AnnL(V2), which is four-dimensional. In particular,
dim(V1) + dim(V2) ≤ 5.

(3) Neither V1 nor V2 is one-dimensional. In this case, V1 is two-dimensional, V2 = AnnR(V1) is
two-dimensional, and there is a unique two-dimensional subspace V3 ⊆ Θ so that Vi·Vi+1 = 0
for i = 1, 2, 3 (indices taken modulo 3). In particular, dim(V1) + dim(V2) = 4.

The lemma is an avatar of triality for the group Spin8. To setup the second lemma, re-
call that Spin8 can be defined to be the subgroup of triples (g1, g2, g3) ∈ SO(Θ)3 such that
tr((g1x1)(g2x2)(g3x3)) = tr(x1x2x3) for all x1, x2, x3 ∈ Θ. As such, Spin8 sits naturally inside
the Levi subgroup L of Q, by acting trivially on the coordinate spaces J(ci) and by g−1

i on the
coordinate spaces J(ai).

Lemma 2.3. One has the following facts regarding the Spin8 orbits on isotropic subspaces of Θ.

(1) Via any of the three projections Spin8 → SO(Θ), the group Spin8 acts with one orbit on the
isotropic lines ` ⊆ Θ.

(2) Via any of the three projections Spin8 → SO(Θ), the group Spin8 acts with one orbit on the
isotropic two-dimensional subspaces of Θ.

(3) If i ∈ Z/3 is an index, Vi, Vi+1 are subspaces of Θ with Vi · Vi+1 = 0, and g = (g1, g2, g3) ∈
Spin8, then (giVi) · (gi+1Vi+1) = 0.

2.2. The H-orbits on V. In this subsection, we discuss the H = G2N orbits on the flag variety
V. Note that the Levi subgroup L (see subsection 1.4.2) of Q takes each of the types of orbits
above to themselves, but moves around the isotropic two-dimensional subspaces Vi in item (2.1)
and moves around the isotropic line ` in items (2) to (7). Thus to compute the G2N orbits on V,
we need to compute the G2 orbits on isotropic two-dimensional subspaces Ω ⊆ Θ and on isotropic
lines ` ⊆ Θ.

Proposition 2.4. The group G2 acts with two orbits on the set of isotropic lines in Θ. These
orbits are characterized by whether the line ` is traceless or not, i.e., whether ` ⊆ V7 or not. In the
Zorn model, the two orbits are represented by the lines ` = F ( 0 v

0 0 ) with v 6= 0, and Fε1 =
(
F 0
0 0

)
.

The stabilizer of the line ` is the parabolic subgroup P (`) of G2, while the stabilizer of the line Fε1
is the subgroup SL3 acting component-wise on the Zorn model.

Proof. It is clear that the two lines ` and Fε1 are in different G2 orbits, since ` ⊆ V7. That all the
isotropic lines in V7 are in one G2 orbit, and their stabilizer is a parabolic subgroup was stated in
Proposition 1.3. Thus we must only check that all the isotropic lines not contained in V7 are in one
orbit, and the stabilizer statement for the line Fε1.

We first check that isotropic lines ` that are not traceless are in one G2-orbit. For this, suppose `
is such a line, and take y ∈ ` with tr(y) = 2. Then y = 1 + y1, with y1 ∈ V7 and n(y1) = −1. Since
G2 acts transitively on isomorphic quadratic étale subalgebras of G2, we may move y1 to

(
1
−1

)
.

Thus we can assume ` is spanned by ε1, as desired.
It is clear that SL3 is contained in the stabilizer S(`). To see that it is exactly the stabilizer, note

that S(`) must fix ε1 (since it preserves the trace), and must furthermore fix AnnR(εi), AnnL(εi)
for i = 1, 2, since it commutes with conjugation on Θ. Taking the intersection of various of
these subspaces shows that S(`) fixes the components V3 and V ∨3 of the Zorn model. Since S(`)
preserves the bilinear form on Θ, the action of S(`) on V ∨3 is determined by that on V3, and
thus S(`) ⊆ GL3 = Aut(V3). Finally, the trilinear form tr(x1(x2x3)) on Θ restricted to V3 is the
determinant: (v1, v2, v3) 7→ v1 ∧ v2 ∧ v3. Since S(`) must stabilize this, we get S(`) ' SL3, as
desired. �

We now discuss the G2-orbits on the isotropic two-dimensional subspaces V2 ⊆ Θ.

Lemma 2.5. There are five orbits of G2 on isotropic two-dimensional subspaces V2 of Θ, which
are characterized as follows:



12 AARON POLLACK, CHEN WAN, AND MICHA L ZYDOR

(1) V2 traceless and null
(2) V2 traceless and not null
(3) V2 not traceless and is left-null, but not right-null
(4) V2 not traceless and is right-null, but not left-null
(5) V2 not traceless, and neither right nor left-null.

Suppose v ∈ V3, φ ∈ V ∨3 and φ(v) = 0. Then examples of such spaces are, in order,

(1) V2 spanned by φ and v;
(2) V2 spanned by e1 and e2;
(3) V2 spanned by ( 1 0

0 0 ) and v;
(4) V2 spanned by ( 1 0

0 0 ) and φ;
(5) V2 spanned by ( 1 0

0 0 ) and v + φ.

Proof of Lemma 2.5. It is clear that the examples are spaces of each kind, and thus the five types
of spaces V2 exist. Furthermore, it is clear that the characterizing features of these orbits, e.g.,
“traceless and null”, etc are G2-invariants. Thus there are at least five orbits of G2 on the two-
dimensional isotropic subspaces of Θ. That these are the only five orbits can be checked directly.
However, that there are only five orbits follows from [Jia98, Lemma 2.1], so we omit this aspect. �

The stabilizers in G2 of these two-dimensional isotropic subspaces V2 ⊆ Θ were also computed in
[Jia98, Lemma 2.1], so we simply state the result. Recall that e1, e2, e3 denotes our standard basis
of V3, and e∗1, e

∗
2, e
∗
3 the dual basis of V ∨3 . For the next proposition, define

V1(e∗3) =

(
0 Fe1, Fe2

0 0

)
, V2(e∗3) =

(
F 0
Fe∗3 0

)
, V3(e∗3) =

(
0 0
Fe∗3 F

)
.

Proposition 2.6. Denote V2(closed) the space spanned by Fe∗3, Fe1 and V2(open) the subspace
spanned by ε1 and e1 + e∗3. We have the following stabilizers:

(1) The stabilizer in G2 of V2(closed) is the Heisenberg parabolic P (Fe1 + Fe∗3).
(2) One has Vj(e

∗
3)·Vj+1(e∗3) = 0 (indices taken modulo 3), and thus each has the same stabilizer.

Denote by P (e∗3) the parabolic subgroup of G2 stabilizing the line spanned by e∗3. Then
P (e∗3) = M(e∗3)U(e∗3), with M(e∗3) ' GL2 the Levi subgroup fixing the decomposition

V7 = Fe∗3 ⊕ (Fe1 + Fe2)⊕ F (ε1 − ε2)⊕ (Fe∗1 + Fe∗2)⊕ Fe3

and U(e∗3) ⊇ U(e∗3)′ ⊇ U(e∗3)′′ the three-step unipotent radical. The stabilizer of the Vj(e
∗
3)

is M(e∗3)U(e∗3)′.
(3) The stabilizer of V2(open) is contained in the Heisenberg parabolic P (Fe1 + Fe∗3). Define

U(e1, e
∗
3) to be the unipotent radical of P (Fe1 + Fe∗3), and set M(e1, e

∗
3) ' GL2 the Levi

subgroup fixing the decomposition

V7 = (Fe1 + Fe∗3)⊕ (Fe2 + Fe∗2 + F (ε1 − ε2))⊕ (Fe∗1 + Fe3).

The unipotent radical U(e1, e
∗
3) is spanned by 3 long roots and two short roots. The stabilizer

of V2(open) is GL1 U
0(e1, e

∗
3) where U0(e1, e

∗
3) is a certain subgroup of U(e1, e

∗
3) defined by

a linear relation on the two short roots in U(e1, e
∗
3) and GL1 ⊆M(e1, e

∗
3) is the subgroup of

GL2 acting as e1 7→ te1, e∗3 7→ te∗3, t ∈ GL1.

Proof. That these are the stabilizers is essentially [Jia98, Lemma 2.1]. �

Putting it all together, we have the following proposition.

Proposition 2.7. The group G2N acts on the flag variety V with 17 orbits. The 17 orbits are as
follows:

(1) Five (2, 2, 2) orbits, with representatives given by the isotropic two-space V1 equal to each
of the five isotropic two-spaces in Lemma 2.5.
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(2) Six right (4, 1, 1) orbits, with representatives given by the isotropic line ` in each of the
coordinate spaces J(a1), J(a2) and J(a3), and ` equal to each of the two isotropic lines in
Proposition 2.4.

(3) Six left (4, 1, 1) orbits, with representatives given by the isotropic line ` in each of the
coordinate spaces J(a1), J(a2) and J(a3), and ` equal to each of the two isotropic lines in
Proposition 2.4.

Denote by V one of the totally singular spaces above, and HV its stabilizer in H = G2N = H0N .
Then HV = (HV ∩G2)(HV ∩N), and the stabilizers HV ∩G2 = HV ∩H0 are given by Proposition
2.6 in the case of the case of the five (2, 2, 2) orbits, and given by P (v) and SL3 in the case of the
(4, 1, 1) orbits.

Proof. The only thing that we have not yet proved is that HV = (HV ∩G2)(HV ∩N) for the above
spaces V . But this is clear by considering the fact that the V above are a direct sum of their
intersections with the coordinate spaces J(ci), J(ai), i = 1, 2, 3. �

2.3. N-stabilizers of totally singular spaces. We will require the following lemma.

Lemma 2.8. Suppose V1, V2, V3 are a triple of (2, 2, 2) spaces with Vj ·Vj+1 = 0. Then V1 ·V ⊥2 ⊆ V ∗3
and V ⊥2 · V3 ⊆ V ∗1 (and cyclic permutations of these).

Proof. This is surely well-known, so we don’t give a detailed proof. However, the reader wishing
to check this themselves can simply check it for each of the five cases of Lemma 2.5, since the
statement of the lemma is G2-invariant. �

If (x, y; z) ∈ N(Θ), recall that we denote n(x, y, z) the corresponding element in E6 as defined
above. Also recall that if V is one of the totally singular six-dimensional spaces in J , V (a3) =
V ∩ J(a3), V (a1) = V ∩ J(a1), etc.

Lemma 2.9. The conditions for n(x, y, z) to stabilize one of the (2, 2, 2) orbits are the following:

• x ∈ V (a3)⊥,
• y ∈ V (a1)⊥,
• z∗ ∈ V (a2)⊥.

If x ∈ V (a3), y ∈ V (a1) and z∗ ∈ V (a2), then n(x, y, z) acts trivially on the (2, 2, 2) space.

Proof. One checks immediately that if x ∈ V (a3), y ∈ V (a1)⊥ and z∗ ∈ V (a2)⊥, then n(x, y, z) acts
as 1 on the (2, 2, 2)-space. Also, one sees quickly that for n(x, y, z) to stabilize a (2, 2, 2)-space, it
is necessary that x ∈ V (a3)⊥, y ∈ V (a1) and z∗ ∈ V (a2). But now by Lemma 2.8, these “perp”
conditions are also sufficient. This completes the proof. �

We now consider the N stabilizers for the (4, 1, 1)-orbits.

Proposition 2.10. Suppose V is one of the (4, 1, 1)-orbits.

(1) Suppose V is one of the orbits with c1 = c2 = a3 = 0. Then n(x, y, z) stabilizes V if and
only if V (a2)·x ⊆ V (a1)∗, and acts trivially on V if and only if V (a2)·x = 0, (V (a1), y) = 0,
and (V (a2), z∗) = 0.

(2) Suppose V is one of the orbits with c1 = c3 = a2 = 0. Then n(x, y, z) stabilizers V if and
only if y ∈ V (a1) and V (a3)∗z ⊆ V (a1). The element n(x, y, z) acts trivially on V if and
only if x ∈ V (a3)⊥, y = 0, and z∗V (a3) = 0.

(3) Suppose V is one of the orbits with c2 = c3 = a1 = 0. Then n(x, y, z) stabilizes V if and
only if x ∈ V (a3), z∗ ∈ V (a2) and V (a3) · y ⊆ V (a2)∗. Such a n(x, y, z) acts as the identity
on V if and only if z = x = 0 and V (a3) · y = 0.

Proof. The proof of the first item is immediate from the formulas for the N(Θ) action. For the
second item, to see that y ∈ V (a1), look at how the a1-coordinate in V changes. Since y ∈ V (a1),
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it follows that V (a3)y = 0 automatically, and the rest of the stabilizer claim follows immediately.
The conditions for n(x, y, z) to act as the identity are similarly immediate.

Finally, consider the third item, and the claim about the stabilizer. Looking at the a2-coordinate,
one sees right away that z∗ ∈ V (a2) and V (a3)y ⊆ V (a2)∗. Looking at the a1-coordinate, one sees
V (a2)x = 0, which happens if and only if x ∈ V (a3). Now with these conditions, one checks easily
that n(x, y, z) does indeed stabilize V .

For n(x, y, z) to act as the identity on V , one sees that z = 0 by looking at the a2-coordinate, and
that x = 0 by looking at the a3-coordinate. By looking again at the a2-coordinate, one concludes
that V (a3) · y = 0. When these conditions are satisfied, it follows immediately that n(x, y, z) acts
trivially on V . This concludes the proof. �

3. Eisenstein series and related objects

3.1. General notations. For the rest part of this paper, F is a number field, F̄ is the algebraic
closure of F , A = AF be the ring of adeles.

Let G be a connected reductive algebraic group over F , X(G) be the group of rational characters
of G. We fix a maximal F -split torus A0 of G. Let P0 be a minimal parabolic subgroup of G defined
over F containing A0, M0 be the Levi part of P0 containing A0 and U0 be the unipotent radical of
P0. Let F(P0) be the set of parabolic subgroups of G containing P0. Elements in F(P0) are called
standard parabolic subgroups of G. We also use F(A0) to denote the set of parabolic subgroups of
G containing A0 (these are the semi-standard parabolic subgroups).

For P ∈ F(P0), we have the Levi decomposition P = MU with U be the unipotent radical of P
and M be the Levi subgroup containing A0. We use AP ⊂ A0 to denote the maximal F -split torus
of the center of M . Put

a∗0 = X(A0)⊗Z R = X(M0)⊗Z R

and let a0 be its dual vector space. Let ∆0 ⊂ a∗0 be the set of simple roots of A0 acting on U0.
The subsets of ∆0 are in a natural bijection with F(P0). For P ∈ F(P0), we use ∆P

0 to denote the
subset of ∆0 corresponding to P . In particular, we have ∆G

0 = ∆0. Set aP to be the kernel of ∆P
0 .

If P = P0, we write a0 = aP0 and similarly in other contexts.
The inclusions AP ⊂ A0 and M0 ⊂ M identify aP as a direct factor of a0, we use aP0 to denote

its complement. Similarly, a∗P = X(AP )⊗Z R is a direct factor of a∗0 and we use aP,∗0 to denote its

complement. The space aP,∗0 is generated by ∆P
0 .

Let ∆∨0 ⊂ aG0 be the set of simple coroots given by the theory of root systems. For α ∈ ∆0 we

denote α∨ ∈ ∆∨0 the corresponding coroot. We define ∆̂0 ⊂ aG,∗0 to be the dual basis of ∆∨0 , i.e.

the set of weights. In particular, we get a natural bijection between ∆0 and ∆̂0 which we denote

by α 7→ $α. Let ∆̂P ⊂ ∆̂0 be the set corresponding to ∆0 r ∆P
0 .

For any subgroup H ⊂ G let H(A)1 denote the common kernel of all continuous characters
of H(A) into R∗+. Fix K a maximal compact subgroup of G(A) adapted to M0. We define the
Harish-Chandra homomorphism HP : G(A)→ aP via the relation

〈χ,HP (x)〉 = |χ(p)|A, ∀χ ∈ X(P ) = Hom(P,Gm)

where x = pk is the Iwasawa decomposition G(A) = P (A)K and | · |A is the absolute vaule on
the ideles of A. Let A∞P be the connected component of ResF/QAP (R). Then M(A)1 is the kernel
of HP restricted to M(A) and we have the direct product decomposition of commuting subgroups
M(A) = A∞P M(A)1.

For any group H we use [H] to denote H(F )\H(A). Moreover, if H is reductive, we use (assuming
the compact subgroup of H(A) is clear from the context) [H]1 to denote H(F )\H(A)1.
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3.2. Haar measures. We fix compatible Haar measure on G(A), G(A)1 and A∞G . For all unipotent
subgroups U of G, we fix a Haar measure on U(A) so that [U ] is of volume one. On K we also fix
a Haar measure of volume 1. For any P ∈ F(A0), let ∆∨P be the set projections of {α∨}α∈∆0r∆P

0

onto aP . Then ∆∨P is a basis of aP /aG. We use this basis to define a Haar measure on aP /aG. This
choice induces a unique Haar measure on A∞P /A

∞
G such that

(3.1)

∫
A∞P /A∞G

f(HP (a)) da =

∫
aP /aG

f(H) dH, f ∈ C∞c (aP /aG).

Together with the measure on A∞G , we get a Haar measure on A∞P .
Let ρP ∈ a∗P be the half sum of the weights of the action of AP on NP . The above choices induce

a unique Haar measure on MP (A)1 such that∫
P (F )\H(A)

f(h) dh =

∫
K

∫
[M ]1

∫
A∞P

∫
[U ]
e〈−2ρP ,HP (a)〉f(uamk) dudadmdk

for f ∈ C∞c (P (F )\G(A)). We fix this measure on M(A)1 as well.

3.3. The computation of ρP when P is maximal. Let P ∈ F(P0) be a maximal parabolic
subgroup corresponds to the simple root α, i.e. {α} = ∆0 r ∆P

0 . Let $ be the corresponding

weight. We have ρP ∈ aG,∗P . Since P is maximal, aG,∗P is one dimensional. Hence there exists a
constant c ∈ R such that ρP = c$. We want to calculate this constant.

Write α∨ = α∨ +
∑

γ∈∆P
0
aγ∨γ

∨ with respect to the direct sum decomposition aG0 = aGP ⊕ aP0 . It

is known that ρ0 = ρP0 =
∑

$∈∆̂0
$. Hence

c = 〈ρP , α∨〉 = 〈ρ0, α
∨〉 = 1−

∑
γ∈∆P

0

aγ∨ .

We are reduced to calculating the constants aγ∨ . Let n = |∆0| be the rank of G. Let C be the
Cartan matrix of G, it is an n×n matrix with entries cα,β∨ = 〈α, β∨〉 where α ∈ ∆0 and β∨ ∈ ∆∨0 .
Let Cα be the (n − 1) × (n − 1) matrix obtained from C by removing the α-row and α∨-column
(the Cartan matrix of the root system of M). If we denote vα ∈ Rn−1 the column vector (aγ∨)γ∈∆P

0

and wα ∈ Rn−1 the column vector (〈γ, α∨〉)γ∈∆P
0

, we clearly have

vα = C−1
α wα.

We specialize to two cases that will be needed in later sections. Let G be the split, simply
connected reductive group of type E6. Let ∆0 = {αi}i∈{1,...,6} be the set of simple roots whose
Cartan matrix Cij = 〈αi, α∨j 〉 is of the form

C =


2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2

 .

Let P be the standard parabolic subgroup corresponding to ∆0 r {α6}. Its Levi subgroup is then
of type A5. We have that

C−1
α6

=


5/6 2/3 1/2 1/3 1/6
2/3 4/3 1 2/3 1/3
1/2 1 3/2 1 1/2
1/3 2/3 1 4/3 2/3
1/6 1/3 1/2 2/3 5/6

 , wα6 =


0
0
−1
0
0

 .
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Consequently, we get

ρP =
11

2
$6

where $6 ∈ ∆̂0 corresponds to α6.

Remark 3.1. We know that M ∼= {(λ, g) ∈ GL1×GL6 | λ3 = det g}. Let λ denote the character of
M corresponding to the projection on the first factor. Let’s fix this isomorphism so that λ restricted
to AP acts via a positive powers on U . Since E6 is simply connected, $6 is an indivisible character
of A0 and we conclude that λ = $6.

Let G be the split reductive group of type G2. Let ∆0 = {α1, α2} be the set of simple
roots whose Cartan matrix Cij = 〈αi, α∨j 〉 is of the form

C =

(
2 −1
−3 2

)
.

In particular, α2 is the long root. Let P be the standard parabolic subgroup corresponding to
∆0 r {α2}. Its Levi subgroup is of type A1 and the unipotent radical is a two-step unipotent
subgroup. Obviously C−1

α2
= 1

2 and wα2 = −1 which imply that

ρP =
3

2
$2

where $2 ∈ ∆̂0 corresponds to α2.

Remark 3.2. Note that M ∼= GL2 and we can fix this isomorphism so that the determinant
character det acts via positive powers on U . Through this identification we then have $2 = det.

3.4. Eisenstein series. Let P = MU be a parabolic subgroup of G. Given a cuspidal automorphic
representation π of M(A), let Aπ be the space of automorphic forms φ on N(A)M(F )\G(A) such
that M(A)1 3 m 7→ φ(mg) ∈ L2

π([M ]1) for any g ∈ G(A), where L2
π([M ]1) is the π-isotypic part of

L2([M ]1), and such that

φ(ag) = e〈ρP ,HP (a)〉φ(g), ∀g ∈ G(A), a ∈ A∞P .

Suppose that P is a maximal parabolic subgroup. Let $ ∈ ∆̂P be the corresponding weight. We
then define

E(g, φ, s) =
∑

δ∈P (F )\G(F )

φ(δg)e〈s$,HP (δg)〉, s ∈ C, g ∈ G(A).

The series converges absolutely for s� 0 and admits a meromorphic continuation to all s ∈ C.
Suppose moreover that M is stable for the conjugation by the simple reflection in the Weyl group

of G corresponding to P . We have in this case the intertwining operator M(s) : Aπ → Aπ that
satisfies E(M(s)φ,−s) = E(φ, s) and

E(g, φ, s)P = φ(g)e〈s$,HP (g)〉 + e〈−s$,HP (g)〉M(s)φ(g), g ∈ G(A)

where E(·, φ, s)P is the constant term of E(·, φ, s) along P

E(g, φ, s)P :=

∫
[U ]
E(ug, φ, s) du.

When the Eisenstein series E(g, φ, s) has a pole at s = s0, the intertwining operator also has a
pole at s = s0, we use Ress=s0E(g, φ, s) (resp. Ress=s0M(s)) to denote the residue of the Eisenstein
series (resp. intertwining operator). Recall that the Eisenstein series, their derivatives and residues
are of moderate growth. Moreover, for s in the domain of holomorphy of E(φ, s) we have for all X
in the universal enveloping algebra of the complexification of the Lie algebra of G a bound

X ∗ E(g, φ, s) ≤ c(s)( inf
γ∈G(F )

‖γx‖G)N , g ∈ G(A)
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for some N > 0 and some locally bounded function c on C where ‖x‖G is a norm on G(A). This
last fact allows for bounds uniform in s as long as it is confined to compact sets.

3.5. Truncation operator. We continue assuming that P is maximal. We identify the space aGP
with R so that T ∈ R corresponds to an element whose pairing with $ ∈ a∗P is T . We will assume
this isomorphism is measure preserving. Let τ̂P be the characteristic function of

{H ∈ aP | $(H) > 0 ∀$ ∈ ∆̂P }.

Given a locally integrable function F on G(F )\G(A) we define its truncation as follows

ΛTF (g) = F (g)−
∑

δ∈P (F )\G(F )

τ̂P (HP (δg)− T )

∫
[U ]
F (uδg) du, g ∈ G(F )\G(A),

where T ∈ R and the sum is actually finite.

4. Computation of PG2(ΛTE(φ, s)) and proof of Theorem 0.2

In this section we compute formally the period PG2(ΛTE(φ, s)) defined in section 1.6, where
E(φ, s) is an Eisenstein series on E6 associated to the maximal parabolic subgroup of type A5

and a cuspidal representation of its Levi subgroup. The computation is performed in sections 4.1
through 4.5 culminating in Proposition 4.12. This proposition is then used to prove Theorem 0.2
in section 4.6. The results depend on Proposition 4.2 which will be proven in next section.

4.1. The Eisenstein series. We first single out the parabolic P that we use to define the Eisen-
stein series E(φ, s). To do so, consider Θ as formed by the Cayley-Dickson construction out of
D = M2(F ) and γ = 1, in the notation of section 1.1.2. Then, define Ω ⊆ Θ as the two-dimensional
subspace consisting of elements (x, y) = (0, ( ∗ ∗0 0 )). It is clear that Ω ⊆ V7, and one checks immedi-
ately that Ω is null. Thus, the six-dimensional space V (Ω) ⊆ J , see (1.3), is totally singular. We
define P = P (V (Ω)) to be its stabilizer inside E6. From Proposition 1.4, P has reductive quotient
of type A5.

We now explicitly describe a Levi subgroup M of P . Set D = M2(F ), so that Θ = D ⊕D as in
the Cayley-Dickson construction. To describe the Levi subgroup M of P , it is convenient to write
J = H3(Θ) as a direct sum of two pieces, which corresponds to the direct sum Θ = D⊕D. Namely,
J = H3(D)⊕D3, with this D3 = M2,6(F ) considered as 1×3 row vectors in D, or 2×6 matrices over
F . In this decomposition, if (X, v) ∈ H3(D)⊕D3, then one finds n((X, v)) = n(X) + vXv∗. Here
the notation is as follows. The n on the left-hand side is the norm on J , the n on the right-hand
side is the norm cubic norm on H3(D) (given by the same formula as in (1.1), and v∗ is the column
vector in D3 given by applying transpose-conjugate to v. Thus vXv∗ is an element of D fixed by
the conjugation ∗, so it is in F .

In this decomposition, the six-dimensional subspace V (Ω) becomes the set of (X, v) = (0, v),
v ∈M2,6(F ), where the bottom row of v is 0. Now, recall from Proposition 1.4 that M ' {(λ, g) ∈
GL1×GL6 : λ3 = det(g)}. We let M act on J via

(4.1) (X, v) 7→
(
λ−1g∗Xg,

(
1
λ

)
v( ∗g−1)

)
.

Here ∗g is the transpose conjugate of g considered as an element of M3(D) = M6(F ). Note that this
action of M on J preserves V (Ω), and one checks immediately that this action preserves the norm.
Thus M ⊆ P ⊆ E6, and we use this M as a Levi subgroup of P . We have a natural homomorphism
from M to GL6 given by (λ, g) 7→ g. Under this normalization, the modular character is given by
δP ((λ, g)) = |λ|11.
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4.2. First step. Given a cuspidal automorphic representations π of GL6(A), we can view it as a
cuspidal automorphic representation of M(A) via the natural homomorphism M → GL6 described
above. For φ ∈ Aπ and s ∈ C let E(φ, s) be the corresponding Eisenstein series on E6.

Lemma 4.1. For all φ ∈ Aπ and s ∈ C the integral defining the period PG2(ΛTE(φ, s)) converges
absolutely and uniformly for s in a compact subset of the domain of holomorphy of E(φ, s).

Proof. Note that the function x 7→ ΛTE(x, φ, s) equals the truncated Eisenstein series via the
operator introduced in [Art80]. This is because E(φ, s) is a cuspidal Eisenstein series induced from
a maximal, self-dual Levi subgroup of E6. It follows from Lemma 1.4 of loc. cit. that the function
x 7→ ΛTE(x, φ, s) is rapidly decreasing on [G] = [E6]. The lemma is thus a direct consequence of
Proposition A.1.1(ix) of [BP16] together with the fact that G2N\E6 is quasi-affine. �

Let V be the flag variety as in the section 2. Identify V/H with a set of representatives so that
the subspace defining the parabolic subgroup P is one of them. Let V ∈ V/H. Fix γV ∈ E6(F ) such
that V = V (Ω)γV . Let P (V ) be the parabolic subgroup of E6 stabilizing V , U(V ) the unipotent
radical of P (V ), and M(V ) the reductive quotient of P (V ). By definition, the group HV , the
stabilizer of V in H, is contained in P (V ). We set UH(V ) = U(V )∩HV , and MH(V ) the image of
HV in M(V ). We sometimes abuse notation and also write M(V ) for the Levi subgroup of P (V )
equal to γ−1

V MγV , where M is the Levi subgroup of P specified above.
Let V ∈ V/H. Set

IV (φ, s) :=

∫
HV (F )\H(A)

(1− τ̂P (HP (γV h)− T ))φ(γV h)e〈s$,HP (γV h)〉ξ(h) dh

and

JV (φ, s) :=

∫
HV (F )\H(A)

τ̂P (HP (γV h)− T )M(s)φ(γV h)e〈−s$,HP (γV h)〉ξ(h) dh.

The proof of the following proposition will be given in the next section.

Proposition 4.2. For all s ∈ C such that Re(s) is sufficiently large and all T ∈ R sufficiently
large, the integrals defining IV (φ, s) and JV (φ, s) converge absolutely.

Unfolding the Eisenstein series and taking the above proposition for granted we get

(4.2) PG2(ΛTE(φ, s)) =
∑

V ∈V/H

IV (φ, s) + JV (φ, s)

which justifies the introduction of the integrals IV and JV . In the following subsections 4.3 and 4.4
we show that IV (φ, s) = JV (φ, s) = 0 unless V = V (Ω).

4.3. Vanishing of most orbits. In this subsection, we show that 14 of the 17 integrals IV (φ, s)
and JV (φ, s) vanish. More specifically suppose that the character ξ is nontrivial on UH(V )∩N . It
follows that the integrals IV (φ, s) and JV (φ, s) vanish. In this subsection we check that 14 of the
17 integrals IV (φ, s) and JV (φ, s) vanish for this reason.

Lemma 4.3. Suppose that V is one of the (2, 2, 2) orbits (cf. 2.7), which is not the closed orbit,
i.e., V 6= V (Ω). Then the integrals IV (φ, s) and JV (φ, s) vanish.

Proof. An element of N is in UH(V ) ∩ N if and only if it acts trivially on V . By Lemma 2.9,
it follows that there is always an element n(x, 0; 0) or n(0, y; 0) acting trivially on V with either
tr(x) 6= 0 or tr(y) 6= 0. Thus the character ξ is nontrivial on UH(V )∩N and the lemma follows. �

Lemma 4.4. Suppose V represents one of the (4, 1, 1) (cf. 2.7) orbits with either V (c3) 6= 0 or
V (c2) 6= 0, i.e., V is of the form (2.2), (2.4), (2.5) or (2.6). Then the integrals IV (φ, s) and JV (φ, s)
vanish.
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Proof. Suppose first V is such that V (c3) 6= 0. Then by Proposition 2.10, n(0, y; 0) acts trivially on
V so long as y ∈ V (a1)⊥. But V (a1)⊥ contains a 4-dimensional isotropic subspace, so the trace is
not identically 0 on it. Hence IV (φ, s) and JV (φ, s) vanish. Similarly, if V is one of the orbits with
V (c2) 6= 0, then n(x, 0; 0) acts trivially on V so long as x ∈ V (a3)⊥, and one again gets vanishing
for the same reason. �

Lemma 4.5. Suppose V is one of the (4, 1, 1) orbits with V (c1) 6= 0. If V (a3) = ` is an isotropic
line, then the integrals IV (φ, s) and JV (φ, s) vanish.

Proof. From Proposition 2.10, the element n(x, y; z) acts as 1 on such a V if and only if x = z = 0
and V (a3) · y = 0. If V (a3) = `, then the set of such y is AnnR(`), which is a four-dimensional
isotropic subspace of Θ. Thus the trace is nonzero on it, which implies that IV (φ, s) and JV (φ, s)
vanish. �

4.4. Formal vanishing of another two orbits. In the previous subsection we showed that 14 of
the 17 integrals IV (φ, s) and JV (φ, s) vanish. In this subsection, we show that the integrals IV (φ, s)
and JV (φ, s) also vanish for another 2 orbits. More specifically, the V ’s we consider are the two
(4, 1, 1) orbits with V (c1) 6= 0 and V (a2) an isotropic line. We begin with the following lemma.

Lemma 4.6. Suppose V is one of the (4, 1, 1) orbits with V (c1) 6= 0 and V (a2) = ` an isotropic
line. Then the subgroup of N acting as the identity on V is trivial.

Proof. From Proposition 2.10, the element n(x, y; z) acts as 1 on such a V if and only if x = z = 0
and V (a3) · y = 0. If V (a2) = `, then V (a3) = AnnR(`). But AnnR(`) only has a left annihilator
(namely, `); its right annihilator is 0. Thus only the identity in N acts trivially on V in these
cases. �

For the rest of this subsection, V denotes a representative of one of the (4, 1, 1) oribts with
V (c1) 6= 0 and V (a2) = ` an isotropic line. As we mentioned before, we extend the character ξ on
N to N G2 by making it trivial on G2. By Lemma 4.6, the integrals IV (φ, s) and JV (φ, s) have an

inner integral over (MH(V )(F )\MH(V )(A))1. Hence in order to show the integrals IV (φ, s) and
JV (φ, s) vanish, it suffices to show that the integral

KV (ϕ) :=

∫
(MH(V )(F )\MH(V )(A))1

ξ(x)ϕ(x) dx

vanishes for any cusp form ϕ on M(V ). The purpose of the rest of this subsection is to prove the
vanishing of KV (ϕ). The following lemma computes the image of N in MH(V ).

Lemma 4.7. Suppose V is as above, a (4, 1, 1) orbit with V (c1) 6= 0, and V (a2) = ` an isotropic
line. Then n(x, y; z) stabilizes V if and only if x ∈ AnnR(`), z∗ ∈ `, and y ∈ AnnL(`).

Proof. The statements about x and z∗ were proved in Proposition 2.10. The condition on y was
determined to be V (a3) · y ⊆ V (a2)∗, or, in other words, AnnR(`) · y ⊆ `∗. However, the subset of
y ∈ Θ satisfying this condition is precisely AnnL(`). This completes the proof of the lemma. �

Suppose x, y, z are as specified in Lemma 4.7, i.e., x ∈ AnnR(`), z ∈ `∗, and y ∈ AnnL(`). Then
n(x, y; z) acts on

V = V (a1)⊕ V (a3)⊕ V (a2) = F ⊕AnnR(`)⊕ `
as matrices of the form  1 ∗ ∗

0 14 ∗
0 0 1

 .
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More precisely, recall that N acts on the six-dimensional space V on the right. We order a basis
of V as V = F ⊕ AnnR(`) ⊕ `, for some ordered basis of AnnR(`). For y ∈ AnnL(`), denote by
φy ∈ Hom(AnnR(`), `) the map φy(a3) = (a3y)∗. Then, n(x, y; z) acts on V via the matrix 1 x z∗

0 14 φy
0 0 1

 .

We now check that the integral KV (ϕ) vanishes for each of the two cases, ` being traceless or not.

Lemma 4.8. Suppose that the isotropic line ` is contained in V7. Then KV (ϕ) vanishes.

Proof. For concreteness, assume ` = e∗3 ∈ Θ. Then AnnR(`) is spanned by ε2, e1, e2 and e∗3. Recall
that the parabolic subgroup P (`) ⊆ G2 stabilizing ` has Levi subgroup GL2. With this ordered
basis of V , one computes that MH(V ) acts on V as the subgroup of elements of the form

(4.3)


1 x ∗ ∗ ∗

1 0 ∗ ∗
g ∗ ∗

det(g) x′

det(g)

 ,

for g ∈ GL2. The character ξ on such an element is only a function of x and x′. Thus KV (ϕ)
vanishes in this case by constant term of ϕ along the upper right 4× 2 block of (4.3). �

We now consider the case in which the isotropic line is not contained in V7, but instead spanned
by ε1. Then KV (ϕ) again vanishes. To see this, first note that AnnR(`) is spanned by e∗1, e

∗
2, e
∗
3 and

ε2. Using these elements to form an ordered basis of AnnR(`) and thus V , one finds that MH(V )
acts on V by elements of the form

(4.4) R′ =

r′ =


1 x ∗ ∗
1 0 x′

g ∗
1

 : g ∈ SL3

 .

Define a character ξ′ on such an element by ξ′(r′) = ψ(x+ x′). Then the character ξ on N induces
the character ξ′ on R′.

Lemma 4.9. Suppose ϕ is a cusp form on GL6(A). Then the integral∫
R′(F )\R′(A)

ξ′(r′)ϕ(r′) dr′

vanishes. Consequently, KV (ϕ) = 0.

Proof. By changing bases, this integral over R′ becomes an integral over the subgroup

R′′ =




g 0 0 ∗
∗ 1 x ∗

1 x′

1

 : g ∈ SL3

 .

Set

R′′′ =




g 0 0 ∗
1 0 0

1 0
1

 : g ∈ SL3

 .

Here the ∗ is a 3× 1 block. In fact, one has that the integral of a cusp form ϕ over [R′′′] vanishes,
from which the lemma follows.
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To see that
∫

[R′′′] ϕ(r) dr = 0, one proceeds as follows. Denote by N ′ the abelian unipotent group

consisting of matrices of the form

n(x1, x2, x3) :=


13 x1 x2 x3

1 0 0
1 0

1

 .

Here x1, x2, x3 are 3 × 1 column vectors. Denote by N ′′ the subgroup of N ′ consisting of those
matrices with x1 = 0, and denote by N ′′′ the subgroup of N ′ consisting of those matrices with
x1 = x2 = 0.

For r2 ∈ F 3 a column vector, define

ϕr2(g) =

∫
[N ′′]

ψ(r2x2)ϕ(n(0, x2, x3)g) dx2 dx3.

Then we have ∫
[N ′′′]

ϕ(ng) dn = ϕ0(g) +
∑

γ∈P ′2,1\SL3(F )

ϕ(0,0,1)(γg).

Here P ′2,1 is the subgroup of SL3 consisting of matrices of the form ( g ∗0 1 ) with g ∈ SL2 and ∗ a 2×1

column vector, and SL3 is embedded in GL6 as g 7→
(
g 0
0 13

)
.

By Fourier expanding ϕ0(g) along the x1 coordinates, and letting SL3 act on the Fourier co-
efficients, one verifies immediately that

∫
[SL3] ϕ0(g) dg = 0, using the cuspidality of ϕ along the

unipotent radical of the (3, 3) and (2, 4) parabolics. Thus, we are reduced to showing the vanishing
of

(4.5)

∫
[SL3]

∑
γ∈P ′2,1(F )\SL3(F )

ϕ(0,0,1)(γg) dg =

∫
P ′2,1(F )\SL3(A)

ϕ(0,0,1)(g) dg.

To show the vanishing of the right-hand side of (4.5), Fourier expand ϕ(0,0,1)(g) along the two-
dimensional unipotent subgroup consisting of matrices n(x1, 0, 0) where the last entry of x1 is 0.
Then, the SL2(F ) in P ′2,1 acts on these Fourier coefficients with two orbits, corresponding to the
constant and nonconstant terms. Now, one proceeds as above: the integral of the constant term
over [P ′2,1] vanishes by the cuspidality of ϕ along the unipotent radical of the (2, 4) parabolic. The
integral of the nonconstant terms vanish by the cuspidality of ϕ along the unipotent radical of the
(1, 5) parabolic. This completes the proof of the lemma. �

4.5. The last orbit. Finally, we consider the integrals IV (φ, s) and JV (φ, s) associated to the orbit
V = V (Ω). We continue assuming that Re(s) is large so that Proposition 4.2 holds. Recall that
in this case, Ω = {(0, ( ∗ ∗0 0 ))} ⊆ Θ in the notation of the Cayley-Dickson construction of Θ from
D = M2(F ). Furthermore, the stabilizer H0 ∩ P of V (Ω) inside G2 is the Heisenberg parabolic
P (Ω), and we have H0 ∩ P = (H0 ∩ M)(H0 ∩ U) with H0 ∩ M ' GL2 being a Levi of P (Ω).
GL2 ' H0 ∩M acts on Θ via

(4.6) g.(x, y) =
(
gxg−1,

(
det(g)

1

)
yg−1

)
, g ∈ GL2, (x, y) ∈ Θ

in the notation of the Cayley-Dickson construction.

Lemma 4.10. Set Ω = {(0, ( 0 0
∗ ∗ ))} ⊆ Θ, and define V = {n(x, y; z) : x, y, z ∈ Ω}.

(1) The inclusion V → N induces an isomorphism V ' (P ∩N)\N .
(2) The character ξ is trivial on H ∩ U and on V .
(3) Denote by dv the Haar measure on V . Then for x ∈ H0 ∩M ⊆ P (Ω) ⊆ G2, xV̄ x−1 = V̄

with the Jacobian d(xvx−1)
dv = |det(x)|−3 = δP (Ω)(x)−1.
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Proof. The stabilizer of V (Ω) inside of N was computed in Lemma 2.9 to be the elements n(x, y; z)
with x, y, z ∈ Ω⊥ ⊆ Θ. With our choice of Ω, Ω⊥ = {(x, y) : x ∈ M2(F ), y ∈ ( ∗ ∗0 0 )}. Thus,
H ∩N = {n(x, y; z) : x, y, z ∈ Ω⊥}. The first item follows from this.

For the second item, again from Lemma 2.9, one has that the elements of N that act trivially
on V (Ω) are the n(x, y; z) with x, y, z ∈ Ω. Thus H ∩U = {n(x, y; z) : x, y, z ∈ Ω}, and the second
item is clear.

Finally, the third item follows immediately from (4.6), (1.5) and the last part of the paragraph
3.3. �

Denote I1(φ, s) = IV (φ, s) and I2(φ, s) = JV (φ, s). Let

ψ1(x) = (1− τ̂P (HP (x)− T ))φ(x)e〈s$,HP (x)〉, ψ2(x) = τ̂P (HP (x)− T )M(s)φ(x)e〈−s$,HP (x)〉.

As we discussed before, we have H ∩ P = (H0 ∩ P ) × (N ∩ P ), N = (N ∩ P ) × V̄ , and
H0∩P = (H0∩M)×(H0∩N) with GL2 ' H0∩M . Moreover, since both P and Q are semistandard
parabolic subgroup andM is a semistandard Levi subgroup, we also haveN∩P = (N∩M)×(N∩U).
Combining with Lemma 4.10, for i = 1, 2, we have

Ii(φ, s) =

∫
(H∩P )(F )\H(A)

ψi(h)ξ(h)dh

=

∫
(H0∩P )(F )\H0(A)

∫
(N∩P )(F )\N(A)

ψi(nh0)ξ(n)dndh0

=

∫
KG2

∫
[H0∩M ]

∫
[H0∩U ]

∫
V̄ (A)

∫
[N∩M ]

∫
[N∩U ]

ψi(nunmvuhhk)ξ(nm)δP (Ω)(h)−1 dµ

=

∫
KG2

∫
[H0∩M ]

∫
V̄ (A)

∫
[N∩M ]

ψi(nmvhk)ξ(nm)δP (Ω)(h)−1dnmdvdhdk

=

∫
KG2

∫
V̄ (A)

∫
[H0∩M ]

∫
[N∩M ]

ψi(nmhvk)ξ(nm)δP (Ω)(h)−2dnmdhdvdk.

Here dµ = dnudnmdvduhdhdk.

Lemma 4.11. Under the isomorphism M ' {(g, λ)| g ∈ GL6, λ ∈ GL1, det(g) = λ3} specified in
the proof below, we have the following facts:

(1) H0 ∩M ' {(diag(h, h, h),det(h)) ∈ GL6×GL1 | h ∈ GL2};

(2) N ∩M '


I2 x z

0 I2 y
0 0 I2

 , 1

 | x, y, z ∈M2

;

(3) the character ξ of N ∩M is given by ξ

I2 x z
0 I2 y
0 0 I2

 = ψ(tr(x) + tr(y)).

In particular, up to modulo the center, the integral
∫

[H0∩M ]

∫
[N∩M ] gives us the period integral of

the Ginzburg-Rallis model defined in the introduction.

Proof. We first chose a basis of V . To do so, fix the ordered basis b1 = (0, ( 1 0
0 0 )) and b2 = (0, ( 0 1

0 0 ))
of Ω. We have

V = V (Ω) = V (Ω)(a1)⊕ V (Ω)(a2)⊕ V (Ω)(a3) = Ω⊕ Ω⊕ Ω.

This basis of b1, b2 of Ω thus gives an ordered basis b
(1)
1 , b

(1)
2 , b

(2)
1 , b

(2)
2 , b

(3)
1 , b

(3)
2 of V (Ω), with b

(k)
j

meaning the element bj considered in V (Ω)(ak) = Ω.
The map M → GL(V ) ' GL6 comes from the action of M on V = V (Ω), together with the

identification GL(V ) ' GL6 given by the above ordered basis of V . More precisely, suppose an
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element g ∈ M acts on the right of V by an element m = m(g) of GL(V ). Then, under the
identification of M with {(λ, h) ∈ GL1×GL6 : λ3 = det(h)} the image of g in GL6 is ∗m−1; see
(4.1).

With these identifications, the first item of the lemma is clear using (4.6). We now prove the
second and third items of the lemma.

Thus suppose x = (wx, ∗), y = (wy, ∗), z = (wz, ∗) ∈ Ω⊥ ⊆ Θ. Via Lemma 1.6, one computes
that in the above ordered basis of V , n(x, y; z) acts on V via the matrix

w̃(x, y, z) =

 12 0 0
−w∗x 12 0
∗ −w∗y 12


and that the image of HV ∩N inside MH(V ) contains all matrices in the unipotent radical of the
lower-triangular (2, 2, 2) parabolic of GL(V ). Here w 7→ w∗ is the conjugation on the quaternion
algebra D = M2(F ).

Thus the image of n(x, y; z) ∈ H ∩ P in GL6 is

w(x, y, z) =

 12 wx ∗
0 12 wy
0 0 12

 .

Since ξ(n(x, y; z)) = ψ(tr(x+ y)) = ψ(tr(wx + wy)), the lemma follows. �

By the lemma above, we have

Ii(φ, s) =

∫
KG2

∫
V̄ (A)

∫
[H0∩M ]

∫
[N∩M ]

ψi(nmhvk)ξ(nm)δP (Ω)(h)−2dnmdhdvdk(4.7)

=

∫
KG2

∫
V̄ (A)

∫
[H0∩M ]1

∫
[N∩M ]

∫
A∞P

ψi(anmhvk)ξ(nm)δP (Ω)(a)−2dadnmdhdvdk.

Proposition 4.12. For all T ∈ R sufficiently big we have the following equality of meromorphic
functions on C

PG2(ΛTE(φ, s)) =
e(s−1/2)T

s− 1/2

∫
KG2

∫
V (A)

∫
[H0∩M ]1

∫
[N∩M ]

e〈
1
2
$,HP (vk)〉φ(nmhvk)ξ(nm) dnmdhdvdk +

e(−s−1/2)T

−s− 1/2

∫
KG2

∫
V (A)

∫
[H0∩M ]1

∫
[N∩M ]

e〈
1
2
$,HP (vk)〉M(s)φ(nmhvk)ξ(nm) dnmdhdvdk.

Proof. It is enough to prove the equality when Re(s) is large. Let Re(s) be large. Using the
decomposition (4.2) and the vanishing results of section 4.3 and 4.4 we get PG2(ΛTE(φ, s)) =
I1(φ, s) + I2(φ, s). We first study the term I1(φ, s). Using the expression (4.7) and the definition
of the function ψ1, we have

I1(φ, s) =

∫
KG2

∫
V̄ (A)

∫
[H0∩M ]1

∫
[N∩M ]

∫
A∞P

(1− τ̂P (HP (avk)− T ))

e〈s$,HP (avk)〉δP (a)1/2δP (Ω)(a)−2φ(nmhvk)ξ(nm)dadnmdhdvdk.

By Lemma 4.11 together with the computation of the modular characters in section 3.3, we have

δP (a) = e〈11$,HP (a)〉, δP (Ω)(a) = e〈3$,HP (a)〉, a ∈ A∞P .
Therefore, we get

I1(φ, s) =

∫
KG2

∫
V̄ (A)

∫
[H0∩M ]1

∫
[N∩M ]

∫
A∞P

(1− τ̂P (HP (avk)− T ))

e〈s$,HP (avk)〉−〈 1
2
$,HP (a)〉φ(nmhvk)ξ(nm)dadnmdhdvdk.
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We can change the integral on A∞P to the integral on aP , this implies that

I1(φ, s) =

∫
KG2

∫
V̄ (A)

∫
[H0∩M ]1

∫
[N∩M ]

∫
aP

(1− τ̂P (X +HP (vk)− T ))

e〈s$,X+HP (vk)〉−〈 1
2
$,X〉φ(nmhvk)ξ(nm)dXdnmdhdvdk

=

∫
KG2

∫
V̄ (A)

∫
[H0∩M ]1

∫
[N∩M ]

∫
aP

(1− τ̂P (X − T ))e〈(s−
1
2

)$,X〉

e〈
1
2
$,HP (vk)〉φ(nmhvk)ξ(nm)dXdnmdhdvdk

where the second equality is by the change of variables X + HP (vk) 7→ X. The integral on aP
yields ∫

aP

(1− τ̂P (X − T ))e〈(s−
1
2

)$,X〉dX =

∫ T

−∞
e(s− 1

2
)XdX =

e(s−1/2)T

s− 1/2
.

This implies that

I1(φ, s) =
e(s−1/2)T

s− 1/2

∫
KG2

∫
V (A)

∫
[H0∩M ]1

∫
[N∩M ]

e〈
1
2
$,HP (vk)〉φ(nmhvk)ξ(nm) dnmdhdvdk.

Similarly, we can also show that

I2(φ, s) =
e(−s−1/2)T

−s− 1/2

∫
KG2

∫
V (A)

∫
[H0∩M ]1

∫
[N∩M ]

e〈
1
2
$,HP (vk)〉M(s)φ(nmhvk)ξ(nm) dnmdhdvdk.

This finishes the proof of the proposition. �

4.6. The proof of Theorem 0.2. We are ready to prove Theorem 0.2. Taking the residue at
s = 1/2 of the equality in Proposition 4.12 we get∫

KG2

∫
V (A)

∫
[H0∩M ]1

∫
[N∩M ]

e〈
1
2
$,HP (vk)〉φ(nmhvk)ξ(nm) dnmdhdvdk = PG2(ΛTRess=1/2E(φ, s))

+e−T
∫
KG2

∫
V (A)

∫
[H0∩M ]1

∫
[N∩M ]

e〈
1
2
$,HP (vk)〉Ress=1/2M(s)φ(nmhvk)ξ(nm) dnmdhdvdk.

The interchange of the residue with truncation can be justified as in [Art82], pages 47-48, given
that the period is absolutely convergent. By Lemma 4.11, the inner integral

∫
[H0∩M ]1

∫
[N∩M ] is

the Ginzburg-Rallis period. Hence if the Ginzburg-Rallis period is nonzero on the space of the
representation π, one can always find a φ ∈ Aπ such that the integral∫

KG2

∫
V (A)

∫
[H0∩M ]1

∫
[N∩M ]

e〈
1
2
$,HP (vk)〉φ(nmhvk)ξ(nm) dnmdhdvdk

does not vanish. This is a standard argument that can be proved as in [IY], Lemma 5.8. As a result
we can always find φ ∈ Aπ such that the left hand side (hence the right hand side) of the equality
above is nonzero. Since Ress=1/2E(φ, s) 6= 0 if and only if Ress=1/2M(s) 6= 0 we must have that
the former is non-zero for some φ. This completes the proof of Theorem 0.2 under the assumption
of Proposition 4.2.

Remark 4.13. We expect that the period PG2(Ress=1/2E(φ, s)) is absolutely convergent. To put
it differently, the period PG2 is absolutely convergent on the space of the square integrable repre-
sentation Π generated by Ress=1/2E(φ, s). It would then easily follow from the identity above that
PG2 |Π 6= 0 if and only if PGR|π 6= 0. Since we do not need this result to prove the relation between
PGR and the central value of the exterior cube L-function of GL6 we didn’t pursue this goal here.
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5. The proof of Proposition 4.2

In this section, we will prove that the integrals associated to each orbits are absolutely convergent.
We first reduce the proof to some statement of norms on adelic variety. Then we introduce a notion
of good pair and we show that it is enough to prove that (H,HV ) is a good pair for all V ∈ V/H.
Finally, we will show that (H,HV ) is a good pair for all V ∈ V/H.

5.1. Notations. If f1 and f2 are two positive functions on a set X, we write

f1 � f2

if there exists C, d > 0 such that f1(x) ≤ Cf2(x)d for all x ∈ X. We write

f1 ∼ f2

if f1 � f2 and f2 � f1.
If X is an algebraic variety defined over F , we use || · ||X to be the norm on X(AF̄ ). Here

X(AF̄ ) = ∪EX(AE) where E runs over all the finite extension of F . We refer the readers to
Appendix A of [BP16] for the definition and basic properties of the norms on adelic varieties.

5.2. Some reduction. Let ‖·‖G be the norm on G(A). We first study the majorization of constant
terms.

Lemma 5.1. For all n ∈ N, there exist c ∈ R and T0 ∈ R large such that for all s ∈ C and T ∈ R
with Re(s) > c and T > T0, we have:

(1− τ̂P (HP (x)− T ))φ(x)e〈s$,HP (x)〉 ≤ ( min
δ∈P (F )

‖δx‖)−n

and

τ̂P (HP (x)− T )M(s)φ(x)e〈−s$,HP (x)〉 ≤ ( min
δ∈P (F )

‖δx‖)−n

for all x ∈ G(A).

Proof. This follows from the fact that cusp forms are rapidly decreasing. �

Proposition 5.2. For all V ∈ V/H, there exists D > 0 such that the integral

(5.1)

∫
HV (F )\H(A)

( inf
δ∈HV (F )

||δh||H)−ddh

is absolutely convergent for all d > D.

Proof. Since∫
HV (F )\H(A)

( inf
δ∈HV (F )

||δh||H)−ddh ≤
∫
HV (F )\H(A)

∑
δ∈HV (F )

||δh||−dH dh =

∫
H(A)

||h||−dH dh,

we only need to show that the integral ∫
H(A)

||h||−dH dh

is absolutely convergent for all d > D. This just follows from Proposition A.1.1(vi) of [BP16]. �

Combining the lemma and the proposition above, in order to prove Proposition 4.2, it is enough
to prove the following proposition.
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Proposition 5.3. For all V ∈ V/H, we have

inf
δ∈P (F )

||δγV h||G ∼ inf
δ∈HV (F )

||γV δh||H

for all h ∈ H(A). This is equivalent to show that for all V ∈ V/H, we have

inf
δ∈P (V )(F )

||δh||G ∼ inf
δ∈HV (F )

||δh||H

for all h ∈ H(A). Recall that P (V ) = γ−1
V PγV is the parabolic subgroup of E6 stabilizing V and

HV = H ∩ P (V ).

The goal of the rest part of this section is to prove Proposition 5.3.

5.3. Some abstract theory. In this subsection, let G be a linear algebraic group defined over F ,
H and P are two closed subgroups of G also defined over F with HP = H ∩ P . Assume that G/H
is quasi-affine. We use i to denote the natural embedding P/HP → G/H. We say (H,HP ) is a
good pair if

(5.2) inf
γ∈HP (F )

||γh||H � inf
γ∈HP (F̄ )

||γh||H

for all h ∈ H(A).

Lemma 5.4. i(P/HP ) is open in its closure i(P/HP ). In particular, this implies that P/HP is
quasi-affine since we have assumed that G/H is quasi-affine.

Proof. By Theorem 1.9.5 of [Spr98], i(P/HP ) contains an open subset U of its closure i(P/HP ).

This implies that i(P/HP ) =
⋃
p∈P p · U is open in i(P/HP ). �

Proposition 5.5. Assume that (H,HP ) is a good pair. Then for all h ∈ H(A), we have

inf
γ∈P (F )

||γh||G ∼ inf
γ∈HP (F )

||γh||H .

Proof. One direction is trivial, we only need to show that

inf
γ∈P (F )

||γh||G � inf
γ∈HP (F )

||γh||H .

Since P/HP is quasi-affine, by the proof of Proposition A.1.1(ix) of [BP16], there exists a set
theoretic section s : (P/HP )(F̄ )→ P (F̄ ) of the projection map pr1 : P → P/HP such that

||s(x)||G � ||x||P/HP

for all x ∈ (P/HP )(F̄ ). We will use pr2 to denote the projection map G → G/H and use i to
denote the natural embedding P/HP → G/H. Then for all γ ∈ P (F ), we have i(pr1(γ)) = pr2(γ).
By Proposition A.1.1(ii), (iv) of [BP16] and Lemma 5.4 above, we have

(5.3) ||δ||P/HP
∼ ||i(δ)||G/H

for all δ ∈ P/HP (F̄ ). Then by applying Proposition A.1.1(ii) of [BP16] again, we have

||pr1(γ)||P/HP
∼ ||i(pr1(γ))||G/H = ||pr2(γ)||G/H � ||γh||G

for all γ ∈ P (F ) and h ∈ H(A). This implies that

inf
γ′∈HP (F̄ )

||γ′h||G ≤ ||s(pr1(γ))−1γh||G � ||s(pr1(γ))||G||γh||G � ||pr1(γ)||P/HP
||γh||H � ||γh||H

for all (γ, h) ∈ P (F )×H(A). If we take inf over γ, we get

inf
γ∈P (F )

||γh||G � inf
γ∈HP (F̄ )

||γh||H .
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Since (H,HP ) is a good pair, we have

inf
γ∈P (F )

||γh||G � inf
γ∈HP (F )

||γh||H .

This proves the proposition. �

Remark 5.6. If we only want to prove

inf
γ∈P (F̄ )

||γh||G ∼ inf
γ∈HP (F̄ )

||γh||H

for all h ∈ H(AF̄ ), we don’t need to assume that (H,HP ) is a good pair.

The following corollary is a direct consequence of the proposition above, it reduces the proof of
Proposition 5.3 to the proof of some good pair arguments.

Corollary 5.7. In order to prove Proposition 5.3, it is enough to show that (H,HV ) are good pairs
for all V ∈ V/H.

For the rest part of this subsection, we will discuss some abstract theory for good pairs.

Proposition 5.8. (1) (H,H) is a good pair.
(2) If there exists a closed subvariety H ′ of H defined over F such that the morphism

HP ×H ′ → H : (h1, h2) 7→ h1h2

is an isomorphism, then (H,HP ) is a good pair.
(3) If H = H0 n U with H0 reductive and U unipotent, and HP = H0,P n UP with H0,P =

H0 ∩HP and UP = U ∩HP . Assume that there exists a closed subgroup H1 of H0 such that
H0 = H0,P ×H1, then (H,HP ) is a good pair.

(4) If H = H0 n U with H0 reductive and U unipotent. Assume that there exists a parabolic
subgroup Q = L n N of H0 such that HP ⊂ Q n U and (Q n U,HP ) is a good pair, then
(H,HP ) is a good pair.

Proof. (1) has been proved in Proposition A.1.1(ix) of [BP16]. For (2), let h ∈ H(A). Then we can
write h as h1h2 with h1 ∈ HP (A) and h2 ∈ H ′(A). We have

||h||H ∼ ||h1||HP
||h2||H′ .

Then for all γ ∈ HP (F̄ ), we have

||γh||H ∼ ||γh1||HP
||h2||H′ ,

which implies that

inf
γ∈HP (F̄ )

||γh||H ∼ inf
γ∈HP (F̄ )

||γh1||HP
||h2||H′ � inf

γ∈HP (F )
||γh1||HP

||h2||H′

∼ inf
γ∈HP (F )

||γh1h2||H = inf
γ∈HP (F )

||γh||H .

Here infγ∈HP (F̄ ) ||γh1||HP
� infγ∈HP (F ) ||γh1||HP

follows from (1). This proves (2).

(3) is a direct consequence of (2). For (4), we just need to use the Iwasawa decomposition
H(A) = Q(A)U(A)K together with the fact that elements of K will not change the norm. �

Corollary 5.9. Let H = H0nU with H0 reductive and U unipotent. Assume that HP = HP,0nUP
with HP,0 = H0 ∩HP and UP = U ∩HP . Moreover, assume that there exists a parabolic subgroup
Q = LnN of H0 such that HP,0 ⊂ Q and HP,0 = LP nNP with LP = L∩HP,0 and NP = N ∩HP,0.
Finally, we assume that there exists a closed subgroup L1 of L such that L = LP×L1. Then (H,HP )
is a good pair.

Proof. By the Iwasawa decomposition, it is enough to show that (Ln (N n U), HP ) = (Ln (N n
U), LP n (NP n UP )) is a good pair. This follows from Proposition 5.8(3). �
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5.4. The good pair (G2,SL3). In this subsection, G = G0 n N where G0 = G2 and N is some
unipotent group. Let H = H0 n N ′ be a subgroup of G with N ′ being a subgroup of N and
H0 = SL3 ⊂ G2 = G0. Our goal is to prove the following proposition.

Proposition 5.10. The pair (G,H) is a good pair.

We need some preparation. First we recall the embedding of SL3 into G2. The positive roots of
G2 is {α, β, α + β, α + 2β, α + 3β, 2α + 3β} with α, β be the two simple roots. The positive roots
of SL3 is α0, β0, α0 + β0. We embed SL3 into G2 via

α0 → α, β0 → α+ 3β, α0 + β0 → 2α+ 3β.

Let Pα = MαUα be the maximal parabolic subgroup of G2 associated to α. Then Mα ' GL2

and Uα contains the roots {β, α + β, α + 2β, α + 3β, 2α + 3β}. Let U0 be the center of Uα which
is generated by {α+ 3β, 2α+ 3β}. Then we can write Uα as U0U1 where U1 is a closed subvariety
of Uα generated by {β, α + β, α + 2β}. Note that U1 is not a group! Moreover, we know that
MαU0 is a parabolic subgroup of SL3.

Lemma 5.11. For all h ∈ SL3(AF̄ ) and u1 ∈ U1(A), we have

||hu1||G ∼ ||h||G||u1||G.

Proof. By the Iwasawa decomposition, it is enough to consider the case when h = mu0 with
m ∈Mα(AF̄ ) and u0 ∈ U0(AF̄ ). Since Uα = U0U1, Pα = MαUα is a parabolic subgroup of G0 and
MαU0 is a parabolic subgroup of H0, we have

||hu1||G = ||mu0u1||G ∼ ||m0||G||u0u1||G ∼ ||m0||G||u0||G||u1||G ∼ ||m0u0||G||u1||G = ||h||G||u1||G.
This proves the lemma. �

Now we are ready to prove Proposition 5.10. For g ∈ G(A), we want to show that

inf
γ∈H(F̄ )

||γg||G � inf
γ∈H(F )

||γg||G.

By the Iwasawa decomposition, it is enough to consider the case when g = nmu0u1 with n ∈
N(A),m ∈Mα(A), u0 ∈ U0(A) and u1 ∈ U1(A). Since MαU0 ∈ SL3 = H0, we can write g as nh0u1

with n ∈ N(A), h0 ∈ H0(A) and u1 ∈ U1(A). In order to prove Proposition 5.10, it is enough to
prove the following proposition.

Proposition 5.12. For all n ∈ N(A), h0 ∈ H0(A) and u1 ∈ U1(A), we have

(5.4) inf
γ∈H0(F̄ ),ν∈N ′(F̄ )

||νγnh0u1||G � inf
γ∈H0(F ),ν∈N ′(F )

||νγnh0u1||G.

Proof. For all γ ∈ H0(F̄ ) and ν ∈ N ′(F̄ ), we have

||νγnh0u1||G = ||(νγnγ−1) · (γh0)u1||G � ||(γh0)u1||G.
Combine with Lemma 5.11, we have

||νγnh0u1||G � ||u1||G.
This implies that

(5.5) inf
γ∈H0(F̄ ),ν∈N ′(F̄ )

||νγnh0u1||G � ||u1||G

for all n ∈ N(A), h0 ∈ H0(A) and u1 ∈ U1(A).
From the properties of norms it follows that there exists N0, C0 > 0 such that for all g1, g2 ∈

G(AF̄ ) we have

(5.6) C−1
0 ‖g1‖1/N0‖g2‖−1 ≤ ‖g1g2‖ ≤ C0‖g1‖N0‖g2‖N0 .
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Fix N1 and C1 sufficiently larger than N0 and C0 respectively. For a given n ∈ N(A), h0 ∈ H0(A)
and u1 ∈ U1(A), if

inf
γ∈H0(F ),ν∈N ′(F )

||νγnh0||G ≤ C1||u1||N1
G

then (5.4) follows from (5.5). If not, then we have

(5.7) inf
γ∈H0(F ),ν∈N ′(F )

||νγnh0||G ≥ C1||u1||N1
G .

Since (H0 nN,H0 nN ′) is a good pair by Proposition 5.8(3), we also have

inf
γ∈H0(F̄ ),ν∈N ′(F̄ )

||νγnh0||G ≥ C ′1||u1||
N ′1
G

for some C ′1, N
′
1 > 0 large. This and (5.6) imply that

(5.8) inf
γ∈H0(F̄ ),ν∈N ′(F̄ )

||νγnh0||G ≤ C3 inf
γ∈H0(F̄ ),ν∈N ′(F̄ )

||νγnh0u1||N3
G

for some C3, N3 ≥ 0. On the other hand, using (5.6) and (5.7) we have

(5.9) C4 inf
γ∈H0(F ),ν∈N ′(F )

||νγnh0u1||N4
G ≤ inf

γ∈H0(F ),ν∈N ′(F )
||νγnh0||G

for some C4, N4 ≥ 0. Here C3, C4, N3, N4 only depend on C0, C1, C
′
1, N0, N1, N

′
1, not on n, h0, u1.

Invoking once more the fact that (H0 n N,H0 n N ′) is a good pair, the inequality (5.4) follows
from (5.8) and (5.9). This finishes the proof of the proposition and hence the proof of Proposition
5.10. �

5.5. The proof of Proposition 5.3. In this subsection, we finish the proof of Proposition 5.3
and hence the proof of Proposition 4.2. We go back to the usual notations: G = E6, H = H0 nN
with H0 = G2, {γV }V ∈V/H are representatives of the double coset P\G/H. For V ∈ V/H, we have

defined P (V ) = γ−1
V PγV and HV = H ∩P (V ). By Corollary 5.7, in order to prove Proposition 5.3,

it is enough to prove the following proposition.

Proposition 5.13. For all V ∈ V/H, (H,HV ) is a good pair.

Proof. For each V ∈ V/H, by the computation in Section 2, we have HV = H0,V n NV with
H0,V = H0 ∩ P (V ) and NV = N ∩ P (V ). The groups H0,V are described in Proposition 2.7.
We know that for 10 out of the 17 orbits, H0,V is contained in a maximal parabolic subgroup of
H0 = G2 and H0,V contains the Levi subgroup of this parabolic subgroup (which is isomorphic to
GL2). Hence we know that (H,HV ) is a good pair for these 10 orbits by Corollary 5.9. For the
other 6 orbits, H0,V is isomorphic to SL3. Then we know that (H,HV ) is a good pair for these
6 orbits by Proposition 5.10. Finally, for the last orbit, H0,V = TVN0,V is contained in the Borel
subgroup B = TN0 of G2 with TV = T ∩ H0,V and N0,V = N0 ∩ H0,V . Moreover, there exists a
subtorus T0 ⊂ T such that T = T0 × TV . Then we know that (H,HV ) is a good pair for this orbit
by Corollary 5.9. This finishes the proof of the proposition and hence the proof of Proposition 5.3
and 4.2. �
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