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Abstract. In this paper, we propose a conjectural multiplicity formula
for general spherical varieties. For all the cases where a multiplicity
formula has been proved, including Whittaker model, Gan-Gross-Prasad
model, Ginzburg-Rallis model, Galois model and Shalika model, we show
that the multiplicity formula in our conjecture matches the multiplicity
formula that has been proved. We also give a proof of this multiplicity
formula in two new cases.
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1. Introduction

Let F be a local field of characteristic 0, G be a connected reductive
group defined over F , H be a connected closed subgroup of G, and χ be a
unitary character of H(F ). Assume that H is a spherical subgroup of G (i.e.
H admitting an open orbit in the flag variety of G). For every irreducible
smooth representation π of G(F ), we define the multiplicity

m(π, χ) := dim(HomH(F )(π, χ)).

One of the fundamental problems in the Relative Langlands Program is to
study the multiplicity m(π, χ). In general, one expects the multiplicity to
be finite and to detect some functorial structures of π. We refer the readers
to [18] for a detailed discussion of these kinds of problems.

In his pioneering works [20] and [21], Waldspurger developed a new method
to study the multiplicities. His idea is to prove a local trace formula Igeom(f) =
I(f) = Ispec(f) for the model (G,H), which would imply a multiplicity for-
mula m(π, χ) = mgeom(π, χ). Here mgeom(π, χ) is defined via the Harish-
Chandra character θπ of π and is called the geometric multiplicity. In his
paper [20] and [21], Waldspurger applied this method to the orthogonal
Gan-Gross-Prasad models over p-adic field. By proving the trace formula
and the multiplicity formula, he was able to show that for the orthogonal
Gan-Gross-Prasad model, the summation of the multiplicities is always e-
qual to 1 for all tempered local Vogan L-packets. Later his idea was adapted
by Beuzart-Plessis [2], [3] for the unitary Gan-Gross-Prasad model, and by
the author [22], [23] for the Ginzburg-Rallis model. Subsequently, in [4],
Beuzart-Plessis applied this method to the Galois model; in a joint work
with Beuzart-Plessis [5], we applied this method to the Shalika model; and
in a joint work with Zhang [24], we applied this method to the unitary
Ginzburg-Rallis model.

For all the cases above, the most crucial step in the proof is to prove the
local trace formula Igeom(f) = I(f) = Ispec(f). However, the proofs of these
trace formulas, especially the geometric side (i.e. I(f) = Igeom(f)), have
each time been done in some ad hoc way pertaining to the particular features
of the case at hand. It makes now little doubt that the local trace formula



MULTIPLICITY FORMULA 3

and multiplicity formula should exist in some generality. However, until
this moment, it is not clear (even conjecturally) what would both formulas
look like for general spherical varieties. The reason is that although we can
easily give a uniform definition of the multiplicity m(π, χ), the distribution
I(f) and the spectral expansion Ispec(f) for all the spherical varieties, the
geometric multiplicity mgeom(π, χ) and the geometric expansion Igeom(f)
are more mysterious. There are no uniform definitions of these two objects
for general spherical varieties.

Remark 1.1. The definitions of mgeom(π, χ) and Igeom(f) are very similar
to each other. So one only needs to define mgeom(π, χ) for general spherical
varieties, which will lead to the definition of Igeom(f).

In this paper, we propose a uniform definition of mgeom(π, χ) (and hence
Igeom(f)) for general spherical varieties. To justify our definitions, we show
that for all the cases where the multiplicity formulas have been proved, in-
cluding the Whittaker model, the Gan-Gross-Prasad model, the Ginzburg-
Rallis model, the Galois model, and the Shalika model, our definition of the
geometric multiplicity matches the one in the known multiplicity formula.
We will also give a proof of the multiplicity formula for two new cases. We
hope our definitions will give people a better understanding of the multi-
plicity formula and local trace formula, and shed some light on a potential
proof of both formulas for general spherical varieties.

1.1. Main results. Let F,G,H, χ,m(π, χ) be as above. Our goal is to
define the geometric multiplicity mgeom(π, χ). Before we explain our defini-
tion, let’s first consider the baby case when G is a finite group. In this case,
let θπ(g) = tr(π(g)) be the character of π. By the representation theory of
finite group, we know that m(π, χ) = mgeom(π, χ) where

(1.1) mgeom(π, χ) :=
1

|H|
∑
h∈H

θπ(h)χ−1(h) =
∑
x

1

|ZH(x)|
θπ(h)χ−1(h).

Here the second summation is over a set of representatives of conjugacy
classes of H and ZH(x) is the centralizer of x in H.

Guided by the finite group case and all the known cases, it is natural
to expect that for general spherical pair (G,H), mgeom(π, χ) should be an
integral over certain semisimple conjugacy classes of H(F ) of the Harish-
Chandra character θπ. However, compared with the finite group case, there
are three difficulties in the definition of mgeom(π, χ) for spherical varieties
over local field.

First, unlike the finite group case, the Harish-Chandra character θπ is
only defined on the set of regular semisimple elements of G(F ). On the
other hand, many semisimple conjugacy classes of H(F ) are not regular in
G(F ) which means that θπ is not defined in those conjugacy classes. In
order to solve this issue, we need to use the germ expansion for θπ. Roughly
speaking, near every semisimple element (not necessarily regular) of G(F ),
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θπ can be written as a linear combination of the Fourier transform of the
nilpotent orbital integrals. The coefficients associated to regular nilpotent
orbits in this linear combination are called the regular germs of θπ (see
Section 2.4 for details). In order to define θπ at non-regular semisimple
conjugacy classes, we need to use the regular germs of θπ. This creates
the first difficulty: in general when F 6= C, we may have more than one
F -rational regular nilpotent orbits. Hence for each spherical pair (G,H),
we need to define a subset of regular nilpotent orbits whose regular germs
appear in the geometric multiplicity. This will be done in Section 5 by using
the conjugacy classes in the tangent space of G/H.

Secondly, we need to define the support (i.e. a subset of semisimple
conjugacy classes of H(F )) of the geometric multiplicity. In the finite group
case, the support of geometric multiplicity contains all the conjugacy classes
of H. But this will not be the case for spherical varieties over local field.
As we will see in Section 3, the geometric multiplicity is only supported
on those “elliptic conjugacy classes” whose centralizers in G(F ) and H(F )
form a minimal spherical variety (see Section 2.6) and whose centralizer in
G(F ) is quasi-split. The quasi-split condition provides the existence of the
regular germs, while the minimal spherical variety condition ensures that the
“homogeneous degree” of the spherical variety is equal to the homogeneous
degree of the regular germs of the Harish-Chandra character. We refer the
readers to Section 3 for details.

Thirdly, in the finite group case, we normalize the character θπ by the
number 1

|ZH(x)| . For general spherical varieties, we would need an extra

number d(G,H,F ) which characterizes how the G(F̄ )-conjugacy class (i.e.
stable conjugacy class) in the tangent space of G/H decomposes into H(F )-
conjugacy classes. We refer the readers to Section 4 for details.

After we have solved the three difficulties above, we are able to write
down the definition of mgeom(π, χ) (and hence Igeom(f)) for all spherical
varieties in Section 6. We will state the conjectural multiplicity formula in
Conjecture 6.4. In Section 7, we will show that for all the known cases, our
definition of the geometric multiplicity mgeom(π, χ) matches the one in the
known multiplicity formula.

Theorem 1.2. Assume that F is p-adic. When (G,H) is the Whittaker
model, Gan-Gross-Prasad model, Ginzburg-Rallis model, Galois model, or
Shalika model, the geometric multiplicity defined in Definition 6.1 match-
es the one in the multiplicity formula that has been proved. In particular,
Conjecture 6.4 holds for all these models.

Our proof of Theorem 1.2 uses a Lie algebra version of the local trace
formula for Gan-Gross-Prasad model and Ginzburg-Rallis model, as well as
a relation between the Shalika germ and Kostant section proved by Kottwitz
(see Lemma 5.4). In general if one can extend Lemma 5.4 to the archimedean
case, then we can also prove Theorem 1.2 when F = R (the case when F = C
is trivial).
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Remark 1.3. Unlike the finite group case, we don’t expect the multiplicity
formula m(π, χ) = mgeom(π, χ) holds for all irreducible smooth representa-
tions of G(F ). An easy example will be the model (GL2,GL1). For this
case, the geometric multiplicity is just the regular germ of θπ at the iden-
tity element and one can show that the multiplicity formula holds for all
generic representations. However, it is easy to see that this formula fails
for nongeneric representations (i.e. finite dimensional representations) of
GL2(F ).

In general, the multiplicity formula should always hold for all supercus-
pdial representations. When the spherical pair is tempered, it should hold
for all discrete series and for almost all tempered representations. When the
spherical pair is strongly tempered, it should hold for all tempered repre-
sentations.

Moreover, as observed by Prasad in [15], if we want to make the mul-
tiplicity formula holds for all irreducible smooth representations of G(F ),
we need to replace the multiplicity m(π, χ) by the Euler-Poincaré pairing
EP (π, χ). We refer the readers to Section 6 for details.

Moreover, all of our discussions so far make sense when χ is a finite di-
mensional representations of H(F ). In particular, we can also define the
geometric multiplicity mgeom(π, χ) when χ is a finite dimensional repre-
sentation of H(F ) (when F is p-adic, this is not interesting since finite
dimensional representations of H(F ) are essentially characters).

The case we are interested in is when F = R and H(R) = K is a maximal
connected compact subgroup of G(R). In this case, m(π, χ) = mgeom(π, χ)
gives a multiplicity formula of K-types for all the irreducible smooth rep-
resentations of G(R) (note that since H(R) is compact, we have m(π, χ) =
EP (π, χ) for all π). We refer the readers to Section 6.3 for more details. In
Section 8 and 9, I will prove this multiplicity formula of K-types for GLn(R)
and for all the complex reductive groups.

Theorem 1.4. The multiplicity formula of K-types (i.e. Conjecture 6.10)
holds when

(1) G(F ) = GLn(R).
(2) G = ResC/RH is a complex reductive group.

In particular, Conjecture 6.4 holds for these two cases.

The key ingredient of our proof of Theorem 1.4 is to show that both the
multiplicity and the geometric multiplicity behave nicely under parabolic
induction. For the multiplicity, this follows from the Iwasawa decomposition
and the reciprocity law. For the geometric multiplicity, this follows from
Proposition 2.3 which gives the behavior of the Harish-Chandra character
under parabolic induction. After we have proved these arguments, we can
use induction to finish the proof of Theorem 1.4. The upshot is that when
G = GLn (n > 2) or when G = ResC/RH is a nonabelian complex reductive
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group, the Grothendieck group of finite length smooth representations of
G(R) is generated by induced representations.

The paper is organized as follows: In Section 2, we introduce basic nota-
tion and conventions used in this paper. In Section 3, we will define a subset
of conjugacy classes of H(F ), which will be the support of the geometric
multiplicity. In Section 4, we introduce a constant d(G,H,F ) associated to
minimal spherical varieties. It characterizes how the G(F̄ )-conjugacy class
in the tangent space of G/H decomposes into H(F )-conjugacy classes. In
Section 5, we define a subset of regular nilpotent orbits associated to mini-
mal spherical varieties. The regular germs of those nilpotent orbits will show
up in the geometric multiplicity. Then in Section 6, combining the works
in Section 3-5, we will define the geometric multiplicity mgeom(π, χ) and
the geometric expansion of the trace formula Igeom(f) for general spherical
varieties. In Section 7, we will show that for all the known cases, our defini-
tion of the geometric multiplicity matches the one in the known multiplicity
formula. Finally, in Section 8 and 9, we will prove the multiplicity formula
of K-types for GLn(R) and for all the complex reductive groups.

1.2. Acknowledgement. I would like to thank Raphaël Beuzart-Plessis
for the helpful comments on the first draft of this paper, and for many
helpful discussions which lead to the definition of the geometric multiplicity
when the spherical variety has Type N root. I would also like to thank an
anonymous referee for the helpful comments and corrections on a previous
version of this paper.

2. Preliminary

2.1. Notation. Let F be a local field of characteristic 0, and ψ : F → C×
be a nontrivial additive character. Let G be a connected reductive group
defined over F , g be the Lie algebra of G, ZG be the center of G, and AG(F )
be the maximal split torus of ZG(F ). We use Gss, Greg (resp. gss, greg)
to denote the set of semisimple and regular semisimple elements of G (resp.
g). For x ∈ Gss (resp. X ∈ gss), let ZG(x) (resp. ZG(X) = GX) be the
centralizer of x (resp. X) inG and letGx be the neutral component of ZG(x).
Similarly, for any abelian subgroup T of G, let ZG(T ) be the centralizer of
T in G and let GT be the neutral component of ZG(T ). We say x ∈ Greg(R)
is elliptic if Gx(R) is a maximal elliptic torus of G(R) (i.e. Gx(R)/ZG(R) is
compact). We use Gell(R) to denote the set of regular semisimple elliptic
elements of G(R). Finally, for x ∈ Gss(F ) (resp. X ∈ gss(F )), let DG(x)
(resp. DG(X)) be the Weyl determinant.

Fix a non-degenerate, symmetric, G-invariant bilinear form < , > (i.e.
the Killing form) on g. For any complex valued Schwartz function f on

g(F ), we define its Fourier transform f̂ (which is also a Schwartz function
on g(F )) to be

f̂(X) =

∫
g(F )

f(Y )ψ(< X,Y >)dY
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where dY is the selfdual Haar measure on g(F ) such that
ˆ̂
f(X) = f(−X).

We say a subset Ω ⊂ G(F ) (resp. ω ⊂ g(F )) is G-invariant if it is invariant
under the G(F )-conjugation. For any subset Ω ⊂ G(F ) (resp. ω ⊂ g(F )),
we define the G-invariant subset

ΩG := {g−1γg | g ∈ G(F ), γ ∈ Ω}, ωG := {g−1γg | g ∈ G(F ), γ ∈ ω}.
We say a G-invariant subset Ω of G(F ) (resp. ω of g(F )) is compact modulo
conjugation if there exist a compact subset Γ of G(F ) (resp. g(F )) such
that Ω ⊂ ΓG (resp. ω ⊂ ΓG). A G-domain on G(F ) (resp. g(F )) is an open
subset of G(F ) (resp. g(F )) invariant under the G(F )-conjugation.

Finally, we fix a minimal Levi subgroup (resp. parabolic subgroup)M0(F )
(resp. P0(F ) = M0(F )N0(F )) of G(F ). We say a parabolic subgroup of
G(F ) is standard if it contains P0(F ). We say a Levi subgroup of G(F ) is
standard if it is a Levi subgroup of a standard parabolic subgroup and it
contains M0(F ). For two Levi subgroups L1(F ) and L2(F ) of G(F ), we say
that L1(F ) contains L2(F ) up to conjugation if there exists g ∈ G(F ) such
that L2(F ) ⊂ gL1(F )g−1.

2.2. Useful function spaces. We use C∞c (G(F )) to denote the space of
smooth compactly supported functions on G(F ), and we use C(G(F )) to
denote the Harish-Chandra-Schwartz space of G(F ) (see Section 1.5 of [3]
for details). On the Lie algebra level, let C∞c (g(F )) (resp. S(g(F ))) be the
space of smooth compactly supported functions (resp. Schwartz functions)
on g(F ). When F is p-adic, we have C∞c (g(F )) = S(g(F )).

Let C∞c,scusp(G(F )) be the space of strongly cuspidal functions in C∞c (G(F )).
Similarly we can define the spaces Cscusp(G(F )), C∞c,scusp(g(F )), Sscusp(g(F )).
We refer the readers to Section 5 of [3] for the definition and basic prop-
erties of strongly cuspidal functions. We say a function f ∈ C(G(F )) is a
cusp form if all the right translations of f are also strongly cuspidal. We
use ◦C(G(F )) to denote the space of cusp forms on G(F ).

Finally, we can also define the above function spaces with central charac-
ter. For a given unitary character χ of ZG(F ), let C∞c (G(F ), χ) be the Mellin
transform of the space C∞c (G(F )) with respect to χ. Similarly, we can also
define the spaces C(G(F ), χ), C∞c,scusp(G(F ), χ), Cscusp(G(F ), χ), ◦C(G(F ), χ).

2.3. Representations. When F is p-adic, we say a representation π of
G(F ) is smooth if for every v ∈ π, the function

f : G(F )→ π, f(g) = π(g)v

is locally constant. When F is archimedean, we say a representation π of
G(F ) is irreducible smooth (resp. finite length smooth) if it is an irreducible
(resp. finite length) Casselman-Wallach representation of G(F ). We say a
finite length smooth representation π of G(F ) is an induced representation
if there exists a proper parabolic subgroup P = MN of G and a finite length
smooth representation τ of M(F ) such that π = IGP (τ). Here IGP (·) is the
normalized parabolic induction.
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We use R(G) to denote the Grothendieck group of finite length smooth
representations of G(F ), and we useR(G)ind ⊂ R(G) to denote the subspace
of R(G) generated by induced representations. The following proposition
will be used in the proof of Theorem 1.4.

Proposition 2.1. Assume that F = R. If G = GLn with n > 2 or G =
ResC/RH where H is a connected reductive group defined over R that is
not abelian, then R(G) = R(G)ind. In other words, R(G) is generated by
induced representations.

Proof. This follows from the fact that Gell(R) = ∅ when G = GLn (n > 2)
or when G = ResC/RH where H is a connected reductive group defined over
R that is not abelian. More specifically, since Gell(R) = ∅, G(R) does not
have elliptic representation. This implies that all the tempered representa-
tions of G(R) are generated by induced representations. Together with the
Langlands classification, we know that R(G) = R(G)ind. �

2.4. Quasi character and germ expansion. LetNil(g(F )) (resp. Nilreg(g(F )))
be the set of nilpotent orbits (resp. regular nilpotent orbits) of g(F ). In
particular, the set Nilreg(g(F )) is empty unless G(F ) is quasi-split. For ev-
ery O ∈ Nil(g(F )) and f ∈ S(g(F )), we use JO(f) to denote the nilpotent
orbital integral of f associated to O. Harish-Chandra showed that there
exists a unique smooth function Y → ĵ(O, Y ) on greg(F ), which is invariant
under G(F )-conjugation, and locally integrable on g(F ), such that for every
f ∈ S(g(F )), we have

JO(f̂) =

∫
g(F )

f(Y )ĵ(O, Y )dY.

On the other hand, for X ∈ greg(F ) and f ∈ S(g(F )), let JG(X, f) be
the orbital integral. Harish-Chandra also showed that there exists a unique
smooth function Y → ĵ(X,Y ) on greg(F ), which is invariant under G(F )-
conjugation, and locally integrable on g(F ), such that for every f ∈ S(g(F )),
we have

JG(X, f̂) =

∫
g(F )

f(Y )ĵ(X,Y )dY.

Assume that F is p-adic. If θ is a smooth function on Greg(F ), invariant
under G(F )−conjugation. We say it is a quasi-character if for every x ∈
Gss(F ), there is a good neighborhood ωx of 0 in gx(F ), and for every O ∈
Nil(gx(F )), there exists cθ,O(x) ∈ C such that

θ(x exp(X)) =
∑

O∈Nil(gx(F ))

cθ,O(x)ĵ(O, X)

for every X ∈ ωx,reg. We refer the readers to Section 3 of [20] for the
definition of good neighborhood. The coefficients {cθ,O(x)| O ∈ Nil(gx(F ))}
(resp. {cθ,O(x)| O ∈ Nilreg(gx(F ))}) are called the germs (resp. regular
germs) of θ at x.
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Similarly, if θ is a smooth function on greg(F ), invariant underG(F )−conjugation.
We say it is a quasi-character on g(F ) if for every X ∈ gss(F ), there ex-
ists an open GX -invariant neighborhood ωX ⊂ gX(F ) of 0, and for every
O ∈ Nil(gX(F )), there exists cθ,O(X) ∈ C such that

θ(X + Y ) =
∑

O∈Nil(gX(F ))

cθ,O(X)ĵ(O, Y )

for every Y ∈ ωX,reg.
When F is archimedean, we refer the readers to Section 4.2-4.4 of [3] for

the definition of quasi-character. In this case, the germ expansions become

DG(x exp(X))1/2θ(x exp(X)) = DG(x exp(X))1/2
∑

O∈Nilreg(gx(F ))

cθ,O(x)ĵ(O, X)+O(|X|),

DG(X+Y )1/2θ(X+Y ) = DG(X+Y )1/2
∑

O∈Nilreg(gX(F ))

cθ,O(X)ĵ(O, Y )+O(|Y |).

The most important example of quasi-character on G(F ) is the Harish-
Chandra character θπ of finite length smooth representation of G(F ). Ex-

amples of quasi-character on g(F ) are the functions ĵ(X, ·) (X ∈ greg(F ))

and ĵ(O, ·) (O ∈ Nil(g(F ))) defined above.
For X ∈ greg(F ), we use ΓO(X) (O ∈ Nil(g(F )) in the p-adic case and

O ∈ Nilreg(g(F )) in the archimedean case) to denote the germs of the quasi-

character ĵ(X, ·) at 0 ∈ g(F ). This is called the Shalika germ. In particular,
we have the germ expansion

ĵ(X,Y ) =
∑

O∈Nil(g(F ))

ΓO(X)ĵ(O, Y ), F p-adic;

DG(X+Y )1/2ĵ(X,Y ) = DG(X+Y )1/2
∑

O∈Nilreg(g(F ))

ΓO(X)ĵ(O, Y )+O(|Y |), F archimedean

for Y ∈ greg(F ) close to 0.
Finally, for f ∈ Cscusp(G(F )) (resp. f ∈ Sscusp(g(F ))), let θf be the quasi-

character on G(F ) (resp. g(F )) defined via the weighted orbital integrals of

f . Also for f ∈ Sscusp(g(F )), let θ̂f = θf̂ be the Fourier transform of θf . We

refer the readers to Section 5.2 and 5.6 of [3] for details.

2.5. Regular germs under parabolic induction. Let π be a finite length
smooth representation of G(F ) and let θπ be its Harish-Chandra character.
For x ∈ Gss(F ), define

cπ(x) =

{ 1
|Nilreg(gx(R))|

∑
O∈Nilreg(gx(R)) cθπ ,O(x) if Nilreg(gx(R)) 6= ∅ ⇐⇒ Gx(R) is quasi-split;

0 if Nilreg(gx(R)) = ∅.
.

Remark 2.2. (1) For x ∈ Greg(R), cπ(x) is just θπ(x).
(2) If Nilreg(gx(R)) only contains a unique element Ox, then cπ(x) =

cθπ ,Ox(x).
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Let P = MN be a parabolic subgroup of G, τ be a finite length irreducible
smooth representation of M(R) and π = IGP (τ) be the normalized parabolic
induction. For all x ∈ Gss(R), let XM (x) be a set of representatives for the
M(R)-conjugacy classes of elements in M(R) that are G(R)-conjugated to
x. The following proposition was proved in Proposition 4.7.1 of [3] and it
tells us the behavior of cπ(x) under parabolic induction.

Proposition 2.3. For all x ∈ Gss(R), we have

DG(x)1/2cπ(x) = |ZG(x)(R) : Gx(R)|
∑

y∈XM (x)

|ZM (y)(R) : My(R)|−1DM (y)1/2cτ (y).

In particular, cπ(x) = 0 if the set XM (x) is empty.

Remark 2.4. WhenG = GLn or when x ∈ Greg(R), the numbers |ZG(x)(R) :
Gx(R)| and |ZM (y)(R) : My(R)| are always equal to 1. Hence the equation
above becomes

DG(x)1/2cπ(x) =
∑

y∈XM (x)

DM (y)1/2cτ (y).

2.6. Spherical subgroup. Let H ⊂ G be a connected closed subgroup
also defined over F . We say that H is a spherical subgroup if there exists a
Borel subgroup B of G (not necessarily defined over F since G(F ) may not
be quasi-split) such that BH is Zariski open in G. Such a Borel subgroup
is unique up to H(F̄ )-conjugation. If this is the case, then we say (G,H) is
a spherical pair and X = G/H is a spherical variety of G.

From now on, we assume that H is a spherical subgroup. We say the
spherical pair (G,H) is minimal if the stabilizer of the open Borel orbit
is finite modulo the center. In other words, B ∩ H/ZG ∩ H is finite for
all Borel subgroups B ⊂ G with BH open in G. Examples of minimal
spherical varieties are the Whittaker model, the Gan-Gross-Prasad model,
the Ginzburg-Rallis model, and all the split symmetric spaces. The following
lemma follows from the definition of minimal spherical pair.

Lemma 2.5. Assume that (G,H) is a spherical pair and B ⊂ G be a Borel
subgroup. Then dim(H)−dim(ZG ∩H) ≥ dim(G)−dim(B). Moreover, the
equality holds if and only if (G,H) is minimal. In other words, (G,H) is
minimal if and only if the dimension of H is equal to the dimension of the
maximal unipotent subgroup of G (up to modulo the center).

Definition 2.6. Let P = MN be a proper parabolic subgroup of G. For
a character ξ : N(F ) → C× of N(F ), we use Mξ to denote the neutral
component of the stabilizer of ξ in M (under the adjoint action). For m ∈
M(F ), let mξ be the character of N(F ) defined by mξ(n) = ξ(m−1nm).

We say ξ is a generic character if dim(Mξ) is minimal, i.e. dim(Mξ) ≤
dim(Mξ′) for any character ξ′ : N(F )→ C× of N(F ). It is easy to see that
if ξ is a generic character, so is mξ for all m ∈M(F ). Moreover, there are
finitely many generic characters of N(F ) up to M(F )-conjugation (which
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is in bijection with the open M(F )-orbits in n(F )/[n(F ), n(F )] under the
adjoint action).

In this paper, we restrict ourselves to the same setting as in [18]. In other
words, we consider two types of spherical varieties.

• The reductive case, i.e. H is reductive.
• The Whittaker induction of the reductive case: there exists a para-

bolic subgroup P = MN of G, and a generic character ξ : N(F )→
C× such that H = H0 nN where H0 = Mξ ⊂M is the neutral com-
ponent of the stabilizer of ξ in M and H0 is a reductive spherical
subgroup of M .

In this case, we let G0 = M and we say that (G,H) is the Whit-
taker induction of (G0, H0, ξ). If H is already reductive, we just let
(G0, H0, ξ) = (G,H, 1). It is easy to see that (G,H) is minimal if
and only if (G0, H0) is.

Remark 2.7. In general the stabilizer of a generic character is not neces-
sarily reductive (e.g. the parabolic subgroup of GL3 whose Levi subgroup
is GL2 ×GL1) and also not necessarily a spherical subgroup of M (e.g. the
parabolic subgroup of GL9 whose Levi subgroup is GL3 ×GL3 ×GL3).

We use WG to denote the Weyl group of G(F̄ ). When H is reductive, we
use WX to denote the little Weyl group of the spherical variety X = G/H
(defined in [10]) which can be identified as a subgroup of WG. Finally, let
ZG,H = ZG ∩H and AG,H(F ) be the maximal split torus of ZG,H(F ).

3. The support of geometric multiplicity

In this section, let (G,H) be a spherical pair which is the Whittaker
induction of the reductive spherical pair (G0, H0, ξ). Recall that when H is
reductive, we let (G0, H0, ξ) = (G,H, 1). We are going to define a subset
of semisimple conjugacy classes of H0(F ), which will be the support of the
geometric multiplicity.

Definition 3.1. Let T (G,H) be the set of all the closed (not necessari-
ly connected) abelian subgroups T (F ) of H0(F ) (up to H0(F )-conjugation)
satisfies the following four conditions.

(1) Every element of T (F ) is semisimple and (GT , HT ) is a minimal
spherical variety with GT (F ) quasi-split.

(2) T (F ) = ZZG(T )(F )∩H(F ) where ZZG(T )(F ) is the center of ZG(T )(F ).
In particular, we have ZG,H(F ) ⊂ T (F ) and AG,H(F ) ⊂ T ◦(F ).
Here T ◦(F ) is the neutral component of T (F ) which is a subtorus of
H0(F ).

(3) T (F )/ZG,H(F ) (or equivalently, T ◦(F )/AG,H(F )) is compact. This
is equivalent to say that H(F ) ∩AGT (F )/AG,H(F ) is finite.

(4) There exists t ∈ T (F ) such that (Gt, Ht) = (GT , HT ).

Let T (G,H)◦ = {T (F ) ∈ T (G,H)| T (F ) = T ◦(F )ZG,H(F )}.
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For T (F ) ∈ T (G,H), there exists a nonempty (this follows from Definition
3.1(4)) subset C(T,H) of T (F )/T ◦(F ) satisfies the following two conditions:

• For γ ∈ C(T,H), (Gt, Ht) = (GT , HT ) for almost all t ∈ γT ◦(F ).
• For γ ∈ T (F )/T ◦(F ) − C(T,H), (Gt, Ht) 6= (GT , HT ) for all t ∈
γT ◦(F ).

In particular, for T (F ) ∈ T (G,H)◦, we have (Gt, Ht) = (GT , HT ) for almost
all t ∈ T (F ).

Definition 3.2. For T (F ) ∈ T (G,H), let TH(F ) = ∪γ∈C(T,H)γT
◦(F ).

{TH(F )| T (F ) ∈ T (G,H)} will be the support of the geometric multiplicity.

Remark 3.3. For t ∈ H0,ss(F ), (Gt, Ht) is the Whittaker induction of
(G0,t, H0,t, ξ). Hence T (G,H) = T (G0, H0) and TH(F ) = TH0(F ) for all
T (F ) ∈ T (G,H) = T (G0, H0). In other words, the geometric multiplicity
of (G,H) has the same support as the geometric multiplicity of (G0, H0).

Remark 3.4. Here is another way to define the support of the geomet-
ric multiplicity: it is supported on all the semisimple conjugacy classes
{h−1th| h ∈ H0(F )} of H0(F ) that satisfy the following two conditions.

(1) (Gt, Ht) is a minimal spherical variety and Gt(F ) is quasi-split.
(2) H(F ) ∩AGt(F )/AG,H(F ) is finite.

As we mentioned in the introduction, the quasi-split condition ensures
the existence of regular nilpotent orbits in gt(F ). By Lemma 2.5, the mini-
mal spherical variety condition ensures that the homogeneous degree of the
spherical variety (Gt, Ht) (which is equal to dim(Ht)−dim(ZGt,Ht)) is equal
to the homogeneous degree of the regular germs of θπ at t (which is equal to
the dimension of the maximal unipotent subgroup of Gt). Meanwhile, the
second condition means that the geometric multiplicity is only supported on
certain “elliptic elements”.

Remark 3.5. When the spherical variety X = G/H does not have Type N
spherical root (we refer the readers to Section 3.1 of [18] for the definitions
of spherical root and Type N spherical root), we expect that (although we
can prove it at this moment) T (F ) = T ◦(F )ZG,H(F ) for all T (F ) ∈ T (G,H)
(i.e. T (G,H) = T (G,H)◦). In other words, the geometric multiplicity is
essentially supported on tori of H0(F ). On the other hand, when X = G/H
has Type N root, the geometric multiplicity may support on some non-
connected abelian subgroups of H0(F ).

For example, as we will see in Section 8, the geometric multiplicity of the
model (GLn(R), SOn(R)) (which has Type N root when n > 2) is supported
on the set (which is not necessarily connected when n > 2)

{diag(In1 ,−I2n2 , t)| t ∈ T (R)}

where (n1, n2) runs over the set

I(n1, n2) := {(n1, n2) ∈ Z≥0| n− n1 − 2n2 is a nonnegative even number}
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and T (R) is a maximal elliptic torus of SOn−n1−2n2(R). The multiplicity
formula for this case will be proved in Section 8.

The next three definitions will be used in Section 5.

Definition 3.6. Let L(G,H) be the set of standard Levi subgroups L(F ) of
G(F ) satisfy the following condition.

• There exists T (F ) ∈ T (G,H)◦ with T (F ) 6= ZG,H(F ) such that
L(F ) is conjugated to the Levi subgroup ZG(AT )(F ) where AT (F ) is
a maximal split torus of GT (F ).

Definition 3.7. For t ∈ Greg(F ), let T (F ) = Gt(F ), AT (F ) be the maximal
split subtorus of T (F ), and L(t)(F ) = ZG(AT )(F ) which is a Levi subgroup
of G(F ). In particular, t is elliptic regular if and only if L(t) = G. Similarly
we can define L(X)(F ) for X ∈ greg(F ).

Definition 3.8. We say X ∈ greg(F ) is null with respect to H if L(X)
does not contain any element in L(G,H) up to conjugation. Apparently this
definition only depends on the G(F̄ )-conjugacy class (i.e. stable conjugacy
class) of X. As a result, we say a regular semisimple conjugacy class (resp.
stable conjugacy class) of g(F ) is null with respect to H if every element in
it is null with respect to H.

Remark 3.9. If T (G,H)◦ = {ZG,H(F )} or ∅ (e.g. the Whittaker mod-
el), the set L(G,H) is empty, which implies that every regular semisimple
element in g(F ) is null with respect to H.

4. The constant d(G,H,F ) for minimal spherical varieties

In this section, assume that (G,H) is a minimal spherical pair with H
reductive. Moreover, we assume that G is quasi-split over F . Then we can
find a Borel subgroup B = TN ⊂ G defined over F such that BH is open
in G and B ∩H is finite modulo the center.

We use g, z = zg, h, b, t, n to denote the Lie algebras of G,ZG, H,B, T,N .
By our choice of H and B, we have

h ∩ b = h ∩ z, g = h + b.

Let h′ = {X ∈ h| < X,Y >= 0 for all Y ∈ z ∩ h} and h⊥ = {X ∈ g| <
X,Y >= 0 for all Y ∈ h′}. Then we have

h = h′ ⊕ (z ∩ h), g = h′ ⊕ b, g = h⊥ ⊕ n.

In particular, for every t ∈ t, there exists unique nt ∈ n such that t+nt ∈ h⊥.
By using h⊥ ⊕ n = g again, we know that the set {t+ nt| t ∈ t} is a vector
subspace of b of dimension dim(t). We use tH to denote it. It is easy to see
that tH = b ∩ h⊥ (hence it does not depends on the choice of T ).

Lemma 4.1. If treg ∩ tH 6= ∅, then H ∩ B ⊂ T . In particular, H ∩ B is
abelian.
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Proof. Fix t ∈ treg ∩ tH . Let γ ∈ H ∩ B. In order to show that γ ∈ T ,
it is enough to show that γ commutes with t. Since γ ∈ B, we know that
γtγ−1 = t + n for some n ∈ n. Since γ ∈ H and t ∈ h⊥, we know that
t + n = γtγ−1 ∈ h⊥. This implies that n = 0. Hence γ commutes with t.
This proves the lemma. �

Definition 4.2. Let c(G,H,F ) be the number of connected components of
B(F ) ∩H(F ).

Lemma 4.3. The number c(G,H,F ) is independent of the choice of B.

Proof. Let B = TN and B′ = T ′N ′ be two Borel subgroups of G defined
over F with BH and B′H being Zariski open in G. In order to prove the
lemma, it is enough to show that the group B(F ) ∩H(F ) is isomorphic to
the group B′(F ) ∩H(F ).

By Lemma 4.1, up to conjugating T (resp. T ′) by an element of N(F )
(resp. N ′(F )), we may assume that B ∩ H ⊂ T (resp. B′ ∩ H ⊂ T ′).
Since BH and B′H are Zariski open in G, there exists h ∈ H(F̄ ) such that
B = h−1B′h. Then the morphism

t ∈ B′ ∩H → h−1th ∈ B ∩H
is an isomorphism. So it is enough to show that for all t ∈ B′(F ) ∩H(F ),
we have h−1th ∈ B(F ) ∩H(F ).

For σ ∈ Gal(F̄ /F ), since both B and B′ are defined over F , we have
h−1B′h = B = σ(h)−1B′σ(h). This implies that B′ = hσ(h)−1B′σ(h)h−1.
Hence hσ(h)−1 ∈ B′∩H ′ ⊂ T ′. Together with the fact that B′(F )∩H(F ) ⊂
T ′(F ), we have

σ(h−1th) = σ(h)−1tσ(h) = h−1(hσ(h)−1tσ(h)h−1)h = h−1th

for all t ∈ B′(F ) ∩H(F ). This implies that h−1th ∈ B(F ) ∩H(F ). �

Lemma 4.4. There is a bijection between open orbits in B(F )\G(F )/H(F )
and ker(H1(F,H ∩ B) → H1(F,H)). We use d(G,H,F )′ to denote the
number of open orbits in B(F )\G(F )/H(F ).

Proof. Let X = BH which is an open subvariety of G. Then open or-
bits in B(F )\G(F )/H(F ) are just the orbits in B(F )\X(F )/H(F ). Let
B(F )\X(F )/H(F ) = ∪li=1B(F )γiH(F ). For each i, there exists bi ∈ B(F̄ )
and hi ∈ H(F̄ ) such that γi = bihi. Then it is easy to see that the map

σ ∈ Gal(F̄ /F ) 7→ b−1
i σ(bi) = hiσ(hi)

−1 ∈ H ∩B
is a cocycle whose image inH1(F,H∩B) only depends on the orbitB(F )γiH(F ).
Also by definition, this cocycle becomes a coboundary in H. This gives a well
defined map from B(F )\X(F )/H(F ) to ker(H1(F,H ∩ B) → H1(F,H)).
One can easily check that this map is a bijection. �

Definition 4.5. We define the constant d(G,H,F ) to be

d(G,H,F ) = d′(G,H,F )× |WG|
|WX |

.
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Recall that WX is the little Weyl group of the spherical variety X = G/H
and WG is the Weyl group of G(F̄ ).

Remark 4.6. Since (G,H) is a minimal spherical pair, it is wavefront if
and only if WG = WX . If this is the case, we have

d(G,H,F ) = d′(G,H,F ) = | ker(H1(F,H ∩B)→ H1(F,H))|.

We refer the readers to Section 2.1 of [18] for the definition of wavefront
spherical variety.

The rest of this subsection is to study the relation between the number
d(G,H,F ) and the slice representation (i.e. the conjugation action of H(F )
on h⊥(F )).

Lemma 4.7. There exists a WG-invariant Zariski open subset t0 of treg
such that for all t ∈ t0(F̄ ), the G(F̄ )-conjugacy class of t in h⊥(F̄ ) breaks

into |WG|
|WX | -many H(F̄ )-conjugacy classes.

Proof. By modulo H and G by the center ZG,H = H ∩ ZG, we may assume
that H ∩ ZG = {1}. Then we know that B ∩ H is finite. We denote by
X (T ) the group of rational characters of T , and define a = Hom(X (T ),R).

Let X (X) be the group of T -eigencharacters on F̄ (X)(B) where F̄ (X)(B) is
the multiplicative group of nonzero B-eigenfunctions on F̄ (X). Finally, let
aX = Hom(X (X),R). Since H ∩ B is finite, we have a = aX . Let a∗ = a∗X
be the dual of a = aX , and let T ∗X = h⊥ ×H G be the cotangent bundle of
X. By the result in [10], we have h⊥�H = T ∗X �G = a∗X �WX = a∗�WX .
Meanwhile, we have g �G = a∗ �WG. This proves the lemma. �

Remark 4.8. When (G,H) is a symmetric pair (which is wavefront), we
have WG = WX . By the work of Kostant-Rallis [12], we can even take
t0 to be treg. Examples of non wavefront minimal spherical varieties are
(SO2n+1,GLn) and (GL2n+1,Sp2n).

Definition 4.9. Let h⊥,0 be the set of elements in h⊥ that is G-conjugated
to an element in t0. It is a Zariski open subset of h⊥. By the above lemma,

we know that each G(F̄ )-conjugacy class in h⊥,0(F̄ ) breaks into |WG|
|WX | -many

H(F̄ )-conjugacy classes.

Lemma 4.10. For every t ∈ tH(F ) regular semisimple, the H(F̄ )-conjugacy
class of t in h⊥(F ) breaks into d(G,H,F )′ many H(F )-conjugacy classes.

Proof. By conjugating T we may assume that t ∈ treg(F ). By Lemma 4.1,

we know that H ∩ B ⊂ T . Let t′ ∈ h⊥(F ) be an element that is H(F̄ )-
conjugated to t. Then exists h ∈ H(F̄ ) such that ht′h−1 = t. For all
σ ∈ Gal(F̄ /F ), we have

σ(h)t′σ(h)−1 = ht′h−1 = t.
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In particular, σ(h)h−1 commutes with t. This implies that σ(h)h−1 ∈ H ∩
T = H ∩B. Then it is easy to see that the map

σ ∈ Gal(F̄ /F ) 7→ σ(h)h−1 ∈ H ∩B

is a cocycle whose image in H1(F,H ∩ B) only depends on the H(F )-
conjugacy classes of t′. Also it is easy to see that this cocycle becomes
a coboundary in H. This gives a well defined map from the set of H(F )-
conjugacy classes in theH(F̄ )-conjugacy class of t in h⊥(F ) to ker(H1(F, T0)→
H1(F,H)). One can easily check that this map is a bijection. �

Combining the lemmas above, we have proved the following proposition.

Proposition 4.11. For every t ∈ h⊥,0(F ), if Gt(F ) is a maximal quasi-split
torus of G(F ) (i.e. the conjugacy class of t is “quasi-split”), then the G(F̄ )-
conjugacy class of t (i.e. the stable conjugacy class of t) in h⊥(F ) breaks

into d(G,H,F ) = d(G,H,F )′ × |WG|
|WX | many H(F )-conjugacy classes.

Remark 4.12. If H ∩ B ⊂ ZG, then by the same argument as above, we
can even show that every G(F̄ )-conjugacy class (not necessarily quasi-split)
in h⊥,0(F ) breaks into d(G,H,F ) many H(F )-conjugacy classes.

Remark 4.13. In general, if (G,H) is the Whittaker induction of (G0, H0, ξ)
with (G0, H0) minimal, we can also define an analogue of space h⊥(F ) by
adding the information of ξ (see Section 5.3). We will denote this space by
Ξ + h⊥0 (F ) + n(F ) and we are still interested in how the stable conjugacy
classes in Ξ + h⊥0 (F ) + n(F ) decomposes into H(F )-conjugacy classes.

For most known cases, the stable conjugacy classes in Ξ + h⊥0 (F ) + n(F )
are the same as the H(F )-conjugacy classes, i.e. d(G0, H0, F ) = 1. In other
words, two regular semisimple elements in Ξ + h⊥0 (F ) + n(F ) are G(F̄ )-
conjugated to each other if and only if they are H(F )-conjugated to each
other. For the Whittaker model case, this follows from the theory of Kostant
section [11]. For the Gan-Gross-Prasad model case, this was proved in Sec-
tion 9 of [20] (the orthogonal case) and Section 10 of [3] (unitary case). For
the Ginzburg-Rallis model case, this was proved in Section 8 of [22]. This
property is crucial in the proof of the local trace formula for those cases.

The only exception among the known cases is the Ginzburg-Rallis model
for unitary group (see Section 7.3). In that case, the number d(G0, H0, F ) is
equal to 2 which means that every G(F̄ )-conjugacy class in Ξ+h⊥0 (F )+n(F )
breaks into two H(F )-conjugacy classes. However, although we have proved
the multiplicity formula for this model in [24], it was not proved by the trace
formula method. Instead, we first considered the Ginzburg-Rallis model for
unitary similitude group (where the number d(G0, H0, F ) is equal to 1).
We proved the trace formula and the multiplicity formula for the unitary
similitude group case. Then we proved the multiplicity formula for the
unitary group case by using the multiplicity formula of the unitary similitude
group case.
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Hence if one wants to prove the multiplicity formula and local trace for-
mula for general spherical varieties, one of the important steps is to develop
a method to deal with the case when d(G0, H0, F ) 6= 1. Roughly speaking,
we need to “stabilize” the trace formula.

5. Nilpotent orbits associated to minimal spherical varieties

In this subsection, let (G,H) be a minimal spherical pair with G(F ) quasi-
split. The goal is to define a subset N (G,H, ξ) (note that ξ = 1 when H is
reductive) of Nilreg(g(F )).

5.1. Conjugacy classes associated to regular nilpotent orbits. Fix a
regular nilpotent orbit O of g(F ). For Ξ ∈ O, by the theory of sl2-triple,
there exists a homomorphism

ϕ : F× → G(F )

such that for all s ∈ F×, we have ϕ(s)Ξϕ(s)−1 = s−2Ξ. Since O is regular,
ϕ is unique up to the center (i.e. two different choices of ϕ are differed by
an element in Hom(F×, ZG(F ))). Let N(F ) (resp. N̄(F )) be the unipotent
subgroup of G(F ) whose Lie algebra is given by

n(F ) = {X ∈ g(F )| lim
s→0

ϕ(s)Xϕ(s)−1 = 0}, n̄(F ) = {X ∈ g(F )| lim
s→0

ϕ(s)−1Xϕ(s) = 0}.

In particular, we have Ξ ∈ n̄(F ). Finally, let T (F ) be the centralizer of
Im(ϕ) in G(F ). Since O is regular, we know that N(F ) (resp. N̄(F )) is a
maximal unipotent subgroups of G(F ), T (F ) is a maximal torus of G(F ),
B = T (F )N(F ) (resp. B̄(F ) = T (F )N̄(F )) is a Borel subgroup of G(F ),
B(F ) and B̄(F ) are opposite to each other.

Remark 5.1. The map

ξ : N(F )→ C×, ξ(exp(X)) = ψ(< Ξ, X >), X ∈ n(F )

is a generic character of N(F ).

Definition 5.2. For X ∈ greg(F ), we say that X is associated to O if X is
G(F )-conjugated to an element in Ξ + b(F ). We say a regular semisimple
conjugacy class of g(F ) is associated to O if all the elements in this conjugacy
class are associated to O. It is easy to see that this definition does not depend
on the choice of Ξ. Ξ + b(F ) is called the Kostant section associated to O.

Remark 5.3. By the theory of Kostant section [11], for every stable reg-
ular semisimple conjugacy class of g(F ), there is a unique conjugacy class
inside it that is associated to O. Later in Section 7.1, we will show that for
two different regular nilpotent orbits O1,O2 ∈ Nilreg(g(F )), there exists a
regular semisimple conjugacy class of g(F ) that is associated to O1, but not
associated to O2.

Lemma 5.4. When F is p-adic, for all regular semisimple conjugacy classes
{gXg−1| g ∈ G(F )} of g(F ), ΓO(X) = 1 if and only if X is associated to
O. Here ΓO(X) is the Shalika germ defined in Section 2.4.
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Proof. This was proved by Kottwitz in [13]. See Proposition 4.2 of [6] for a
different proof. �

Remark 5.5. In general we expect the above lemma also holds when F = R
(the case when F = C is trivial).

5.2. The reductive case. We first consider the case when H is reductive.
In the previous section, we have defined the subspace h⊥(F ) of g(F ).

Definition 5.6. Let N (G,H, 1) be the subset of Nilreg(g(F )) consisting of
elements O ∈ Nilreg(g(F )) satisfy the following condition.

• For almost all regular semisimple conjugacy classes of g(F ), if the
conjugacy class is null with respect to H and is associated to O, then
this conjugacy class has nonempty intersection with h⊥(F ) (i.e. there
exists X ∈ h⊥(F ) such that X belongs to this conjuacy class).

We refer the readers to Definition 3.8 for the definition of null.

5.3. The nonreductive case. Now we consider the non-reductive case.
Let (G,H) be the parabolic induction of (G0, H0, ξ). In other words, there
exists a parabolic subgroup of P = MN of G, and a generic character
ξ : N(F )→ C× of N(F ) such that

• G0 = M and H = H0 n N where H0 ⊂ G0 = M is the neutral
component of the stabilizer of the character ξ.

Let P̄ = MN̄ be the opposite parabolic subgroup and let Ξ ∈ n̄(F ) be the
unique element such that

ξ(exp(X)) = ψ(< Ξ, X >), ∀X ∈ n(F ).

Since (G,H) is minimal, so it (G0, H0). By the discussion of the reductive
case, we have the subspace h⊥0 (F ) of g0(F ) = m(F ).

Definition 5.7. With the notations above, let N (G,H, ξ) be the subset of
Nilreg(g(F )) consisting of elements O ∈ Nilreg(g(F )) satisfy the following
condition.

• For almost all regular semisimple conjugacy classes of g(F ), if the
conjugacy class is null with respect to H and is associated to O, then
this conjugacy class has nonempty intersection with Ξ+h⊥0 (F )+n(F )
(i.e. there exists X ∈ h⊥0 (F ) and N ∈ n(F ) such that Ξ + X + N
belongs to this conjuacy class).

Remark 5.8. This definition depends on the generic character ξ.

Conjecture 5.9. The set N (G,H, ξ) is non empty.

To end this section, we want to point that the notion of null is crucial in
our definition of the set N (G,H, ξ). The reason is that in most cases, the
tangent space h⊥(F ) (or Ξ + h⊥0 (F ) + n(F ) in the nonreductive case) does
not contain all the regular semisimple stable conjugacy classes of g(F ), but
we do expect it contains all the regular semisimple stable conjugacy classes
that are null with respect to H. Here are some examples.
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For the model (G(F ), H(F )) = (GL2n(R), SO2n(R)), the set T (G,H)◦

consists of subgroups of the form ±I2n−2m × (C1)m with 0 ≤ m ≤ n (see
Lemma 8.2). Here C1 is the norm one elements in C× identified with a

torus of GL2(R) via the map eiθ →
(

cos θ sin θ
− sin θ cos θ

)
. As a result, the set

L(G,H) consists of all the standard Levi subgroups of GL2n(R) of the form
(GL2(R))m × (GL1(R))2n−2m for 1 ≤ m ≤ n. This implies that a regular
semisimple conjugacy class in g(R) = gl2n(R) is null with respect to H if
and only if all its eigenvalues are real numbers. On the other hand, from
basic linear algebra, we know that the eigenvalues of symmetric real matrix
are real numbers. This implies that h⊥(R) only contains those conjugacy
classes that are null with respect to H. A similar discussion also holds for
the model (G(F ), H(F )) = (GL2n+1(R),SO2n+1(R)).

For the model (G,H) = (GL3,SL2), the set T (G,H)◦ consists of all the
maximal elliptic tori of SL2(F ) and the trivial torus. Hence the set L(G,H)
contains all the standard Levi subgroups of GL3 of the form GL2×GL1. As
a result, a regular semisimple conjugacy class in g(F ) = gl3(F ) is null with
respect to H if and only if all the eigenvalues belong to F (i.e. its centralizer
in G(F ) is a split torus). On the other hand, it is easy to see that a regular
semisimple conjugacy class appears in h⊥(F ) if and only if at least one of
its eigenvalues belongs to F (i.e. it is not elliptic). In particular, h⊥(F )
does not contain all the regular semisimple conjugacy classes of g(F ), but it
contains all the the regular semisimple conjugacy classes that are null with
respect to H.

Another way to understand the notion of null is via the quasi-character
θ = ĵ(X, ·) (X ∈ greg(F )) on g(F ) defined in Section 2.4. By the definition
of null and Proposition 4.7.1 of [3], if X is null with respect to H, then the
regular germs of θ at t(F ) is equal to zero for all T (F ) ∈ T (G,H)◦ with
T (F ) 6= ZG,H(F ). Here t(F ) is the Lie algebra of T ◦(F ).

6. The conjectural multiplicity formula and trace formula

6.1. The multiplicity formula. Let (G,H) be a spherical variety that is
the parabolic induction of the reductive pair (G0, H0, ξ) (as in the previous
sections, if (G,H) is reductive, we just let (G0, H0, ξ) = (G,H, 1)). Let
ω : H0(F ) → C× be a unitary character. Then ω ⊗ ξ is a character on
H(F ) = H0(F ) n N(F ). For any irreducible smooth representation π of
G(F ), we define the multiplicity

m(π, ω ⊗ ξ) := dim(HomH(F )(π, ω ⊗ ξ)).
Recall that ZG,H(F ) = ZG(F )∩H(F ) and AG,H(F ) is the maximal split

torus of ZG,H(F ). Let η be the restriction of the character ω to AG,H(F ).
Then we know that m(π, ω ⊗ ξ) = 0 unless the central character of π is
equal to η on AG,H(F ). We fix a central character χ : ZG(F ) → C× with
χ|AG,H(F ) = η. Let Irr(G,χ) be the set of all the irreducible smooth repre-

sentations of G(F ) whose central character is equal to χ. We use Πtemp(G,χ)
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(resp. Πdisc(G,χ), Πcusp(G,χ)) to denote the set of tempered representa-
tions (resp. discrete series, supercuspidal representations) in Irr(G,χ).

For T (F ) ∈ T (G,H), we have defined TH(F ) = ∪γ∈C(T,H)γT
◦(F ) in

Section 3. Let dt be the Haar measure on T ◦(F )/AG,H(F ) such that the
total volume is 1 (note that T ◦(F )/AG,H(F ) is compact). This induces a
measure dt on TH(F )/AG,H(F ) = ∪γ∈C(T,H)γ · T ◦(F )/AG,H(F ).

Now we are ready to define the geometric multiplicity.

Definition 6.1. Let θ be a quasi-character on G(F ) with central character
χ (i.e. θ(zg) = χ(z)θ(g) for z ∈ ZG(F ) and g ∈ Greg(F )). Define

mgeom(θ) =
∑

T (F )∈T (G,H)

|W (H0, T )|−1

∫
TH(F )/AG,H(F )

ω−1(t)DH(t)

d(G0,T , H0,T , F )

|ZH0(T )(F ) : H0,T (F )| × c(G0,T , H0,T , F )
× 1

|N (GT , HT , ξ)|
∑

O∈N (GT ,HT ,ξ)

cθ,O(t)dt.

Here dt is the Haar measure on TH(F )/AG,H(F ) defined above, the numbers
d(G0,T , H0,T , F ), c(G0,T , H0,T , F ) are defined in Section 4, and W (H0, T ) =
NH0(T )(F )/ZH0(T )(F ) where NH0(T )(F ) is the normalizer of T (F ) in H0(F ).
Note that the number

1

|ZH0(T )(F ) : H0,T (F )| × c(G0,T , H0,T , F )

is an analogue of 1
ZH(x) for the finite group case in (1.1).

Then For π ∈ Irr(G,χ), we define the geometric multiplicity

mgeom(π, ω ⊗ ξ) = mgeom(θπ).

Remark 6.2. In general, the integral defining mgeom(π, ω ⊗ ξ) may not be
absolutely convergent, and one would need to regularize it.

Among all the known cases (i.e. Whittaker model, Gan-Gross-Prasad
model, Ginzburg-Rallis model, Galois model, and Shalika model), the in-
tegral defining mgeom(π, ω ⊗ ξ) is convergent for Whittaker model (this
is trivial), orthogonal Gan-Gross-Prasad model (Proposition 7.3 of [20]),
Ginzburg-Rallis model (Proposition 5.2 of [22]), Galois model (Section 4.1
of [4]), and Shalika model (Lemma 3.2 of [5]). For unitary Gan-Gross-Prasad
model, the integral is not convergent and one needs to regularize it (Section
5 of [2] and Section 11.1 of [3]).

Definition 6.3. When H is reductive, we say (G,H) is tempered (resp.
strongly tempered) if all the matrix coefficients of discrete series (resp. tem-
pered representations) of G(F ) are integrable on H(F )/AG,H(F ). In gen-
eral, if (G,H) is the Whittaker induction of (G0, H0, ξ), we say (G,H) is
tempered (resp. strongly tempered) if (G0, H0) is tempered (resp. strongly
tempered).

Conjecture 6.4. (1) m(π) = mgeom(π) for all π ∈ Πcusp(G,χ).
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(2) If (G,H) is tempered, then m(π) = mgeom(π) for all π ∈ Πdisc(G,χ).
Moreover, let dπ be the natural measure on the set Πtemp(G,χ) as
defined in Section 2.6 of [3]. Then m(π) = mgeom(π) for almost all
π ∈ Πtemp(G,χ) (under the measure dπ).

(3) If (G,H) is strongly tempered, then m(π) = mgeom(π) for all π ∈
Πtemp(G,χ).

As we said in the introduction, in general, if we want the multiplicity for-
mula holds for all irreducible smooth representations (or even finite length
smooth representations) of G(F ), we need to replace the multiplicity by
the Euler-Poincaré pairing. One reason is that both the Harish-Chandra
character and the Euler-Poincaré pairing behave nicely under the short ex-
act sequence, while the multiplicity does not. This was first observed by
Prasad in [15]. To be specific, for two smooth (not necessarily finite length)
representations π and π′ of G(F ), we define the Euler-Poincaré pairing

EPG[π, π′] =
∑
i

(−1)i dim(ExtiG[π, π′]).

Then for a finite length smooth representation π of G(F ), we define (here
for simplicity we assume that the split center AG,H(F ) is trivial)

EP(π, ω ⊗ ξ) = EPG(π, IndGH(ω ⊗ ξ)).

Conjecture 6.5. Given a finite length smooth representation π of G(F ),
the followings hold.

(1) EP(π, ω ⊗ ξ) is well defined. In other words, ExtiG(π, IndGH(ω ⊗ ξ))
is finite dimensional for all i ≥ 0.

(2) EP(π, ω ⊗ ξ) = mgeom(π, ω ⊗ ξ).

When F is p-adic, the first part of the conjecture was proved by Aizenbud
and Sayag in [1].

Remark 6.6. When π is supercuspidal, we have ExtiG(π, IndGH(ω⊗ ξ)) = 0
for i > 0, which implies that EP(π, ω ⊗ ξ) = m(π, ω ⊗ ξ). This is why the
multiplicity formula m(π, ω ⊗ ξ) = mgeom(π, ω ⊗ ξ) should always hold in
the supercuspidal case.

In Section 7, we will show that Conjecture 6.4 holds for Whittaker model,
Gan-Gross-Prasad model, Ginzburg-Rallis model, Galois model and Shalika
model. For each of these cases, there is a multiplicity formula that has
already been proved. Hence in order to prove Conjecture 6.4, we just need
to show that our definition of the geometric multiplicity matches the one in
the known multiplicity formula. On the other hand, Conjecture 6.5 is more
difficult. The only known cases are the group case (G,H) = (H×H,H), the
Whittaker model, and the Gan-Gross-Prasad model for the general linear
group (see Proposition 2.1, Proposition 2.8 and Theorem 4.2 of [15]).
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6.2. The trace formula. We use the same notation as in the previous
subsection. We first need to define the space of test functions. When (G,H)
is tempered, we require f ∈ Cscusp(G(F ), χ). When (G,H) is not tempered,
we require f ∈ ◦C(G(F ), χ) ∩ C∞c (G(F ), χ). For such a test function f , we
define the distribution I(f) of the trace formula to be

I(f) =

∫
H(F )\G(F )

∫
H(F )/AG,H(F )

f(g−1hg)ω ⊗ ξ(h)−1dhdg.

In general the double integral above is not absolutely convergent (although
each individual integral is usually convergent) and one needs to introduce
some truncation functions on H(F )\G(F ).

For the geometric expansion, let θf be the quasi-character onG(F ) defined
via the weighted orbital integrals of f . We define the geometric expansion
of the trace formula to be

Igeom(f) = mgeom(θf )

where mgeom(θf ) was defined in Definition 6.1.
For the spectral expansion, when (G,H) is not tempered, let

(6.1) Ispec(f) =
∑

π∈Πcusp(G,χ)

m(π, ω ⊗ ξ)tr(π∨(f))

where π∨ is the contragredient of π. When (G,H) is tempered, let

(6.2) Ispec(f) =

∫
X (G,χ)

D(π)θf (π∨)m(π, ω ⊗ ξ)dπ.

Here X (G,χ) is a set of virtual tempered representations of G(F ) with
central character χ defined in Section 2.7 of [3], the number D(π) and the
measure dπ are also defined in Section 2.7 of [3], and θf (π∨) is defined in
Section 5.4 of [3] via the weighted character. Now we are ready to state the
conjectural trace formula.

Remark 6.7. When f ∈ ◦C(G(F ), χ)∩C∞c (G(F ), χ), the expression on the
right hand side of (6.2) is equal to the one on the right hand side of (6.1).

Conjecture 6.8. (1) When (G,H) is tempered, the trace formula Igeom(f) =
I(f) = Ispec(f) holds for all f ∈ Cscusp(G(F ), χ).

(2) When (G,H) is not tempered, the trace formula Igeom(f) = I(f) =
Ispec(f) holds for all f ∈ ◦C(G(F ), χ) ∩ C∞c (G(F ), χ).

Like the conjectural multiplicity formula, by our discussion in Section 7,
we know that Conjectural 6.8 holds for Whittaker model, Gan-Gross-Prasad
model, Ginzburg-Rallis model, Galois model and Shalika model.

Remark 6.9. Although the trace formulas are the same for the tempered
case and the strongly tempered case, the multiplicity formula behaves dif-
ferently. As we discussed in Conjecture 6.4, for the strongly tempered case,
the multiplicity formula should hold for all tempered representations; while
for the non-strongly tempered case, it only holds for all discrete series and
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for almost all tempered representations. An easy example of this kind would
be the Shalika model (see Remark 3.4 of [5]).

6.3. The case when ω is not a character. In the subsection, assume
that F = R and H(R) = K is a maximal connected compact subgroup of
G(R). Let ω be a finite dimensional representation of H(R). For a finite
length smooth representation π of G(R), we can still define the multiplicity
m(π, ω) and the Euler-Poincaré pairing EP(π, ω) as in the previous subsec-
tions. Moreover, since H(R) is compact, we have m(π, ω) = EP(π, ω).

Meanwhile, let ω∨ be the dual representation of ω and let

θω∨(h) = tr(ω∨(h)), h ∈ H(R)

be the character of ω∨. Then we can define the geometric multiplicity
mgeom(π, ω) as in the character case in Definition 6.1 except that we re-
place ω−1 by θω∨ . To be specific, we define

mgeom(π, ω) =
∑

T (F )∈T (G,H)

|W (H,T )|−1

∫
TH(F )/AG,H(F )

θω∨(t)DH(t)

d(GT , HT , F )

|ZH(T )(F ) : HT (F )| × c(GT , HT , F )
× 1

|N (GT , HT , 1)|
∑

O∈N (GT ,HT ,1)

cθπ ,O(t)dt.

Conjecture 6.10. For all finite length smooth representations π of G(R),
we have m(π, ω) = mgeom(π, ω).

Conjecture 6.10 gives a multiplicity formula of K-types for all finite length
smooth representations ofG(R). In Section 8 and 9, we will prove Conjecture
6.10 when G(R) = GLn(R) and when G = ResC/RH is a complex reductive
group. Apparently it is enough to prove the conjecture when π and ω are
irreducible.

7. The known cases

In this section, assume that F is p-adic. We will show that for all the
known cases, the geometric multiplicity defined in Definition 6.1 matches
the one in the multiplicity formula that has been proved. This would imply
that Conjecture 6.4 and 6.8 hold for all these cases. We consider the Wit-
taker model in Section 7.1, the Gan-Gross-Prasad model in Section 7.2, the
Ginzburg-Rallis model in Section 7.3, the Galois model in Section 7.4, and
the Shalika model in Section 7.5.

We would like to point out that all the models above do not have Type
N root. And for all these models, we have T (G,H) = T (G,H)◦ (i.e. the
geometric multiplicity only supports on tori of G(F )). This matches the
discussion in Remark 3.5.
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7.1. The Whittaker model. LetG be a connected reductive group defined
over F . Assume that G(F ) is quasi-split. Let B = TN be a Borel subgroup
of G, B̄ = TN̄ be the opposite Borel subgroup, and ξ : N(F ) → C× be a
generic character. Then there exists a unique element Ξ ∈ n̄(F ) such that

ξ(exp(X)) = ψ(< X,Ξ >), X ∈ n(F ).

Without loss of generality, we assume that G(F ) has finite center (otherwise,
we just need to replace N(F ) by N(F )Z◦G(F ) where Z◦G(F ) is the neutral
component of ZG(F )). For any irreducible smooth representation π of G(F ),
define the multiplicity

m(π, ξ) = dim(HomN(F )(π, ξ)).

Let O ∈ Nilreg(g(F )) be the nilpotent orbit containing Ξ. By the work
of Rodier in [16], we have the multiplicity formula

m(π, ξ) = cθπ ,O(1).

The goal of this subsection is to show that

mgeom(π, ξ) = cθπ ,O(1).

First, it is easy to see that the set T (G,N) only contains the trivial
torus. Combining with the fact that the Whittaker model is the Whittaker
induction of the model (T, 1), we have

mgeom(π, ξ) =
1

|N (G,N, ξ)|
∑

O′∈N (G,N,ξ)

cθπ ,O′(1).

Hence it is enough to show that

N (G,N, ξ) = {O}.
By the definition of the set N (G,N, ξ), we have O ∈ N (G,N, ξ). Let
O′ ∈ Nilreg(g(F )) with O′ 6= O. It is enough to show that O′ /∈ N (G,N, ξ).
This will follow from the following lemma and Lemma 5.4.

Lemma 7.1. There exists a regular semisimple element X ∈ greg(F ) such
that

ΓO(X) = 1, ΓO′(X) = 0.

Here ΓO(·) (resp. ΓO′(·)) is the Shalika germ defined in Section 2.4.

Proof. By the result of Shelstad in [17], the regular Shalika germ is equal
to either 0 or 1. Hence if the statement of the lemma is false, we have
ΓO(X) = ΓO′(X) for all regular semisimple elements in g(F ). By the result
of Vignéras in [19], there exists f ∈ C∞c (g(F )) supported on regular elements
(including regular nilpotent elements) such that JO(f) = 1, JO′(f) = −1
and JO0(f) = 0 for all other nilpotent orbits (not necessary regular). By
replacing f by f · 1ω where ω is a small G-invariant neighborhood of 0 in
g(F ), we may assume that for all X ∈ Supp(f) ∩ greg(F ), we have

JG(X, f) =
∑

O0∈Nil(g(F ))

ΓO0(X)JO0(f).
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This implies that

JG(X, f) =
∑

O0∈Nil(g(F ))

ΓO0(X)JO0(f) = ΓO(X)− ΓO′(X) = 0

for all X ∈ Supp(f) ∩ greg(F ). Hence JG(X, f) = 0 for all X ∈ greg(F ).
By Theorem 3.1 of [9], we know that JO(f) = JO′(f) = 0. This is a
contradiction. �

Remark 7.2. In this case, T (G,N) = {1} which implies that all regular
semisimple conjugacy classes of g(F ) are null with respect to N .

7.2. The Gan-Gross-Prasad model. We only consider the orthogonal
group case, the unitary group case is similar. We first recall the definition
of the model from Section 7 of [20]. Let V be a vector space of dimension
d, and q be a nondegenerate symmetric bilinear form on V . Let r ∈ N with
2r+ 1 ≤ d. Suppose we have an orthogonal decomposition V = W ⊕D⊕Z
where D is a one-dimensional anisotropic subspace and Z is a hyperbolic
subspace of dimension 2r. We fix a basis v0 of D and a basis (vi)i=±1,··· ,±r
of Z with q(vi, vj) = δi,−j . Let A be the maximal split torus of SO(Z) that
preserves the subspace Fvi. Let G = SO(V ), P = MN be the parabolic
subgroup of G preserves the filtration

Fvr ⊂ Fvr ⊕ Fvr−1 ⊂ · · · ⊂ Fvr ⊕ · · · ⊕ Fv1

with A ⊂M . In particular, M = AG0 with G0 = SO(V0) and V0 = W ⊕D.
Let ξ : N(F ) → C× be the generic character defined in Section 7.2 of [20].
Its stabilizer in M(F ) is H+

0 (F ) = O(W ). Let H0 = SO(W ) be the neutral
component of H+

0 and H = H0 n N . The model (G × H0, H, ξ) is the
so called Gan-Gross-Prasad model for orthogonal groups (the embedding
H → G ×H0 comes from the diagonal embedding H0 → G0 ×H0 and the
embedding N → G) defined by Gross and Prasad in [7]. It is the Whittaker
induction of the model (G0 × H0, H0) (which is also a Gan-Gross-Prasad
model). Let π (resp. σ) be an irreducible smooth representation of G(F )
(resp. H0(F )). Define the multiplicity

m(π ⊗ σ, ξ) = dim(HomH(F )(π ⊗ σ, ξ)).

The multiplicity formula for this model was proved by Waldspurger in [20]
and [21]. The goal of this subsection is to show that the geometric multiplic-
ity mgeom(π ⊗ σ, ξ) defined in Section 6 matches Waldspurger’s definition
in Section 13.1 of [20]. We use m′geom(π ⊗ σ, ξ) to denote the geometric
multiplicity defined by Waldspurger.

Remark 7.3. (G0×H0, H0) is a minimal wavefront spherical variety. More-
over, it is easy to see that there is only one open Borel orbit in G0(F ) ×
H0(F )/H0(F ) and it has trivial stabilizer. In particular, we have d(G0 ×
H0, H0, F ) = c(G0 ×H0, H0, F ) = 1.
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Proposition 7.4. The set T (G × H0, H) consists of tori T (F ) of H0(F )
(up to conjugation) such that there exists an orthogonal decomposition W =
W ′ ⊕W ′′ of W satisfies the followings conditions.

(1) dim(W ′) is an even number.
(2) T (F ) is a maximal elliptic torus of H ′0(F ) = SO(W ′)(F ).
(3) If d is odd, the anisotropic rank of V ′′ = W ′′ ⊕ D ⊕ Z is equal to

1. If d is even, the anisotropic rank of W ′′ is equal to 1. This is
equivalent to say that SO(V ′′)(F ) and SO(W ′′)(F ) are quasi-split.

In particular, T (G×H0, H) = T (G,H)◦.

Remark 7.5. The proposition implies that the set T (G ×H0, H) is equal
to the set T defined in Section 7.3 of [20].

Proof. It is easy to see that if a torus satisfies (1)-(3), it belongs to the
set T (G,H). So we only need to prove the other direction. For given
T (F ) ∈ T (G,H), we need to show that T (F ) satisfies (1)-(3). Let W ′′ be
the intersection of the kernel of t − 1 for t ∈ T (F ). Then for almost all
t ∈ TH(F ), W ′′ is the kernel of t − 1. In particular, q|W ′′ is nondegenerate
and dim(W ) − dim(W ′′) is an even number. Let W ′ be the orthogonal
complement of W ′′ in W (i.e. W = W ′ ⊕W ′′), and V ′′ = W ′′ ⊕ D ⊕ Z.
Then T (F ) is an abelian subgroup of SO(W ′)(F ), GT = SO(W ′)T×SO(V ′′),
H0,T = SO(W ′)T × SO(W ′′) and HT = SO(W ′)T × (SO(W ′′) nN ′′) where
N ′′ = N ∩ SO(V ′′) is the unipotent radical of the parabolic subgroup P ′′ =
P ∩SO(V ′′) of SO(V ′′). In particular, (SO(V ′′)×SO(W ′′),SO(W ′′)nN ′′) is
the Gan-Gross-Prasad model associated to the decomposition V ′′ = W ′′ ⊕
D ⊕ Z. We will show that the decomposition W = W ′ ⊕ W ′′ satisfies
condition (1)-(3).

(1) follows from the fact that dim(W )−dim(W ′′) is an even number. Since
GT (F ) and H0,T (F ) are quasi-split, so are SO(V ′′)(F ) and SO(W ′′)(F ).
This proves (3). It remains to prove (2). The following two statements
follow from the definition of minimal spherical variety.

• If (G1, H1) and (G2, H2) are two spherical pairs, then (G1×G2, H1×
H2) is minimal if and only if (G1, H1) and (G2, H2) are minimal.
• For any connected reductive group H1, the spherical pair (H1 ×
H1, H1) is minimal if and only if H1 is abelian (i.e. it is a torus).

Since T (F ) ∈ T (G,H), (GT × H0,T , HT ) is minimal. By the statements
above, we know that SO(W ′)T is abelian which implies that SO(W ′)T is
a maximal torus of SO(W ′). By Definition 3.1(3), we know that T (F ) is
the intersection of H(F ) with the center of ZG(T )(F )× ZH0(T )(F ), which
implies that T (F ) = SO(W ′)T (F ) (i.e. T (F ) = T ◦(F ) is a maximal torus
of SO(W ′)(F )). Finally, by Definition 3.1, we know that T (F ) is compact
which implies that it is a maximal elliptic torus of SO(W ′)(F ). This proves
(2) and finishes the proof of the proposition. �

Given T (F ) ∈ T (G×H0, H) and let W = W ′⊕W ′′ be the decomposition
associated to T . Then the model (GT × H0,T , H) is the product of the
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abelian model (SO(W ′)T , SO(W ′)T ) = (T, T ) and the Gan-Gross-Prasad
model associated to the decomposition V ′′ = W ′′ ⊕D⊕Z. By Remark 7.3,
we know that the constants d(G0,T×H0,T , H0,T , F ) = c(G0,T×H0,T , H0,T , F )
associated to the Gan-Gross-Prasad model are equal to 1. Moreover, since
ZH0(T ) = H0,T , the constant |ZH0(T )(F ) : H0,T (F )| in the definition of
geometric multiplicity is also equal to 1. Hence in order to prove mgeom(π⊗
σ, ξ) = m′geom(π⊗σ, ξ), it remains to show that our choice of nilpotent orbits
in Section 5 matches Waldspurger’s choice in Section 7.3 of [20].

Proposition 7.6. Assume that G(F ) and H0(F ) are quasi-split. Let OG
(resp. OH) be the regular nilpotent orbit of g(F ) (resp. h0(F )) defined in
Section 7.3 of [20]. Then we have

N (G×H0, H, ξ) = {OG ×OH}.

Proof. Let Ξ + h⊥0 (F ) + n(F ) ⊂ g(F ) ⊕ h0(F ) be the space associated to
the model (G × H0, H, ξ) as in Section 5.3. By Lemma 5.4 together with
Section 11.4-11.6 of [20], we know that O /∈ N (G × H0, H, ξ) for any O ∈
Nilreg(g(F )×h0(F )) with O 6= OG×OH . In fact, for any O ∈ Nilreg(g(F )×
h0(F )) with O 6= OG × OH , in Section 11.4-11.6 of [20], Waldspurger has
constructed an open subset tG(F ) (resp. tH(F )) of the regular semisimple
conjugacy classes of g(F ) (resp. h0(F )) such that for all XG×XH ∈ tG(F )×
tH(F ), the followings hold.

• ΓO(XG ×XH) = 1 and the conjugacy class XG ×XH has no inter-
section with Ξ + h⊥0 (F ) + n(F ).
• XG ×XH is null with respect to H.

Combining with Lemma 5.4, we know that O /∈ N (G×H0, H, ξ).
Now it remains to show that OG × OH ∈ N (G ×H0, H, ξ). The idea is

to use the Lie algebra version of the local trace formula proved in [20]. Let
fG (resp. fH) be a smooth compactly supported strongly cuspidal function
on g(F ) (resp. h0(F )). Let θfG (resp. θfH ) be the quasi-character on g(F )

(resp. h0(F )) associated to fG (resp. fH), and θ̂fG (resp. θ̂fH ) be its Fourier
transform. By the local trace formula proved in Section 11 of [20], we have

(7.1) I(θfH , θfG) =
∑
T∈T
|W (G,T )|−1

∫
t(F )H

DG×H0(t)1/2θ̂fG × θ̂fH (t)dt

where I(θfH , θfG) is the Lie algebra analogue of the geometric multiplicity
defined in Section 7.9 of [20], T is the set of maximal tori of G(F )×H0(F ),
and W (G,T ) = NG(T )(F )/ZG(T )(F ) is the Weyl group. For T ∈ T , tH(F )
is the set of elements in treg(F ) that is conjugated to an element in Ξ +

h⊥0 (F ) + n(F ) (which is an open subset of treg(F )).
If OG × OH /∈ N (G × H0, H, ξ), by Lemma 5.4 and the definition of

N (G×H0, H, ξ), there exists T0 ∈ T and a small open compact subset ω of
t0,reg(F ) satisfies the following two conditions

• For all X ∈ ω, X is null with respect to H and X is associated to
OG ×OH .
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• The set ω′ = {X ∈ ω| X /∈ t0(F )H} has nonzero measure.

Now choose fG and fH such that θ̂fG × θ̂fH is the characteristic function on

ωG×H0 . Then the right hand side of (7.1) is equal to

(7.2)

∫
ω∩t0(F )H

DG×H0(t)1/2dt.

Since every element in ω is null with respect to H and is associated to
OG ×OH , by Proposition 4.1.1 and 4.7.1 of [3], we have

I(θfH , θfG) = cθfG×θfH ,OG×OH (0) =

∫
ω
DG×H0(t)1/2ΓOG×OH (t)dt

=

∫
ω
DG×H0(t)1/2dt =

∫
(ω∩t0(F )H)∪ω′

DG×H0(t)1/2dt.

This is a contradiction to (7.1) and (7.2) since ω′ has nonzero measure.
HenceOG×OH ∈ N (G×H0, H, ξ). This finishes the proof of the proposition.

�

7.3. The Ginzburg-Rallis model. In this subsection, we consider the
Ginzburg-Rallis model case. We will show that the geometric multiplicity
defined in Section 6 matches the one in the multiplicity formula proved in
[22], [23] (the general linear group case) and [24] (the unitary and unitary
similitude group case). For simplicity, we only consider the quasi-split uni-
tary group and unitary similitude group cases, the non quasi-split case and
the general linear group case follows from a similar and easier argument.

Set w2 =

(
0 1
1 0

)
, and wn =

(
0 1
wn 0

)
for n > 2. Let E/F be a quadratic

extension. We define the unitary group and unitary similitude group to be

Un(F ) = {g ∈ GLn(E)| ḡtwng = wn}, GUn(F ) = {g ∈ GLn(E)| ḡtwng = λwn, λ ∈ F×}.

We use λ : GUn(F )→ F× to denote the similitude character.

7.3.1. The unitary similitude group case. Let G(F ) = GU6(F ), H(F ) =
H0(F ) nN(F ) with

H0(F ) = {

h 0 0
0 h 0
0 0 λ(h)w2(ḡt)−1w2

 | h ∈ GU2(F )},

N(F ) = {

I2 X Y
0 I2 −w2X̄

tw2

0 0 I2

 | X,Y ∈Mat2×2(E), w2Xw2X̄
t+w2Y w2+Ȳ t = 0}.

Let χ be a character of GU2(F ). Define the character ω ⊗ ξ on H(F ) to be

ω⊗ξ(

h 0 0
0 h 0
0 0 λ(h)w2(ḡt)−1w2

I2 X Y
0 I2 −w2X̄

tw2

0 0 I2

) = χ(h)ψ(trE/F (tr(X))).
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Let π be an irreducible smooth representation of G(F ). Define the multi-
plicity

m(π, ω ⊗ ξ) = dim(HomH(F )(π, ω ⊗ ξ)).
The model (G,H) is the unitary similitude analogue of the Ginzburg-Rallis
model defined in [8], and it is the Whittaker induction of the model (G0, H0, ξ) =
(GU2(F )×GL2(E),GU2(F ), ξ). Also it is easy to see that both (G,H) and
(G0, H0) are minimal.

In [24], we proved the multiplicity formula

m(π, ω⊗ξ) = cθπ ,Oreg(1)+
∑

T∈Tell(H0)

|W (H0, T )|−1

∫
T (F )/AH0

(F )
ω(t)−1DH(t)cθπ ,Ot(t)dt

where Oreg is the unique regular nilpotent orbit of g(F ), Tell(H0) is the set
of all maximal elliptic tori of H0(F ), and for T ∈ Tell(H0), t ∈ T (F )reg, Ot
is the unique regular nilpotent orbit in gt(F ). The goal of this subsection is
to show that
(7.3)

mgeom(π, ω⊗ξ) = cθπ ,Oreg(1)+
∑

T∈Tell(H0)

|W (H0, T )|−1

∫
T (F )/AH0

(F )
ω(t)−1DH(t)cθπ ,Ot(t)dt.

First, it is easy to see from the definition that T (G,H) = T (G,H)◦ =
Tell(H0) ∪ {1}. For T ∈ Tell(H0), GT = ZG(T ), H0,T = ZH0(T ), and the
model (GT , HT , ξ) is just the Whittaker model of GT . By the result in
Section 7.1 for the Whittaker model, we only need to consider the geometric
multiplicity at T = {1} and it is enough to prove the following lemma.

Lemma 7.7. (1) d(G0, H0, F ) = c(G0, H0, 1) = 1.
(2) N (G,H, ξ) = {Oreg}.

Proof. It is easy to see that there is only one open Borel orbit inG0(F )/H0(F )
and the stabilizer of this orbit is the center of H0(F ) which is connect-
ed. This implies that d′(G0, H0, F ) = c(G0, H0, F ) = 1. On the oth-
er hand, the model (G0(F̄ ), H0(F̄ )) is essentially the trilinear GL2 mod-

el (GL2 × GL2 × GL2,GLdiag2 ) which is wavefront. Hence d(G0, H0, F ) =
d′(G0, H0, F ) = 1. This proves (1). For (2), the argument is very similar
to the Gan-Gross-Prasad model case. We just need to use the local trace
formula for the model (G,H) proved in [24]. We will skip the details here.
This finishes the proof of the lemma and hence the proof of (7.3). �

7.3.2. The unitary group case. Let G(F ) = U6(F ), H(F ) = H0(F ) nN(F )
with

H0(F ) = {

h 0 0
0 h 0
0 0 w2(ḡt)−1w2

 | h ∈ U2(F )},

N(F ) = {

I2 X Y
0 I2 −w2X̄

tw2

0 0 I2

 | X,Y ∈Mat2×2(E), w2Xw2X̄
t+w2Y w2+Ȳ t = 0}.
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Let χ be a character of U2(F ). Define the character ω ⊗ ξ on H(F ) to be

ω⊗ξ(

h 0 0
0 h 0
0 0 w2(ḡt)−1w2

I2 X Y
0 I2 −w2X̄

tw2

0 0 I2

) = χ(h)ψ(trE/F (tr(X))).

Let π be an irreducible smooth representation of G(F ). Define the multi-
plicity

m(π, ω ⊗ ξ) = dim(HomH(F )(π, ω ⊗ ξ)).
The model (G,H) is the unitary analogue of the Ginzburg-Rallis model
and it is the Whittaker induction of the model (G0, H0, ξ) = (U2(F ) ×
GL2(E),U2(F ), ξ). Also it is easy to see that both (G,H) and (G0, H0) are
minimal.

In [24], we proved the multiplicity formula

m(π, ω⊗ξ) = cθπ ,Oreg,1(1)+cθπ ,Oreg,2(1)+
∑

T∈Tell(H0)

|W (H0, T )|−1

∫
T (F )

ω(t)−1DH(t)cθπ ,Ot(t)dt

where Oreg,1,Oreg,2 are the regular nilpotent orbits of g(F ), Tell(H0) is the
set of all maximal elliptic tori of H0(F ), and for T ∈ Tell(H0), t ∈ T (F )reg,
Ot is the unique regular nilpotent orbit in gt(F ). The goal of this subsection
is to show that
(7.4)

mgeom(π, ω⊗ξ) = cθπ ,Oreg,1(1)+cθπ ,Oreg,2(1)+
∑

T∈Tell(H0)

|W (H0, T )|−1

∫
T (F )

ω(t)−1DH(t)cθπ ,Ot(t)dt.

By the same argument as in the unitary similitude group case, we only need
to prove the following lemma.

Lemma 7.8. (1) d(G0, H0, F ) = 2, c(G0, H0, F ) = 1.
(2) N (G,H, ξ) = {Oreg,1, Oreg,2}.

Proof. It is easy to see that there are two open Borel orbits of G0(F )/H0(F )
(corresponds to F×/Im(NE/F ) where NE/F : E× → F× is the norm map)
and the stabilizer of each orbit is the center of H0(F ) which is connected.
This implies that d′(G0, H0, F ) = 2 and c(G0, H0, F ) = 1. On the other
hand, the model (G0(F̄ ), H0(F̄ )) is the trilinear GL2 model which is wave-
front. Hence d(G0, H0, F ) = d′(G0, H0, F ) = 2. This proves (1).

For (2), we can not use the same argument as in the previous cases. The
reason is that in [24], we were not able to prove the local trace formula for
this model (this is largely due to the fact that the number d(G0, H0, F ) is
not equal to 1, see Remark 4.13). Instead, we are going to use the result for
the unitary similitude group case to prove (2).

Let Ξ+h⊥0 (F )+n(F ) be the space associated to the model (G×H0, H, ξ)
as in Section 5.3. Let g′(F ) be the Lie algebra of GU6(F ), Oreg be the
unique nilpotent orbit of g′(F ), and (G′, H ′, ξ) be the model in the unitary
similitude group case. Then Oreg = Oreg,1 ∪Oreg,2 and g′(F ) = g(F )⊕ z(F )
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where z(F ) = {aI6| a ∈ F} belongs to the center of g′(F ). Moreover,
Ξ + h⊥0 (F ) + n(F ) + z(F ) is the space associated the model (G′, H ′, ξ).

Since O = Oreg,1 ∪ Oreg,2, if a regular semisimple element X ∈ g(F ) is
associate to Oreg,1 (resp. Oreg,2), then it is associated to O (as an element
in g′(F )). Moreover, X is null with respect to H if and only if it is null
with respect to H ′. Hence by Lemma 7.7, we know that for almost all
regular semisimple G(F )′-conjugacy classes in g(F ), if the conjugacy class
is null with respect to H and if it is associated to Oreg,1 (resp. Oreg,2), then

the conjugacy class has nonempty intersection with Ξ + h⊥0 (F ) + n(F ). As
a result, in order to prove the lemma, it is enough to prove the following
statement.

(3) For all regular semisimple elements X1, X2 ∈ greg(F ), if X1 and X2

are null with respect to H, then X1 and X2 are G′(F )-conjugated
to each other if and only if they are G(F )-conjugated to each other.

In fact, sinceX1 is null with respect toH, it is not elliptic regular semisimple.
Let T (F ) = G′X1

(F ), and AT (F ) be the maximal split subtorus of T (F ).

Then L(F ) = ZG′(AT )(F ) is a proper Levi subgroup of G′(F ). We have
X1 ∈ l(F ). In particular, X1 commutes with ZL(F ). Then (3) follows from
the fact that every element g ∈ G′(F ) can be written as g = g1z with
g1 ∈ G(F ) and z ∈ ZL(F ). This finishes the proof of the lemma and hence
the proof of (7.4). �

7.4. The Galois model. Let E/F be a quadratic extension, H be a con-
nected reductive group defined over F , and G = ResE/FH. Let χ be a
character of H(F ). For any irreducible smooth representation π of G(F ),
define the multiplicity

m(π, χ) = dim(HomH(F )(π, χ)).

In [4], Beuzart-Plessis proved the multiplicity formula for this model

m(π, χ) =
∑

T∈Tell(H)

|W (H,T )|−1

∫
T (F )/AH(F )

χ(t)−1DH(t)θπ(t)dt

where Tell(H) is the set of all maximal elliptic tori of H(F ). We want to
show that
(7.5)

mgeom(π, χ) =
∑

T∈Tell(H)

|W (H,T )|−1

∫
T (F )/AH(F )

χ(t)−1DH(t)θπ(t)dt.

For T ∈ Tell(H), HT (F ) = ZH(T )(F ) = T (F ) and the model (GT (F ), HT (F ))
is equal to the abelian model (T (E), T (F )). This implies that |ZH(T )(F ) :
HT (F )| = d(GT , HT , F ) = c(GT , HT , F ) = 1 and N (GT , HT ) = {0}. Hence
in order to prove (7.5), it is enough to show that the set T (G,H) is equal to
Tell(H). It is easy to see from the definition that Tell(H) ⊂ T (G,H). For the
other direction, let T (F ) ∈ T (G,H). Then (GT , HT ) = (ResE/FHT , HT ).
In particular, it is minimal if and only if HT is abelian (i.e. it is a maximal
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torus of H). By Definition 3.1(3), we know that T (F ) = T ◦(F ) = HT (F ) is
a maximal torus of H(F ). By Definition 3.1(4), we know that T (F )/AH(F )
is compact. This implies that T ∈ Tell(H) and proves (7.5).

7.5. The Shalika model. Let G = GL2n and H = H0 nN with

H0 = {
(
h 0
0 h

)
| h ∈ GLn}, N = {

(
In X
0 In

)
| X ∈Matn×n}.

Given a multiplicative character χ : F× → C×, we can define a character
ω ⊗ ξ of H(F ) to be

ω ⊗ ξ(
(
h 0
0 h

)(
In X
0 In

)
) := ψ(tr(X))χ(det(h)).

For any irreducible smooth representation π of G(F ), define the multiplicity

m(π, ω ⊗ ξ) = dim(HomH(F )(π, ω ⊗ ξ)).

The pair (G,H) is called the Shalika model, it is the Whittaker induction
of the model (H0 ×H0, H0, ξ) = (GLn ×GLn,GLn, ξ). In a joint work with
Beuzart-Plessis [5], we have proved the multiplicity formula

m(π, ω ⊗ ξ) =
∑

T∈Tell(H0)

|W (H0, T )|−1

∫
T (F )/ZG(F )

ω(t)−1DH(t)cθπ ,Ot(t)dt

where Tell(H0) is the set of all maximal elliptic tori of H0(F ), and for T ∈
Tell(H0), t ∈ T (F )reg, Ot is the unique regular nilpotent orbit in gt(F ). We
want to show that
(7.6)

mgeom(π, ω⊗ξ) =
∑

T∈Tell(H0)

|W (H0, T )|−1

∫
T (F )/ZG(F )

ω(t)−1DH(t)cθπ ,Ot(t)dt.

For T ∈ Tell(H0), let K/F be the degree n extension such that T (F ) '
K×. Then the model (GT , HT , ξ) is the just the Whittaker model for
GL2(K). By the result in Section 7.1 for the Whittaker model, we know
that in order to prove (7.6), it is enough to show that T (G,H) = Tell(H0).
It is clear that Tell(H0) ⊂ T (G,H). For the other direction, let T ∈
T (G,H). The model (GT , HT ) is the Whittaker induction of the model
(H0,T × H0,T , H0,T , ξ). Since it is minimal, we know that H0,T is abelian
(i.e. it is a torus of H0). By the same argument as in the Galois model case,
we have T ∈ Tell(H0). This proves (7.6).

8. The proof of Theorem 1.4(1)

8.1. The geometric multiplicity. Let F = R, G = GLn and H = SOn =
{g ∈ GLn| ggt = In}. Then H(R) is a maximal connected compact subgroup
of G(R). Let π be a finite length smooth representation of GLn(R) and ω
be a finite dimensional representation of SOn(R). The goal of this section is
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to prove Theorem 1.4(1). In other words, we need to prove the multiplicity
formula

m(π, ω) = mgeom(π, ω)

wherem(π, ω) = dim(HomSO(F )(π, ω)) and the geometric multiplicitymgeom(π, ω)
was defined in Section 6.3. In this subsection, we will give an explicit ex-
pression of mgeom(π, ω) (see Proposition 8.7).

Definition 8.1. I(n) = {(n1, n2, k) ∈ (Z≥0)3| n1 + 2n2 + 2k = n}. For
(n1, n2, k) ∈ I(n), if n is even (⇐⇒ n1 is even), let Tn1,n2,k be the abelian
subgroup of SOn(R) defined by

Tn1,n2,k(R) = {diag(±In1 ,±I2n2 , t)| t ∈ (C1)k}

where C1 is the group of norm 1 element in C and we identify it with SO2(R)

via the isomorphism e2πiθ 7→
(

cos θ sin θ
− sin θ cos θ

)
. In particular, t ∈ (C1)k

becomes an element of SO2k(R) ⊂ GL2k(R) and diag(±In1 ,±I2n2 , t) are
elements of SOn(R) ⊂ GLn(R).

Similarly, if n is odd (⇐⇒ n1 is odd), we define

Tn1,n2,k(R) = {diag(In1 ,±I2n2 , t)| t ∈ (C1)k} ⊂ SOn(R).

Lemma 8.2. Assume that n is even. The set T (G,H) (defined in Definition
3.1) is the union of Tn1,n2,k(R) where (n1, n2, k) ∈ I(n) with n1 ≥ 2n2.

Proof. It is easy to see that Tn1,n2,k(R) ∈ T (G,H). So it is enough to prove
the other direction. Let t be a semisimple element of H(R) = SOn(R) such
that (Gt, Ht) is a minimal spherical pair. After conjugation, we may assume
that t = diag(In1 ,−I2n2 , t0) where t0 is a semisimple element in SO2k(R)
such that t0 ± I2k ∈ GL2k(R) (i.e. ±1 are not the eigenvalues of t0). Here
2k = n− n1 − 2n2.

Since ±1 are not the eigenvalues of t0, the centralizer of t0 in GL2k(R) is
of the form (note that all the eigenvalues of t belong to C1)

GLk1(C)× · · · ×GLkm(C)

with k = k1 + · · ·+ km. Then

Gt(R) = GLn1(R)×GL2n2(R)×GLk1(C)× · · · ×GLkm(C),

Ht(R) = SOn1(R)× SO2n2(R)×Uk1(R)× · · · ×Ukm(R).

Since (Gt, Ht) is a minimal spherical pair, we know that (ResC/RGLki ,Uki)
is a minimal spherical pair for 1 ≤ i ≤ m. This implies that ki = 1 for
1 ≤ i ≤ m. In other words, t0 is a regular semisimple element of GL2k(R).

Now we are ready to prove the lemma. Let T (R) ∈ T (G,H). By
conditions (1) and (4) of Definition 3.1, there exists t ∈ T (R) such that
(GT , HT ) = (Gt, Ht) is a minimal spherical pair. By the discussion above,
up to conjugation, we may assume that t = diag(In1 ,−I2n2 , t0) where t0 ∈
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SO2k(R) is a regular semisimple element of GL2k(R) and (n1, n2, k) ∈ I(n).
Combining with condition (2) of Definition 3.1, we have

T (R) = ZGt(R) ∩H(R) = {diag(±In1 ,±I2n2 , t
′)| t′ ∈ T0(R)}

where T0(R) is the centralizer of t0 in SO2k(R) which is a maximal torus
of SO2k(R). Up to conjugation, we may assume that n1 ≥ 2n2. Then
the lemma follows from the fact that every maximal torus of SO2k(R) is
conjugated to the torus (C1)k. This proves the lemma. �

Lemma 8.3. Assume that n is odd. Then the set T (G,H) is the union of
Tn1,n2,k(R) where (n1, n2, k) ∈ I(n).

Proof. The proof is similar to the previous lemma, we will skip it here. �

Corollary 8.4. The geometric multiplicity mgeom(π, ω) is supported on

{diag(In1 ,−I2n2 , t)| t ∈ (C1)k}∪{diag(−In1 , I2n2 , t)| t ∈ (C1)k}, (n1, n2, k) ∈ I(n) with n1 ≥ 2n2

when n is even; and it is supported on

{diag(In1 ,−I2n2 , t)| t ∈ (C1)k}, (n1, n2, k) ∈ I(n)

when n is odd.

Proof. This is a direct consequence of the previous two lemmas. �

Lemma 8.5. (1) (G,H) is a minimal spherical pair.
(2) d(G,H,R) = 1, c(G,H,R) = 2n−1.
(3) N (G,H, 1) = {O} where O is the unique regular nilpotent orbit of

g(R) = gln(R).

Proof. (1) is trivial. For (2), let B(R) be the upper triangular Borel sub-
group of G(R). Since (G,H) is a symmetric pair which is wavefront, we
have d(G,H,R) = d(G,H,R)′. By the Iwasawa decomposition, we have
G(R) = B(R)H(R) and B(R) ∩ H(R) ' (Z/2Z)n−1. This implies that
d(G,H,R) = d(G,H,R)′ = 1 and c(G,H,R) = 2n−1. (3) follows from the
argument in the end of Section 5. �

Given (n1, n2, k) ∈ I(n), and let T = Tn1,n2,k. Then the model (GT , HT )
is the product of the models (GLn1(R),SOn1(R)), (GL2n2(R), SO2n2(R)) and
((C1)k, (C1)k). The following lemma is easy to verify.

Lemma 8.6. (1) The number |ZH(T )(R) : HT (R)| is equal to 1 if n1n2 =
0, and is equal to 2 if n1n2 6= 0.

(2) If n1 = n2 = 0 (this only happens when n is even), then |W (H,T )| =
2k−1k! = 2n−k−n1−2n2−1k!. If n1 = 2n2 6= 0 (this only happens when
n is even and n ≥ 4), then |W (H,T )| = 2×2kk! = 2n−k−n1−2n2+1k!.
If n1 6= 2n2, then |W (H,T )| = 2kk! = 2n−k−n1−2n2k!.

Combining Corollary 8.4, Lemma 8.5 and Lemma 8.6, we have

mgeom(π, ω) =
∑

(n1,n2,k)∈I(n),n1>2n2

1

2n−k−1k!

∫
(C1)k

DSOn(diag(In1 ,−I2n2 , t))cπ(diag(In1 ,−I2n2 , t))
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θω∨(diag(In1 ,−I2n2 , t))+D
SOn(diag(−In1 , I2n2 , t))cπ(diag(−In1 , I2n2 , t))θω∨(diag(−In1 , I2n2 , t))dt

+
∑

(n1,n2,k)∈I(n),n1=2n2 6=0

1

2n−kk!

∫
(C1)k

DSOn(diag(In1 ,−I2n2 , t))cπ(diag(In1 ,−I2n2 , t))

θω∨(diag(In1 ,−I2n2 , t))+D
SOn(diag(−In1 , I2n2 , t))cπ(diag(−In1 , I2n2 , t))θω∨(diag(−In1 , I2n2 , t))dt

+
1

2n−
n
2
−1(n2 !)

∫
(C1)

n
2

DSOn(t)cπ(t)θω∨(t)dt

when n is even, and

mgeom(π, ω) =
∑

(n1,n2,k)∈I(n)

1

2n−k−1k!

∫
(C1)k

DSOn(diag(In1 ,−I2n2 , t))

cπ(diag(In1 ,−I2n2 , t))θω∨(diag(In1 ,−I2n2 , t))dt

when n is odd where

• The Haar measure on C1 = SO2(R) is the one that makes the total
volume equal to 1
• cπ(diag(In1 ,−I2n2 , t)) (resp. cπ(diag(−In1 , I2n2 , t))) is the regular

germ of θπ of π at diag(In1 ,−I2n2 , t) (resp. diag(−In1 , I2n2 , t)) de-
fined in Section 2.5.
• ω∨ is the dual representation of ω and θω∨ is the character of ω∨.

When n is even, we can replace the element diag(−In1 , I2n2 , t) in the
expression of mgeom(π, ω) by diag(I2n2 ,−In1 , t) because they are conjugated
to each other in SOn(R). Then we have

mgeom(π, ω) =
∑

(n1,n2,k)∈I(n)

1

2n−k−1k!

∫
(C1)k

DSOn(diag(In1 ,−I2n2 , t))

cπ(diag(In1 ,−I2n2 , t))θω∨(diag(In1 ,−I2n2 , t))dt.

In other words, we get the same expression as in the odd case. To summarize,
we have proved the following proposition.

Proposition 8.7.

mgeom(π, ω) =
∑

(n1,n2,k)∈I(n)

1

2n−k−1k!

∫
(C1)k

DSOn(diag(In1 ,−I2n2 , t))

cπ(diag(In1 ,−I2n2 , t))θω∨(diag(In1 ,−I2n2 , t))dt.

8.2. A reduction. Given a finite length smooth representation π of GLn(R)
and a finite dimensional representation ω of SOn(R), we need to prove the
multiplicity formula

(8.1) m(π, ω) = mgeom(π, ω)

where mgeom(π, ω) was defined in Proposition 8.7.
In order to prove (8.1), we need a multiplicity formula for the model

(GLn(R),On(R)). To be specific, let ω+ be a finite dimensional representa-
tion of On(R) = {g ∈ GLn(R)| ggt = In}, ω∨+ be the dual representation,
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and θω∨
+

: On(R)→ C be the character of ω∨+. We use sgn : On(R)→ {±1}
to denote the sign character of On(R). Given a finite length smooth repre-
sentation π of GLn(R), we define the multiplicity

m(π, ω+) = dim(HomOn(R)(π, ω+)),

and the geometric multiplicity

mgeom(π, ω+) =
∑

(n1,n2,k)∈J(n)

1

2n−kk!

∫
(C1)k

DSOn(diag(In1 ,−In2 , t))

cπ(diag(In1 ,−In2 , t))θω∨
+

(diag(In1 ,−In2 , t))dt(8.2)

where J(n) = {(n1, n2, k) ∈ (Z≥0)3| n1 + n2 + 2k = n}.

Remark 8.8. Here we extend the Weyl determinant DSOn(·) from SOn(R)
to On(R) by the same formula, i.e. for x ∈ On(R)ss, we define

DSOn(x) = |det(1−Ad(x))|son(R)/son(R)x |
where son(R)x is the centralizer of x in son(R).

Remark 8.9. The reason we consider the model (GLn(R),On(R)) is that it
behaviors nicely under parabolic induction. To be specific, the intersection of
On(R) with the standard Levi subgroup GLn′(R)×GLn′′(R) (n = n′+n′′) of
GLn(R) is On′(R)×On′′(R), while intersection of SOn(R) with GLn′(R)×
GLn′′(R) is S(On′(R)×On′′(R)).

Proposition 8.10. Let ω+ be a finite dimensional representation of On(R)
and ω = ω+|SOn(R) which is a finite dimensional representation of SOn(R).
For all finite length smooth representations π of GLn(R), we have

m(π, ω) = m(π, ω+)+m(π, ω+⊗sgn), mgeom(π, ω) = mgeom(π, ω+)+mgeom(π, ω+⊗sgn).

Proof. The second equation follows from the definitions of mgeom(π, ω) and
mgeom(π, ω+), together with the fact that θω∨

+⊗sgn(h) = θω∨
+

(h)sgn(h) for

all h ∈ On(R).
For the first equation, we just need to show that the linear map

HomOn(R)(π, ω+)⊕HomOn(R)(π, ω+⊗sgn)→ HomSOn(R)(π, ω) : l1⊕l2 7→ l1+l2

is an isomorphism. It is clear that this map is injective, so we just need to
show that it is surjective. Given l ∈ HomSOn(R)(π, ω), we have l = l1+l2

2
where

l1 = l+ω+(ε)−1◦l◦π(ε), l2 = l−ω+(ε)−1◦l◦π(ε), ε = diag(−1, In−1) ∈ On(R)−SOn(R).

It is enough to show that

l1 ∈ HomOn(R)(π, ω+), l2 ∈ HomOn(R)(π, ω+ ⊗ sgn).

For v ∈ π and h ∈ SOn(R), we have

l1(π(h)v) = l(π(h)v)+ω+(ε)−1
(
l(π(εh)v)

)
= ω(h)l(v)+ω+(ε)−1

(
l(π(εhε−1)π(ε)v)

)
= ω(h)l(v)+ω+(ε)−1

(
ω(εhε−1)l(π(ε)v)

)
= ω(h)l(v)+ω(h)ω+(ε)−1l(π(ε)v) = ω(h)l1(v)
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and

l1(π(ε)v) = l(π(ε)v) + ω+(ε)−1
(
l(π(ε2)v)

)
= l(π(ε)v) + ω+(ε)−1

(
ω(ε2)l(v)

)
= l(π(ε)v) + ω+(ε)l(v) = ω+(ε)l1(v).

This implies that l1 ∈ HomOn(R)(π, ω+). Similarly, we can also show that
l2 ∈ HomOn(R)(π, ω+ ⊗ sgn). This proves the proposition. �

The following theorem will be proved in the next subsection. It gives a
multiplicity formula for the model (GLn(R),On(R)).

Theorem 8.11. For all finite length smooth representations π of GLn(R)
and for all finite dimensional representations ω+ of On(R), we have

(8.3) m(π, ω+) = mgeom(π, ω+).

Now we are ready to prove (8.1). It is enough to consider the case when ω
is irreducible. We use ω′ to denote the irreducible representation of SOn(R)
given by ω′(h) = ω(ε−1hε) with ε = diag(−1, In−1). If ω ' ω′, there exists
an irreducible representation ω+ of On(R) such that ω = ω+|SOn(R). Then
(8.1) follows from Proposition 8.10 and Theorem 8.11.

If ω is not isomorphic to ω′ (this only happens when n is even), then
there exists an irreducible representation ω+ of On(R) such that ω ⊕ ω′ =
ω+|SOn(R). By Proposition 8.10 and Theorem 8.11, we have

m(π, ω) +m(π, ω′) = mgeom(π, ω) +mgeom(π, ω′).

Hence in order to prove (8.1), it is enough to show that

m(π, ω) = m(π, ω′), mgeom(π, ω) = mgeom(π, ω′).

The first equation follows from the fact that the linear map

HomSOn(R)(π, ω)→ HomSOn(R)(π, ω
′) : l 7→ ω+(ε)−1 ◦ l

is an isomorphism. The second equation follows from the facts that θω∨(h) =
θ(ω′)∨(ε−1hε) for all h ∈ SOn(R) and θπ is invariant under ε-conjugation.
This finishes the proof of (8.1) and hence the proof of Theorem 1.4(1).

8.3. The proof of Theorem 8.11. In this subsection, we are going to
prove Theorem 8.11. To simplify the notation, we will replace ω+ by ω. We
first consider the cases when n = 2 (the case when n = 1 is trivial). We
need to show that for all smooth finite length representations π of GL2(R)
and for all finite dimensional representations ω of O2(R), we have

m(π, ω) = mgeom(π, ω) :=

cπ(I2)θω(I2) + cπ(−I2)θω∨(−I2) + 2θπ(

(
1 0
0 −1

)
)θω∨(

(
1 0
0 −1

)
)

4

+
1

2

∫
SO2(R)

θπ(t)θω∨(t)dt.(8.4)
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When π is finite dimensional, by the representation theory of compact
groups, we have

m(π, ω) =

∫
O2(R)

θπ(t)θω∨(t)dt =

θπ(

(
1 0
0 −1

)
)θω∨(

(
1 0
0 −1

)
)

2
+

1

2

∫
SO2(R)

θπ(t)θω∨(t)dt.

Here the Haar measure on O2(R) (resp. SOn(R)) is choosen so that the
total volume is equal to 1. On the other hand, since π is finite dimensional,
we have cπ(I2) = cπ(−I2) = 0. This proves (8.4).

Then we consider the induced representations. Assume that π = IGL2
B (π1⊗

π2) where B = TN is the upper triangular Borel subgroup of GL2(R) and
π1 ⊗ π2 is a finite dimensional representation of T (R) = GL1(R)×GL1(R).
By the Iwasawa decomposition GL2(R) = B(R)O2(R) and the reciprocity
law, we have

HomO2(R)(π, ω) = HomO1(R)×O1(R)(π1 ⊗ π2, ω|O1(R)×O1(R)).

By the representation theory of finite group (note that O1(R) = Z/2Z is a
finite group), we have

m(π, ω) =
θπ1(1)θπ2(1)θω∨(I2)

4
+
θπ1(−1)θπ2(−1)θω∨(−I2)

4
+

θπ1(1)θπ2(−1)θω∨(

(
1 0
0 −1

)
)

4
+

θπ1(−1)θπ2(1)θω∨(

(
−1 0
0 1

)
)

4
.

On the other hand, by Proposition 2.3, we have

mgeom(π, ω) =
θπ1(1)θπ2(1)θω∨(I2)

4
+
θπ1(−1)θπ2(−1)θω∨(−I2)

4
+

θπ1(1)θπ2(−1)θω∨(

(
1 0
0 −1

)
)

4
+

θπ1(−1)θπ2(1)θω∨(

(
−1 0
0 1

)
)

4
.

This proves (8.4).
Now we can prove (8.4) for the general case. It is enough to consider

the case when π is irreducible. There are three kinds of irreducible smooth
representation of GL2(R): finite dimensional representation, principal series
and discrete series. The first two cases have already been considered, so it
remains to consider the discrete series case. Assume that π is an irreducible
discrete series. Then there exists a character χ1 ⊗ χ2 of T (R) = GL1(R) ×
GL1(R) such that π is the unique subrepresentation of Π = IGL2

B (χ1 ⊗ χ2)
and π′ = Π/π is a finite dimensional representation of GL2(R). We have

m(Π, ω) = m(π, ω) +m(π′, ω), mgeom(Π, ω) = mgeom(π, ω) +mgeom(π′, ω).

By the discussion above, we have m(Π, ω) = mgeom(Π, ω) and m(π′, ω) =
mgeom(π′, ω). Hence (8.4) also holds for discrete series. This proves Theorem
8.11 when n = 2.
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Now assume that n > 2, we are going to prove Theorem 8.11 for GLn(R).
By induction, we assume that Theorem 8.11 holds for GLk(R) when k < n.
By Proposition 2.1, in order to prove Theorem 8.11, it is enough to prove
the following proposition.

Proposition 8.12. Theorem 8.11 holds for all induced representations. In
other words, if π = IGLn

P (τ) is an induced representation with P = MN be a
proper parabolic subgroup of GLn and τ be a finite length smooth representa-
tion of M(R), then m(π, ω) = mgeom(π, ω) for all smooth finite dimensional
representations ω of On(R).

Proof. Let π be an induced representation of GLn(R). Then there exists
a maximal upper triangular parabolic subgroup P = MN of GLn(R) and

a finite length smooth representation τ of M(R) such that π = IGLn
P (τ).

Since P is maximal, M(R) = GLn′(R)×GLn′′(R) for some n′, n′′ > 0 with
n = n′ + n′′ and τ = τ ′ ⊗ τ ′′ where τ ′ (resp. τ ′′) is a finite length smooth
representation of GLn′(R) (resp. GLn′′(R)).

By the Iwasawa decomposition GLn(R) = P (R)On(R) and the reciprocity
law, we have

HomOn(R)(π, ω) ' HomOn′ (R)×On′′ (R)(τ1 ⊗ τ2, ω|On′ (R)×On′′ (R)).

Together with the inductional hypothesis (applied to the pairs (GLn′(R),On′(R))
and (GLn′′(R),On′′(R))), we have

m(π, ω) =
∑

(n′
1,n

′
2,k

′)∈J(n′),(n′′
1 ,n

′′
2 ,k

′′)∈J(n′′)

1

2n′−k′k′!

1

2n′′−k′′k′′!

∫
(C1)k′

∫
(C1)k′′

DSOn′ (diag(In′
1
,−In′

2
, t′))DSOn′′ (diag(In′′

1
,−In′′

2
, t′′))cπ′(diag(In′

1
,−In′

2
, t′))

(8.5)
cπ′′(diag(In′′

1
,−In′′

2
, t′′))θω∨(diag(In′

1
,−In′

2
, t′, In′′

1
,−In′′

2
, t′′))dt′dt′′.

It remains to show that mgeom(π, ω) is equal to the right hand side of (8.5).
We first recall the definition of mgeom(π, ω) from (8.2):

mgeom(π, ω) =
∑

(n1,n2,k)∈J(n)

1

2n−kk!

∫
(C1)k

DSOn(diag(In1 ,−In2 , t))

cπ(diag(In1 ,−In2 , t))θω∨(diag(In1 ,−In2 , t))dt.(8.6)

For (n1, n2, k) ∈ J(n) = {(n1, n2, k) ∈ (Z≥0)3| n1 + n2 + 2k = n}, let

I(n1, n2, k) = {(n′1, n′′1, n′2, n′′2, k′, k′′) ∈ Z6
≥0| n1 = n′1 + n′′1, n2 = n′2 + n′′2, k = k′ + k′′,

(n′1, n
′
2, k
′) ∈ J(n′), (n′′1, n

′′
2, k
′′) ∈ J(n′′)}.

By Proposition 2.3, for (n1, n2, k) ∈ J(n) and t = t1 × t2 × · · · × tk ∈ (C1)k

with ti 6= ±1, ti 6= tj and ti 6= tj for 1 ≤ i 6= j ≤ n, we have
(8.7)

DSOn(diag(In1 ,−In2 , t))cπ(diag(In1 ,−In2 , t)) =
∑

(n′
1,n

′′
1 ,n

′
2,n

′′
2 ,k

′,k′′)∈I(n1,n2,k)

∑
{i1,··· ,ik′},{j1,··· ,jk′′}
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DSOn′ (diag(In′
1
,−In′

2
, t′))DSOn′′ (diag(In′′

1
,−In′′

2
, t′′))cπ′(diag(In′

1
,−In′

2
, t′))cπ′′(diag(In′′

1
,−In′′

2
, t′′))

where

• i1 < i2 < · · · < ik′ , j1 < j2 < · · · < jk′′ . {i1, · · · , ik′} runs
over the subsets of {1, 2, · · · , k} containing k′-many elements and
{j1, · · · , jk′′} = {1, 2, · · · , k} − {i1, · · · , ik′}.
• t′ = ti1 × ti2 × · · · × tik′ and t′′ = tj1 × tj2 × · · · × tjk′′ .

Combining (8.5), (8.6) and (8.7), we have m(π, ω) = mgeom(π, ω). This
finishes the proof of the proposition and hence the proofs of Theorem 1.4(1)
and 8.11. �

9. The proof of Theorem 1.4(2)

In this section, let H be a connected reductive group defined over R
with H(R) compact and let G = ResC/RH. Let π be a finite length smooth
representation of G(R) and ω be a finite dimensional representation of H(R).
We have defined the multiplicity

m(π, ω) = dim(HomH(R)(π, ω))

in previous sections. Moreover, by the discussion in Section 7.4, we know
that the geometric multiplicity in this case is defined by

mgeom(π, ω) = |W (H,T )|−1

∫
T (R)

DH(t)θπ(t)θω∨(t)dt = |W (G)|−1

∫
T (R)

DH(t)θπ(t)θω∨(t)dt

where T (R) is a maximal torus of H(R) (which is unique up to H(R)-
conjugation) and W (H,T ) is the Weyl group which is isomorphic to the
Weyl group W (G) of G(R) = H(C). The goal of this section is to prove
Theorem 1.4(2). In other words, we need to show that

(9.1) m(π, ω) = mgeom(π, ω).

When G is abelian, (9.1) is trivial. Hence by induction, we may assume
that (9.1) holds for all the proper Levi subgroups of G. By Proposition 2.1,
it is enough to prove the following proposition.

Proposition 9.1. (9.1) holds for all induced representations. In other word-
s, if π = IGP (τ) is an induced representation with P = MN be a proper para-
bolic subgroup of G and τ be a finite length smooth representation of M(R),
then m(π, ω) = mgeom(π, ω) for all finite dimensional representations ω of
H(R).

Proof. By conjugating M we may assume that P (R)∩H(R) = M(R)∩H(R)
is a maximal compact subgroup of M(R). Set HM = M ∩ H, then M '
ResC/RHM . Moreover, we may choose the torus T so that T ⊂ HM (i.e.
T (R) is also a maximal torus of HM (R)). By the Iwasawa decomposition
G(R) = P (R)H(R) and the reciprocity law, we have

HomH(R)(π, ω) ' HomHM (R)(τ, ω|HM (R)).
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Combining with our inductional hypothesis (applied to the pair (M(R), HM (R))),
we have

(9.2) m(π, ω) = |W (M)|−1

∫
T (R)

DHM (t)θτ (t)θω∨(t)dt

where W (M) is the Weyl group of M(R) = HM (C).

For t ∈ T (R) ∩ Greg(R), we have DH(t) = DG(t)1/2 and DHM (t) =

DM (t)1/2. Combining with Proposition 2.3, we have

DH(t)θπ(t) =
∑
tM

DHM (tM )θτ (tM )

where tM runs over a set of representatives for the M(R)-conjugacy classes
of elements in T (R) that are G(R)-conjugated to t. As a result, we have

(9.3)

∫
T (R)

DH(t)θπ(t)θω∨(t)dt =
|W (G)|
|W (M)|

∫
T (R)

DHM (t)θτ (t)θω∨(t)dt.

Now the proposition follows from (9.2) and (9.3). This finishes the proof of
the proposition and the proof of Theorem 1.4(2). �
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