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ABSTRACT. In this paper we prove the Dynamical Mordell-Lang Conjecture

for polynomial endomorphisms of the affine plane.
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INTRODUCTION

0.1. The dynamical Mordell Lang conjecture. This article is concerned with
the so-called dynamical Mordell-Lang conjecture that was proposed by Ghioca and
Tucker in [13].

Dynamical Mordell-Lang Conjecture ([13]). Let X be a quasi-projective
variety defined over C, let f : X — X be an endomorphism, and V' be any
subvariety of X. For any point p € X(C) the set {n € N| f*(p) € V(C)} is a
union of at most finitely many arithmetic progressions®.

This conjecture is inspired by the Mordell-Lang conjecture on subvarieties of
semiabelian varieties (now a theorem of Faltings [7] and Vojta [24]), which says
that if V' is a subvariety of a semiabelian variety G defined over C and I' is a
finitely generated subgroup of G(C), then V(C) (I is a union of at most finitely
many translates of subgroups of I'.

Observe that the dynamical Mordell-Lang conjecture implies the classical Mordell-
Lang conjecture in the case I' ~ (Z, +).

It is also motivated by the Skolem-Mahler-Lech Theorem [21] on linear recur-
rence sequences. More precisely, suppose {4, },,>0 is any recurrence sequence sat-
isfying A,y = F(An, -+, Apyyq) for all n > 0, where I > 1 and F(xq,- -+ ,2;) =
Eli;(l) a;x; is a linear form on C!. The Skolem-Mahler-Lech Theorem asserts that
the set {n > 0| A, = 0} is a union of at most finitely many arithmetic progres-
sions.

This statement is equivalent to the dynamical Mordell-Lang conjecture for the
linear map f : (xg, - ,x_1) — (z1, -+, 211, F(xo,- -+ ,x;)) and the hyperplane

0.2. The main results and comparison to previous results. Our goal is to
prove this conjecture for any polynomial endomorphism on A?@.

Theorem 0.1. Let f : A?@ — A?@ be a polynomial endomorphism defined over Q.
Let C be an irreducible curve in A% and p be a closed point in A?@. Then the set
{n e N| f*(p) € C} is a finite union of arithmetic progressions.

Pick any polynomial F(z,y) € Q[z,y]. By applying this result to the map
I A% — A?@ defined by (z,y) — (y, F(z,y)) and C = {x = 0}, we obtain the
following corollary about recurrence sequences.

Corollary 0.2. Let {A,},>0 be a sequence of algebraic numbers satisfying An 2 =
F(A,, Any1) for alln > 0, where F(x,y) € Q[x,y]. Then the set {n > 0| A, = 0}
s a finite union of arithmetic progressions.

A direct induction on the dimension also yields the following

Theorem 0.3. For any non-constant polynomials F, ..., F,, € Q[T], let us con-
sider the endomorphism f = (Fy(x1),- -, Fpn(zm)) on Ag.

lan arithmetic progression is a set of the form {an +b| n € N} with a,b € N.
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For any irreducible curve C' C Ag defined over Q and any point p € A™(Q),
the set {n > 0|f™(p) € C} is a finite union of arithmetic progressions.

The dynamical Mordell-Lang conjecture has received quite a lot of attention
in the recent years and our theorems are closely related to several known results.

Bell, Ghioca and Tucker [1] proved the Dynamical Mordell-Lang conjecture for
étale maps of quasiprojective varieties of arbitrary dimension, thereby generaliz-
ing the Skolem-Mahler-Lech Theorem [21] on linear recurrence sequences. The
core of their argument is to work in a p-adic field and to analyze the dynamics in
a quasi-periodic region where they are able to construct suitable invariant curves.
Afterwards, the author [28] proved the dynamical Mordell-Lang conjecture for
birational endomorphisms of the affine plane. The techniques in [28] are of a
very different flavour. Particularly, in [28], we got a new proof of the dynami-
cal Mordell-Lang conjecture for polynomial automorphisms of A% which are not
conjugated to an automorphism of some projective surface. However, we relied
on Bell, Ghioca and Tucker’s result in some cases, especially in the case of affine
automorphisms of A?. In this paper, we develop the techniques used in [28] in a
more general situation and use them more systematically.

Our Theorem 0.3 also generalizes [2, Theorem 1.5] of Benedetto, Ghioca, Kurl-
berg, and Tucker (hence [14, Theorem 1.4] of Ghioca, Tucker, and Zieve) which
proved the Dynamical Mordell-Lang conjecture in the case f = (F(x1), -+, F(x,)) :
A% — A% where F' € @[t] is an indecomposable polynomial function defined over

Q which has no periodic critical points other than the point at infinity and V is
a curve.

0.3. Overview of the proof of the main theorem. Since the proof of The-
orem 0.1 is quite long and involves many different cases, we provide in this in-
troduction a detailed overview of our strategy. To simplify the discussion, we
suppose that f is a dominant polynomial map f := (F(x,y),G(x,y)) defined
over Z and p € Z*. We assume that the set {n > 0| f"(p) € C} is infinite and p
is not preperiodic. We need to prove that the curve C' is periodic.

To do so we shall work in suitable compactifications of A? for which the in-
duced map by f at infinity is nice, in the sense that it does not contract any
curve to a point of indeterminacy. These dynamically meaningful compactifica-
tions have been constructed and studied by Favre and Jonsson in [12]. To put it
in broad terms, we shall use suitable height arguments to focus what happens to
the branches of C' at infinity under iteration, and conclude by applying the con-
struction of polynomials in valuation subrings of Q[z,y] that we have developped
in a former paper [27].

Let us now see in more details how our arguments work. We denote by A; the
topological degree of f i.e. the number of preimages of a general point in A%(Q)
and by A\; the dynamical degree of f that is lim,,_,(deg f")%. These degrees are
invariants of conjugacy and satisfy the inequality A\? > \,.

1) The case A\} = )Xy. This case is quite special in the sense that the map f
exhibits some kind of dynamical rigidity. By [12, Theorem C] either one can find
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a projective compactification of A? in which f induces an endomorphism, or f is
a skew product and there exists affine coordinates in which it can be written as
(f(z,y) = (P(x), Q(z,y)).

Let us first explain how our main theorem is proved in this case. There are
two important ingredients: one is Siegel’s theorem that give constraints on the
geometry of the curve C' and its preimages by f; and the other is a local version
of the dynamical Mordell-Lang conjecture for super-attracting germs. The latter
statement was first used in [28] to treat the special case of birational polynomial
maps, and we use it here more systematically.

1a) The map f is an endomorphism on a projective compactification X of A?,
with boundary D, := X \ A2, We proceed as follows. Since C' contains infinitely
many points in the orbit of p, it also contains infinitely many integral points
hence admits at most two branches at infinity by Siegel’s theorem. Arguing in
the same way with the preimages of C' we end up with a sequence of irreducible
curves {C7},<o with C° = C, and f(C7) = CV*! such that C7 has at most two
branches at infinity and the set {n > 0| f"(p) € C} is infinite for all j.

Then we look at the positions of C7 at infinity. One can show that two situa-
tions may appear: either one branch of C' intersects the divisor at infinity D, at
a superattracting periodic point; or €7 have bounded intersection with D... In
the former situation we apply our local version of the dynamical Mordell-Lang
conjecture to conclude. In the latter case, either C7 = C7" for some j > j’ and C
is periodic, or the C?’s belong to a fibration that is preserved by f in which case
it is not difficult to conclude.

1b) The map f is a skew product and deg(f™) ~ nA}. One may construct
a dynamically nice compactification X of A? such that X is isomorphic to a
Hirzebruch surface, and f preserves the unique rational fibration on X. One can
then understand fairly well the dynamics of f on the divisor at infinity in X, and
the proof goes in a very similar way as in the previous case 1a).

2) The case A3 < Xy. To analyze this case the above two ingredients are no
longer sufficient, and we need to get deeper in the action of the map f at infinity
in dynamically meaningful compactifications of A%, In other words we shall use
extensively the analysis of the action of f on the space of valuations at infinity
initiated in [12].

As in [12], V. is defined as the set of valuations v : k[z,y] — R U {+o0}
centered at infinity and normalized by min{v(x),v(y)} = —1. This set becomes a
compact space when endowed with the topology of the pointwise convergence. It
can be also endowed with a natural partial order relation given by v < ¢’ if and
only if v(P) < v/(P) for all P € k[z,y]. This partial order relation makes it to
be an R-tree. The unique minimal point for that order relation is the valuation
—deg.

Let s be a formal branch of curve centered at infinity. We may associate to s
a valuation v, € V,, defined by P +— —min{ordu(z|s), orde(y|s)} torde (Ps)-
Such a valuation is called a curve valuation.

Pick any proper modification 7 : X — P2 that is an isomorphism above the
affine plane with X a smooth projective surface. Let {Ey, E1,- - , E,,} be the set
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of all irreducible components of X \ AZ. For any irreducible component F;, we
can define a valuation vg, := by ordg, where bg, := — min{ordg,(z), ordg, (y)}.
Observe that vy, € V. Such a valuation is called a divisorial valuation. The set
of divisorial valuations is dense in any segment in V.

To define the action of f on V.., we first define a function d(f,*®) on V., by
v+ —min{v(f*L),0} where L is a general linear form in Q[x, y]. For simplicity,
we suppose that d(f,v) > 0 for all v € V.. Then the action fe on V, is defined
by fe(v): P d(f,v) to(f*P) for all P € Q[x,y].

In [12, Appendix A] and essentially in [3], Boucksom, Favre and Jonsson con-
structed an eigenvaluation v, in V,, and a canonical closed subset J(f) of Vi, (see
Section 6 for details). The following Theorem is a key ingredient in our paper.

Theorem 0.4. Let f be a dominant polynomial endomorphism on A? defined over
an algebraically closed field satisfying A2 > \o and #J(f) > 3. Let W be an open
neighborhood of v, in V. There ezists a finite set of polynomials {P;}1<i<s and
a positive integer N such that for any set of valuations {vy, v} C Vi \ fo ¥ (W),
there exists an index i € {1,--- , s} such that v;(P;) >0 for all j =1, 2.

2a) The case #J(f) > 3. We first suppose that v, is nondivisorial. As in
case la), we use Siegel’s theorem to constructs a sequence of irreducible curves
{C7} <o with CY = C, and f(C7) = C¥*! such that CV has at most two branches
at infinity and the set {n > 0| f"(p) € C’} is infinite for all j < 0. There exists
a neighborhood W of v, such that the curve valuations defined by the branches
of C' at infinity are not contained in W and fe(1W) C W. It follows that for any
N > 0, the curve valuations defined by the branches of C?, j < —N, at infinity
are not contained in f;(W). For N large enough, Theorem 0.4 allows us to
construct a finite set of polynomials {P,}1<;<s such that for any j < —N, there
exists i = 1,--- | s satisfying P;|¢c; = 0; this implies that C' is periodic.

When v, is divisorial, we may find a smooth projective compactification X of
A? such that there exists an irreducible component E of X \A2 such that v, = vg.
Take W a small enough neighborhood of v,. Not like the former case, in general
we can not ask W to be invariant under fo. In this case we need Theorem 13.1
which is a stronger version of Theorem 0.4. Relying on Theorem 13.1, we can
show that there is always some branch s/ of C7 such that the valuation v,; stays
in W for a long time.

In the case deg f|g = 1, we can show that the intersection number (s’ - I.)
of s/ and the line I, at infinity in P? can not grow much when vy stays in W.
Also we can use Theorem 13.1 to show that if a branch satisfying v,; ¢ W, then
(87 - ls)/ deg C7 is bounded by 1 — ¢ for some € > 0 and all j negative enough.
By some very careful analysis , we can at the end bound the degree of C7.

In the case deg f|p > 2, the new ingredient is the Northcott property for
number fields. More precisely, for any number field K such that both FE, f are
defined over K, for any point x € F(K), the set of inverse orbit of z in F(K) is
finite. Using this fact, we can show that if the branch s/ of 7 stays in W in a
long time, then the center of s7 is contained in a periodic point in £E. Then we
can conclude by some local argument.
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2b) The case #J(f) < 2. The serious difficulty in this case is that we can
not apply Theorem 13.1 directly. If all valuations in J(f) are divisorial, we may
prove that f is either étale or preserves a fibration. We treat this case separately.
Otherwise, we notice that all the nondivisorial valuations in J( f) are periodic and
repelling under fo. This fact shows that the curve valuations associated to the
branches of f™(C') at infinity can not be too close to those nondivisorial valuations
in J(f). This fact allows us to modify §* a little and get a modified version of
Theorem 13.1. Then we can use a strategy which parallels to the corresponding
case in 2a) to conclude our theorem in this case.

0.4. More remarks about our techniques. In order to prove Theorem 0.1, we
have developed some new techniques in this paper based on the theory of Favre
and Jonsson ([10, 11, 12, 18]). These techniques can be applied to not only the
dynamical Mordell-Lang conjecture but also many other problems of polynomial
endomorphisms of A%. In particular, in our recent work [17], Jonsson, Wulcan
and I proved [23, Conjecture 1] of Silverman for polynomial endomorphisms of A?
with A\; > Ay and in another recent work [16], Jonsson, Wulcan and I classified
all the polynomial endomorphisms f on A? that preserves a pencil |P| up to
changing affine coordinates and replacing f by a suitable iteration. In the sequels
to the papers [25, 26], these techniques will also be used to study the orbits of
point, the periodic points and the periodic curves of polynomial endomorphisms
f on A%

0.5. Further problems. In our proof of Theorem 0.1, we have use the theorem
of Siegel and the Northcott property for number fields. That’s why we restrict
our theorem for endomorphisms defined over &k = Q. We suspect that Theorem
0.1 remains true when k is an arbitrary algebraically closed field of characteristic
0. It seems that we can prove it by induction on transcendence degree of k over
Q and some reduction arguments; however, the step of the reduction seems not
trivial.

It would be interesting to generalize Theorem 0.1 for endomorphisms on ar-
bitrary affine surfaces. It might be possible to prove this by methods similar to
those in this paper. However this seems to require substantial effort, since it
needs to generalize the theory of valuative space at infinity for A% developed in
[11, 12, 27] and this paper to arbitrary affine surfaces.

0.6. The plan of the paper. In Part 1, we gather a number of results on
the geometry and dynamics at infinity. We first introduce the valuative tree at
infinity in Section 1, and then turn our attention to the notion of subharmonic
function in Section 2. We give an interpretation of this potential theory in terms
of b-divisors in Section 3. Finally we recall the main properties of the action of a
polynomial map on the valuation space in Section 4.

In Part 2, we collect some arguments of local nature that will be used in the
proof of our main result. We first recall the definition and basic properties of the
local valuation space in Section 5. Then we state and prove a local version of the
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dynamical Mordell-Lang conjecture for superattracting analytic germs in Section
6.

In Part 3, we give some basic observations on the Dynamical Mordell-Lang
Conjucture. We first define the DML property in Section 7. Then we get some
constraints on the target curve by Siegel’s theorem in Section 8 and we use these
constraints and the local arguments in Part 2 to prove Theorem 0.3 in Section 9.

In Part 4, we prove our main theorem in the resonant case \? = \,. We first
treat the case deg(f™) =< nA} in Section 10 and then treat the case deg(f™) < A}
in Section 11.

In Part 5, we study the valuative dynamics in the case A2 > X\;. We first
describe some basic properties of the Green function of f on V., in Section 12.
Then use the Green function to study the valuative dynamics in Section 13. In
Section 14 we get more information on the valuative dynamics in the case J(f)
is finite. Finally, in Section 15 we show that f is étale or preserves a fibration
when J(f) is a finite set of divisorial valuations.

In Part 6, we prove our main theorem in the non-resonant case A\? > \y which
completes the proof of Theorem 0.1. We first treat the case #J(f) > 3 in Section
16 and then treat the case #J(f) < 2 in Section 17.
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Part 1. Preliminaries

In this part, we collect some basic informations and results on the principal
tools of our article, namely the space of valuations on the ring of polynomials in
two variables that are centered at infinity. We first describe its tree structure in
Section 1, and then turn our attention to the notion of subharmonic function in
Section 2. We give an interpretation of this potential theory in terms of b-divisors
in Section 3. Finally we recall the main properties of the action of a polynomial
map on the valuation space in Section 4.

This part does not contain any new material. Proofs will be omitted and we
shall refer to other sources.

In this part k£ is an algebraically closed field of characteristic zero. We shall
also fix affine coordinates on A2 = Spec k[z, y].

1. THE VALUATIVE TREE AT INFINITY

We refer to [27, Section 2] for details, see also [10, 12].

1.1. The valuative tree centered at infinity. In this article by a valuation
on a unitary k-algebra R we shall understand a function v : R — RU{+o00} such
that the restriction of v to k* = k — {0} is constant equal to 0, and v satisfies
v(fg) =v(f)+v(g) and v(f +g) > min{v(f),v(g)}. It is usually referred to as a
pseudo-valuation in the literature, see [10]. We will however make a slight abuse
of notation and call them valuations.

We denote by V, the space of all normalized valuations centered at infinity i.e.
the set of valuations v : k[z, y] - RU{+00} normalized by min{v(x),v(y)} = —1.
The topology on V is defined to be the weakest topology making the map
v — v(P) continuous for every P € k|x,y].

The set V, is equipped with a partial ordering defined by v < w if and only if
v(P) < w(P) for all P € k[x,y] for which —deg : P — — deg(P) is the unique
minimal element.

Given any valuation v € Vi, the set {w € V,, —deg < w < v} is isomorphic
as a poset to the real segment [0, 1] endowed with the standard ordering. In other
words, (V, <) is a rooted tree in the sense of [10, 18].

It follows that given any two valuations vy, vy € V., there is a unique valuation
in V., which is maximal in the set {v € V| v < v; and v < vy}. We denote it by
(%1 VAN V3.

The segment [vq, v5] is by definition the union of {w, v; A vy < w < vy} and
{w, vy ANvg <w < vy},

Pick any valuation v € V.. We say that two points vy, vy lie in the same
direction at v if the segment [vy, v5] does not contain v. A direction (or a tangent
vector) at v is an equivalence class for this relation. We write Tan, for the set of
directions at v.

When Tan, is a singleton, then v is called an endpoint. In V,,, the set of
endpoints is exactly the set of all maximal valuations. When Tan, contains
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exactly two directions, then v is said to be regular. When Tan, has more than
three directions, then v is a branched point.

Pick any v € V. For any tangent vector ¢ € Tan,, we denote by U(¥) the
subset of those elements in V., that determine v. This is an open set whose
boundary is reduced to the singleton {v}. If v # —deg, the complement of
{w € Vo, w > v} is equal to U(%) where 7 is the tangent vector determined by
— deg.

It is a fact that finite intersections of open sets of the form U(¢)) form a basis
for the topology of V.

The convex hull of any subset S C V, is defined as the set of valuations v € V,
such that there exists a pair vy, vy € S with v € vy, v9].

A finite subtree of V, is, by definition, the convex hull of a finite collection of
points in V... A point in a finite subtree T' C V,, is said to be an end point if it
is extremal in 7.

1.2. Compactifications of A?. A compactification of A is the data of a pro-
jective surface X together with an open immersion A? — X with dense image.
A compactification X dominates another one X’ if the canonical birational
map X --» X’ induced by the inclusion of AZ in both surfaces is in fact a regular
map.
The category C of all compactifications of A? forms an inductive system for the
relation of domination.

Recall that we have fixed affine coordinates on A? = Spec k[z,y]. We let P?
be the standard compactification of A? and denote by I, := P2 \ A2 the line at
infinity in the projective plane.

An admissible compactification of A} is by definition a smooth projective sur-
face X endowed with a birational morphism 7y : X — Pi such that mx is an
isomorphism over Aj with the embedding 7|,z : A} — X. Recall that 7x can
then be decomposed as a finite sequence of point blow-ups.

We shall denote by Cy the category of all admissible compactifications. It is also
an inductive system for the relation of domination. Moreover Cy is a subcategory
of C and for any compactification X € C, there exists X’ € Cy dominates X.

1.3. Divisorial valuations. Let X € C be a compactification of A? = Spec k[z, y]
and F be an irreducible component of X\ A2. Denote by bg := min{ordg(z), ordg(y)}
and vg 1= bglordE. Then we have vg € V.

By Poincaré Duality there exists a unique dual divisor E of E i.e. the unique
divisor supported by X\ A? such that (E-F) = ¢z ¢ for all irreducible components
F of X\ A%

1.4. Classification of valuations. There are four kinds of valuations in V..
The first one corresponds to the divisorial valuations which we have defined above.
We now describe the three remaining types of valuations.



THE DYNAMICAL MORDELL-LANG CONJECTURE 11

C

FIGURE 1

Irrational valuations. Consider any two irreducible components £ and £’ of X \
A? for some compactification X € C of A? intersecting at a point p. There
exists a local coordinate (z,w) at p such that £ = {z = 0} and E' = {w = 0}.
To any pair (s,t) € (R")? satisfying sbp + thp = 1, we attach the valuation v
defined on the ring O, of holomorphic germs at p by v(>_ a;;z'w’) = min{si +
tj| a;; # 0}. Observe that it does not depend on the choice of coordinates. By
first extending v to the common fraction field k(z,y) of O, and k[x,y|, then
restricting it to k[z,y], we obtain a valuation in V., called quasimonomial. It is
divisorial if and only if either ¢ = 0 or the ratio s/t is a rational number. Any
divisorial valuation is quasimonomial. An irrational valuation is by definition a
nondivisorial quasimonomial valuation.

Curve valuations. Recall that [, is the line at infinity of P?. For any formal
curve s centered at some point ¢ € [, denote by vy the valuation defined by
P (s-1,)ords(P|s). Then we have v, € Vo and call it a curve valuation.

Let C be an irreducible curve in P. For any point ¢ € C'N [, denote by O,
the local ring at ¢, m, the maximal ideal of O, and I¢ the ideal of height 1 in O,

defined by C. Denote by 5 the completion of O, w.r.t. m,, m, the completion
of m, and [C the completlon of I¢. For any prime ideal p of height 1 containing

Ic, the morphism Spec Oq /D — Spec O defines a formal curve centred at ¢q. Such
a formal curve is called a branch of C at nfinity.

For example, in Figure 1, there are five branches at infinity of C'. Then for any
branch C; i = 1,--- .5, of C' at infinity, it corresponds to a curve valuation v¢,
1=1,---,5.

Infinitely singular valuations. Let h be a formal series of the form h(z) = Y7 a2z
with ax € k* and {8}, an increasing sequence of rational numbers with unbound-
ed denominators. Then P +— — min{ord. (), ords (h(z71))} Lorde Pz, h(z71))
defines a valuation in V,, namely an infinitely singular valuation.

A valuation v € V, is a branch point in V, if and only if it is diviorial, it
is a regular point in V,, if and only if it is an irrational valuation, and it is an
endpoint in V,, if and only if it is a curve valuation or an infinitely singular
valuation. Moreover, given any smooth projective compactification X in which
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v = vg, one proves that the map sending an element V,, to its center in X induces
a map Tan, — E that is a bijection.

1.5. Parameterizations. The skewness function « : V,, — [—00,1] is the u-
nique function on V,, that is continuous on segments, and satisfies

1. .
alvg) = b_Q(E - F)
E
where F is any irreducible component of X \ A? of any compactification X of A}
and F is the dual divisor of E as defined above.
The skewness function is strictly decreasing, and upper semicontinuous. There-
for it induces a metric dy,_ on V., by setting

dy. (v1,v9) :=2a(v1 Avg) — a(v1) — (v)

for all vy,ve € V. In particular, any segment in V,, carries a canonical metric
for which it becomes isometric to a real segment.

In an analogous way, one defines the thinness function A : Vo — [—2,00] as
the unique, increasing, lower semicontinuous function on V,, such that for any
irreducible exceptional divisor E in some compactification X € C, we have

A(vg) = é (1 +ordg(dz A dy)) .

Here we extend the differential form dz A dy to a rational differential form on X.
These parameterizations behave in the following way:
(i) when v is a divisorial valuation, then a(v) and A(v) are rational numbers;
(ii) when v is an irrational valuation, then «a(v), A(v) € R\ Q;
(iii) when v is a curve valuation, then a(v) = —oo, and A(v) = +o0;
(iv) when v is an infinitely singular valuation, then a(v) and A(v) can be either
finite or infinite.

2. POTENTIAL THEORY ON V_,

We refer to [27, Section 3] for details.

2.1. Subharmonic functions on V.. To any v € V, we attach its Green
function

g(w) = a(v Aw) .
This is a decreasing continuous function taking values in [—oo, 1], satisfying

gu(—deg) = 1.
Given any positive Radon measure p on V., we define

gplw) = / golw) dp(v) .

o'}

Observe that g,(w) is always well-defined as an element in [—o0, 1] since g, < 1
for all v. Then we recall the following

Theorem 2.1 ([27]). The map p — g, is injective.

One can thus make the following definition.
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Definition 2.2. A function ¢ : Vo — R U {—o0} is said to be subharmonic if
there exists a positive Radon measure p such that ¢ = g,. In this case, we write
p = A¢ and call it the Laplacian of ¢.

Denote by SH(V,) (resp. SHT(V4)) the space of subharmonic functions on
Voo (resp. of non-negative subharmonic functions on V).

The next result collects some properties of subharmonic functions.

Theorem 2.3 ([27]). Pick any subharmonic function ¢ on V. Then
(i) ¢ is decreasing and ¢(— deg) = Ap(Vy) > 0;
(ii) ¢ is upper semicontinuous;
(iii) for any valuation v € Vi, the function t — ¢(v;) is convex, where vy is the
unique valuation in [— deg, v] of skewness t.

2.2. Subharmonic functions on finite trees. Let T be any finite subtree of
V. containing — deg. Denote by ry : V, — T the canonical retraction defined by
sending v to the unique valuation r¢(v) € T such that [rr(v),v]NT = {rr(v)}.
For any function ¢, set Rr¢ := ¢ o rp. Observe that Rr¢|r = ¢|r and that
Rr¢ is locally constant outside T'.
Moreover we have the following

Proposition 2.4. For any subharmonic function ¢, and any finite subtree T
containing — deg, the function Rr¢ is subharmonic. Moreover we have Rr¢ > ¢

and A(Rp¢p) = (r7)A¢.

2.3. Examples of subharmonic functions. We refer to [27] for detail. For
any nonconstant polynomial @) € k[z,y|, we define the function

log |Q](v) == —v(Q) € [~00,00) .

Proposition 2.5. The function log|Q| is subharmonic, and
A(log|Q[) = > midy,

where s; are the branches of the curve {Q = 0} at infinity, and m; is the inter-
section number of s; with the line at infinity in P2.

Proposition 2.6. The functionlogt |Q| := max{0,log |Q|} belongs to SH* (V).

Denote by s1,--- , 8, the branches of {Q = 0} at infinity and by T the convex
hull of {—deg,vs,, -+ ,vs, }. Then the support of A(log™ |Q|) is the set of points
v €T satisfying v(Q) =0 and w(Q) < 0 for all w € (v, — deg].

In particular, the support of A(log™ |Q|) is finite.

2.4. The Dirichlet pairing. Let ¢, be any two subharmonic functions on V.
Since « is bounded from above one can define the Dirichlet pairing

(00 i= [ alonw) Ad(0)Av(w) € o0, +50)
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Proposition 2.7. The Dirichlet pairing induces a symmetric bilinear form on
SH(V) that satisfies

(2.1) (9,9) = | oAy

Voo
For any subharmonic function ¢ on V., we call (¢, ¢) the energy of ¢.

Next, we recall the following useful result.

Proposition 2.8 ([27]). Pick any two subharmonic functions ¢, € SH(Vy).
For any finite subtree T' C V,, one has

(Rro, Rryp) > (1)
In particular, we have
<RT¢7 RT¢> > <¢a ¢>
and the equality holds if and only if A¢ is supported on T
Finally, we recall a technical result that will play an important role in the rest
of this paper.
For any set S C V., we define B(S) := Uyes{w, w > v}.
Proposition 2.9 ([27]). Let ¢ be a function in SHY (V) such that (¢, ¢) = 0
and the support of the positive measure A¢ is finite, equal to {vy, - ,vs} for
some positive integer s.
Then for any finite set S C B({vy,- - ,vs}) satisfying {vy,--- ,vs} € S, there
exists a function v € SHY (V) such that
o (v) =0 for allv e B(S);
o (¥.¥)>0.

Remark 2.10. Let @ be a nonconstant polynomial in k[z,y] and set ¢ :=
log™ |Q], then ¢ € SH*(V.), (¢,¢) = 0 and the support of the positive mea-
sure A¢ is finite.

2.5. The class of L? functions. See [27, Section 3.7]
We define .2(Vy,) to be the set of functions
¢ {ve Ve av) > -0} =R

such that there exist ¢, ¢o € SH(V) with (¢, 1) > —00, (¢9, p2) > —0o0, and
d(v) = ¢1(v) — ¢2(v) for all valuations with a(v) > —oo.

Observe that L?(V,,) is an infinite dimensional vector space
Proposition 2.11. The restriction map g — g|{a>—oc} 18 injective from SH(Vog)N
{(¢,¢) > —oo} into L*(Vic).

We shall thus always identify a subharmonic function with finite energy with its
image in L?(V,,) so that we have in particular the inclusion SH* (V) C L3(Vy,).

It follows from the Hodge index theorem, see [27, Theorem 3.18] that
Proposition 2.12. For any two subharmonic functions ¢, ¢o with finite energy,
we have (¢1, pg) > —00.

This result allows one to extend the Dirichlet pairing to the space L*(V,,) as a
symmetric bilinear form.
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2.6. Polynomials taking nonnegative values on valuations. The results in
this section are proven in [27]. They will play a crucial role in the proof of our
main result.

Given any finite subset S of V,,, we define the k-algebra
Rg :={P € k[z,y]| v(P) >0 for all v € S} .

When the transcendence degree of the fraction field of Rg over k is equal to 2,
then we say that S is rich.

One of the main result of [27] is a characterization of rich subsets of V,, in
terms of the existence of suitable subharmonic functions. To state this result we
need to introduce some more notation.

We set

o Smin .= {y € S| v is minimal in S};
e B(5)° to be the interior of B(S).
It is easy to check that Rg: C Rg if S C B(S’) and then we have Rg = Rgmin.

The following result is [27, Theorem 4.7].

Theorem 2.13. Let S be a finite set of valuations in V.. Then the following
statements are equivalent.

(i) The subset S is rich.
(ii) There exists a nonzero polynomial P € Rg such that v(P) > 0 for all
ves.
(iii) For every valuation v € S™™ there exists a nonzero polynomial P € Rg
such that v(P) > 0.
(iv) There exists a function ¢ € SHT (V) such that ¢(v) = 0 for all v € B(S)
and (¢, ) > 0.
(v) There exists a function ¢ € L2(Vy,), satisfying ¢(v) = 0 for all v € B(S)
and (¢, ¢) > 0.
(vi) There exist a finite set S" C V., satisfying S C B(S")° and S’ is rich.
Remark 2.14. In (v) of Theorem 2.13, for any v € V,, satisfying a(v) = —o0,
we say ¢(v) = 0 if 0 € [liminf, <y o d(w), iMsup,, -, 4, P(w)].

The next result is [27, Theorem 4.12].

Theorem 2.15. Let S be a finite set of valuations in V.. Suppose that there
exists a function ¢ € SH(V) such that (¢, ¢) > 0 and ¢p(v) =0 for allv € B(S).

For any integer | > 0, there exists a real number M; < 1 such that for any set
S of valuations such that

(1) S"\ B(S) has at most | elements;

(2) " C B(S)U{v € V| a(v) < M;};
then there erists a function ¢' € 1L2(Vy) satisfying ¢'(v) = 0 for all v € B(S’)
and (¢',¢') > 0.

3. THE RIEMANN-ZARISKI SPACE AT INFINITY

3.1. Weil and Cartier classes. See [12, Appendix A] or [3, 4, 22] for details.
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Formally, the Riemann-Zariski space of P} at infinity is defined as X := lim X.
ec
In our paper, we concern ourself with its classes rather than itself.

For each compactification X € C, we denote by N'(X)g the R- linear space
consisting of R-divisors supported on X \ AZ. For any morphism 7 : X’ — X
between compactifications, we have the pushforward 7. : N*(X')g — N'(X)g
and the pullback 7* : N*(X)g — N'(X")g, see [6, 20] for details.

The space of Weil classes of X is defined to be the projective limit

W(X) := lirreréNl(X)R

with respect to pushforward arrows. Concretely, a Weil class a € W (X) is giv-
en by its incarnations ax € N'(X)g, compatible with pushforwards; that is,
meax = ax as soon as m: X — X'. Observe that we may define a Weil class by
its incarnations.

If ax € NY(X)g is a class in some compactification X € C, then ax defines a
Weil class ar, whose incarnation ay: = p,m,axy wheren : X7 — X and p: X — X'
are morphisms between compactifications. We say that « is determined in X. A
Cartier class is a Weil class determined in a certain compactification. Denote by
C'(X) the space of Cartier classes.

For each X, the intersection pairing N'(X)g x N'(X)rg — R is denoted by
(a-B)x. By the pull-back formula, it induces a perfect pairing W (X) x C(X) — R
which is denoted by (a - ). It induce an inner product on C'(X). The space

L*(%) := {a € W(X)| i%f (ax - ax) > —oo}

is the completion of C'(¥) under inner product. It is an infinite dimensional
subspace of W (X) that contains C(X). It is endowed with a natural intersection
product extending the one on Cartier classes and that is of Minkowski’s type, see
[4] or [9].

3.2. Nef b-divisors and subharmonic functions. In this section, we summa-
rize the relations between the classes of the Riemann-Zariski space at infinity and
the potential theory of V.

Let € be the set of all irreducible component of X \ A? for all compactifications
X of AZ, modulo the following equivalence relations: two divisors F, E' in (X, )
and (X',/) are equivalent if there exists a birational morphism 7 : X --» X’
such that m o1 = 15 sends F onto E’. As in [3, Section 1.3], we may identify
W(X) to R® and C(X) to @¢R. The pairing is given by (- ) = > pce crdr
where o = (cg)pes and f = @peedp are Weil and Cartier divisors respectively.
We first describe these identifications.

Given a compactification X € C and let Ey,--- , E,, be all irreducible excep-
tional divisors of X, the incarnation of & = (cg)gee is ax = Zi:l,---,m ci, F;.

For any E € &, pick a compactification X € C such that F is an irreducible
component of X \ A?. We denote by E the unique class in N'(X)z C C(%)
satisfying (E - F)x = 0 when F is an irreducible component different from E
and (E - E)x = 1. As a Cartier class, E' does not depend on the choice of the
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compactification X. The identification of &R to C(X) is given by @peedp —
Y pes Ak

We define a map ic : C(X) — C%(Vio, R) where C°(Vio,R) is the set of con-
tinuous functions on Ve by > pce dpFE — Y pee bEdpgy,. Observe that ic is an
embedding.

We denote by Nef (%) the set of all Weil classes @ € W (X) such that for
any compactification X € C, the incarnation ay is nef at infinity i.e. for any
irreducible component E of X \ A% we have (ax - E) > 0.

Let g be a continuous function on V., by [27, Lemma 3.5], we can prove that
there exists a sequence Cartier classes 3, € C(X) satisfying i¢(/5,) — ¢ uniformly
as n — 0.

Lemma 3.1. The limit lim,,_,o (8, - @) exists and does not depend on the choice
of the sequence [3,.

Proof. We only have the show that given a real number ¢ > 0, for any Cartier
class 8 in C(X) satisfying |ic(5)| < € on V., there exists a constant C' > 0 such
that |<OéX . BX)| S Ce.

There exists an admissible compactifiction X € C such that 3 is determined in
a X and then (a- ) = (ax - Bx). Observe that Sx = > bric(8)E where the sum
is over all irreducible components of X \ A?. Denote by 7 : X — P? the dominant
morphism between compactifications and L., the line at infinity of P2. Observe
that 7* Lo, = > bpE and then en* L., &+ Sx are effective. It follows that

[(a-B) = (ax - Bx)| < elax - 7" Loo) = e(ap2 - Loo).
U

The same argument in the proof of Lemma 3.1 also shows that the map g —
lim,, 00 (B,- ) is continuous on C°(V,,, R). This map defines a real Radon measure
Pa- Observe that if § is effective, (o, ) > 0. By [27, Lemma 3.5, we can prove
that fVoo fdp, > 0 when f is nonnegative. Then we get

Lemma 3.2. The real Radon measure p, s positive.
We define a map iy : Nef (X) = SH(V) by a — g,, and we have
Proposition 3.3. The map iy is bijective.

Proof. We define a map jy : SH(Vy) — W(X) be ¢ — (bpd(vg))gee. We only
have to show that jy is the inverse of iy.

We first claim that jy(SH(V)) € Nef o (X). Set a := jn(¢) = (bpd(vg))pes €
W(X). For any compactifiction X € C, denote by Ej,--- , E,, all the irreducible
components of X \ A%, We have ax =Y, bg,¢(vg, ) E;. Observe that ic(ax) is
the unique function on V,, satisfying

(i) ic(ax)(ve,) = ¢(vg,) foralli=1,---  m;
(ii) ic(ax) is linear outside {vg,, - ,vg,, }
It follows that ic(ax) takes form » ", aigo,, Where a; > 0 for all i =1, m.

Then we have ay = Zaib;;jEi and thus it is nef at infinity. It follows that
a € Nef (Vo).
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For any ¢ € SH(V,,), we have jy(¢) = (bpop(vg))gee. By the definition of iy,
for all divisorial valuation vg € V., we have

in G (6)) (vg) = / Gondpiniey = (in () - b5 E) = d(up).

Voo

It follows that iy o jy = id and then we conclude our proof. O

At last, we define an embedding ji» : L*(V,,) — L%*(X) as follows: Let ¢ be
any function in L?(V,,). Write ¢ = ¢ — ¢ on {v € V| a(v) > —oo} where
¢1, P2 are functions in SH(V ) satisfying (¢;, ¢;) > —oo for i = 1,2. Then jr2(¢)
is defined to be iy (¢1) — iy (¢2). This definition does not depend on the choice
of ¢17 ¢2 and satisfying <¢7 ¢> = <jL2 (¢)>jIL2 (w» for all ¢7 ¢ € L2<VOO>

For any v € V., set Z, := z';,l(gv) the Weil class in Nef ,(X). Observe that
Z, € L*(X) when a(v) > —oo and Z, € C(X) when v is divisorial. If v = vp
where E is an irreducible component of X \ A? for compactification X € C.
Denote by E the duality of E in N'(X) w.r.t. the intersection pairing. View E
as a Cartier class of X, then we have Z,, = by'E. Finally we recall the following

Proposition 3.4. [12, Lemma A.2]For any two valuations v,w € Vi one has
(Zy - Zy) = a(v Aw).

4. BACKGROUND ON DYNAMICS OF POLYNOMIAL MAPS

In this section we assume that & is an algebraically closed field of characteristic
zero. Recall that the affine coordinates have been fixed, A2 = Spec k[z, y].

4.1. Dynamical invariants of polynomial mappings. The (algebraic) degree
of a dominant polynomial endomorphism f = (F(z,y), G(x,y)) defined on A? is
defined by
deg(f) := max{deg(F),deg(G)} .

It is not difficult to show that the sequence deg(f™) is sub-multiplicative, so that
the limit Ay (f) := lim,_ oo (deg(f™))= exists. It is referred to as the dynamical
degree of f, and it is a Theorem of Favre and Jonsson that A\;(f) is always a
quadratic integer, see [12].

The (topological) degree Ao(f) of f is defined to be the number of preimages
of a general closed point in A?(k); one has \2(fg) = Xa(f)Na(g).

It follows from Bézout’s theorem that \o(f) < deg(f)? hence

(4.1) M(f)? = Na(f) -
The resonant case A\;(f)? = Xo(f) is quite special and the following structure

theorem for these maps is proven in [12].

Theorem 4.1. Any polynomial endomorphism f of A2 such that M\(f)* = Xa(f)
is proper?, and we are in one of the following two exclusive cases.

(1) deg(f™) =< M (f)™: there exists a compactification X of A% to which f
extends as a reqular map f: X — X.

2We say a polynomial endomorphism f of A% is proper if it is a proper morphism between
schemes. When k = C, it means that the preimage of any compact set of C? is compact.
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(2) deg(f™) =< nA\(f)": there exist affine coordinates x,y in which f takes
the form

flz,y) = (@' +ax"™ + ..+ a, Ao(2)y' + ... + Ay(2))
where a; € k and A; € k[x] with deg Ag > 1, and | = M\ (f).
Remark 4.2. Regular endomorphisms as in (i) have been classified in [12].

4.2. Valuative dynamics. Any dominant polynomial endomorphism f as in
the previous section induces a natural map on the space of valuations at infinity
in the following way.

For any v € V, we may set
d(f,v) := —min{v(F),v(G),0} > 0.

In this way, we get a non-negative continuous decreasing function on V,, such
that d(f,v) > deg(f)a(v). Observe also that d(f, —deg) = deg(f). It is a fact
that f is proper if and only if d(f,v) > 0 for all v € V..

We now set
o fu:=0ifd(f,v)=0;
o fu(P)=uv(f*P)if d(f,v) > 0.
In this way one obtains a valuation on k[z,y| (that may be trivial); and we then
get a continuous map
fo:{v eV | d(f,v) >0} = Vo
by
fo(v) == d(f,v)" v .
For any subset S of Vi, set fo*(S) := {v € Voo| d(f,v) > 0 and fe(v) € S}. If
f is an open set, then f,'(S) is also open.

This map fe can extend to a continuous map fe : {v € Vo| d(f,v) > 0} — V.
The image of any v € 0{v € V| d(f,v) > 0} is a curve valuation defined by a
rational curve with one place at infinity.

Lemma 4.3. Let C, D be two branches of curves at infinity satisfying f(C) = D.
Then we have med(f,ve) = deg(f|c)mp where me = (C-ls) and mp = (D).

Proof. Let L be a general linear form in k[z,y], we have
meve(f*L) = deg(flc)mpup(L) = deg(f|c)mp.
On the other hand, we have vo(f*L) = d(f,ve). It follows that
mcd(f, ve) = deg(flc)mp.
g

We now recall the following key result, [12, Proposition 2.3 ;Theorem 2.4, Proposition
5.3.].
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Theorem 4.4. There exists a unique valuation v, such that a(v,) > 0 > A(v,),
and f,v, = A\v,.

If M ()2 > Xao(f), this valuation is unique .

If \i(f)? = Xao(f), the set of such valuations is a closed segment.

This valuation v, is called the eigenvaluation of f when A\;(f)? > Xo(f).

4.3. Functoriality of classes of the Riemann-Zariski space. [12, Appendix
A] Let f be a dominant polynomial endomorphism on A? defined over k.

we have natural actions f* : C(X) — C(X) induced by the pullback between
the Néron-Severi groups and f, : W(X) — W(X) induced by the pushforward
between the Néron-Severi groups. Further, we have the projection formula

(fuB-7) = (B f7)
for § € C(X) and v € W(X).
The pushforward (resp. pullback) preserves (resp. extends to) L2 -classes. We
obtain bounded operators f*, f. : L*(X) — L*(X) and (f.8-7) = (8- f*y) for
B,v € L*(X). We have f.f* = \a(f) on L*(X).

Lemma 4.5. [12, Lemma A.6| We have f.Z, = d(f,v)Z, ) for allv € Ve
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Part 2. Local arguments

In this part we collect some arguments of local nature that will play an im-
portant role in the proof of our main result. We first recall the definition of the
local valuation space as in [11]. Then we state and prove a local version of the
dynamical Mordell-Lang conjecture for superattracting analytic germs (Theorem
6.2).

5. THE LOCAL VALUATIVE TREE AND THE LOCAL RIEMANN-ZARISKI SPACE

Let (X, q) be a smooth germ of surface at a closed point ¢ defined over an
algebraically closed field k. Pick a local coordinate (z,w) at ¢ and set m := (z, w).

5.1. The local valuative tree. See [18] for details. We first introduce the local
avatar of the valuative tree at infinity defined in [10].

We define the space V, of valuations that are trivial on £* and centered at g,
and normalized by the condition

v(m) = min{o(z),v(w)} = 1.

The order of vanishing ord, at the point ¢ is a valuation in V.

The space V; is equipped with a partial ordering defined by v < w if and only
if v(f) <w(f) for all f € k[[z,w]] for which is again a real tree (see [10, 11, 18]).
The valuation ord, is the minimal element of V.

Let m : Y — X be a morphism between compactifications in C such that = is
an isomorphism above X \ {¢}. Let F' be an irreducible component of 7—!(q). Set
bl := ordpm*m € NT, then v} := bLordp is contained in V,. Let Fq be the unique
divisor supported on 77'(q) such that (F,, F') = dp . The quantity (F, - F,) is
independence on the choice of Y.

There exists a unique increasing and lower semicontinuous function af : V, —
[1,4+00] on V, satisfying a?(vL) = —(b%L)"2(F, - F,).

At last we talk about the connection between the local valuative tree and the
global one. Now we suppose that X is a compactification of A? in C defined over
an algebraically closed field k and ¢ be a k-point in X \ AZ. Let {E), -, E,} be
the set of irreducible exceptional divisors containing ¢. We have s = 1 or 2.

Example 5.1. For i = 1,--- s, there exists a valuation v%j defined by P —
ord,(P|g,) for P € k[[z, w]].

Denote by U(q) that set of valuations in V., whose centres in X are ¢ and
set U(q) = U(q) U {vg,, - ,vg,}. For any v € U(q), there exists r,(v) € R
such that ry(v)v € Vi Set v? := ry(v)v when v € U, and v? := vg when

v €{vg,, - ,vp }. The map U(q) — V, defined by v — v? is a homeomorphism.

When v? € Vi \ {vg,, -, v }, the type of v is the same as the type of v as a

valuation in U(q); if v? = v, v? is a curve valuation.
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5.2. The local Riemann-Zariski space. Analogue to the Riemann-Zariski s-
pace at infinity, we can also define the Riemann-Zariski space at a point.

Let (X,q) be a smooth germ of surface at a closed point ¢ defined over an
algebraically closed field k. Pick a local coordinate (z,w) at ¢ and set m := (z, w).
We define C? be the category of biratonal model 7 : X, — X such that 7 is an
isomorphism above X \ {¢}. We denote by N, (X, )r the kernel of 7, : N'(X;)r —
NY(X)g.

As in Section 3.2, formally, the Riemann-Zariski space of X at ¢ is defined as
X7 := lim X,. The space of Weil classes of X9 is defined to be the projective

~ect
limit
W (%% := lim NMX,)r
(X7) Jm g (Xx)
with respect to pushforward arrows. The space of Cartier classes on X? is defined
to be the inductive limit

with respect to pullback arrows. As in Section 3.2, we embed C(X9) in W (X9).
The intersection pairing in N, (X;) induced an intersection pairing W (X?) x
C(X9) — R. This pairing is perfect.

We identify W (X?) to R®" and C'(X?) to ®%R where £ is the set of equivalence
classes of irreducible exceptional divisor above gq.

There exists a continuous embedding V, — W (X9) defined by v — ZJ¢ :=
(b5 (v A v))gesa. If v is divisorial, we see that Z7 is a Cartier class. By con-
tinuality, we can define the pairing (Z¢, - Z{)) := a%(v1 A vy).

5.3. Dynamics on the local valuative tree. In this section, we recall some
background on dynamics on the local valuative tree.

Let (X, q) be a smooth germ of surface at a closed point ¢ defined over an
algebraically closed field k. Pick a local coordinate (z,w) at ¢ and set m := (z, w).
Let f:(X,q) = (X,q) be a germ of dominant endomorphism of (X, q).

For any valuation v € V,, we define a valuation f.(v) by f.(v)(¢) :=v(f*¢) =
v(¢ o f). In general, f*(v) is not normalized and may be identically +oo in
m. The latter situation appears exactly when v = ve is a contracted curve
valuation i.e. C is a branch of curve at ¢ contracted by f. Denote by &; the
set of contracted curve valuation. Observe that € is finite. For v € V,, set
c(f,v) := min{v(f*x),v(f*y)} € [0,00]. Observe that ¢(f,v) = 0 if and only if
v € (’:f.

If v € V, is not a contracted curve valuation, fe(v) is defined to be ¢(f,v) ™! fuv
and we have min{ fe(v)(x), fo(v)(y)} = 1. Then we have fo(v) € V.

Set ¢(f) = c¢(f,ord,). Observe that c¢(f,v) is increasing in V, and by [18,
Proposition 7.14] we have c(f,v) < a?(v)c(f).

See [11, Theorem 3.1], we can extend the map fo : V, \ €; — V; to a unique
continue endomorphism V, — V.

Then we recall [11, Proposition 3.4] as follows:
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Proposition 5.2. The subset T]? of Vi, where c(f,*®) is not locally constant is a
finite closed subtree of V,. Its mazimal elements are exactly the mazimal elements
in the finite set (’E‘} consisting of divisorial valuations v with fev = ord, and of
contracted curve valuations

Next, we recall

Definition 5.3. [11, Definition 4.1] The asymptotic attraction rate of f is coo(f) :=

1

lim,, 00 c(f™) 7.

This limit exists and does not dependent on the choice of coordinate.
Observe that, if df (¢) = 0, then we have c..(f) > 1.

Definition 5.4. We say a valuation v, € V is an eigenvaluation if it satisfies the
following conditions:
(1) fov. = vs;
(i) d(f,v.) = o
(iii) either v, is divisorial or there exists an arbitrary small neighborhood U
of v, taking form U = {v,v > v1} or U = {v,v9 > v A vy > v} such that
foU CU.

We recall

Theorem 5.5. [11, Theorem 4.2, Proposition 5.2] If f is dominant with coo(f) >
1 at q, then there exists an eigenvaluation v, in V.

An eigenvaluation v, is said to be attracting if it has a neighborhood U in V/
such that for any valuation v € U we have f'(v) — v, as n — o0.

Recall that a fixed point germ is called rigid if its critical set is contained in a
totally invariant set with normal crossings.

Theorem 5.6. [11, Theorem 5.1] Suppose that f is dominant with co(f) > 1
and v, s an eigenvaluation in V,. Then one can find a modification m : ()Z',p) —
(X, q) such that the lift f of f is regular at p, f(p) =pand f ()?,p) — ()?,p)
is rigid. Moreover, if v, is nondivisorial and attracting, we may ask p to be the

center of v, in X and df(p)* = 0.
Finally we prove a technical lemma which is useful in the rest of the paper.

Lemma 5.7. Let C' be an irreducible formal curve in X containing q such that
f7C =dC and f.C =mC locally. If d > m, then there exists wy < vo arbitrary
close to v}, such that for anyv € W := {v € Vi| vAv > wy }, we have fi(v) — v
as n — oo and fe(W) C W. Moreover, for any M > 0, there exists N > 0 such
that {v € V| a?(v) < M} C foN(W).

In particular, for any v € V, satisfying a(v) < 400 we have fJ'(v) — vl as
n — 0o.

Proof. Since f*C = dC, we have f*Z%, = dZ!,. For all v € V; and n > 0, we
C C
have
al(vg ANv) = 1/d"(f*”ZZq A
C
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= c(f"0)/d"(Z3s - Zin(py) = (", 0) /" (vE A f3 ().

C

Let P be any polynomial in k[z,y], we have v{,(f*P) = mv{(P). It follows
that d(f,vd) = m. Since the function ¢(f, ) is continuous on V, and v¢ is a curve
valuation, there exists w; < v such that ¢(f,v) < c(f,vd) +1/2 < d for all
v > wp. Set W= {v € V] v > w}, it follows that fe(WW) C W and for any
veW, fo(v) = vl as n — .

For all n > 0, we have ¢(f") < ¢(f",v{) = m™. It follows that ¢(f",v) <
c(flad(v) < m"ad(v) for all n > 0 and all v € V.

For any M > 0, there exists N > 0 such that ]\j;n > a9(wy). It follows that
for all v € V, satisfying a(v) < M, we have

n

Mm™n
It follows that f&(v) € W and then fI'(v) — vd as n — oo. O

Qv A FY (1)) = de( ", v) " at(ole Av) > de(f" )t >

> a(w).

5.4. Compute local intersection of curves at infinity. Let C;, C5 be two
formal curves at infinity. The aim of this section is to compute the local inter-
section of them.

Denote by s the line at infinity in P2. Set m; := (C; - lo) for i = 1,2. Pick
a compactification 7 : X — P; which dominates P? such that centers ¢; of the
strict transform 7rl# Ci’s of Cy’s are distinct, each ¢; lies in a unique irreducible
exceptional divisor E; and C; is smooth at ¢; for : = 1,2. We may suppose that
E; £l fori=1,2.

Write 7*C; = 7r2-#Ci + Z; where Z; € NY(X)g for i = 1,2. It follows that we
have

(Z; - 7ly) = ((ﬂ'*Ci —#C;) - W#loo) = my;
and
(Z;- E) = ((«*C; =% C;) - E) =0

for irreducible exceptional divisor E different from E; and 77 l.. Observe that
we have
m; = (C; - lss) = (77 C; - o) = b,
fori=1,2.
It follows that Z; = m;Z_ aeq —bp, Zuy,, = Mi(Z_ qeg — Zop, ). Then the coefficient
of Z; of an irreducible exceptional divisor F of X is bpm;(1 — a(veg A vg,)).

Then we have
(Cy - Co) = (n°Cy - 7*Co) = ((7#Ch + Z1) - (77 Co + 25))
= (Z1+ Zo) + (7 Cy - Zs) + (77 Cy - Z4)
=myma(—1+ a(ve Avg,)) + 2mims(l — a(ve, Avg,))
=mima(l — a(vg, Avg,)) = mima(l — a(ve, Avg,)).

Then we have the following
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Proposition 5.8. If C', C5 are two formal curves at infinity, then we have
(C1-Ca) = (C1+ 1) (Ca - o) (1 = avey, A vey)).

6. THE DYNAMICAL MORDELL-LANG THEOREM NEAR A SUPERATTRACTING
POINT

In this section, we study the dynamical Mordell-Lang Theorem when C passing
through a superattracting point.
We begin with the following simple property.

Proposition 6.1. Let X be a smooth projective variety defined of a valued field
(K,|-]). Let f : X --» X be a rational endomorphism on X defined over K.
Endow X (K) the topology induced by | - |. Let ¢ be a K-point in X satisfying

(i) f(q) =a:
(i) ¢ & I(f);
(iii) df(q) = 0.
Let C be a curve in X satisfying ¢ ¢ C. Let p be a K-point in X satisfying
f™(p) € I(f) for all n > 0. If there exists a sequence n; such that f™(p) — q as
i — 00, then the set {n| f"(p) € C} is finite.

Proof. Since df(q) = 0 and g ¢ C, there exists a neighborhood U of ¢ satisfying
UNI(f)=0,UNC(K)=0and f(U) C U. Observe that f™(p) is defined over
K for all n > 0. Since f"(p) — q as i — o0, there exists m > 0 such that
f™(p) € U. It follows that f™(p) € U for all n > m. Then we have f"(p) ¢ C for

all n > m which conclude our proof. O

Let f: A2 - A?bea dominant polynomial morphism defined over Q. Let X be
a compactificaiton defined over Q. Then f extends to a rational endomorphism
on X. Let ¢ be a closed point in X, satisfying

(i) fla) =g
(i) ¢ & I(f);
(iii) df(q) = 0.
Theorem 5.5 implies that there exists an eigenvaluation v, € V, for f. Then we
have the following

Theorem 6.2. Let C be an irreducible curve in X containing q. Let Cy be a
branch of C at q such that the valuation ve, € V, satisfies fi(ve,) — v as
n — oo. If v, is attracting and nondivisorial, and v, # v., then C is not
preperiodic and for any point p € A% which is not preperiodic under f, the set

{n € N| f*(p) € C} is finite.

Proof of Theorem 6.2. By contradiction, we suppose that there exists an infinite
sequence {n; < --- < n; < niyp < ---} such that f*(p) € C for all i > 1.
By Theorem 5.6, we may suppose that f'(v) — v, for all v € V, as n — 0.
By Theorem 5.6 again, there exists a birational morphism 7 : X — X which
is an isomorphism above X \ {¢} such that the center @ of v, is not contained

in the strict transform 7#(C) of C. Lift f to a rational map f on X. We may
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suppose that @ ¢ I(f), f(Q) = @ and d]?(Q) = 0. Set C := 7#C. Observe that
Q € N1 (C) for some Ny > 1 since fI'(ve,) — ve. Set p:=7(p).

Let K be a number field such that p, X , f, @ and C are all defined over K. For
any place v of K, endow X (K) with a metric d, induced by v.

We have ™ (p) € C and then f7+N1 () € fN(C). Since Q is supperattacting,
by [27, Proposition 6.2], there exists one place v of K such that f”(f)) — @ with

respect to the topology on X with respect to |- |,. We conclude our proof by
Proposition 6.1. U

The following corollary comes from Theorem 6.2 immediately.

Corollary 6.3. Let f : A> — A% be a dominant polynomial morphism defined
over Q. Let X be a compactificaiton defined over Q. Then f extends to a rational
endomorphism on X. Let q be a closed point in X \ A? such that in some local
coordinates at q, f takes form (z%,y%) for 2 < s <d—1. Let C be an irreducible
curve in X containing q. Let p be a closed point in A%(Q). If C is not fized and
p is not preperiodic, then the set {n € N| f*(p) € C} is finite.
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Part 3. The Dynamical Mordell-Lang Conjecture

In this section, we give some basic observations on the Dynamical Mordell-Lang
Conjecture and prove Theorem 0.3 as an application of these observations.
We first notice the following

Proposition 6.4. Let f : A% — A% be a polynomial endomorphism defined over

Q. Let C be an irreducible curve in A% and p be a closed point in A?@. If f is

not dominant, then the set {n € N| f*(p) € C} is a finite union of arithmetic
PTrOgressions.

Proof of Proposition 6.4. We suppose that the set {n € N| f"(p) € C'} is infinite.
If f in the Main Theorem is not dominant, f (A%) is an irreducible subvariety in
Q of dimension at most one.

If dim f(A%) = 0, then f"(p) = f(p) for all n > 1. Proposition 6.4 holds in
this case.

If dim f(A%) =1land C = f(A%), then f™(p) € C for n > 1 which conclude
our proposition.

If dim f (A?@) =land C # f (A?@), then C'N f (A?@) is finite. It follows that p is

preperiodic which concludes our proposition. Il

In the rest of our paper, we suppose that f is dominant.

7. THE DML PROPERTY

As in [28], we introduce the following

Definition 7.1. Let X be a smooth surface defined over an algebraically closed
field, and f : X --» X be a rational endomorphism. We say that the pair (X, f)
satisfies the DML property for a curve C'if for any closed point p € X such that
f"(p) € I(f) for all n > 0, the set {n € N| f*(p) € C} is a union of at most
finitely many arithmetic progressions.

We say that the pair (X, f) satisfies the DML property if it satisfies the DML
property for all curve C' in X.

The DML property is equivalent to the following property.

Proposition 7.2. [28, Proposition 4.2]Let X be a smooth surface defined over
an algebraically closed field, and f : X --+ X be a rational transformation. The
following statements are equivalent.

(1) The pair (X, f) satisfies the DML property.

(2) For any irreducible curve C' on X and any closed point p € X such that
f™(p) & I(f) for alln > 0 and the set {n € N|f"(p) € C} is infinite, then
p is preperiodic or C' is periodic.

(3) For any irreducible curve C on X and any closed point p € X such that
f™(p) € I(f) for alln > 0 and the set {n € N|f"(p) € C} is infinite, then

p is preperiodic or C' is preperiodic.
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Proof of Proposition 7.2. We first prove the equivalence of (1) and (2).

Suppose (1) holds. Let C be any curve in X and p be a closed point in X
such that f™(p) &€ I(f) for all n > 0. Assume that the set {n € N| f"(p) € C}
is infinite. The DML property of (X, f) implies that there are integers a > 0
and b > 0 such that f**°(p) € C for all n > 0. If p is not preperiodic, the set
Oap = {f*(p)| n > 0} is Zariski dense in C' and f*(Oup) C Oup. It follows
that f*(C') C C, hence C' is periodic.

Suppose (2) holds. If the set S := {n € N| f*(p) € C} is finite or p is
preperiodic, then there is nothing to prove. We may assume that S is infinite
and p is not preperiodic. The property (2) implies that C' is periodic. There
exists an integer a > 0 such that f¢(C) C C. We may suppose that f/(C) € C
for 1 < i < a— 1. Since p is not preperiodic, there exists N > 0, such that
f*(p) € (Uicica1fY(C))NC for allm > N. So S\ {1,---,N — 1} takes form
{an 4+ b| n > 0} where b > 0 is an integer, and it follows that (X, f) satisfies the
DML property.

So we only need to show that (3) implies (2).

We suppose that there exists a closed point p € X such that f*(p) € I(f) for
all n > 0 and the set {n € N|f"(p) € C} is infinite. Moreover we may suppose
that C' is preperiodic.

If C' is not periodic, there exist m > 0 such that f™(C) is periodic. Then
U, fY(C) is a union of finitely many irreducible curves and f"(p) € U2, f{(C)
for n > m. Since C' is not periodic, C NUL, f(C) is finite. It follows that p is
preperiodic, which is a contradiction. O

Theorem 7.3. Let X be a smooth surface defined over an algebraically closed
field, and f : X --+ X be a rational endomorphism, then the following properties
hold.

(i) For any m > 1, (X, f) satisfies the DML property if and only if (X, f™)
satisfies the DML property.

(ii) Suppose U is an open subset of X such that the restriction fi : U — U
is a morphism. Then (X, f) satisfies the DML property, if and only if
(U, fiv) satisfies the DML property.

(iii) Suppose m : X' — X is a generic finite morphism between smooth pro-
jective surfaces, and f : X --» X, f': X' --» X' are two rational maps
satisfying wo f' = fom. For any curve C in X, if the pair (X', ') satisfies
the DML property for 7=1(C), then (X, f) satisfies the DML property for
C.

Proof of Theorem 7.3. (i). The "only if” part is trivial, so that we only have to
deal with the 7if” part. We assume that (X, f) satisfies the DML property. Let
C' be a curve in X and p be a point in X such that f"(p) &€ I(f) for all n > 0.
Suppose that the set {n € N| f"(p) € C} is infinite. Since

m—1

{neN f1(p) € C = | Jfn eNL /™ (F(p)) € O},
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then for some i, the set {n € N| f"(f'(p)) € C} is also infinite. Since (X, f™)
satisfies the DML property, C' is periodic or fi(p) is preperiodic. It follows that
(' is periodic or p is preperiodic.

(ii). If (X, f) satisfies the DML property, since fiy : U — U is a morphism,
(U, fiv) satisfies the DML property.

Conversely suppose that (U, fiy) satisfies the DML property. Let C' be an
irreducible curve in X, p be a closed point in X such that f"(p) & I(f) for all
n > 0 and the set {n € N|f"(p) € C} is infinite. The set £ = X — U is a proper
closed subvariety of X. If p € U, then we have that C' Z E. Since (U, f) satisfies
the DML property, we have either p is preperiodic or C' is periodic. Otherwise,
we may assume that for all n > 0, f*(p) € E, then the Zariski closure D of
{f™(p)| n > 0}, is contained in E. We assume that p is not preperiodic, then
C C D. Since D is fixed, we have that C' is periodic.

(iii). Let p € X be a nonpreperiodic point satisfying f"(p) € I(f) of all n > 0
and C' be an irreducible curve in X. Suppose that the set {n € N| f*(p) € C}
is infinite. The set I(f’) is finite, so its image 7(I(f’)) is finite. Let S be the
set of point z in X satisfying 7~!(z) is infinite. Then S is finite. Since p is not
preperiodic, there exists N > 0 such that f"(p) & w(I(f")) US for all n > N. By
replacing p by f¥(p), we may suppose that N = 0. Let q be a point in 7=1(p).
We have f"(q) ¢ I(f') and the set {n € N| f"(q) € 7=1(C)\ 7~ (9)} is infinite.
Then there exists an irreducible component C’ of 77!(C) satisfying 7(C") = C
and the set {n € N| f(q) € C'} is infinite. We see that ¢ is not preperiodic, so
(' is periodic. It follows that C' is periodic, which concludes our proof. O

8. CONSTRAINTS ON THE GEOMETRY OF THE TARGET CURVE

In this section the situation is as follows: f is a dominant polynomial map of
A? defined over Q, C is an irreducible curve in A?@ containing infinitely many

iterate of a non-preperiodic point p € A%(Q). The follows theorem gives us some
constraints on the geometry of C.

Theorem 8.1. Let f be a dominant endomorphism OQAQ defined over Q, C an
wrreducible curve in A% and p be a closed point in A*(Q).

If the set {n > 0|f™(p) € C} is infinite and p is not f-preperiodic, then there
exists a sequence of rational curves {C;}icz with at most two branches at infinity
such that

(i) C° = C;
(i) f(C) =C"r
(iii) for all i € Z, the set {n > 0|f"(p) € C*} is infinite.
Since f is polynomial, the number branches of C" is increasing as ¢ — —oo but

bounded by two. So there exists N < 0, such that the number of branches of C*
is stable when ¢ < N. So we have the following

Remark 8.2. By replacing C' by C7 for some j < 0, we may suppose that for
all 7 < 0, number of places of C? at infinity are the same number s € {1,2}.
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Let C’f’s be branches of C7, we may suppose that f(CZJ) = C{H for j < —1 and
1<y <s.

The following theorem shows how to apply this sequence of curves to the Dy-
namical Mordell-Lang Conjecture.

Theorem 8.3. Let f be a dominant endomorphism on A? defined over Q that is
not birational.

Pick any smooth projective compactification X of A% and suppose that there
exists a sequence of irreducible curves in X satisfying f(C?) = C*! fori < —1
and such that sup;c; (C'- L) is bounded for some ample line bundle L — X.
Then the pair (X, f) satisfies the DML property for the curve C* for some i < 0.

8.1. Proof of Theorem 8.1. We first fix some notations:

* K is a number field;

* M is the set of places on K;

* M% is the set of archimedean places on K;

* S is a finite set of places of K containing all the archimedean places;
* Ok g is the ring of S-integers.

Theorem 8.1 is a corollary of the Siegel’s Theorem (see [15] for details).

Theorem 8.4 (Siegel’s Theorem). Let C' be a curve over a number field K and
g € K(C) be a nonconstant rational function on C. If either C' is not rational or
g has at least three distinct poles, then the set {p € C(K)|g(p) € Ok.s} is finite.

Next we recall two obvious facts.

o If C € A?(K) is a plane curve which has at least 3 branches at the
infinity, by taking ¢ = ax + by where x,y are the coordinate functions
and a, b are two general integers, Siegel’s Theorem shows that the set of
S-integral points of C i.e. {(x,y) € C(K)|z,y € Og} is finite.

o If f: A% — A% is a polynomial endomorphism of A% whose coefficients
are all contained in Ok g, and p € A*(K) is a S-integer point. For any
n >0, f"(p) is a S-integer point.

Then we have the following

Proof of Theorem 8.1. We may suppose that there exists a number field K, such
that f and p are all defined over K. Further we may suppose that there exists
a finite set S of My containing M$ such that all coordinates of p and all
coefficients of f are contained in Ok g. It follows that all points in the orbit of p
are S-integral points.

For ¢ > 0, we just set C* := f*(C). For j < —1, we construct this sequence by
induction. If we have C* for some i < 0 such that the set {n > 0| f*(p) € C*}
is infinite. Then the set {n > 0] f*(p) € f~1(C")} is infinite. There exists an
irreducible component C*1 of f~1(C?) such that the set {n > 0| f"(p) € C*~'}
is infinite. By Theorem 8.4, C*~! is rational, has at most two branches at infinite
and satisfies f(C"') = C".

O
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8.2. Proof of Theorem 8.3. Theorem 8.3 is the corollary of the following more
general result.

Proposition 8.5. Let X be a smooth rational surface defined over an algebraically
closed field and f : X --+ X be a dominant rational endomorphism on X with
Ay > 2. Let L be an ample line bundle and let {C"};<o be a sequence of distinct
curves in X satisfying f(C?) = C! fori < —1.

If that there exists M > 0 such that (C*- L) < M, then up to a positive iterate
there exists a generic finite cover g : X' — X with a rational endomorphism
f1o X' -=» X! satisfying f o g = go f' such that we have that f' preserves a
rational fibration m and for some i < 0, every component of g~1(C?) contains in

a fiber of m.

Proof of Theorem 8.3. Let p be a closed point in X such that f™(p) & I(f) for
all n > 0 and the set {n > 0| f"(p) € C} is infinite. By Proposition 7.2, we
may suppose that C is not periodic and p is not preperiodic. Then the curves
C"s, i < —1 are distinct. Since there exists M > 0 such that (C"- L) < M,
by Proposition 8.5, up to a positive iterate there exists a generic finite cover
g : X' — X with a rational endomorphism f": X’ --» X’ satisfying fog=go f’
such that we have that f’ preserves a rational fibration 7 and for some i < 0, every
component of ¢g7'(C?) is contained in a fiber of m. Pick any point ¢ € g~'(p).
By replacing p by f™(p) for some n > 0, we may suppose that (f")*(q) & I(f)
for all n > 0. Then set of n > 0 such that (f)"(p) € ¢g~'(C) is infinite. Pick
C' an irreducible component of g~'(C') for which the set {n > 0| (f')" € C'} is
infinite. Then 7(C") is a periodic points. It follows that C” is periodic and then
C is periodic. O

Proof of Proposition 8.5. There exist a smooth projective surface I', a birational
morphism 7; : I' = X and morphism 7 : I' — X satisfying f = m o 7, .
We denote by f, the map mo, o wf : DivX — DivX. Let E, be the union of
exceptional irreducible divisors of m; and & be the set of effective divisors in X
supported by mo(Ey,). It follows that for any curve C' in X, there exists D € &
such that f.C' = deg(f|c)f(C)+ D.

For any effective line bundle K € Pic(X), the projective space Hy := P(H°(K))
parameterizing the curves C' in the linear system |K|. Since Pic’(X) = 0, for any
[ > 0, there are only finitely many effective line bundle satisfying (K - L) <.

Then H! := ]_[( K-L)<I Hp is a finite union of projective spaces and it parame-
terizing the curves C' in X satisfying (C'- L) <.

There exists d > 1 such that dL — f*L is nef. Then for any curve C' in X,
we have (f.C - L) = (C- f*L) < d(C - L). It follows that f. induce a morphism
F:H — H'by C — f.Cforalll > 1. Foralll >1, a € Z* and D € €,
there exists an embedding iq,p : H; — Hyy(p.ry by C = aC+D. Let Zy,--- , Zp,
be all irreducible components of the Zariski closure of {CV};<_; in HM whose
dimensions are maximal. For any i € {1,--- ,m}, there exists [ < M such that
(C-L) =lforall C € Z;. Let S be the finite set of pairs (a, D) where a € Z*, D €
€ satisfying al+ (D - L) < dM. Then we have F(Z;) C Uj—1 ... ; Ua,0)es %a,0(Z;).
It follows that there exists a unique j; € {1,---,m}, and a unique (a,D) € S
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such that F(Z;) = i,,p(Z;,). Observe that, the map ¢ — j; is an one to one map
of {1,--- ,m}. By replacing f by a positive iterate, we may suppose that j; =1
and F(Z;) C fag, Dz, 2 for alli=1,--- m.Set Y := Z1, a = az,, D = Dy and
T =iy, p, °Flv.

Observe that Y is a projective variety and 7" is an endomorphism on Y. Let K be
the line bundle such that P(H°(X, K)) contains Y, H the hyperplane line bundle
on P(H°(K)) and H' be the hyperplane line bundle on P(H®(f.K)). Observer
that i} ,H' = H®* and F*(H) = H®* where ), is the topological degree of f.
It follows that T*(H|$") = H|$™. Tt follows that the topological degree of T is
(A2/a)¥™Y . Then Ay /a is a positive integer.

Let S be the subvariety of Y x X whose set of closed point is {(C, q)| ¢ € C}.
Denote by p; : S — Y and ps : S — X the projections to the first and the second
coordinates. For any ¢« > N, C} is a fiber of m; and it is irreducible. Set R be the
infinite set of j < 0 such that C? € Y. Since {C7},cp is dense in Y, we have the

following properties.

(1) The generic fiber of p; is irreducible.

(2) Every fiber of p; is dimensional 1.

(3) The restriction of ps on a fiber of p; is an embedding.
(4) The images of two different p;-fibers by py are different.

Observe that S is invariant by the rational endomorphism T'x f : ¥ x X --» Y x X
and then denote by fg the restriction of T' x f to S.
Then the diagram

x—7+ _x
N
S— .3
J
Y A Y

commutes.

For a general point C' € Y, set T71(C) = {C,--- ,C,japaimv }. If we view
them as curves in X, we have f.(C;) = aC + D for i = 1,---,(\y/a)%™Y. For
a general points p in C, the number of its preimages by f|c, is a. So we have
Ao = #[7Ha) = a(Ao/a)™™Y.

If A\o/a > 2, we have dimY = 1. Then S is a surface which concludes our
Proposition.

Otherwise, we have Ay = a. Then T is an automorphism. Since Ay > 2,
by replacing f by a positive iterate, we may suppose that \y > (K - K). Let
p be a general point in X and C' be a point in Y such that p € C', we have
#(f(p)NTHC)) = a = #f"p). It follows that f~(p) C T-H(C). If there
exists another point C' € Y containing p, then we have f~'(p) C T71(C) N
T=1C"). Tt follows that (K- K) = (T-YC)-T~YC")) > #(T-YC)nT~(C")) >
A2 which contradicts our assumption. Then there are only one C' € Y containing
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p. In other words, ps is birational. Then S is a surface and Y is a curve which
conclude our Proposition. O

Finally, we prove a technical result which shows that how to use Theorem 8.1
to construct a sequence of curves satisfying the conditions in Proposition 8.5.

Let f: A? — A? be a dominate polynomial endomorphism on A?. Let X € C
be a compactification of A? and we extend f to a rational endomorphism of X.
There exists a smooth projective surface Y a birational morphism 71 : ¥ — X
and a morphism 7, : Y — X satisfying f = mpon; !, Set f* = m.om} : Div(X) —
Div(X).

Definition 8.6. Let £’ be any irreducible curve in X \ A?. If my contracts all
irreducible curves in 75 (E’) except ﬂ#E’ , then we say that E' is totally invariant

by f.

Remark 8.7. In fact, £’ is totally invariant if and only if vy is totally invariant
by fe. Moreover we have f*E' = d(f,ve)E'.

Definition 8.8. Let C' and C’ be two distinct irreducible curves in a projective
surface X, and B a set of points in X. Denote by (C' - C"\ B) the sum of local
intersection numbers of C' and C’ outside B.

Let {C7}j<o be a sequence of curves with s = 1 or 2 branches at infinity
satisfying f(C7) = C7*! for j < —1. Let CJ’s be branches of CV and suppose
that f(C?)=C/™ for j < —land 1 <i<s.

Theorem 8.9. Let E be the union of all totally invariant curves lying in the
divisor at infinity X \ A? and suppose that f*E = dE for some d > 1.

Denote by & the subset of points ¢ € E whose orbit under f|g is periodic, and
contains either a point of indeterminacy of f, or a singular point of X, or a
critical point for f|g.

Let G be the set of index 1 < i < s such that for all j <0 the center ¢! of CY
are contained in E\I(f). Let D be an effective ample divisor supposed by X \ A2
and Dg part of D supported by E. '

IfC'N(ENE)#0 and X, o(Dp - C)) > (D - C7) for some e > 0 and all
J <0, then sup;ey (C*- D) is bounded.

Proof of Proposition 8.9. Let Fy,--- | E,, be all irreducible components of E. For
anyi=1,--- ,mandy € E;, set U(y) open set in V,, consisting by the valuations
presented the vector corresponding to y. Since vg, is totally invariant under fo,
for any valuation v € U(t) satisfying d(f,v) > 0, we have fe(v) € U(f|g,(y)). Set
¢ = CI N X

Let E' be an irreducible component of E. Observer that if qf € F, then
qf“ = f|E(qf) Since F is totally invariant, we have qf € F if and only if ¢{ € F.
If ¢/ € E, then ¢/ = f|n(q)).

We may suppose that ¢¢ € E; \ €. By replacing C' by C~ for [ large enough,
we may suppose that for all j < 0, we have f|g, is not ramified at ¢}.

Pick a neighborhood Uj; of q{ for j < 0 and ¢ € G, we may suppose that
in some local coordinate f : Uj; — U;11, has form (z,y) — (x,y?). In these




34 JUNYI XIE

coordinates, F; = {y = 0}. It follows that deg f|c{ is at most d. Since C' is
irreducible, we have deg f|c; = deg f|o{ <d.
Pick E’ an irreducible component of E. If ¢? € E’, then we have
(C] - E') = 1/d(C] - [*E") = (deg(f|s)/d)(C] ™ - E') < (C]T - E)

for all 7 < —1. '
If ¢ € E', then (CY - E') =0 for all j <0.

We have
(D-C7) < 1/e 37 (Dp. ) < 1/e 3 (D, CIF) < 1/ 3 (D - CF)
i€G i€G 1eG
for all 7 < —1. By Proposition 8.5, we conclude our Proposition. U

9. THE PROOF OF THEOREM 0.3

In this section, we denote by k := Q the field of algebraic numbers.

We first recall the setting:

Let f := (Fi(x1), -, Fiu(2m)) be an endomorphism on A™ defined over k. Let
C' be any irreducible curve in A™ defined over k and p be any point in A™ (k).
We need to show that the set {n > 0|f"(p) € C} is a finite union of arithmetic
progressions.

When m = 1, the statement is trivial.

9.1. The case m = 2. When m = 2, Theorem 0.3 immediately comes from our
Main theorem. Here we give a direct proof of it to see how can we use the results
in Part 3 to the Dynamical Mordell-Lang Conjecture.

Since Fy, I can extend to endomorphisms of P, f extends to an endomorphism
on X := P} x P}. Then f preserves the two projection m;, i = 1,2 the the i—th
coordinate. Denote by d; the degree of F; for i« = 1,2. Suppose that C' is
irreducible and the set {n| f"(p) € C'} is infinite.

We first treat the case d; # do. We may suppose that d; > ds.

If C'is a fiber of 7 or my, the conclusion is trivial. So we may assume that ;|
is dominate with degree ¢; > 0 for i = 1,2. Set 27 := F*(2)) and p" := f*(p) =
(x,x8) for i = 1,2 and n > 0.

If there exists one ¢ = 1,2 such that 2? is preperiodic, by replacing f by some
positive iterate and p by some p* for k > 0, we may suppose that ¥ is fixed by
F;. Then we conclude our theorem by induction hypothesise.

We suppose that z? is not Fj preperiodic for i = 1,2. The set {n|f"(p) € C}
can be written as an increase sequence {ny}r>1.

Denote by h the naive height function on P* which is a Weil height with respect
to the ample line bundle L := Op:(1). Then h o m; is a Weil height with respect
to the line bundle L; = 7w} L|c which has degree ¢; for i = 1,2. Then we have

homi(p") = h(z}) = h(F"(x7))
forall i = 1,2 and n > 0.
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For any i = 1,2, 2{ is not Fj-preperiodic, hence here exists C; > 0 ,D; > 0 such
that
Ci(d; —1/3)" — D; < h(F"(2Y)) < Cy(d; + 1/3)" + D;.
Since d; > dy, we have d; — 1/3 > dy + 1/3, so we have

lim hom(pa,)/h o malpn,) = +00.
This contradicts the following

Lemma 9.1 ([15]). Let C' be a projective curve over a number field K and Ly, Lo
be two ample line bundles on X over K with degrees di and ds. If hy, hs are
Weil heights with respect to Ly and Ly and {x,}n>0 is an infinite set of points in
C(K), then we have lim,, o h1(xy,)/ho(z,) = di/d>.

Then we treat the case d := dy = dy. If d = 1, we have that f is an auto-
morphism. Then we may conclude our Theorem by [1] in this case. So we may
suppose that d > 2. Let E; be the section of 7; at infinity for ¢ = 1,2. Then
flg, = F,fori=1,2and X \ A = F, U Es.

If C is a fiber of 7 or my, the conclusion trivially holds. So we may suppose
that CNE, # 0. If C passes the point O := E; N FE,, we conclude by the following

Lemma 9.2. Let f : A2 — A? be a polynomial endomorphism on A2 and C be
a curve in A2. let X be a compactification of A2 in C such that f extends to an
endomorphism on X . Suppose that f*(X \ A7) = d(X \ A?) for some d > 2. Let
q be a point in X \ A which is totally invariant and locally f takes form (x¢,y?).
If C passes through q, then (X, f) satisfies the DML property for the curve C'.

So we may suppose that C N (E; \ {O}) # 0.

By Theorem 8.1, we construct a sequence of rational curves {C;};cz with at
most two places at infinity such that

(i) C° = C;
(i) f(C7) = i,

(iii) for all i € Z, the set {n > 0|f"(p) € C'} is infinite.

By replacing C' by € for some j < 0, we may suppose that for all J <0,
number of places of CV at infinity are the same number s € {1,2}. Let C’s be
branches of C7, we may suppose that f(C’ij) = CZH forj<—land1<7<s.

If C passes through a f|g,-critical periodic point ¢ € E \ {O}, by replacing f
by a positive iterate, we may suppose that ¢ is fixed by f. In a suitable local
coordinate at g, f takes form (x,y) — (2%, y?) where 2 < s < d. When s = d, we
conclude by Lemma 9.2. When 2 < s < d — 1, we conclude by Corollary 6.3.

Then we may suppose that there exists a point ¢; € C' N (E; \ {O}) which is
not a critical periodic point for f. Set D = E; + E5. Observe that D is ample.
By Proposition 8.9, sup,., (C*- D) is bounded. Then we conclude the proof in
this case by Theorem 8.3.

Proof of Lemma 9.2. By Theorem 8.1, we construct a sequence of rational curves
{C}iez with at most two places at infinity such that

(i) C° = C;



36 JUNYI XIE

(i) f(C*) =C™
(iii) for all i € Z, the set {n > 0|f"(p) € C*} is infinite.
Since ¢ is totally invariant, C7 passes through ¢ for all j < 0
By replacing C' by € for some j < 0, we may suppose that for all j < 0,
number of places of C7 at infinity are the same number s € {1,2}. Let C?’s be
branches of C7, we may suppose that f(C’f) = C’g“ forj<—land1<i<s.

Let C; be a branch of C' at ¢q. Let F;, E5 be the formal curve locally defined
by {x = 0} and {y = 0}. Since E;, E, are fixed by f, we may suppose that C is
different from both E; and FE,.

We define a sequence of surfaces 7, : X — X by induction:

(i) Set Xy := X and 7 := id.
(ii) Suppose that we have X, -+, X;. If C; does not pass through any sin-
gular point of 7' (E; U Ey), we stop our progression.
(iii) If C is passing through one singular point of 7, '(E; U Ey), let X5y be
the surface defined by blowup at this point in Xj.
(iv) Denote by C; the strict transform of C; in X;. Then return to (i).

This progression terminates in finitely many steps and we get surfaces X, --- , X;
for [ > 0.

It is easy to see that f is an endomorphism on X;. At any singular point of
7. (E; U Ey), f locally conjugates to (z,y) — (2% y?). Let E be the unique
exceptional curve of m; which intersects C; at one point. We see that E is totally
invariant and f|g can be written as z — z9. All the ramified points of f|z are
singular in 7, '(E; U Ey).

Let D be any ample divisor supported by X;\AZ, by Proposition 8.9, sup,; (C*:
D) is bounded. Then we conclude our Lemma by Theorem 8.3. U

9.2. The higher dimensional case. In the case m > 3, we prove this theorem
by induction. Suppose that C'is irreducible and the set {n| f"(p) € C} is infinite.
Write p = (p1,--+ ,pm) and denote by m; the projection from A™ to the i-th
coordinate.

If there exists 1 < i < m such that p; is F; preperiodic, by replacing f by some
positive iterate f! and p by f!(p), we may suppose that p; is fixed. Then f"(p) €
7 1 (p;) for all m > 0. If C'is not contained in 7; ! (p;), we have CN7; *(p;) is finite
and then p is preperiodic. If C' C 7~ !(p;). By replacing A™ by 7= !(p;) ~ A™™ 1
we conclude our theorem by the induction hypotheses.

So we may suppose that for all 1 < ¢ < m, p; is non preperiodic by F;. It
follows that 7;(C') can not be a point for all t =1,--- ,m.

The fibration 7 5 := m X 72 : A™ — A? is persevered by f. By our hypotheses,
m1.2(C) is periodic. By replacing f by some suitable positive iterate, we suppose
that 71 5(C) is fixed by f. Observe that 7 (m2(C)) is a divisor on A™.

The fibration 7., = 7 X -+ X 7T, + A™ — A™ ! is persevered by f.
By the induction hypotheses, 7. ,,(C) is periodic. By replacing f by some
suitable positive iterate, we suppose that my ..., (C) is fixed by f. Observer that
T3t (2 m(C)) is a surface.
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If 7 5(m2(C)) contains 75" (... ;u(C)), then we have

7T172(7T2_7,1,, 7m(7T27... m(C))) g 7T172(C).

Observe that
T12(y b (T2 m(C))) = mia(my ' (ma(C))) = A%
Since m 2(C') is a curve, this is a contradiction.
So we have that 7 3(m12(C)) does not contain m, " (... ,n(C)), and then
D = w5 (m2(C)) N7yt (72, m(C)) is dimensional 1 and it is fixed by f. Since
(' is an irreducible component of D, we have that C' is periodic. U
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Part 4. The resonant case \? = )\,

In this part, we prove the main theorem in the case that \? = \y. By [12,
Theorem C], we have either deg(f™) =< nA} or deg(f™) < A\}7. We will treat these
two cases separately.

10. THE CASE A2 = Xy AND deg(f") < nA}

In this section, denote by k := Q, the field of algebraic numbers.
By [12, Theorem C], we may suppose that f takes form

f=(F(x),G(z,y)) = (F(x), Zz‘h(l‘)yi)

where d = deg I and deg A; > 1. In this case A\; = d and \y = d?.
The aim in this section is to show

Theorem 10.1. If A\? = Xy and deg(f") =< n)\}, then the pair (A, f) satisfies
the DML property.

If d = 1, then f is birational. By [28, Theorem A], Theorem 10.1 holds. So we
may suppose that d > 2 in the rest of this section.

10.1. Find an algebraically stable model. Our aim is to make f to be alge-
braically stable in a suitable Hirzebruch surface F,, for some n > 0.

It is convenient to work with the presentation of these surfaces as a quotient
by (G,,)?, as in [19]. By definition, the set of closed point F,, (k) is the quotient of
A*(k)\ ({z1 =0 and 2o = 0} U {z3 = 0 and x4 = 0}) by the equivalence relation
generated by

(21, T2, 3, 4) ~ (AT1, AZo, s, 1/ X" xy)
for A\, u € k*. Denote by [1, 9, x3,24] the equivalence class of (1, x9,x3,74).
We have a natural morphism 7, : F,, — P! given by 7, ([x1, T2, T3, 74]) = [71 : 72]
which makes [F,, into be a locally trivial P! fibration.

We shall look at the embedding

in: A Ty (2,y) = [2,1,9,1].

Then F,, \ A? is union of two lines: one is the fiber at infinity F., of m,, and the
other one is a section of 7, which is denoted by L.

For each n > max{deg 4;| i = 1,--- ,d} + 1, the map f extends to a rational
transformation
d
n e T 7 e
fo 2 w1, 22, 25, 2] [ng(xl/@)axg?Iszrd gAdxi(Z Az‘(xl/@)(xni ) )afzi gAd%Z]
44

on IF,,. We have :
I(f,) ={[1,0,0,1]} U{[r, 1,1,0]| Au(r) =0}.

The unique curve contracted by f, is F, = {ze = 0} and its image is f,(Fy) =
[1,0,1,0]. Tt implies the following:
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Proposition 10.2. For n > max{deg A;| i = 1,--- ,d} + 1, f, is algebraically
stable on IF,, and contracts the curve Fy, to the point [1,0,1,0].

10.2. Dynamics on V. Denote by v, the unique valuation in V; such that
fo(vs) = v, as in [12, Proposition 5.1]. Set W (f) := {v € Vo| v > v.}.

Proposition 10.3. For allv € Voo \ W(f), we have d(f,v) > Ma(v Av,) > 0.

Proof. Write F(z) = a [, (x—7;) where a > 0. Denote by v; the curve valuation
defined by the unique branch of {x —r; = 0} at infinity. Observe that v; € W (f).
By definition, we have d(f,v) = — min{v(F),v(G)}. It follows that

d
d(f,v) > —v(F Zavz/\v ) = Ma(vAv) > 0.
i=1

O
By Proposition 2.5, the function log |G| : v — —v(G) on V, can be written as

log |G|(v ZmZ (v; Av)

where v;’s are all curve valuations associated to the branches at infinity of {G(z,y) =

0} and m; > 1. Suppose that v; > v, for i = 1,--- 1 and v; # v, for
1=l +1,--- 1
There exists v' € V,, such that
(i) v < v

(ii) set U := {v € V| v < v < v}, we have fo maps U strictly into itself
and is order-preserving there;

(i) v; €U for all e =1,--- [

(iv) for all v € U, we have fov — v*.

Set G, := G o f*~! for n > 1 and write log|G,| as v — S mPa(v! A v).
We may suppose that v]' > v, for 1 < i <[’ and v} 2 v, for I’ + § 7 § l,.
Since fo(U) C U, we have v!" & U for all i = 1,--- ,l,. So v Av, < v for

i= U1,
Let G, be the function defined by v +— Zilzl mia(v® A v) and G, be the
function defined by v+ S0 pi1 mia(vf Av). Then we have

log |G| = G +G,,.
Since v, (F™) = A\a(v,) = 0, we have
A = d(f" v.) = —0u(Gn) = G (v).

Since v Av, < o' fori =U'+1,--- ,1,, we have G, (v.) = G, (V') > a(v")G,, (— deg).
It follows that G, (—deg) > deg G,, — a(v')~'AT. By [12, Proposition 5.1], there
exists ¢ > 0, such that deg G,, > ¢nA}. Then we have the following

Proposition 10.4. There exists ¢ > 0 such that G} (— deg) > enA} for alln > 1.
For any M <0, set Wy, := {v € V| a(v) > M}.
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Proposition 10.5. There exists N > 0 such that
W \W(f)) CU.

Proof. Let ¢ be the number defined in Proposition 10.4. Let N be an integer at
least (ca(v')?)71(1 — M) + 1. For any valuation v € Wy, \ (W (f) U U), we have

d(f",v) = —min{v(F"), v(Gy)} = —v(Gn) = G (v) + Gy (v).
Since v)¥ > v, for 1 <i <, we have G (v) = a(v. Av)GL(— deg) > ca(v')NAY.
On the other hand Gy (v) > a(v)Gy(—deg) > a(v')"!MAY. Then we have
d(fN,v) > ca(@)NAY +a() TMAY > A /a().
Since XN a(v, Av) = (f*NZy - Zy) = (Zy- - fNZ,)) = d(f,v)(vs A fE0), then we
have a(v, A fY0) < XV/d(f,v) < a(v'). Tt follows that f&¥v € U. O

10.3. Apply the Local dynamical Mordell-Lang Theorem.

Proposition 10.6. Let C' be a curve in A; admitting a branch at infinity which
associates to a curve valuation in U and let p € X be a closed point. Then either
p is preperiodic or the set {n € Z*| f"(p) € C} is finite.

Proof. Fix an algebraically stable model X := T, for n large enough, we see that
vp., = v, and vp_ < v.. We may suppose that vp_ > v' and vg_ > v, A v; for
i=1,---,m. Denote by O :=[1,0,1,0] the intersection of L., and F,,. We may
check that df|? = 0, so f is supperattracting at O. By replacing C by f"(C)
for n large enough, we may assume O € C. Observe that the eigenvaluation in
the local tree Vp is a curve valuation. Then by Theorem 6.2, we conclude our
Proposition. U

10.4. Curves with one place at infinity.

Proposition 10.7. If C' is a curve with one place at infinity and p is a closed
point in A%, If the set {n > 0|f"(p) € C} is infinite, then either p is preperodic
or C' periodic.

Proof. Let ve be the curve valuation associated to the unique branch at infinity
of C'. Pick an algebraically stable model X := F,, for m large enough. Either
C = {x = a} for some a € k or C N F,, # ). In the forme case, our proposition
trivially holds. Then we may suppose that ve & W(f).

By Proposition 10.6, we may suppose that fi'(vc) € U for all n > 0. By
Proposition 10.5, there exists N > 0 such that W_; \ W(f) C f,~(U). The
boundary df, ™ (U) of f~N(U) is finite and for every point v € df N (U)\{v.}, we
have a(v) < —1. Since for all n > 0, f2(ve) € U, there exists v™ € df N (U)\ {v.}
such that fJ'(ve) > v". It follows that there exists m; > my > 0 such that
vt = "2,

If f' (ve) # fa*(ve), we have
deg(f™(C)) deg(f™(C)) =(f"(C) - [**(C))
> deg(f"(C)) deg(f™ (C))(1 — a(f* (ve) A fa#(ve)))
>2deg(f"(C)) deg(f™(C)).
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It is impossible, so f¢* (ve) = fo?(ve), and then C' is preperiodic.

If C is not periodic, there exist m > 0 such that f™(C) is periodic. Then
uX, fi(C) is a union of finitely many irreducible curves and f"(p) € UL, f{(C)
for n > m. Since C' is not periodic, C NUL, f(C) is finite. It follows that p is
preperiodic. O

10.5. Curves with two places at infinity. The aim of this section is to prove
the following

Proposition 10.8. If C' is a curve with two places at infinity and p is a closed
point in A%, If the set {n > 0|f"(p) € C} is infinite, then either p is preperodic
or C' periodic.

Proof of Proposition 10.8. Let C and Cy be the two branches at infinity of C
and v¢; the curve valuation associated to C; for 7 = 1, 2.

Pick an algebraically stable model X := F,, for m large enough. Either C' =
{z = a} for some a € k or C'N F, # (. It follows that there exists i = 1,2 such
that ve, € W(f). So we may suppose that ve, € W(f).

As in Theorem 8.1, we have a sequence of curves {C'};cz with at most two
branches at infinity. By Proposition 10.7, we may suppose that C* has exactly
two branches at infinity for all © € Z. For j = 1,2, denote by C’j- the unique
branch of C* such that f~*(C?) = C; for i <0 and f*(C;) for i > 0.

Lemma 10.9. Ifve, &€ W(f) fori = 1,2, then Proposition 10.8 holds.
By Lemma 10.9, we suppose that ve, € W(f), ve, € W(f).

Lemma 10.10. Ifve, € W(f), ve, € W(f) and there are infinitely many n € Z
such that (C¥ - 1) > (C} - lx), then Proposition 10.8 holds.

Lemma 10.11. Suppose that ve, € W(f), ve, € W(f), and ¢ = C; N Ly
satisfying one of the following
(i) either q is not periodic of f|r..;
(i) or q is r-periodic for some r > 1, ¢ € I(f") and f"|.. is not ramified at
q.
then Proposition 10.8 holds.

By replacing f by a suitable positive iterate and C' by €7 for some j < 0, we
may suppose that there exists a point ¢ € L., satisfying
() flee(q) = a
(il) ¢ = C N Ly, for all j < 0;
(iii) either ¢ € I(f) or f|L.. is ramified at q.

Lemma 10.12. [f there exists a point ¢ € Lo \ I(f) such that f(q) = q and
q € C, then Proposition 10.8 holds.

We may suppose that f|._(q) = g and ¢ € I(f). Then we conclude our
Proposition by the following

Lemma 10.13. If there exists a point ¢ € Lo, N I(f) such that f|._(q) = q and
q € C, then either the set {n > 0| f"(p) € C} is finite or p is preperiodic.
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Proof of Lemma 10.9. By Proposition 10.6, we may suppose that fi'(ve,) & U
for ¢« = 1,2 and all n > 0. By Proposition 10.5, there exists N > 0 such that
W_ \W(f) C fo(U). The boundary df, ™ (U) of f~N(U) is finite and for every
point v € fN(U) \ {v.}, we have a(v) < —7. Since for all n > 0, f2(ve,) € U
for i = 1,2, there exists v € 9f N (U)\ {v.} such that fI(ve,) > v™. Set v™ = v}
if (f"(CY) - lw) > (f"(Cy) - ly) and v™ = v} otherwise. There exists ny > ng >0
such that v™ = v"2.

If fm(C) # f(C), we have

deg(f™(C)) deg(f™(C)) = (f™(C) - [(C))
> 47" deg(f™(C)) deg(f™ (C))(1 — av™ Av™))

> 2deg(f™(C)) deg(f™(C)).

It is impossible, so fo* (C) = fJ*(C), and then C' is preperiodic.

If C is not periodic, there exist m > 0 such that f™(C) is periodic. Then
U, f4(C) is a union of finitely many irreducible curves and f"(p) € U2, f/(C)
for n > m. Since C' is not periodic, C NUL, f(C) is finite. It follows that p is
preperiodic. Il

Proof of Lemma 10.10. By Proposition 10.6, we may suppose that fJ(ve,) € U

for all n > 0. By Proposition 10.5, there exists N > 0 such that W_, \ W(f) C

foN(U). The boundary df, N (U) of f~N(U) is finite and for every point v €

OfM(U) \ {v.}, we have a(v) < —7. Since for all n € Z, vep € U, there exists

v" € df N(U)\{v.} such that vep > v™. Set A := {n > 0] (vep-los) > (vep-lo)}

Since A is infinite, there exists different elements ny,ny € A such that v™ = v"2.
If vem # vz, we have

deg(C™) deg(C™) = (C™ - C™) = (C5" - C3®)
> 47 deg(C™) deg(C™)(1 — a(v™ Av™))
> 2deg(C™) deg(C™?).

It is impossible, so Vem = Vg2, and then C'is preperiodic. U
Proof of Lemma 10.11. By Lemma 10.10, we may suppose that (C} - l.) < (C% -
ls) for i < 0. Set D := Lo, + (m + 1)F which is ample on X = F,,. Observe
that for i <0, (C} -ls) = b (Cl - Ly) = (Cf - Loo) and (C - Fiy) < (Ch - 1y). Tt
follows that

(C3- D) =(m+1)(Cy- F) = (m+ 1)(C5 - lo)
< (m+1)(C] o) < (m+1)(C] - Lag) = (m + 1)(C1 - D).

Observe that v, = vy is totally invariant. Then Proposition 8.9 shows that
(C*- D) is bounded for ¢ < 0. Then we conclude our Lemma by Proposition
8.5. 0
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Proof of Lemma 10.12. By [8], f locally conjugates to (x,y) — (2°,y%) where
2 < s < d with respect to any nontrivial norm | - | of k.

If 2 <s<d-—1, we conclude our lemma by Corollary 6.3.

Then we treat the case m = d. We define a sequence of surfaces 7 : X — X
by induction:

(i) Set Xo:= X and mp :=id.
ii) Suppose that we have Xy, -+, Xj. 1 does not pass through any sin-
ii) S that we have X, X, I Cp d t th h i
gular point of 7} L, we stop our progression.
(iii) If Oy is passing through one singular point of 7, 'L, let X1 be the
surface defined by blowup at this point in Xj.
(iv) Denote by C} the strict transformation of C; in Xj. Then return to (i).

This progression terminates in finitely many steps and we get surfaces Xg,--- , X;
for [ > 0.

It is easy to see that f is regular on 7, '(q). At any singular point of ;! (Ls),
f locally conjugates to (x,y) — (z%,y?). Let E be the unique exceptional curve
of m; which intersects C; at one point. We have E is totally invariant and f|g
can be written as z — 2¢. All the ramified points of f|z is singular in 7, ' (L)
Use the same method in the proof of Lemma 10.11, we conclude our Lemma. [J

Proof of Lemma 10.13. By changing coordinates, we suppose that ¢ = [0,1,1,0] €
F,,. Then F(x) has form 2° E(z) where 1 < s < dand E(0) # 0 and A4(z) has for-
m 2" B(z) where r > 1. Let {n;};>1 be a increase sequence such that " (p) € C.
Set f™(p) = (zn,ys) and suppose that p is not preperiodic.

Let K be a number field such that X, f, p and C are all defined over K.
Lemma 10.14. There exists a place v € My such that by replacing n; by a

subsequence, we have log max{|yn,|v, 1, |Tn,|7'} — logmax{1, |z,,|"} > cd™ for
some ¢ > 0.

Then we suppose that log max{|y,,|v, 1, |Zn, |0} —log max{1, |x,,|I"} > cd™ for
some ¢ > 0. Since C'N Ly is just one point ¢, we have that (x,,,y,,) — ¢ as
i — oo with respect to |- |,. It follows that |z} |, — 0 and |y,, |, — 00 as i — oo.
It follows that log(|yn,|,) > cd™ for some ¢ > 0. Since (z,,;,yn,) € C, and C is
not vertical, there exists 0 < 7/ < 1 such that |y,,|;* > |z,,|" for i large enough.

At first we treat the case s = d. In a suitable coordinate, we have F(z) = x%.

By replacing p by f"(p) for a suitable n > 0, we suppose that |z¢|, < 1. We have
[Z0]o = |20]2" and |yni1lo < alzn||ynld + bly,|t for some a,b > 0.

Lemma 10.15. There ezists N > 0, such that for alln > N, a|z,|"|y,| > b.

By replacing p by f¥(p), we suppose that N = 0. Then we have |yn41]o
a2 |"ynl? + blyn|Tt < 2alz,|7|ya|d for all n > 0. Set Y, = log(|ynl.), A
log(2a) and U := log(z), we have

IA

Yn+1 S A + rd"U + dYn
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for all n > 0. Then we have Y, 1/d"™ =Y, /d" < A/d"™ +rU/d for n > 0. Tt
follows that

Yo/d' <Y |Al/d + nrU/d + Yy = |Al/(d — 1) + Yy + nrU/d
i=1
for n < 0. Since U < 0, we have log(|y,|,)/d" — —oo. It contradicts to the fact
that log(|yn,|,) > cd™ for some ¢ > 0.

Then we treat the case 2 < s < d — 1. Since 0 is an attracting fixed point of
F, we have |z,|, — 0 as n — oco. We may suppose that for all n > 0, we have
2l < 1 and @anl7lynl? — Bgalt™ < gsals < alan s ol + blyn 1 for some
a>a > 0and b > 0. There exists e > 0 such that |z,1|, > e|z,|? for n > 0.
There exists ¢; > ¢; > 0 and u > 0 such that c;u®” > |x,|, > cou®" for all n > 0.

Lemma 10.16. There ezists N > 0, such that for alln > N, d'|z,|"|yn| > 2b.
By replacing p by f~(p), we may suppose that N = 0. Then we have

Ynt1lo = a/|$n|2|yn|g - b|yn|g_1 > a,/2|$n|2|yn|g > alc2/2umn|yn|g
for n > 0. Set Y,, := log(|yn+1lv), A :=log(a’cy/2) and U := logu. We have
Yop1 >dY,+s"U+ A
for n > 0. It follows that

Yo/d* 2 Yo+ (s/d)U/d =} |A|/d™! = Yo+ Uf(d = 5) = |Al/(d = 1),

Since Y,,, > d™ + log(c) and d > s, by replacing p by f"(p) and u by u*" for
some i > 1, we may suppose that Yy + U/(d — s) — |A|/(d — 1) > 0. Then there
exists B > 1 such that |y,|, > B?". Since |7,|, > c;u®", for any r’ > 0,

[yaly ' < BT < u™" <l

for n large enough. It contradicts that fact that there exists 0 < " < 1 such that
Y|t > |2, |7 for i large enough.

Finally we treat the case s = 1. If there exists ¢ < —1 such that the center
q; of C1 is not ¢, then ¢; is not a periodic point of f|;_.. Then we conclude our
proposition by Lemma 10.11. So we may suppose that the center of Ci is ¢ for
all i € Z. Since s = 1, for any point of C* near ¢ has at most d preimages near
q. It follows that deg(f|ci-1) < d. Then we have

(C}+ Loo) = 1/d(Cy - [*Loo) = deg(fey) /d(CT™ - Loc) < (C1 - Le)

for 7 < —1. Then we conclude our Proposition by the same argument in the proof
of Lemma 10.11. 0

Proof of Lemma 10.14. Let hy : C(K) — R be the function defined by (z,y)
> ety logmax{|z|,, 1} and hy : C(K) — R be the function defined by (z,y)
> ety logmax{|yl,, 1, [z[)"} — log max{1, [z|'}). It follows that h; is a Weil
height function with respect to the divisor C'- F, and hy is a Weil height function
with respect to the divisor C'- L. If xg is preperiodic, since p is not preperiodic,
we have C' = {& = 2¢}. It contradicts the fact that C' has two place at infinity.
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By Lemma 9.1, we have ho(f" (p)) > c1hi(f™(p)) > c1ced™ where ¢q, ¢y > 0.
There exists a finite set S of place, such that for all v € Mg\ S, we have |z,|, < 1
and |yn|, < 1 for all n > 0. Then we have ) _c(logmax{|yn,|v, 1, |, [)'} —
logmax{1, |x,,[""}) = ha(f™(p)) > cicod™. it follows that there exists v € S
such that there exists infinitely many ¢ such that logmax{|yn,|v, 1, |Zn,|]'} —

log max{1, |z, |™} > (#S) 'cicod™. O
Proof of Lemma 10.15. Set u := |xg|, < 1. There exists N > 0 such that
d—2
v Gy

for all n > N. If there exists n > N such that a|z,|}|ys|, < b, then we have
Ynitlo < a|zn|7|yn]d + blyn |71 < 2b]y, |91, Tt follows that

alTn 1]y |Ynyilo < 2aburdn+1‘yn|gil = 2abu™" (urdn‘yn‘v)dil

< 2abu™ (b/a)* < 0.
It follows that there exists N > N such that a|z,|}|ys|, < b for all n > N'.
Replacing p by fV'(p), we may suppose that N’ = 0. Then we have

|yn+1‘v < a|$n|2’yn|g + b|yn|g71 < 2b’yn|gil

for n > 0. It follows that there exists ¢; > 0 such that |y,|, < ng—m for alln > 0.
It contradicts the fact that log(|yn,|,) > cd™ for some ¢ > 0. O

Proof of Lemma 10.16. Set M := max{(a' ~%+2e" /2)~/(4=1 2b}. Since log(|yn.|,) >
cd™ for some ¢ > 0, we have d'|x,,|"|yn,| — o0 as i — oo. So there exists
n > 0 such that o'|x,|"|y,| > M > 2b. By induction, we only have to show
a'|Tpi1|"|Yna1| = M. We have

Ynail = @'z olynlt = blynls ' > /2] ynls.
It follows that
A |Tna | Nynsr| = @2 )2 21| 2l |yl
> 02" 20wy rlynld > 0" /2wy d

> a%e" /2(M/a')t > M.

11. THE CASE A2 = Ay AND deg(f™) < A}

In this section, denote by k := Q the field of algebraic numbers.
The aim of this section is to prove the following

Theorem 11.1. Let f : A? — A2 be a polynomial endomorphism define over
k. We suppose that M\ (f)? = Xa(f), and deg(f™)/ M (f)" is bounded. Let C be a
curve in A% and p be a closed point in A*(k). Then if the set {n € N| f*(p) € C}
1s infinite, we have that either p is preperiodic for f or C' is periodic for f.

If \i(f) =1, then f is birational. We conclude Theorem 11.1 by [28].
In the rest of this section, suppose that A;(f) > 1.
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Definition 11.2. We define
Tr = {v € Vi| folv) = v},

Recall that V] is the set of valuations v € V,, satisfying a(v) > 0 and A(v) <
The boundary of V; is the set of valuations v € V] satisfying a(v) = 0 or A(v) =
The following proposition is come from [12, Section 5.

0.
0.

Proposition 11.3. We have

(i) f is proper;
(ii) for every valuation v € T, we have that v is totally invariant under fe,
f*Zy, = MZ, and d(f,v) = A;.
(iii) by replacing f by f*, we may assume that Tpm = T; for n > 1 and either
Ty consists of a single divisorial valuation v, € Vi with a(v,) > 0 or T is
a closed segment in V| whose endpoints are divisorial valuations.

In the rest of this section, we suppose that 7 = Ty for n > 1.

At first, we need a result of the dynamics on V.. For any divisorial valuation
vg € Ty, denote by f : Tan,, — Tan,, the tangent map. Let v be a direction at
vg fixed by f. For any valuation w € U(vg) we define @ to be the direction at w
determined by vg and U, ,, to be the open set U(vg) N U(W).

Then we have the following

Proposition 11.4. If a(vg) > 0 and vg is not totally invariant under £, then
there exists w € U(vg) such that
() f'( UEw) C U'UE'LU7
(ii) for allv € Uy, ., we have fJ(v) = vg for v — oo,
(iii) for any M < 0, there exists N > 0 such that U(vg) N {v € V|, a(v) >
M} C [N (Ung )

Proof of Proposition 11.4. By the proof of [12, Theorem C], there exists a projec-
tive compactification X of A? with at most a quotient singularities such that the
unique irreducible component of X \ Af is £ and f extends to an endomorphism
on X. The direction vz determines a point ¢ € E which is fixed by f. Denote by
m the local degree of map f|g at ¢. Since vf is not totally invariant under f, ¢
is not totally invariant and then m < ;.

By embedding k£ in C, we may view X as a complex variety. There exists a
map 7 : (C%0) = (C?0)/G = (X, q) Where m is the quotient map and G is the
cyclic group generated g : (z,y) — (e I x, e 1 y) s,l € ZT and (s,1) = 1. Since
C?\ {0} is simply connected, f lifts to an endomorphlsm F: (C?%,0) — (C%0).
Denote by V; the local valuative tree of (C2,0).

Lemma 11.5. The pullback 7= E is irreducible in (C?,0). There exists a valua-
tion wo < vy, such that Fe({v > wo}) € {v > wo} and for all v € {v > wy},
we have F'(v) — Uz,l(E) as n — oo. Further for any v € Vi satisfying o®(v) <

0o, we have F}'(v) — vl_, . asmn — oo.

H(E)

Set E' := 7~ !(E). Since n(g(E’")) = E, we have g(E') = E’. We may suppose
that £ = {y = 0}. Denote by E” the curve defined by = = 0. Let P, (resp.
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P,) be germ of analytic function on (X, q) defined by Pi(7((z,y))) = a' (resp.
Py(m((x,y))) = y'). Observe that these functions are well defined.

There exists a map me : Vo — U(vg) defined by me(P) := h(m,v)v(n*P) for
any polynomial P € Clz,y| where h(m,v) = —v(n*L) where L is a general linear
form in Clz, y].

The group G acts on V; and the map e is the quotient map Vy — Vo/G ~
U(vg). Observe that for any v € V4 \ ([ordg, v%] U [ordg, v%,]) the orbit Guv has [
elements and for any v € [ord, v%,]U[ordy, v}, ] the orbit Guv has 1 elements. Pick
wp as in Lemma 11.5 and w := me(wyp), then me({v € Vo| v > wo}\{ve'}) = Uppw
which satisfies (i) and (ii) in our proposition.

We claim the following

Lemma 11.6. For any M < 1, there exists a real number Cyy > 0 such that for
allv e Vo \ {v € Vo| v > wo} satisfying a(me(v)) > M we have a®(v) < Cyy.

For any M < 1, we have 7,'({v € U(q)| a(v) > M} \ Uyw) C {v €
Vo| a®(v) < Cy}. By Lemma 11.5 and the compactness of {v € Vp| a®(v) < Cir},
there exists N > 0 such that {v € V| a®(v) < Oy} € FoV({v > we}). S-
ince e is surjective, f&({v € U(q)] a(v) > M} \{v € Uypw}) C Upp.w- Since
Jo(Upp ) € Uppw, we have that fY¥({v € U(q)| a(v) > M}) C U,,. which
concludes (iii). O

Proof of Lemma 11.5. By Lemma 5.7, we only have to show that 7—!(F) is irre-
ducible. Let E’ be an irreducible component of 7='(F). Since f*F = \E, we
have F*(7m*FE) = \y7*E. It follows that F"*E’ is an irreducible component of 7* F.
By replacing f by a suitable positive iterate, we may suppose that F*E' = A\ E'.
Since 7| is finite, we have F,E' = mE' locally. Pick v a valuation in Vj satisfy-
ing a’(v) < oo, by Lemma 5.7, we have FJ'v — vk, as n — oo. If E” is another
irreducible component of 77'(F), the same argument shows that Filv — vi, as
n — oo. It follows that £’ = E” and then 7 !(E) is irreducible. O

Proof of Lemma 11.6. There exists T' > 1, such that for all v € V5 \ {v € V| v >
w0}7 U(ZJ) <T

Observe that 7*L = y=°5U(x,y), where U is a unit in C|[[z, y]]. For any diviso-
rial valuation vY,, there exist are birational model Yy — (C?0) and Y — (X, q)
such that D’ is an exceptional divisor in Y”, the rational map 7’ : Yy — Y induced
by 7 is a morphism, and 7’|p is finite. Denote by eps the degree of @’|pr. Set
rp = ordp/ (7 * D). Observe that rp x #(Gvp) x epr = 1. Set D := 7'(D’).

It follows that

—bEOI"dD/(y) = OI'dD/(ﬂ'*L) = ’I"D/OI‘dD(L) = _TD’bD-
Then we have ordp/(y) = rpbp/be. f vp € Vo \ {v e V| v > wp}, we have T' >
UD/(y) = (bOD,)_lordD/(y) = (bOD/)_lrpsz/bE. It follows that bD/b%/ S TbE/TD/.

Since g is an automorphism on (C?, 0), we have ¢(g,v) = 1 for all v € Vj and for
any valuations vy, vy € Vj, we have a®(v; Avg) = a®(ge(v1) Age(v2)). In particular,
a’(v) = a’(ge(v)) for all v € 4.
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For any v € Vj, we have a®(v A ge(v)) = a®(ge(v) A g2(v)). It follows that
v A ge(v) = ge(v) A g2(v) = v A ge(v) A g2(v). The same argument for ¢°, i =
1,---,1—1, we have v A gi(v) = AlZbgi(v) for all v € V.

We suppose first that v4 is not defined by —deg. Let vp be a divisorial
valuation in U(v4) \ Uyye. There exist are birational model Y, — (C2,0)
and Y — (X, q) such that D is an exceptional divisor in Y, the rational map
7 Yy — Y induced by 7 is a morphism and ¢ is lift to an endomorphism
of Y. Denote by D' an irreducible component of 7*D. Observe that v}, €
Vo \ {v € Vol v > wo}. Set H := bp(Z,, — Z,,). For any exceptional divisor F’
of Y = (X,q), we have (H - F') = d0pp and the support of H are contained in
the exceptional set of Y — (X, ¢). Then the support of 7/*H is contained in the
exceptional set of Y' — (C?,0) and for any irreducible exceptional divisor F” of
Y" — (C?0), we have (n*H - F') = (H - n\,F') = ep(H - 7'(F)) = ep:0p(p),p-
When 7/(F') = D, we have F' = ¢'(D') for some i = 1,---,[. It follows that
e ™ H = (b(l))')Q(ZueGuD, Z9). Tt follows that

(> 2)-() Z)| =) *ep(n"H n"H)

vGGvD, vGGvD,
= (bpy) epd(H - H) = (bp/bp) epil (Zop = Zug) - (Zop — Zup))
= (bD/bO /)2€B?Z<OZ(UD) - Oé(UE)).

Since for any v, w € Vj, we have (Z° - Z%) = —a(v Aw) < 0, we have

(> Z)- (Y. 20| < Y (20 2) = —#(Gop)elvp).

’UGGUD, UEGUD, veEGU
Then we have
a(vpr) < (Tbp/rp)ep (#(Gvp))(a(ve) — a(vp)) < (Tbe)*(a(ve) — alvp)).
Since divisorial valuation is dense in Vg \ {v € V| v > wp}, we have
a’(v) < (Tbp)*(a(ve) — a(7e(v)))
for all v € Vo \ {v € Vo| v > wo}. If a(me(v)) > M, we have
6%(0) < (Tbe)((vs) — alme(v)) < (Thp)*(a(vs) — M).

Then Cy := (Tbg)*(a(vg) — M) is what we require.

Now we suppose that v is defined by —deg. Let vp be a divisorial valuation
in U(03) \ Uy There exist are birational model Yy — (C2,0) and Y — (X, q)
such that D is an exceptional divisor in Y, the rational map 7’ : Yy — Y induced
by 7 is a morphism and ¢ is lift to an endomorphism of Y’. Denote by D’ an
irreducible component of 7*D. Observe that v%, € Vo \ {v € Vol v > wo}.
Set H := bp(Z,, — (a(vp A vg)/a(vg))Z,,). For any exceptional divisor F' of
Y — (X,q), we have (H - F') = 0pp and the support of H are contained in the
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exceptional set of Y — (X, ¢). The same argument in the previous paragraph
shows that 7*H = epb?, (> Z,). It follows that

veEGU

(> Z)-( Y Z) | = Wp) Pepi (7" H - 7" H) = (V) e/ I(H - H)

’UerD/ UEG'UD/

= (bp /) ep/l (Zo, — (alvp Avp)/a(vp)) Zoy) - (Zo, — (alvp Avp)/o(vE)) Zoy))

= (bp /b)) epla(vg)  (a(vp)a(vg) — a(ve Avp)?).

It follows that

a(vp) < —(#(Gup) (D 20 (> Z))

UEGUD, UEG’UD,

= (Tbp/rp)ep (#(Gvp)~Ha(ve) ™ (a(vs A vp)? — a(vp)a(vr))

< (Tbp)*a(ve) H(alve Avp)? — alvp)a(vg)).

Since divisorial valuation is dense in V \ {v € Vo| v > wy}, we have
(V) < (Thg)?a(ve) Ha(ve A Te(v))? — a(me(v))a(vg))
for all v € Vo \ {v € Vo| v > wo}. If a(me(v)) > M, we have
®(v) < (Thg)?a(ve) Ha(ve A Te(v))? — a(me(v))a(vy))

S (TbE)2Oé(UE)_1<1 + (M + 1)OC(UE)) S (TbE)2Oé<UE)_1(M + 2)
Then Cy := (Tbg)*a(veg) (M + 2) is what we require. O

Let C;’s be all branches of (' at infinity.

Proposition 11.7. If for every branch C; of C at infinity, we have a(ry; (ve,)) >
0, then Theorem 11.1 holds.
In particular, if for all v € Ty, we have o(v) > 0, then Theorem 11.1 holds.

Proof of Proposition 11.7. Let s € {1,2} be the number of places of C' at infinite.
Set v; == rr; (ve,) and let 72 be the tangent vector at v; presented by the segment
[vi,ve,]. Let £ : Tan,, — Tan,, be the tangent map at v; induced by f. By (iii) of
Proposition 11.3, v; is divisorial. There exists a projective smooth compactifica-
tion X of A? such that for every v;, there exists an exceptional component E; in
X\ A? satisfying vg, = v;.

Let G be the set of indexes 4 such that o7 is not periodic under the tangent
map f. By replacing f by some positive iterate, we may suppose that o7 is fixed
by f for all i ¢ G. By Theorem 8.1 there exists a sequence of curves {C7},<o with
s places at infinity such that

(i) C7=C;
(i) f(CY) =+
(iii) for all j < —1, the set {n > 0|f"(p) € C?} is infinite.
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By replacing C by some C7, we may suppose that for all j < 0, CV has exact s
branches at infinity. Let C’J’s be branches of C?, we may suppose that f(C’]) =
C’ZJJrl for j < —1 and 1 <4 < s. Since v; is totally invariant under fo, we have
77 (Vei) = vi. Denote by qg the point the point in F; determined by the direction
defined by [U“UC]'] By replacing C' by some C7?, we may suppose that for all

i ¢ G, q = q; and for alli € G and j <0, Ej is the unique irreducible component
of X \ A? containing ¢/, ¢/ € I(f) and f|g, is not ramified at ¢ .

We first treat the case that there exists ¢ > 0 such that >, ,(C7 - l) >
tdeg(CZ-j ) for all j < 0. Then we apply Proposition 8.9 and 8.5 to conclude our
proposition in this case.

Then we may suppose that there exists a sequence of nonpositive integers
{n1 >MNg >0 >Ny > Njy > "'}j>0 such that

Y. (CF 1) = deg(C)/2
ie{l, s\G
for all 7 > 0. Since s < 2, there exists an index ¢’ € {1,--- , s} \ G such that there
exists infinitely many j > 0 for which (C}’ - lo.) > 1/2 Zie{l’m?s}\G(ij ls). We
may suppose that ¢/ = 1. By picking subsequence we may suppose that for all

720, (01 loo) 21/23 051 0 (Ci7 - lc) = deg(C™) /4.

Observe that
d(f,v)A(fe(v1)) = A(v1) +vi(Jf),

then we have (A\;—1)A(fe(v1)) = vi(Jf). If Jf is a constant, then f is nonramified
on A% and then by [1, Theorem 1.3], our proposition holds. So we suppose that J f
is not a constant. Since a(vy) > 0 and Jf is not a constant, we have vy (J f) < 0.
It follows that A(vy) < 0. Since vy is divisorial, a(v;) > 0 and A(vy) < 0, vy is
not in the boundary of V;. It implies that the direction at v; defined by ¢; is not
totally invariant. By Proposition 11.4, there exists w € U(v7) such that

(1) vey ¢ le wr
(11) f'( v1, w1) C le w1
(iii) for all v € Uy, u,, we have fi(v) — vy for v — oc;

(iv) there exists N > 0 such that U(vz)N{v € V|, a(v) > =16} C fo™(Up, ).

We may assume that no < —N.
The boundary 9fy ™ (Uy, ) of f~N(Uy,.w,) is finite and for every point v €

of N(U,,, wl)\{vl} we have a(v) < —16.
Since v o & [V (Upwy), there exists w™ € Of N (Upy ) \ {v1} such that

veri 2w Since the set Of N (Uy a,) \ {v1} is finite, there exists two distinct
number [ > k > 0, such that w™ = w". If Ve £ Vgri, We have

deg(C™) deg(C™) = (C™ - C™)
> (O - C7F) = (O™ - 1o )(C™ - 1o (1 = v Avgrn))
> 167! deg(C™) deg(C™2) x 17 > deg(C™) deg(C™).

It is impossible, so Vert = U, and then C' is periodic. Il
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11.1. Proof of Theorem 11.1. By Proposition 11.7, to prove Theorem 11.1 we
may suppose that there exists v, € T such that a(v,) = 0. By (iii) of Proposition
11.3, we have that v, is divisorial. It follows that v, is a rational pencil valuation.
By Line Embedding Theorem, f takes form f = (F(z),G(z,y)). Set d = Ay, we
have deg F' = d. Since A3 = Xy, A\; > 2 and deg(f™)/A? is bounded, by changing
coordinates we may suppose that G takes form

d—1
Gz, y) =y'+ ) a;(z)y"
=0

Set m be an integer at least deg, G+1. Then f extends to a rational morphism
on [F,,, which takes form

d—1
f = [eF (21 /22), 25, 2§ + 2520 Y~ ai(wy /o) (ws/ahwa)’, o).
=0

By calculation, we see that f is an endomorphism on F,,. Let L., be the irre-
ducible component of F,, \ A? such that vy = v, and F,, the fiber of m,, at
infinity. Set O := L, N F.

By Proposition 11.7, we may suppose that there exists a branch C; of C' satis-
tying ve, > v, If C'is a fiber of 7, then ,,(C) is periodic. It follows that C' is
periodic. Otherwise, there exists a branch Cy of C' such that the center of (5 is
contained in F,.. It follows that ve, € Vo \ {v € V| v > v, }. By taking m large
enough, we may suppose that O & C.

Set ¢1 := C1 N Le. If g1 is not a periodic point of f|,_ or ¢ is r-periodic
for some r > 1 and f"|;_ is not ramified at ¢;, by Proposition 8.9 and then by
Proposition 8.5 we conclude Theorem 11.1 in this case.

Now we may suppose that ¢; is fixed by f|.. and in some local coordinate at
q1, [ takes form (x,y) — (2%, y?) where 2 < s < d. If s < d, by Corollary 6.3, we
conclude Theorem 11.1. If s = d, we conclude our Theorem by Lemma 9.2. [
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Part 5. Valuative dynamics in the case \? > ),

Let f : A2 — A? be a dominant polynomial endomorphism defined over an
algebraically closed field satisfying A? > A\y. In this part, we study the dynamics
of fe on the valuative tree V, at infinity.

At first we introduce the Green function 0* of f in Section 12. This function
is a nonnegative subharmonic function on V.. This function gives us many
information of the dynamics of fe. For example, for any valuation v € V_
satisfying a(v) > —oo and 6*(v) > 0, we have fJ(v) — v, as n — oo. Next
in Section 13, we prove Theorem 13.1 which is a strong version of Theorem 0.4.
Theorem 13.1 is a key technique tool in the proof of our main theorem in the
case A3 > X\y. This theorem is more useful in the case that #J(f) > 3. In the
case #J(f) < 2 or more generally #J(f) < oo, the Green function is continuous
and piece linear. So in Section 14 we analyzes the valuative dynamics in this case
more carefully. In particular, we prove that all nondivisorial valuations in J(f)
are repelling periodic points. At last in Section 15, we treat the case that all
valuations in J(f) are divisorial. We prove that in this case either f is étale or f
preserves a fibration.

12. BASIC PROPERTIES OF THE GREEN FUNCTION OF f

Let 0% € L*(X) be the Weil divisor defined as in Appendix A of [12]. In fact 6*
is contained in Nef (V). Recall that there exists an isomorphism i : SH(V) —
Nef (Vo) defined in Section 3.2. In the rest of this paper, we identify SH(V,)
with Nef (V) by i. Then 6* can be view as a function in L?*(V,,) N SH(V).
Observe that on the set {v € V| a(v) > —oo} by 6*(v) = (0* - Z,) when
a(v) > —oo and 0*(v) = limy <y 1/ 0 (V") when a(v) = —oco. Moreover we have
the following

Proposition 12.1. We have
(i) 6* is contained in SHT(V);
(ii) 0* is decreasing;
(iii) (0*,0%) = 0.
We normalize 6* such that 6*(—deg) = 1, and call it the Green function of f.

Set W (6*) := {v € V| 0*(v) = 0}. In general, 6* is not continuous and W (6*)
is not closed.
But we have the following

Proposition 12.2. For any M <1, 0* is continuous in the set {v € V| a(v) >
M}, In particular the set W(0%) N {v € Vo| a(v) > M} is compact.

To proof Proposition 12.2, we first prove the following

Proposition 12.3. Let M be a real number at most 1, and ¢ be a function in
L2(Vy). For any € > 0, there exists a continuous function v in 1L?(V.,) such that
|p(v) — P(v)| <€ forallv € {v € V| alv) > M}.
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Proof of Proposition 12.3. There exists X € Cy such that
(¢ = Rryd, ¢ — Rryo) < (1— M)
Set 1 = Rr, ¢, then for all v € {v € V| a(v) > M} we have
(6(v) = ¥(©))* = (¢ =), Z,)* < (¢ =), (4 = ¥))(1 — a(v)) < €
by [27, Proposition 3.18]. It follows that |¢p(v) — ¥ (v)| <. O

Proof of Proposition 12.2. By Proposition 12.3, 0*|{yev..| a(v)>m} can be uniform-
ly approximated by continuous functions on {v € V| a(v) > M}. Then itself is
continuous on {v € V| a(v) > M}. O

Define J(f) := SuppA#*. Observe that J(f) is a closed subset in V... Then
we have the following

Proposition 12.4. Let T be a finite closed subtree of V., containing — deg and
mqp the number for maximal points in T. Let ¢ be a subharmonic function in
SHY (V) satisfying (¢, ¢) = 0. If mp < #SuppA¢, then SuppA¢ is not con-
tained in T

Proof of Proposition 12.4. Otherwise we have SuppA¢ C T, it follows that

Rro = ¢.
Then for any r > 0, set W,. := {v € T| ¢(v) < r}. We have

0=/T¢A¢2/T\W7\¢A¢zr/ﬂmm.

It follows that SuppA¢ C T\ (U,.qWr) = {v € T| ¢(v) = 0}. Since ¢(v) is
decreasing, we have #{v € T| ¢(v) = 0} < my which is a contradiction. O

For any vy, vy € Vo, the distance is defined by
d(vi,v2) :=2a(v; A vg) — afvy) — a(vg).
As in Section 4.2, denote by v, is the eigenvaluation of f.

Proposition 12.5. Let M be a real number at most one and r be a positive real
number. If v € Vi is a valuation satisfying a(v) > M and 6*(v) > r, then there
are 6,C > 0 such that for all n > 0, we have d(f™,v) > ¢ and

d(le(v)v U*) < C<_)n

In particular fl(v) — v, as n — 0.

Proof of Proposition 12.5. Let v be any valuation in V,, satisfying a(v) > —oco
and ¢*(v) > 0. By [12, Lemma A.6], fI'Z, = d(f",v)Zf,). Then we have
d(f™,0)0*(fe(v)) = (frZ, - %) = A76*(v) > 0. It follows that d(f™,v) > 0.

Set K, p = {v € V| a(v) > M,0*(v) > r}. By Proposition 12.2, K, s is
compact. For any n > 0, set d,, := infyek, ,, d(f",v). Since d(f",v) is continuous
and K, js is compact, we have d,, > 0 for all n > 0.
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Set L := Z_q4eq € L*(X) and 6, := Z,,. By Theorem [12, Theorem A.8], we
have (6* - 6,) > 0.
As in [3], there exists a norm ||- || on L?(X) defined by [|1)]|? := 2(¢»- L)*— (¢-1))

which makes L?(X) to be a Hilbert space. Observe that || Z,| = (2 — a(v))? > 1
for all v € {w € V| a(w) > —oo}. Tt is easy to check that for v, v, € {w €
Voo| a(w) > —o0}, we have

d(v1,v9) = || Zy, — Zu, ||
By [3], we have that for any ¢ € L*(X) satisfying (¢ - 6*) # 0, we have
—-n * *\ — n o )\ n
AT 00+ 07) 7 1 = 6. < Bl 0°) Yl (32)
1

for some B > 0. It follows that

—-n * *\ — n _ l )\ n
T O - 0)(Z0 - 0) 71220 = 0] < Br' (2= M)A
and then
MO 0.)(Zy - 07) (S 0) = 1] = [ (A0 - 0.)(Zo - 07) 7 f2 20 = 0.) - 1) |
A2

—n(n* *\—1 rn - 1 z
<AO - 0)(Zy - 07) 7 22y = Ol LI < Broi(2 - M)2(335)8

=N

Because :\\—é < 1, there exists N > 0 such that Br=1(2 — M)%(i—%)% < 1/2. For

all n > N, we have [A\[™(0* - 0,)(Z, - 0*)7'd(f™,v) — 1| < 1/2. Tt follows that
d(f™,v) > AP0 - 0.)r > 2(0* - 0,)r when n > N.
Set ¢ := fmin{3(6" - 6.)r, 6o, - ,dn}. We have d(f™,v) > & > 0 for all n > 0.

When n > N, we have A\ "(0* - 0,)(Z, - 0*)7*d(f™,v) > 1/2. Tt follows that
1 —n/n* *\ — n
S Z szl S N6+ A0 - 0.)(Ze - 07) 1S, 0) Zpgo = Oull < (16l +1/2.
It follows that || Zp,[| <1+ 2[[0.| when n > N.
When n < N, we have
AT (07-0.)(Zo0") A", 0) Zggoll < 0N+ (070 (Zo07) 7 (", 0) Z gy =04
< |6.] + Br~(2 = M)>.
It follows that
1Z gzl < X307 - 0.)70 (0)d( £, v) "1 (10.]| + Br'(2 — M)?)

<AV 007107 ()07 (6] + B! (2 = M)3).
Set Cy := max{2||6,]| + 1, AN (6* - 6,)710*(v)6~1(||6,|| + Br—(2 — M)2)}, then
we have |[Zsn,| < Cy for all n > 0. Then we have
1Z 5001 < WAL O70.)(Zo07) " f", 0) =L Zppo I+ (07-0.) (Z007) 7 f2 200, ]
Az

< (Cr+1)Br(2- M>%<A—%>’5.
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Set C':= (Cy +1)2B%*2(2 — M), then we have
A2
d(fo(v),vs) = [2a(f3(v) A i) — a(fd(v) — a(v)| = [ Zppo — 0.7 < C(A—%)"-

U

Corollary 12.6. For any v € V, satisfying 0*(v) > 0, we have d(f™,v) > 0 and
G*(fdv) >0 for all n > 0.

Proof of Corollary 12.6. 1f a(v) > —o0, we conclude our corollary by Proposition
12.5. If a(v) = —o0, by [11, Proposition 7.2], for any n > 0, there exists w < v
such that d(f",v) = d(f™, w). Since 0*(w) > 0*(v) > 0 and o(w) > —o0o, we have
d(f",v) = d(f",w) > 0. Then we have 6*(fiv) = d(f™,v)~'16*(v) > 0. O

13. VALUATIVE DYNAMICS OF POLYNOMIAL ENDOMORPHISMS WITH A\? > )\,

The aim of this section is to prove the following theorem.

Theorem 13.1. Let f be a dominant polynomial endomorphism on A? defined
over an algebraically closed field satisfying \3 > Xo. Let | be a positive integer
strictly less than #J(f), W be an open neighborhood of v, in V, and k be a non
negative integer. There exists a real number r > 0, a finite set of polynomial-
s {Pi}1<i<s and a positive integer N such that for any finite set of valuations
{v1, -+ v} with t < 1 satisfying {v1,--- v} C Voo \ (Nh_ JNTIW), there
exists an index i € {1,--- ,s} such that vj(P;) > r for all j € {1,--- ,t}.

Observe that Theorem 0.4 in Introduction is a direct corollary of Theorem 13.1.
For this purpose, we first need the following

Lemma 13.2. Let | be a nonnegative integer and let W be a compact subset of
Ve such that any subset S of W containing at most | elements is rich. Then
there exists an open set U containing W such that for any positive integer s there
ezists My < 1 such that for any subset Sy of U with at most | elements and any
subset Sy of {v € V| a(v) < My} with at most s elements, the set Sy U Sy is
rich.

Proof of Lemma 13.2. Let w = (vy,+-+ ,v;) be a point in W C V.. The set
{v1,- -+ ,u} is rich then by Proposition 2.13, there exists v] < v; such that the
set {v],- -+, v/} is rich. Then there exists ¢,, € SHT (V) satisfying ¢,,(v) = 0 for
ve B({v}, - ,v}) and (py, ¢w) > 0. Set U, := B({vy,--- ,v;})°. Observe that
w e UL,

Since W' is compact, there are finitely many points wy, - - - ,wy, € W' such that
wtC UiLlefUi. We rename U, be U; and ¢,,, by ¢;. By Lemma 2.15, there exists
M} such that for any subset S of V,, satisfying

* S CU U alv) < M},
* #(S\Ui) < s
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we have that S is rich.

For any point z € W, set I, := {i| x € U;}. Set M, := min{M:},—;.. ; and
U:= UJJEW(ﬂiEIin)‘

For any point (y1,--- ,y) € U', there exists (zy,---,2;) € W' such that y; €
Njer,,U; for all ¢ = 1,--- . Since wt C UiLlefUi, there exists t = 1,--- , L
such that (zy,---,2;) € Ul Tt follows that t € I, for all i = 1,---,l. Then
Yi € Njer,, Uj CUpforalli=1,--- 1. Then we have (y1, - ,y) € UL Tt follows
that U' € UL, U!. Tt follows that U and M, are what we need. O

Lemma 13.3. Let [ be a positive integer strict less than #J(f). Let S be a subset
of W(0*) containing at most | elements, then S is rich.

Proof of Lemma 13.3. Let T be the subtree of V., generated by S and — deg.
Since #J(f) > L+ 1, by Proposition 12.4, Af* is not supported by T. By [27,
Proposition 3.21], we have Rr(6*) € SH" (V) and (Rr(6%), Ry (6*)) > 0 and
Rr(6%)(v) = 0 for all v € B(S). By Proposition 2.13, the set S is rich. O

Then we have the following

Proposition 13.4. For any integer | > 1 strict less than #J(f), there exists an
open set U and a number M <1 such that U contains W (6*) U{v € V| a(v) <
M} and for any subset S C U with #S < I, we have that S is rich.

Proof of Proposition 153.4. By Lemma 13.2, there exists M; < 0, such that for
any subset S of {v € V| a(v) < M;} containing at most | elements, we have
that S rich.

By Lemma 13.3, there exists U; containing W (0*) N {v € V| a(v) > M;} and
M, < M such that for any subset S of Uy U{v € V| a(v) < Ms} containing at
most [ elements, we have that S rich.

By induction, we get a sequence of numbers M; > My > --- > M; and open set
Uy, -+, U satisfying U; contains W (0*) N {v € V| a(v) > M;} fori =1,--- ,1;
for any subset S of U; U {v € V| a(v) < M;;1} containing at most | elements,
we have that S is rich for ¢ = 1,--- |l — 1 and for any subset S of U; containing
at most [ elements, we have that .S rich.

Set Vo = {v € Vol a(v) < Mi}; Vi == U; U{v € V| a(v) < My} for
i=1,--+,l—1and Vj := U;. We claim that W (6*)! C U._,V}!. Otherwise, suppose
that there exists a point w := (vy,--- ,v;) € W(0*)'\ (UL V}!). We may suppose
that a(v;) > a(viyy) for i = 1,--- 1 — 1. Since w &€ V!, we have a(v;) < M,.
There exists ¢t minimal in {1,--- , [} satisfying o(v;) < M;. It follows that the set
{1, v} C{o e W(O)] a(v) > M} = Ti_ {v € W(0")| My > o, > M}
where My := 2. Since t — 1 < [, there exists ¢ € {1,---,l} such that {v €
W) M1 > a, > M} N {wvy, -+ v} = 0. It follows that {vq, -+, 09} C V4
and then w C V' | which contradicts our assumption.

Forany ¢ =1,--- ,l+1set W; :=N,x_1V}, then we have {v € W(6*)| M;_; >
a, > M;} € W; fori = 1,---,0 and {v € V| alv) < M;} C Wiy, Set
U = UL W; and M := M;—1, we have that (W (6*)U{v € V| a(v) < M}) CU
and U! C UﬁZOVil. Then for any subset S C U with #S5 < [, we have that S is
rich. g
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Proof of Theorem 13.1. Pick U and M < —1 as in Proposition 13.4. For any
point v € Vo \ U, we have a(v) > M and 6*(v) > 0. Since V,, \ U is compact and
contained in {v € V| a(v) > M}, there exists r > 0 such that 6*(v) > r for all
v € Vo \ U. There exists ¢t > 0, such that the set {v € V| 2a(v A v,) — a(v) —
a(v,) <t} is contained in W N {v € V| a(v) > M}. By Proposition 12.5 there
exists IV, such that we have

fd(Vae \U) CH{v € V| 2a(v Avy) — a(v) — afv,) < t}

for all n > N. If follows that Vo \ Ni_yfe NZI(W) C U. 1f follows that for any
subset S of Voo \ NF_o o’ NZI(W) containing at most [ elements, the set S is rich.

Observe that V,, \ ﬂfzo TN (W) is compact, then we conclude our theorem by
the following

Lemma 13.5. Let [ be an positive integer and Z be a compact subset of Vi such
that for any subset S of Z with at most | elements, S is rich. Then there exists
a real number r, a finite set of polynomials { P;}1<i<s such that for any subset S

of Z with at most | elements, there ezists i € {1,---,s} such that v(P;) > r for
allv e S.
U
Proof of Lemma 13.5. For any point w = (vq,--+,v;) € Z!, there exists a real
number r,, > 0 and a non constant polynomial P, satisfying v;(P) > r, > 0
fori =1,---,1. Set U, := {v € Voo| v(P,) > ry}. Since Z! is compact, there
exist wy, -+ ,ws € Z' such that Z! C UleUfui. Set U; := U,,, r = min{r,, } and
P =P, fori=1,---s.
Let {v1,- -+, v} be afinite subset of Z with ¢t < 1. Set w := (v, , v, , ;) €
VL we have w € Z!. Then there exists U, for some j = 1,---, s such that w € U]l-
and then Pj(v;) >rfori=1,.--- t. 0

14. DYNAMICS ON V,, WHEN J(f) IS FINITE

In this section, we denote by k an algebraically closed field. Let f : A? — A?
be a dominant endomorphism defined over k with A2 > \,. Moreover, we suppose
that #J(f) is finite.

Set J(f) = SuppAf* = {vy,--- ,vs} where s is a positive integer. By the
definition of subharmonic functions, we may write §* = Zle riZ,, where r; > 0
fori=1,---,s > ma(vAv))=0and 7 r=1

In this situation, we have that #* is continuous in V,, and then

W) ={veVyl 0(v) =0} = B({v1, - ,vs})

is compact. By the continuity of fe|yevi | d(fv)>0}, we have that feo(Vie \W(0*)) C
Voo \ W(60%) and for all v € W (0*) satisfying d(f,v) # 0, we have fe(v) € W (0*).

Proposition 14.1. There exists n > 1 such that fi'(v;) = v; and d(f",v;) =
(A/A)" foralli=1,--- s.
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FIGURE 2

Proof of Proposition 14.1. For i = 1,--- s, if d(f,v;) # 0, we have fo(v;) €
W(0*). If fe(v;) € W(6*)°, then by the continuity of fe there exists v < v; such
that fe(v) € W(6*). Then we get a contradiction. It follows that fe(v;) = v;,
for some j; € {1,---,s}. If d(f,v;) = 0, set j; := 1. Then we have f.Z, =
d(f, vi)Zvij. Since f.0* = Mo/ 0%, we have Ao /A (3 i 1:Zy,) = > i mid(f, i) Z, -
Since AZ,, = d,,, then we have that Z,’s are linear independence. It follows
that d(f,v;) # 0 for all i = 1,--- s and the map i — j; is a permutation of
{1,---,s}. By replacing f by some positive iterate, we may suppose that j; = ¢
foralli=1,---s. Then f.Z, = d(f,v;)Z,,, it follows that d(f,v;) = Ao/A;. O

Up to a positive iterate, we may suppose that fe(v;) = v; and d(f,v;) = Aa/ M
foralli=1,---,s.

The following proposition shows that fe is repelling at v; in the direction de-
terminate by [v;, — deg|. Moreover it is repelling at v;, if v; is irrational.

Proposition 14.2. For alli = 1,--- s, there are two valuations w} < wh < v;
as in [(1),Figure 2] such that
(1) fo'({v € Vo wi < v Av; < v}) = {v € V| wh < v Av; <3}
(i) folfvevn wi<vAvi<v;} 1 OTder—preserm'ng; |
(iil) for all valuation w € [wi,v;], fo ' (w) is one point in [wi, vyl;
(iv) for all valuation w € {v € Vio| wi < v Av; <}, there exists N > 1 such
that fo(w) € Voo \{v € Vool v Av; > wi} for alln > N.
Moreover if v; is irrational, then there are two valuations v; < u} < ub as in
[(2),Figure 2| such that
(1). fo'{v e Vel vi<vAuy <ud})={ve Vel v <vAul <ull,
(2) f’|{U€Voo\ v;<vAul <ul} is 07’d¢7"—p7”€867”1)ing,’ A
(3). for all valuation w € [v;,ub], fo'(w) is one point in [v;, ul];
(4). for all valuation w € {v € V| v; < v Auh < ub}, there ewists N > 1
such that for alln > N, either d(f",w) = 0 or f3(w) € {v € V| u) < v}.
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Remark 14.3. The valuations v, u} and wi, w’ can be chosen to be arbitrarily
closed to v;.

Proof of Proposition 14.2. Set V = Vo \ B({v1, -+ ,vs})°, observe that V is
compact. By Corollary 12.6, fe is well defined on V' and fe(V') C V. Denote by
T the convex hull of {vy,--- ,vs} U {—deg}. For any i € {1,---, s}, there exists
v < v; such that {v € V| v > v} NT = [v},v;]. Since fo(v;) = v;, we may
further suppose that {v € V| v > fo(v))} NT = [fe(v}),v;]. For any v € V
satisfying v > v}, we have

affe(v) ANvg) — av;) = ((Zf.(v — Zv;) " Zv;)
T (Zpew) = Zu) - 07) =17 (Zgew) - 07)
:Ti_1d<f7 V) (fuZy - 07) = 17 (N fd(f0))(Zy - 67)

= (M/d(f, v))(a(v Avi) = a(vi).
Since d(f,v;) = A2/A1, we have \/d(f,v;) = A2/Ay > 1. By assuming v,
close enough to v;, we have A\ /d(f,v}) > C for some constant C' > 1 and then
M/d(f,v) > M\ /d(f,v;) > C. It follows that

a(fe(v) Av) — al(v;) > Cla(v Av;) — a(v;)) (%).

By [11, Proposition 7.2], there exists a finite subtree T; of V such that d(f,-)
is locally constant on V., \ 7;. Then fe preserves the ordering on Vi, \ ({v €
Vol d(f,v) = 0} UTy). By assuming v} closed enough to v;, we may suppose that
the set {v € V| v} <vAv, < v} \[v],v;] T Voo \Ty. Set t(v) := a(vAv;) —a(v;).
Since d( f, v) is a decreasing piece-linear function and d( f, v;) = Ay/ A1, there exists
a constant a € Q>¢, such that

)\1t(1})

t(fo(v)) = al(0) + ol (%)

for v € {v € V|, v} <wv A} by assuming v, closed enough to v;. It follows that
t(fe(v)) strictly increases in the segment [v; / ,v;] and then we have that fe maps
{v e V[,v, <vAuv} onto {veV]| fo(v ) < v A fe(v))} and it preserves the
ordering.

Since fo ' (v;) = {v;} and fo(V \ {v € V|, v} < v Av.}) is compact, there exists
w} < v; such that w} > v} and {v € V|w} <v}Nfe(V\{v € V|, v <vAvl}) =
There exists wi, € (w},v;) such that {wi} = fo'({wi}). Then the pair (w?, w})
satisfies the conditions (i),(ii) and (iii) immediately. The inequality (*) implies
the condition (iv).

Now we suppose that v; is irrational. We claim the following

Lemma 14.4. There are two valuations wy, wo satisfying wi < v; < wy such that
for any v € {v € Vo| w1 < v Awy < wa} we have d(f,v) > 0 and

A(a(v A ws) — a(v;))
Cla(v Aws) — a(v;)) + D

alfe(v) ANwy) — alv;) =

where A,C, D € R.
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Pick valuations wi,wy as in Lemma 14.4. Since A, C, D are constants, then
equation (xx) implies

A (a(v Awg) — a(v;)) (5 4)
ala(v Aws) — alv;)) + Ao/ N\

for v € {v € Vol wy < v Awy < wa}. Set V; == {v € Vol v > v} \ {v €
Vool d(f,v) = 0}°. For every valuation v € Vj satisfying d(f,v) > 0, we have
fo(v) € {v € Vo] v > v;}. By [11, Theorem 7.1], feo extends to a continuous
map fe : V; = {v € V| v > v;}. Since {v € V;| v > wy} is compact and
fo'({vi}) = v, there exists u} € (v;,wy), such that {v € Voo| v; < v < ub} N
fo({v € Vi| v > wy}) = (. There exists u} € (v;,ub) such that {ui} = fot({ud}).
Then equation (%) implies that the pair (u}, u}) satisfies the conditions (i),(ii),
(iii) and (iv). d

a(fe(v) Nwy) — a(v;) =

Proof of Lemma 14.4. There exists a nonconstant polynomial P such that there
exists a branch Cy of {P = 0} satisfying ve, > v; and there exists a branch
Dy of {P = 0} satisfying vp, A v; < v;. Set Cy,---,Cy be all branch of {P =
0} satisfying ve, > v; and set Di,---, Dy be all branch of {P = 0} satisfying
vp, A vy < v;. Since v; is irrational, Cy,---,Cy, Dy, -+, Dy are all branches of
{P = 0}. It follows that there exists my, - ,mg,ny, - ,n; € Z* such that for
all v € Vo, v(P) = > 75 mja(ve; A U) + Zz L nja(vp, A wv). Similarly, write
o(f*P) = 305 mja(ver Av) + Z] y nja(vpy Av) where nf,m; € Z¥, ver > v;
and Uy Av; < ;.

Set M = 7" ,m; and M’ := 375 m}. We have M, N, M', N" € Z>, and
M, N > 0. Set w} := max({ve, Avi}U{ves Avi}) and wh == (/\E':WDJ-)/\(/\é‘:WD;)-
Since vy is irrational, we have w] < v; < wj. For any v € {v € Vo| w} <vAw) <
wh}, we have

v(P)= Ma(v ANwy) +T
where T' = 22:1 n;ja(vp, A w) and
v(f*P) = MalvANw)) + L

where T' = Zj p nja(vp; Awy). On the other hand, we have d(f, v)fe(v)(P) =
v(f*P). Since v; is irrational, d(f,v;) = A2/A; and d(f, -) is decreasing, there exist
wy € [wy,v;) and wy € (v;, wh] such that for all v € {v € V| w1 < v Awy < wsy},

* we have d(f,v) = Ao/ + K(a(v A wy) — a(v;)) for some constant K €
Q>o;
*d(f,v) > 0;
* fo(v) € {u € V| wi < uAnwh <wh}.
It follows that for all v € {u € V| w1 < u A wy < wy}, we have
Ao/ A1+ K(a(v Aws) — a(v;))) (Ma(fe(v) Nwy) +T) = Ma(v Aws) + L (1).

Set v = v; in equation (1), then we have

Ao/ M(Ma(v;) +T) = M'a(v;) + L 2).
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Set t(v) := a(v A wq) — a(v;). By taking difference (1) — (2), we have

Mo/ A1) Mt(fo(v)) + K(Ma(fe(v) Aws) + T)t(v) = M't(v).
It follows that

((Ao/A)M + KMt(v))t(fe(v)) + K (Ma(v;) + T) t(v) = M't(v)

and then we have
M — K (Ma(v;) +T)) t(v
ey — = B (Ma(v) +T) 0
for v € {u € V| wy < uAwy <wse} by taking wy, ws closed enough to v;. O

15. WHEN J(f) IS A FINITE SET OF DIVISORIAL VALUATIONS

In this section k is an algebraically closed field. Let f : A2 — A? be a dominant
endomorphism defined over k with A} > Ay such that J(f) = SuppA#* is a finite
set of divisorial valuations.

We first fix the setting. Write 6* = Zle i, where r; > 0 and v; is divisorial
fort=1,---,s. The coefficients r;’s satisfy the following conditions:

(i) Yo mia(viAv) =0fori=1,--- s
(i) > =1

By Proposition 14.1, we may suppose that fe(v;) = v; and d(f,v;) = Ao/, for

alli =1,---,s. The aim of this section is the following

Theorem 15.1. If Jf is not a constant, then [ preserves a nontrivial fibration
G € klx,y] \ k i.e. there there exists a polynomial morphism G : A} — AL such
that Po f = G o P. Moreover we have Ry, ... »,} = k[P].

Remark 15.2. In the preparing work [16], Jonsson, Wulcan and I show that J f
can not be constant in this case.

Proof of Theorem 15.1. For every polynomial Q) € k[z,y], set *(Q) := > _:_, r:v;(Q).
Recall that the function log|Q| : v — —v(Q) on V, can be written as

!
log |Q](v) = Z m;a(Q; A )
i=1

where @);’s are all curve valuations associated to the branches at infinity of
{Q(z,y) =0} and m; > 1. Then we have

0"(Q) = Zﬁ%(@) = - Zﬂ' log |Q(v;)

s

s l l
= —Zri(ija(Qj Av;)) = —Zﬁ' mj(ZQj + Z,)

i=1  j=1
!

l s
- Z<ZQJ 'Zrizvi) - Z(ZQJ‘ 07) <0.
j=1 i=1

J=1
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For all element @ € Ry, ... v}, we have 0 > 0*(Q) = >_7_; 70;(Q) > 0. It follows
that v;(Q) =0 foralli =1,--- ,s. By Proposition 2.13, the transcendence degree
of Frac (Ryy, ... v,}) is at most one.

On the other hand, we claim the following

Proposition 15.3. If v; is divisorial for all 1 = 1,--- s, then either Jf is a
constant or there exists a polynomial P € kl[z,y| \ k such that v;(P) > 0 for all
1=1,--- 5.

By Proposition 15.3, the transcendence degree of Frac (Ryy,.... »,}) is at least
one and then equals to one. By [27, Proposition 5.8], there exists a nonconstant
polynomial P € k[z,y| such that Ry, .. ..} = k[P)].

Observe that v;(P o f) = (fuiv;)(P) = X/ Mv(P) = 0 for all i = 1,--- | s.
Then we have Po f € Ry, ... ».} = k[P]. Then there exists G € k[t] such that
Pof=GoP. U

Proof of Proposition 15.3. Since v, is divisorial, we have Ay/A\; = d(f,v1) € Z7,
it follows that Ay > ;.

We define A(6*) := 5>, 7;A(v;). As in the beginning of the proof of Theorem
15.1, we set 6*(Q) := >_7_, rv;(Q) for all polynomial @ € k[z,y| and we have

)

6*(Q) < 0 for all @ € k[z,y]. Observe that

S

Ao/ AMA(0") = Zﬁ‘(Az/)\lA(Uz‘))

= ri(Aw) + (T ) = A07) + 07 ().
i=1
It follows that (Ag/Ay — 1)A(6%) =0*(Jf) <O0.
We claim the following

Lemma 15.4. If A\; = A\g, then either Jf is a constant or there exists a polyno-
mial P € k[x,y] \ k such that v;(P) >0 for alli=1,---,s.

By Lemma 15.4, we may suppose that Ay > Ay, it follows that A(6*) < 0. Then
we conclude our Proposition by [27, Proposition 5.6]. O

Proof of Lemma 15.4. We may suppose that Jf is not a constant. For all i =
1,---,s, we have formula

d(f, vi)Avi) = A(vi) + vi(Jf).
Since d(f,v;) = Ao/M\ = 1, we have v;(Jf) =0foralli=1,---,s. Set P = Jf,

then we conclude of lemma. O
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Part 6. The non-resonant case \? > \,

In this part, f is a dominant polynomial endomorphism defined over an alge-
braically closed field satisfying A\? > \y. The aim of this part is to prove the main
theorem in the case A? > Ay which completes the proof of Theorem 0.1.

Theorem 15.5. Let f : A?@ — AZ be a dominant polynomial endomorphism on
A?@ satisfying A2 > X\y. Then the pair (A?@, f) satisfies the DML property.

16. THE CASE A7 > \y AND #J(f) >3

Our aim of this part is to prove the following

Theorem 16.1. Set k = Q. Let f be a dominant polynomial endomorphism on

A? defined over k with \i(f)? > Xo(f) and #J(f) > 3. Then the pair (A2, f)
satisfies the DML property.

We first fix the notations.

Let C' be an irreducible curve in A2 and p be a closed point in A2. We suppose
that {n € N| f"(p) € C} is infinite and p is not preperiodic. By Theorem 8.1, we
may suppose that there exists a sequence of curves {C;};cz with s € {1,2} places
at infinity such that

s 0% =,

- (") = O

* for all ¢ € Z, the set {n > 0|f™(p) € C'} is infinite.
Let C’Z’S be branches of CV, we may suppose that f(C’f) = C’f“ for y < —1 and
1< <s.

The following lemma is a key ingredient of our proof which is a direct applica-
tion of Section 13

Lemma 16.2. If there exists an open set W of Vi, containing v, and a nonnega-
twe integer L > 0, such that for infinitely many j < 0 we have v, ¢ ﬂﬁzof:k(W)
foralli=1,--- s, then the pair (A%, f) satisfies the DML property for C.

Proof of Lemma 16.2. Since #J(f) > 3 > s, by Theorem 13.1, there exists a
finite set of polynomials {P,;}1<;<; and a positive integer N such that for any
set of valuations {vy,--- ,v,} of s elements satisfying v; & NE_, foV=F (W) for all
i=1,---,s, there exists an index ¢ € {1,--- , [} such that v;(P;) > 0 for all j €
{1,---,s}. Let S be the infinite set of index j < 0 such that Voi & NE_ foa (W)
for all i = 1,--- ,s. Denote by S~ the set of index j such that j + N € S.

Since v,y € W for all j € S, we have vy & fo V(W) for all j € S™V. Denote
by R the finite set of irreducible polynomiais which is a factor of one polynomial
P,ie{l,--- 1}

For any j € SV, there exists an index k € {1,---,l} such that v, (P;) > 0
foralli € {1,---,s}. Then P, has no poles but zeros in the Zariski closure of €Y
in P2. Tt follows that we have P;|c; = 0 and then CY is defined by Q; = 0 where

Q; is an irreducible polynomial in R. Since R is finite, there exists j; < jo € S
such that Ct = (72, It follows that C' is periodic. O
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In the rest of this section we present our proof in the situation s = 2 and we
will give a remark for the situation s = 1 in every case.

1) The case v* is not divisorial. By [12, Theorem 3.1], there exists an open
set W of V,, containing v, such that

* veo & Wior i =1,2;
o« fo(W)CW.
Then we have W C fZ(W) for all j < 0. It follows that Vo & Wforall j <0 and

1 =1,2. By applying Lemma 16.2, we conclude our propolsition in this situation.

Remark 16.3. When s = 1, the proof is the same.

2) The case v, is divisorial. There exists a smooth projective compactifi-
caition X of A? containing a divisor E satisfying vg = v,. By [12, Lemma 4.6]
we may suppose that for any point ¢ in I(f) N E, ¢ is not a periodic point of f|g.

2.1) The case deg(f|r) =id. The proof of this case is similar to Case 1).
There exists a compactification X € C such that FE is an irreducible component

of X \ A? and I(f) N E = (. If follows that there exists an open set W of V,,
containing v, such that

*vgo € Wtor i =1,2;

* fo(W)CW.
Then we have W C f2(W) for all j < 0. It follows that Ve € W ofor all j < 0.
Apply Lemma 16.2 and we conclude our proposition in this situation.

Remark 16.4. When s = 1, the proof is the same.

2.2) The case deg(f|g) =1 and f|} #id for all n > 0. Since deg(f|r) =1,
f|E has at most two periodic points. By replacing f by a positive iterate, we may
suppose that all periodic points of f|g are fixed.

In the case 1) and the case 2.1), there exists a system of invariant neighborhood
of v,. Unfortunately, such a system does not exist in this case. But there exists
a system of neighborhood W of v, which is not invariant but play a similar role
as invariant neighborhood of v, play in the case 1) and 2).

Definition 16.5. A neighborhood W of v, is said to be a nice neighborhood of
v, if it satisfies the following properties:

(i) for all valuation v € W, d(f,v) > 0 and the center of v is contained in E;

(ii) for any point ¢ € E, we have fo(U(t) N W) C U(f|r(t));

(iii) for all 7 < 0 such that there exists a branch CY of CV at infinity satisfying

Uei € W, we have deg f|ci < Ay for all j < —1;

(iv) its boundary OW is finite;

(v) for any fixed point x € E, fe(U(x)NW) C U(z) N W.
Lemma 16.6. If v, = vg is divisorial, deg f|p = 1 such that all periodic points

of flg are fized. Let U be any neighborhood of v., there exists nice neighborhood
W of v, contained in U.
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Proof of Lemma 16.6. There exists a compactification Y € C dominates X with
morphisms 7 : Y — X, m 1 Y — X where 7 is birational and w5 o wfl = f.
Set E’ the strict transform of E. We may suppose that for every irreducible
component F' # E' of Y\ A? satisfying F N E’ # (), we have that 7 (F) is a
point, mo(F') = f|g(m(F)) and 7 at every point in £’ is locally monomial ( see
[5, Theorem 3.2]). Denote by Wy the set of all valuations whose centers on Y are
contained in F'.

Then we pick a neighborhood W' satisfying conditions (i) and (ii) in Definition
16.5 and contained in Wy NU.

We will first show that W' satisfies condition (iii) in Definition 16.5.

Fix j < —1, we may suppose that Vey € W’. By condition (ii), the center of
f(veger) is contained in E. Write ¢/ for the center of Ve on 'Y and T for the
center of f (UC{'Jrl) on X. By condition (iii), ¢/ is contained in Ey. There exists a

local coordinate U7 at ¢/ satisfying Fy = {y = 0} in U’ and a local coordinate
Uit of ¢t satisfying E = {y = 0} in UT!. Since my|p, is linear and d(f,vg) =
A1. We may ask that the map my : U7 — U7*! to take form (z,y) — (z,2my™)
for some m > 0. It follows that for a general point in U’*!\ {(0,0)}, it has at
most \; preimages by m, in U?. Pick a general point in CV near ¢/*!, it has at
most A\, preimages by f|c; near the center of Vei - It follows that deg f|ci < A
which shows that W’ satisfies condition (iii) in Definition 16.5.

Observe that all neighborhoods of v, contained in W’ satisfies conditions (i),
(i) and (iii).

By replacing W’ by a neighborhoods of v, contained in W', we may suppose
that it also satisfies condition (iv).

If f|g # id, denote by F' the set of fixed points of f|g. Then we have #F < 2.
By Lemma 5.7, for any « € F, there exists a valuation w, € U(z) such that
{v eVl v <vAvg <w,} CW and fe({v € Vo| vp < v Avg <w,}) C{v €
Vool vE < v Avp < wi}. Set W= W'\ (Uper(U(x) \ {v € Vol vE < v Avg <
w,})), then W is a nice neighborhood W of v, contained in U.

If fp = id, the argument in 2.1) shows that v, is attracting i.e. there exists
a neighborhoods W of v, satisfying fe(V) C V. Moreover we may suppose that
the boundary of W is finite and W C W’. Then W is a nice neighborhood W of
v, contained in U. O

In the rest of the proof of the case 2.2), we take W to be a nice
neighborhood of v,.

By Lemma 16.2 and by replacing C' by some C7, jo < 0, we may suppose that
for all j <0, there exists a branch C} of C7 at infinity such that v,; € W. Now
we may suppose that deg f|c; < Aq for all j < —1.

For any branch C’ij of CY at infinity j < 0, denote by mf the intersection number
(C? -ly). Then we want to study the growth of the intersection number m] when
Vs is contained in WW.
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Since d(f,v) is locally constant outside a finite tree, there are finitely many
directions 0, - - - ,wy at vg such that d(f,v) = d(f,vg) = A\ on Vi, \ UL, U ().
Denote by t; the point in E determined by ;.

Since d(f,v) is continuous on V,,, by replacing W by some small open set, we
may suppose that for all v € W, d(f,v) € (274, 21/94\).

By Lemma 4.3, we have

m]d(f,vgi) = deg(floi)m!™ = deg(flos)m]"
forall ) <0,i=1,---s.
Lemma 16.7. If there are i = 1,2, 7 <0 and k > 0, such that Vesy "+ Vgik €
W and the centers ¢ ,--- ¢/ " are distinet, then we have m?~"/m? < 2.
Remark 16.8. This lemma holds also when s = 1.

Proof of Lemma 16.7. Since mld(f,v.;) = deg(f|ci)m!™", we have

m /ml" = deg(fles)/d(f,vor) < M/d(fves).
When qg & {t1, - ,ta}, we have d(f,vci) = A1, and then mg/mfrl < 1; When

q € {t1, -+ ,ta}, we have d(f,vpi) > 2_1/“1)\1, and then m? /mJ™" < 21/4. Since
¢, ¢ " are distinct, we have m? " /m? < (21/4)d = 2, O

Observe that some v,; can be outside W infinitely many times. But however,
the following lemma tell us that m? /(deg C?) can not be too big.
Lemma 16.9. For any nice neighborhood W, there exists A > 0, such that if
there are infinitely many Ve & W satisfying m3/m?3 > A, then the pair (A2, f)
satisfies the DML property for C'.

The map fo : {v € V| d(f,v) > 0} — V. is continuous and the image of any
v € {v € V| d(f,v) > 0} is a curve valuation defined by a rational curve with
one place at infinity. So there exists § > 0 such that vy € fe({v € V| d(f,v) <
9}). So we may take W to be a nice neighborhood of v, contained in the open set
Voo \ fo({v € Vio| d(f,v) < 6}).

By replacing C' by some C7, j < 0, we may suppose that for all j <0, we have
m7 /mi < A when v(C]) ¢ W and m}/m] < A when v(C}) & W.

Proof of Lemma 16.9. By Theorem 13.1, there exists » > 0, N > 0 and a finite
set of polynomials {P;,---, P,} such that for any for any v € Vi, \ fo (W),
there exists ¢ = 1,--- ,m such that v(P;) > r.

Set A :=r~(deg(f))*¥ max{deg(P,),--- ,deg(P,,)}. We claim

Lemma 16.10. For any 7 <0 and k > 0, we have
m} /)

(deg(f))**(m]/mi,+ 1) = mi™*/mj ™" > <deg<f>>‘2k1+m—j/mf'
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If voy € W and m? /mj > A, by Lemma 16.10, we have Voi-N & foN(W) and

m] N fm Y > (deg(f)) N A/(1+ A) > (deg(f)) >V A.

There exists ¢ = 1,--- ,m such that v -~ (F;) > r. Observe that
1

Vg (P) 4y vy () > e — ™ deg(P)

> mi N —m) ™V max{deg(P,),--- ,deg(P,)} > 0.
We claim the following

Lemma 16.11. Let C' be an irreducible curve in A?@ and let Cy,--- ,C be all
the branches of C' at infinity. Let P be any polynomial in Q[z,y]. If i (C; -
loo)ve,(P) > 0, then Plc = 0.

Lemma 16.11 implies that P;|¢;-~ is zero. It follows that C¥=% is an irreducible
component of {[[;", P, = 0}.

If there are infinitely many such 7 < 0, there exists j; < jo < 0, such that
Cn=N = C72=N_ Tt follows that C is periodic, which conclude our Theorem
16.1. Il

Proof of Lemma 16.10. Observe that

m]* fm] = deg(f*]ci-) /d(f*, ves—+) > 1/ (deg(f))"
On the other hand, we have
mj " < deg(CV7F) < deg(f*(C7)) = (deg(f))* deg(C?) = (deg(f))* (m] + m).
It follows that
my/mj
1+ mi/my

il ™ = (deg(£)) 2]/ ] +m}) = (deg(1))

The same we have
(deg(f))* (m]/m3 + 1) > m] ™" /m{™".
O

Proof of Lemma 16.11. We extend C' to a projective curve in P2. By contradic-
tion, we suppose that P|c is not zero. The pole of the function P|s can only
occur in the places at infinity. So the some of all poles and zeros with mul-

tiplicities is nonpositive. By the definition of curve valuation, this number is
> (Ci - loo)ve,(P) > 0 which is a contradiction. It follows that P|c = 0. d

=1
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2.2.1)The case vy, vey €W for all j <0. If q?, ¢S are fixed by f|g. There
exists a neighborhood W’ of v, such that fe(W')NU(¢)) € W' NU(¢)) and
Veo §ZW’ for i = 1,2. Since deg f|g = 1 and Uei € Wforall j <0,1=1,2, we
have ¢! = ¢) for all j < 0. It follows that Vei € U(q?) and e g W' for all j <0,
1 =1,2. By Lemma 16.2, We conclude our theorem in thls case.

If ¥ is fixed by f|g and @5 is not fixed by f|g, then ¢J is not periodic. There
exists a nice neighborhood W’ of v, such that W C W, fo(W') N U(¢}) C
W' NU(¢?) and veo & W', Since deg f|p = 1 and vog €W for all j <0, we have
¢ = ¢{ for all j < 0. It follows that Ver € U(q?) and vey & W' for all j < 0. By
applying Lemma 16.9 for W', we may suppose that there exists A’ > 0 such that
ml /ml < A’ for all j < 0. Lemma 16.7 implies that {mQ}]<0 is bounded and then

deg(C7) = m] 4+ mJ is bounded. Then we conclude our theorem by Proposition
8.5.

Then we may suppose that both ¢°, 3 are not periodic by f|g. Lemma 16.7
shows that {m!},;<o is bounded for i = 1,2 and then deg(C?) = m] + mj is
bounded. Then we conclude our theorem by Proposition 8.5.

2.2.2) The case Vg € W for all 7 < 0 and there are infinitely many
j < 0 such that Ueq ¢ W. If ¢¥ is fixed by f|g, there exists a neighborhood
W’ of v, such that W' C W, fo(W')NU(q?) € W' NU(q)) and vee & W'. Since
deg f|p = 1 and v, € W for all j <0, we have q1 = ¢} for all j < 0. It follows
that Ve € U(q?) anld e g W' for all j < 0. More over there are infinitely many
J < 0 such that VUey ¢ W', then we conclude our theorem by Lemma 16.2.

So we may suppose that q? is not fixed by f|g. Then Lemma 16.7 shows that
m7 < 2mj for all j < 0. By replacing C' by some €7, j < 0, we may suppose that
vy & W. For any j < 0 satisfying e ¢ W, we have ml/mj < A. Tt follows
that m? < 2Am? when ey ¢ W. For any 7 <0 satisfying ey € W, there exists
J < j1 < —1 such that v, € W for any j < j' < jl and Ugintt ¢ W. Since

fU@E)NW)CU@)nW for all z € F fixed by f|g, ¢3' is not fixed by f|g. By
Lemma 16.7, we have m} < 2mj'. By Lemma 16.10, we have

m3' /m]t < (deg(f))*( ﬁ“/mil“+1)<<deg<f)> (A+1).

It follows that m}' < (deg(f))*(A+ 1)m]* < 2(deg(f))?(A+ 1)m{. Then we have
m? < 4(deg(f))*(A + 1)m?. Tt follows that {m}},<o is bounded. Then we have
{deg(C?)};<0 is bounded and thus we conclude our theorem by Proposition 8.5.

2.2.3) The case that for all i = 1,2, there are infinitely j; < 0 such
that Uit ¢ W. Denote by S; the set of J € Z<p such that Vs € W for all

© = 1,2. It follows that S; U Sy = Z<(. In this case we have Z< \ S; is infinite
for all 1=1,2.
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If S; is finite, then there exists N’ < 0 such that {N',N' —1,---} C Sy. It
follows that Z<(\ S; is finite which contradicts to our assumption. So S is infinite.
The same, S, is infinite also.

There exists Ny < 0 such that {0,—1,--- , No} N S; # 0 for all i = 1,2.

For any n > 0, denote by O, the set of points x € FE such that U(z) N
(NP_ofa ¥ (W) = U(x) W and U(z) N fo"H(W) # U(x) N W. Observe that O
is finite. Since O,, = f|5"(Oo) for all n > 0, O,, is finite. There are no periodic
points in Oy, which implies that for any finite subset B, O, N B = ) for n large
enough.

Set M := min{—8A — 16A% —8deg(f)A/d — 16 deg(f)*A?/§?, —288} — 1 and
let N; be defined in the following

Lemma 16.12. For any M < 0, there exists Ny > 0 such that for all x € Oy,
we have {v € U(z)| a(v) > M} C U(z) N f55(W).

The following lemma allows us to suppose that for all 7 = 1,2 and j < Ny, if
{4,741~ ,j+ N} CS;and j+ N, +1 € S;, we have m? < (1—M)~1/2deg(C).

Lemma 16.13. If there are infinitely many j < 0 such that {j,j +1,---,j +
N}CS;, j+Ni+1¢S; andm] > (1— M)~'2 deg(C7) for some i = 1,2, then
C 1is periodic.

Lemma 16.14. If there are infinitely many j < Ny satisfying {j, -+ ,j+ N1} C
S1 NSy for all i = 1,2, then the pair (A2, f) satisfies the DML property for C.

By Lemma 16.2, there exists an infinite sequence {j; > jo---} such that for
all I > 1, {j,n+1,--+,51 + N1} € S; for some i = 1,2. We may suppose
that {j;, 51+ 1,---,j1+ N1} € S;. For all [ > 0, there exists n; > 0 such that
{g+n,u+m+1,- ji+n+ N} €S but ji+n+N +1¢&5S5;. By Lemma
16.14, we may suppose that {j;+n;, i +n+1,--- ,ji+n+ N1} € Ss. It follows
that both Vs and Ugdrtm are not contained in ﬂff:larlf:k(W) for all { > 0.

Since Z<p \ Si is infinite, we may suppose that for all I > 1, {ji11, 5141 +
1L,--+ 0} € S. Tt follows that ji11 +n1 < j; < Ji +ny. Then we have j; +nq >
J2 +ng---. Then we conclude our Theorem by Lemma 16.2.

Proof of Lemma 16.12. By Proposition 12.2, the set W,y = W(0*) N {v €
Vool @(v) > M — 1} is compact. Then there are finitely many open set Uj,
i =1,---,1, taking form U; = {v € V| v > v;} not containing v, such that
W1 € U, U;. Proposition 12.5 shows that there exists Ny > 0 such that for
all n > Ny, fo({v € Vol a(v) > M} \ (U, U;)) C W for all n > Ns. It follows
that {v € V| a(v) > M} \ (U™, U;) C fo™(W) for all n > Ns.

Denote by B the set of points in £ determinate by the direction defined by
[V, v;]. There exists N7 > Ny, such that Oy, N B = (). Then we have

Ulx) N (UL U;) = 0.
It follows that {v € U(x)| a(v) > M} C U(x) N fi " (W). O
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Proof of Lemma 16.13. We suppose that there are infinitely many j < Ny such
that {j,j+1,---,j+ N1} €S, j+Ni+1¢ S andmy > (1 M)fl/Qdeg(Cj)-
Then we have ¢] € Oy, and Ve € Voo \ fo M1 (W). By Lemma 16.12, U(g])n{v €
Vie| a(v) > M} C f5™M7H(W).

Since Oy, is finite, there exists ¢ € Oy, such that there exists a sequence of
branches {C{"},>0, 0 > jo > ji > --- such that ¢]" =t and m{" > (1 — M)~1/2.
The boundary (U (t) N fo M1 (W) of U(t) N fo ™~ (W) is finite and for all v €
OU )N fo N1 W)\ {v,}, we have a(v) < M. Since Ugin € U\ foN 1w,
there exists v, € (A(U(t) N fo 1 W)\ {v.} satisfying v, < Ucgn- Then there
exists n; > ng > 0 such that v,, = v,,. If U im #+ Vping s then we have

deg(Cy™) deg(C1™) = (C7™ - CF"*) = my" my™ (1 = a(v

Ci”l A Uc{”2 ))

> (1 — M)~ deg(C™) deg(C{") (1 — M) = deg(C™) deg(C7"2)

which is a contradiction. It follows that v_j., = v
1

C

o2 and then C'is periodic. [J
1

Proof of Lemma 16.14. Suppose that there are infinitely many j < Ny such that
{j,++,j+ N1} € S; NS, for all i = 1,2. There exists a unique n; > 0, such
that {j + ns,---,7+n;+ N1} € S;but j+n; + Ny +1 ¢ S;. Then we have
qu”” € Oy, for all i = 1,2. We may suppose that n; < ns. Since for each
i = 1,2, there are infinitely many j < 0 such that v,; ¢ W, we may suppose that
mA+j<nm+j<No. Z

We first suppose that m?/mj > 4((1 — M)Y/? — 1)7'. By Lemma 16.15,
we have m{™™ /mJ™™ > ((1 — M)Y/2 —1)~! and then we have m]™ > (1 —
M)~1/2 deg(C7*+™). Since Vot € Woand ¢/™™ € O, it contracts our assump-
tion above Lemma 16.13. o

Then we may suppose that m? /m} < 4((1 — M)Y/? — 1)L,

We claim the following

Lemma 16.15. If there are j; < jo < No, such that v s, - ,von € W for

1 = 1,2 and the centers qfl, 1 = 1,2 are not periodic, then we have
ol e < < o
If for all {j,---,j 4+ ny} € Sy, then by Lemma 16.15, we have m/™" /m}™" <
16((1 — M)Y2 — 1)7L. It follows that

mitn > (1 +16/((1— M)Y2 — 1)’1) ' deg(CIm)

1\ 1 . .
> (1 +16/((1 4 288)"/2 — 1) 1) deg(CU+72) = 1/2 deg(CI12)
> 17" deg(C2) > (1 — M) Y2 deg(C7Hm2).

Since v+, € W and @ € Oy, it contracts our assumption.
2

Then we have ng > ny+1 and theset Y :={j+mn;+1,---,7+no}\ S is not
empty.
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If vggina ¢ W, then m T /mit" < Al Tt follows that m]™ < A/(1 +
A) deg(C7tm2). Then we have

deg(CIF2) = mi*t™4mit™ < (1— MY™V2 4 A/(1+ A)) deg(C71™2) < deg(C712)

which is a contradiction.
Then we have j + ny € Y. Denote by n’ be the maximal number satisfying

j+n' €Y. Since v . & W, we have m”+" /m]+” < A. Since v,4w € fotw),
1 1
we have d( ,?}C{+n/) > ¢§. Then we have

mi " gt = (d( S vgge) [, 0ppe))(md T myT) < deg(f) A/

By Lemma 16.15, we have m™™/ml™™ < 4deg(f)A/6 and then m!™™ <
(4ddeg(f)A/(d + 4deg(f)A) deg(C’J+”2) Then we have

deg(CI*n2) = mi*t™ 4 it
< ((1 — M)_l/2 + (4ddeg(f)A/(0 + 4deg(f)A))) deg(C71") < deg(C71"2)
which is a contradiction. O

Proof of Lemma 16.15. Since m?d(f, vcj) = deg(f|cs)mIt", we have

(md /) [ (my ™ Jmy ™) = d(f,veg) [d(f . vey)

forall 71 +1 < j < jp.
It follows that
Ji+1 Ji+1

(m m3")/(mi! fm3') = (] ] d(frve) /(] ] d(fve)
J=Jjo J=Jo
When ¢/ & {t,,--- ,t4}, we have d(f,vei) = Ay, forall j; +1 < j < jp and
i =1,2; and when ¢/ € {t1, -+ ,ta}, we have 2~ Y9\, < d(f,v.) < 29\, for all
Jj1+1<j5<7jpandi=1,2. Since qfo, e ,qfl are distinct for Zl = 1,2, we have

J1
21 < T dlfvey) < 2007
J=jo
for i = 1,2. Then we have 471 < (m1°/m®)/(m]" /ml') < 4. O

Remark 16.16. When s = 1, the proof is much easier than the case s = 2.

Since s = 1, we have Vg € W for all 7 <0.

If ¢¥ is a fixed point, then there exists a neighborhood W' of v, such that
fo(W)NU(q?) CW' NU(qy) and vy € W' Since deg f|g = 1 and Uy € W for
all j <0, we have ¢ = ¢¥ for all j < 0. It follows that ey € U(q)) and Ve Zw
for all 7 < 0. By Lemma 16.2, we conclude our theorem in this case.

If ¢¥ is not fixed, then it is not periodic under f|g. Then any two points in
{q]};<o are distinct. By Lemma 16.7, deg(CY) = m] is bounded. Then we
conclude by Proposition 8.5.
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2.3) The case deg f|p > 2. As in case 2.2), in this case we don’t have a
system of invariant neighborhood of v, in general. The key idea in this case is
take advantage of the Northcott property. More precisely, since f|g is defined
over a number field with degree at least 2, then for any point x € F, the set of
inverse orbit in a fixed number field of a point p € E is finite. To do so, we first
fix the notations.

There exists a number field K such that X, F, f,C,p are all defined over K.
For all j < 0, since C? contains infinitely many K-points, we have that C7 is
defined over K. Since C7 meets infinity at at most two points, for i = 1,2 and all
J <0, we have [K(c(vy)) : K] < 2.

By Lemma 16.2, Wezmay suppose that there exists jo < 0 such that for all
J < Jjo, there exists i € {1,2} satisfying v,; € W. By replacing C' by C?°, we may
suppose that jo = 0. '

Remark 16.17. When s = 1, we are always in the following case 2.3.1) and the
argument is the same as in the case s = 2.

2.3.1) The case that there exists j, < 0 for which v, € W for all
i=1,2 and j < jy. By replacing C by C’°, we may suppose that jo=10.

By Northcott property, the set {c(v),j < 0} is finite for all ¢ = 1, 2. It follows
that c(veo) is periodic for i = 1,2. By feplace f by some positive iterate, we may
suppose that there exists z; € E which is fixed by f|g and satisfying x; = c(vyy)
for all j < 0. Let W’ be a neighborhood of v, in W satisfying l

* veo € W fori=1,2;

« fo(U(z:) N W) C U(z;) "W for i = 1,2.
It follows that e g W' foralli=1,2 and 7 < 0. By Lemma 16.2, we conclude
our theorem in this case.

2.3.2) The case that there exists iy € {1,2} and j, <0 such that v, €
. ZO
W for all j < j,. We may suppose that ig = 1 and by replacing C' by C7°, we
may suppose that j, = 0.
By the argument in the 2.3.1), we may suppose that there exists an infinite set
S of index j < 0 such that Vey ¢ W. By the same argument in 2.2.1), we may

suppose that there exists z € F which is fixed by f|g and satisfying = = c(vC{)
for all j < 0. Let W’ be a neighborhood of v, in W satisfying

* v ¢ W

* fo(U(x)NW') CU(x)nW'.
It follows that Ve g W' for all j < 0. By Lemma 16.2, we conclude our theorem
in this case.
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2.3.3)The case that there exists j; < 0 such that v, ¢ W for all

i =1,2. Since (Y is defined over K, if there exists a point z € C? N E, we have
[K(z) : K] < 2 Let P be the set of points x € E such that f|}i(x) € I(f) for
some n > 0 and satisfying [K(x) : K] < 2. Observe that for all x € P, z is not
periodic. By Northcott property, we have that P is a finite set. Set L := #P.
Pick jo = min{ji, jo} — 1. It follows that for all i = 1,2 and j < jo, if v,y € W,
we have c(v.;) € P. By replacing C' by C%, we may suppose that jo = 0.
If there exists i € {1,2} and j < —L, such that v,; € NE_ofo H(W), then we

have {c(vi), -+, c(vpi+e)} C P. Since there are not periodic points in P, we get
a contradiction. It follows that v, & Nk_ofe"(W) for all j < —L and i = 1,2.
Then we conclude by Lemma 16.2. U

17. THE CASE A2 > Ay AND #J(f) <2

The aim in this section is to prove Theorem 0.1 in the only case left:
Let f : A% — A% be a dominant endomorphism defined over QQ satisfying

A2 > Xy and #J(f) < 2, then we have the following

Theorem 17.1. Let C' be an irreducible curve in A?@ and p be a closed point in
A?@. If the set {n € N| f*(p) € C} is infinite, then we have either C' is periodic
or p is preperiodic.

Write 6* = 7 | r;Z,, where r; > 0 for i = 1,--- s, Zj.:l ria(v; Avj) =0
and ) 7  r; = 1. Further by Proposition 14.1, we suppose that fe(v;) = v; and
d(f,v;) = Xg/A; for alli=1,--- | s. Let wi and w for i = 1,--- , s be valuations
defined as in Proposition 14.2.

To prove Theorem 17.1, we need a some new techniques. In Section 17.1, we
introduce the D-Green functions for all R-divisor D in C(X). Then in Section
17.2 we use these D-Green functions to contracts an attracting set in A%, At last
we prove Theorem 17.1 in Section 17.3.

17.1. The D-Green functions on A2 In this section, k is an algebraically
closed field with a nontrivial absolute value | - |,.

Proposition-Definition 17.2. Let D be a R-divisor in C'(X). Let X € C be a
compactification of A? such that D can be realized as a R-divisor supposed by
Xo = X\ A%, A function ¢ : A7 — R is said to be a D—Green function if it is
continuous with respect to the the topology induced by | - |, and there exists a
finite set of local coordinate chars {U; }1<;<; with respect to the topology induced
by | - |, such that

(ii) for any i = 1,--- , I, Xoo N U; is defined by = = 0 or zy = 0;

(iii) for any ¢ = 1,--- ,, there exists a real number C; > 0 such that in U;NAZ

we have

—ord(z—py Dlog|z|, — C; < ¢ < —ordyy—py D log x|, + C;
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if Xo NU; is defined by £ = 0 and

—ordy—oy D log |z|,—ordgy—g Dlog |y|,—C; < ¢ < —ord,—e, D log |z|,—ord o D log |y|,+C;
it X NU; is defined by xy = 0.

This definition does not depend on the choice of the compactification X.

Proof of Proposition-Definition 17.2. We only have to check that this definition
is stable under blowup one point at infinity.

Let ¢ be a function on A? satisfying the conditions in Proposition 17.2 and ¢
be any point in X.

There exists a local coordinate chars U; of X, such that ¢ € U;. We may
suppose that in this coordinate ¢ = (0,0) and D|y, is defined by aD, + bD,
where D,, D, are divisors of U; defined by x = 0 and y = 0. We may suppose
that D, is contained in X,. Observe that if D, is not contained in X, then we
have b = 0. Denote by 7 : Y — X the blowup of X at ¢. We may cover 7~ (U;) by
two open set V; and V5 such that 7|y, : (z,y) — (z,2y) and 7y, : (x,y) — (zy,y).
Then the Cartier divisor D on V;,V; takes form 7*D|y, = (a + b)D, + bD, and
7*Dly, = aD, + (a+b)D,. By (iii), we have

—alog|z|, — bDlog |ryl, — C; < p oy, < —aloglzl, — blog|zyl, + C;
and

—alog|ryl, — bDlog |y, — C; < po |y, < —alog|zy|, — blog |y, + C;.
Thus we have
—(a+b)log|z|, —bDlog|yl, — C; < po 7|y, < —(a+b)loglz|, — blogy|, + C;
and
—alog|z|, — (a+b)Dloglyl, — Ci < ¢ o 7|y, < —alog|z|, — (a +b)log|yl, + Ci
which concludes our proof. O

Then we have the following basic properties for D-Green functions.

Proposition 17.3. We have the following properties.

(i) The function ¢ = 0 is a 0-Green function.

(ii) Let Dy, Dy be two R-divisors in C(X). Fori = 1,2, let ¢; be a D;-Green
function on AZ. Then ¢y + ¢5 is a (D1 + Dy)-Green function.

(iii) Let D be a R-divisor in C(X) and ¢ be a D-Green function on AZ. For
any r € R, r¢ is a rD-Green function.

(iv) Let D be a R-diwvisor in C(X). Let ¢1 and ¢o be two D-Green functions
on A,Qc. There exists C' > 0 such that —C < ¢1 — ¢ < C.

(v) Let f: A — A2 be a dominant polynomial endomorphism on A2. Let D
be a R-divisor in C(X) and ¢ be a D-Green function on A. We denote
by f*D the pullback of D as a Cartier class in C(X). Then ¢ o f is a
f*D-Green function.
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Proof of Definition-Proposition 17.3. Properties (i),(ii),(iii) and (iv) are directly
from the definition of D-Green function. So we only need to prove (v). Pick a
compactification X € C satisfying the conditions in Definition-Proposition 17.3.
Pick a compactification Y € C satisfying the conditions in Definition-Proposition
17.3 for f*D such that the morphism f : A7 — A? extends to a morphism
f:Y — X. Let {U;}1<i<; be a system of local coordinate charts satisfying the
conditions in Definition-Proposition 17.3. For every i = 1,--- [, D|y, is defined
by aD, + bD, where D,, D, are divisors of U; defined by x = 0 and y = 0.
It follows that f*D|;-1@w,) = af*Dy 4+ bf*D,. Let {Vi}1<i<m be a system of
local coordinate charts of Y for f*D satisfying the conditions in (i) and (ii) in
Definition-Proposition 17.3. We may further suppose that for any V}, there exists
U; such that V; C f~1(U;). It follows that on V;, we have

—ordgz—oy f*Dlog |x|, — ordgy—o f*Dlog |yl,

= —ord—oy(af*D, + bf*D,)log |z|, — ordgy—oy (af* Dy + bf* D) log |y,

— —q log |xordx:0f Dlyordy:of D, |v —b log |xordx:0f Dyyordyzof D, |v-

Since x o f/xorde=0f"Pagordy=0f"Da and y o f /gorde=0/"Dyyerdy=0/"Dy haye no zero in
V;, we have

79
ordg—of* Dz ordy—o f*D

ordy—of* Dy |v ordy—o f* Dy |v

—alog |z Yy —blog |z vy

— —aloglzo fl, — bloglyo fl. + O(1) = ¢o f +O(1),
]

Lemma 17.4. Let |-|, be a nontrivial absolute value of k. Let X be a compactifi-
cation of A2 in C. Let D be an effective divisor supposed by Xo,. We suppose that
the line bundle Ox (D) is generated by its global sections. Let Py, --- , Ps € klz, 1]
be a base of HY(D). Let ¢p : X — [0,+00] be a function on X defined by
¢p = logmax{|Pi|y, - ,|Ps|s, 1}

Then there exists a finite set of local coordinate chars {U; }1<i<; with respect to
the topology induced by | - |, such that

(ii) for anyi=1,--- 1, Xoo NU; is defined by z =0 or xy = 0;

(iii) for anyi=1,--- 1, there exists a real number C; > 0 such that

—ord(z—ny Dlog|z|, — C; < ¢p < —ord(z—gy D log|z|, + C;
if Xoo NU; is defined by x =0 and
—ordgz—oy D log ||, —ordgy—og Dlog |y|,—C; < ¢p < —ordz—gy D log |x|,—ordgy—oy D log |y|,+C;
if Xoo NU; is defined by xy = 0.
In particular ¢D|A§ is a D-Green function.

Proof of Lemma 17.4. Since |D| is base point free, there exists a finite set of local
coordinate chars {U; }1<i<; with respect to the topology induced by |- |, such that
° Xoo g Uilew
e foranyi=1,---,l, Xoo NU; is defined by x = 0 or xy = 0;
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e forany i =1,--- 1, there exists j; € {1,--- , s} such that Supp(div(P;,)+
DYNU; = 0.
In U;, we have P;/P;, € O(V;) for some open set V; D U,. Tt follows that ¢p <
|log P;,| + O(1) in U;. On the other hand, we have |¢p|, > |Pj|,. Then we
have ¢p = |log P;,| + O(1). Then we conclude our proposition by the fact that
d1V<sz) Ui — D Ui- O

Proposition 17.5. Let D be a R-divisor in C(X), up to a bounded function,
there exists a unique D-Green function ¢p on AZ.

Proof of Proposition 17.5. The uniqueness is follows from (iv) of Proposition 17.3.
So we only have to show the existence of the D-Green function.

Since D is a R-divisor in C(X), we may write it as a R combination of Z
divisors in C(X). By (ii) and (iii) of Proposition 17.3, we may suppose that D
is a Z divisors. Pick a compactification X of A7 such that D can be realized as
a divisor supposed by X.,. Pick two ample Z-divisors A; and Ay supported by
X such that D = A; — A,. There exists a positive integer [ > 1 such that for
all i = 1,2, Ox(lA;) is generated by its global sections. By Lemma 17.4, for all
i = 1,2 there exists a [ A;-Green function ¢ 4,. Then we have ¢p := 7! (g4, — dra,)
is a D-Green function. O

17.2. An attracting set. In this section, k is an algebraically closed field with
a nontrivial absolute value | - |,.

Let f: A7 — A7 be a dominant endomorphism defined over k& with A\} > X,
and #J(f) < 2.

we may suppose that 0* = >"7 | r;Z,, wherer; > 0fori =1,--- s, ijl rio (v A
v;) =0and Y ., r; = 1. Further by Proposition 14.1, we suppose that fe(v;) = v;
and d(f,v;) = Ag/A foralli=1,--- s.

Recall Proposition 14.2. For all i = 1,--- s, there are two valuations w} <
w < v; as in (1) of Figure 3 such that

(1) fol{v e Vel wi <vAv; <vi}) ={v € V| wh <vAv <}
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(i1) foltvevi| wi<vrv,<u;} 18 order—preserving; |

(iii) for all valuation w € [wi, v;], fo*(w) is one point in [wi, v;];

(iv) for all valuation w € {v € Vyo| wi < v Av; < v;}, there exists N > 1 such
that fo(w) € Voo \ {v € Vo| v Av; > wi} for all n > N.

Observe that w) A w) < wh if i # j and f~'(w}) = {wh} for i = 1,--- s,
Since for all ¢ = 1---,s, we have Z,;(w3) < Z,i(ws), there exists a positive
rational number ¢ satisfying (1+¢) 327 728 (w)) — S5 Z% (wh) < 0 for all
j=1,--+,s. Set

=1 =1

see Figue 4. Then D can be viewed as a R-divisor in C'(X). By Proposition
17.5, there exists a D-Green function ¢p on AZ. For any real number C' > 0, set
Uc := {p € A%(k)| ¢p(p) > C} which is an open set of A3.

We have the following

Proposition 17.6. There are real numbers C,C" > 0 such that for all p € Ug,
we have
¢p(f(p)) = Mon(p) — C".
In particular, for any B > max{C,C"/(\ — 1)}, we have f(Up) C Ug.

Proof of Proposition 17.6. Let X be a compactification of A? in C, such that D
and f*D can be realized as a R-divisor supposed by X.,. By Proposition 17.3,
Gpp :=dpo fa f*D-Green function on A7.
By definition, there exists a finite set of local coordinate chars {U;}1<;<; with
respect to the topology induced by |- |, such that
(i) Xoo C© Ué:lUiS
(ii) for any i = 1,--- ,l, X NU; is defined by x = 0 or xy = 0;
(iii) for any i =1,--- [, there exists a real number C; > 0 such that in U;NAZ
we have
‘¢D + Ord{w=O}Dlog ‘x’v| < Cia

|64+ + orde—qyf*Dlog |z],| < C;
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if X, NU; is defined by z = 0;
and

|¢p + ord—y D log |x|, 4+ ordgy—gy D 1og |yl,| < Ci,

|¢f«p + ordga—oy f*Dlog|z|, + ordgy—oy f*Dlog|yl,| < C;
if X, NU; is defined by xy = 0.
For convince we set ordgy—g D = ordgy—o f*D := 0 if {y = 0} is not contained in
Xoo. Further, we may suppose that for alli = 1, --- | I, we have max{|z|,, |y|,} < 1
for all points (z,y) € U;.

The set X \ U!_,U; is compact in A2, so there exists B’ > 0 such that for all
point p € X \ U leZ, we have ¢p(p) < B'.

We may suppose that there exists a I’ € {1,---,{} such that an index i is
contained in {1,--- I’} if and only if there exists an irreducible component F of
X such that ordg(D) = bgD(vg) > 0 and ENU; # 0.

For all index i > I’ + 1, we have

¢p < —ordp—qy D log |z|, — ordgy—oy D log|y|, + C; < Ci.

Pick C := max{C;}1<i<; + B’ + 1, we have Uy C U'_,U; and Uc N U; = ) for
alli € {I' +1,---,1}. Tt follows that Uz C U'_,U;.

Let E be an exceptional divisor of X satisfying vy &€ B({w?, -+ ,w$})°. Then
we have fo(vg) € B({wi, -+ ,w{})°. Then we have

S S

f*D(UE) = (l—l—t)zrl(f Z E) ZTZ(f*ZwZI 'ZUE)
=1 i=1
= (1 + t) Zrl(zwé ’ f*ZUE) - ZTZ(Zw} ’ f*Z'UE)
=1 =1
- (1 + t) Zri(zvi ’ f*Z”UE> - ZTZ(Z:;Z : f*Z'UE>

(f 0" - UE) = Ait (0 'ZUE)

»
~

=\ ((1 + 0N 1iZus  Zog) = > 1i(Zy  Zu
=1 i=1

S S S S

= )‘1((1+t)zrl(ZwQZUE)_ Ti(Zwi'ZUE)—f_Zri(Zw’i'ZvE)_ Ti(Zwé'ZUE))

=1 i=

= MD(vg) + )\1(2 Ti(Zui * Zog) — Zri(zw; Zop))

i=1 i=1

w

D(vg) + A ( Zn a(wi Avg) — a(wh Avg))).
i=1

Set Y(vg) == M (X ri(a(wi Avg) — alwy Avg))). We have ¢ (vg) > 0.
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Fix anindexi € {1,--- ,lI'}. lf UiN X, = {z = 0}, then we have ordz—p D > 0.
Set E := {z = 0} in U;. It follows that vy & B({wi,--- ,w3}). It follows that for
all points p in U; N A? with local coordinate (z,y), we have

¢p(f(p)) = ¢p-p(p) = —ordpf*Dlog|zf, — C; = bpf"D(vg)log ||, — C;
= —bp(MD(vg) + Y(vg))log|z|, — C;
= —\ordgDlog |z|, — bpt(vg)log |x|, — C;
> —M\ordgDlog |x|, + M C; — (1 4+ X\)C;
> M¢p(p) — (1+M)Ci.
fUNXy = {xy =0}, weset By := {x =0} and Ey := {y = 0} in U;. We may
suppose that D(vg,) > 0 and then vg, &€ B({wi, -+ ,ws}). Since wi’s are valua-

tions defined by an exceptional divisor in X, we have vg, & B({ws, -+ ,ws})°. It
follows that for all points p in U; N AZ with local coordinate (z,y), we have

¢p(f(p)) = ¢p-p(p) = —ordp, f*Dlog |z], — ordg, f*Dlog|y|, — C;
= —bpf*D(vg,)log ||, — bpf*D(vE,)log |y|, — C;
= —bp(MD(vE,) + ¢ (vg,)) log |z[, — bp(MD(vE,) + ¥ (vE,)) log lyl, — C;
= —\ordg, Dlog|z|,—\ordg, D log |y|,—be¥(vEg, ) log |z|,—bp(vE, ) log |y|,—C;
> —\ordg, Dlog|z|, — \ordg, D log |y|, + \1C; — (1 4+ A\1)C;
> Mop(p) — (1 +A1)Ci.
Set C" := max{(1 + A\1)C;}1<i<r, we conclude that for all p € Ug, we have

op(f(p)) = Moén(p) — C".

For any B > max{C,C"/(A\y — 1)}, we have Ugp C Ug. Moreover, for any
p € Ug, we have ¢p(f(p)) > MB — C" > B. It follows that f(p) € Up and then
f(Us) € Us. O

At last, we apply this attracting set Ug to prove the following proposition
which is an analogue of Theorem 6.2 in our case.

Proposition 17.7. Let C be a curve in A% and p be a closed point in A%. If there
exists a branch ve, of C' at infinity satisfying ve, € B({ws, -+ ,w3})° \ W(6*)
and the set {n € N| f*(p) € C} is infinite, then p is preperiodic.

Proof of Proposition 17.7. Set k := Q. We suppose that the set {n € N| f*(p) €
C'} is infinite and p is not preperiodic. By Theorem 8.4, we may suppose that
C' is rational and has at most two places at infinity. As in Equation (A), set
D=1+t 2L, — 35 1 Zi where t satisfies (1+1) >0 1,70 (w)) —
S mZi (w)) < 0forall j=1,---,s. There exists N > 1 such that f¥(ve,) ¢
B({wi, -+ ,w;}) as in (1) of Figure 5.

Let X be a compactification of A2, such that D and f*D can be realized as
a R-divisor supposed by X,. Further, we may suppose that the center c¢(v¢,) of
vc, is contained in a unique exceptional divisor £ and c(vsnv(¢,)) is contained in
a unique exceptional divisor EV. Tt follows that ordg(D) < 0 and ordg~ (D) > 0.
For convenience, we write C' for the Zariski closure of C' in X.
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FIGURE 5

Let m : P — C be a normalization. We may suppose that the branch C} is
defined by the point @ :=[1:0] € P}. Set m = fY o7, : PL — fN(C).

Let K be a number field such that my, mo, X, E, f, C' and p are all defined
over K.

There exists a infinite sequence {n; < ny < ---} of nonnegative integers such
that f"(p) € C. By contradiction, we suppose that p is not preperiodic. We
may suppose that for all ¢ > 1, C' is smooth at f™(p). Set p; := f"(p) and
¢ = 7 (p;). Write ¢; as form [z; : ;). Observer that ¢; is a K point in P} for
all 7+ > 0, then we may suppose that x;’s and y;’s and contained in K. Let S
be a finite set of places v € M containing M such that f are defined in Og
and p is a S-integer. It follows that all p;’s are S-integer. It follows that for all
v € Mg \ S there exists a number C, > 0 such that |z;/y;|, < C, foralli >0
and except a finite set of places, we have C, = 1. By replacing S by a bigger set,
we may suppose that C, = 1 for all v € Mg \ S. By Northcott Property, we
have hp1 (¢;) — 0o as i — oo. Since

hIP}{(Qi) = Z 1Ogmax{|xi|vv |yz|v}

vEMK

= Z log max{|z;/yi|v, 1} = Zlogmaxﬂazi/yi]v, 1},
VEM K veS
there exists v € S such that by replacing {n;};>1 by a infinite subsequence, we
have |z;/y;|, — o0 as i — oo. It follows that ¢; — @ and p; — ¢(ve,) as i — 0o
with respect to the topologies induced by | - |,.
Fix this place and by Proposition 17.5, there exists a D-Green function ¢p
with respect to the topology induced by | - |,. Since E is the unique exceptional
divisor containing the center c¢(ve,) of ve, and ordg(D) < 0, by the definition
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of D-Green function, there exists a neighborhood V' of ¢(v¢,) in X with respect
to the topology induced by | - |, such that for all point p’ € V N A, we have
¢p(p') <O.

By Proposition 17.6, there exists a real number B > 0 such that f(Ug) C Ug.

Since E™ is the unique exceptional divisor containing ¢(vwv(c,)) and ord gy (D) >
0, by the definition of D-Green function, there exists a neighborhood V¥ of
c(vn(cy)) in X with respect to the topology induced by |- |, such that for all point
p € VNNAZ we have ¢p(p') > B. It follows that VNNA2 C Up. Since ¢; — Q and
m2(Q) = c(vyn(cy)), there exists j > 0 such that N (pj) = ¢2(q;) € VNAL C Ug.
Then f7(p) € Ug for all r > n; + N. Since p; — c(v¢,) as i — oo, there exists
n; > n;+ N such that f"(p) = p; € V. This contradicts the fact that VNUp =0
and then we conclude our proposition. Il

17.3. Proof of Theorem 17.1. Set k = Q. We may suppose that C' can not be
contracted to a point by f” for any n > 0 and p is not preperiodic. By Theorem
[1, Theorem 1.3], we may suppose that Jf is not a constant. By Theorem 8.4, we
may suppose that C' has at most 2 places at infinity. Let Cq,---,Cy, t € {1,2}
be all branches of C' at infinite.

In the rest of this section we present our proof in the situation ¢t = 2 and we
will give a remark for the situation ¢t = 1 in every case.

1) The case that ve, € W(0*) for all branches C; of C at infinity.

Remark 17.8. In the case t = 1, we can use the same argument as in the case
t=2.

1.1). If v; is divisorial for all ¢ = 1,--- , s, by Theorem15.1 we have Ry,, ... .3 =
k[P] where P is a polynomial in k[z,y] \ k. Since ve, € W(6*) = B({v1,--- ,vs})
for all branches C; of C' at infinity, there exists j; € {1,--- , s} such that v;, < vg,.

We have ve,(P) > v;,(P) > 0 for all ¢« € 1,2. Then the function P|c has
no poles. It follows that P|c is a constant in k. Then there exists an element
r € A'(k) such that C' is contained in the fiber of P : A? — A} above r. Pick a
polynomial morphism G : Aj — A} as in Theorem 15.1. Since Po f" = G"o P
for all n > 0 and the set {n € N| f"(p) € C'} is infinite, we have that r is periodic
under G. Since {P — r = 0} has only finitely many irreducible component, then
C is periodic.

1.2). Then we suppose that v; is nondivisorial.

1.2.1). If for all i« = 1,2, we have vg, € B({v1}), then we have s = 2 and
ve, > vy for all @ = 1, 2. See Figure 6.

Set 1 1= R[_ degvy)0" = 71 Zv vy + 7220, € SHT (V). Then we have 1(v) =0
for all v > vy and (¢,7¢) > 0. By Theorem 2.13, there exists a polynomial
P € klx,y] \ k satisfying va(P) > 0. Then we have ve,(P) > vo(P) > 0 for all
i € 1,2. It follows that C' is an irreducible component of {P = 0}. Apply the
same argument for f"(C'), n > 0, we have that f"(C') is an irreducible component
of {P = 0}. It follows that C' is periodic.
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1.2.2). Otherwise, we may suppose that ve, > v1. It follows that v; is an
irrational valuation. See Figure 7.

By Proposition 14.2, there exists w > v; such that for all v € {v € V| v1 <
v Aw < w} there exist N, > 0 such that either d(f",v) = 0 or fi'(v) > w for
all n > N,. Pick a valuation w; € (v;,w) and apply [27, Proposition 3.22] for
{w1} U ({v1, -+ ,vs} \ {v1}). There exists a function ¢» € SH" (V) such that
Y(v) =0 for all v € B{w } U ({v1, -+ ,us} \ {v1})) and (¢, ) > 0. There exists
N > 0 such that for all n > N, we have either d(f",vc,) = 0 or f&(ve,) €
WE )\ {v € Vool y < vAw < wi} = B{{wi} U {vr,--,vs} \ {v1})). By
replacing C' by some positive iterate, we may suppose that d(f",ve,) # 0 and
fi(ve,) € B({va,wy}) for all n > 0. Rename w; := v; for i € {1,--- s} \ {1}.
Then W(0*) \ {v € V| v1 v Aw < vy} = B({wy, -+ ,ws}). By Theorem 2.13,
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there exists a polynomial P € k[x,y| \ k satisfying w;(P) >0 forall j =1,--- ,s.
For all i = 1,2, there exists j; € {1,---,s} such that vc, > vc; . Then we
have we,(P) > w;,(P) > 0 for all i € 1,2. It follows that C' is an irreducible
component of {[[;_; P, = 0}. Apply the same argument for f*(C), n > 0, we
have that f"(C) is an irreducible component of {[[;_, P; = 0}. It follows that C'
is periodic.

2) The case that s =1,t =2, ve, > v1 and ve, € W(0*). See Figure 8.

It follows that v; is divisorial with a(v;) = 0. Tt follows that Ay/A; > 1,
and Ao/AA(v1) = A(v1) +vi(Jf) < A(vq). Then we have A(vy) < 0. By line
embedding theorem, f takes form f = (F(z),G(x,y)) where deg F' = \; and
deg, G = Xa/A1. Set dy := Ay and dy := A\p/ ;. Write G in form G = Z?io Ai(z)y
where A; € k[z] and Ay, # 0 in k[x].

For any m > 0, we may embed A? in FF,,. Let L., be the exceptional curve in
F,, such that v, = v, and F, the fiber of 7, at infinity. Set O := L N Fi.
By requiring m large enough, we may suppose that O ¢ C. The center of (Y is
at Lo \ {O} and the center of Cs is at F,, \ {O}.

Let K be a number field such that f, p and C are all defined over K and let .S
be a finite subset of My containing M% such that f and p are defined over Og.

Let hy : C(K) — R be the function defined by

hy:(x,y) — Z log max{|z|,, 1}
VEM K
and hy : C(K) — R be the function defined by
ho : (w.y) = Y (logmax{|yl,, 1, ]a]y"} —log max{L, |z[;'}).
vEMEK

It follows that h; is a Weil height function with respect to the divisor C'- F,, and
hs is a Weil height function with respect to the divisor C' - L.
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For all v € Mg \ S, we have |z,|, <1 and |y,|, < 1. It follows that
log max{|yn|v, 1, |zn|i'} — log max{1,|z,[l"'} =0

for all v € Mg\ S.

Since oo is a supperattracting point of F, for all place v € K, there exists
ry > 0 such that |f"(z)], — oo for all z € K satisfying |z|, > r, and further we
may suppose that 7, =1 for v € Mg \ S, where S’ is a finite subset of M.

There exists an infinite sequence {n; < ny < ---} of nonnegative integers
such that f™(p) € C for all i > 0. Write f"(p) = (xpn,y,) for all n > 0. Set
S1 € S consisting of places v € My such that |z,|, < r, for all n > 0. Since
c(ve,) & Lo, for all v € S there exists an neighborhood U, of ¢(ve,) with respect
to the topology induced by |- |, and B, > 0, such that for all (z,y) € U, N A?(K)
we have |y|, < B,|z|*. For all v € S, there exists R, > r, + 1 such that
Cn{(zx,y) € A*(K)| |z|, > R,} C U,. By replacing p by f"(p) for n large
enough, we may suppose that for all v € S\ Si, we have |zg|, > R,. If follows
that

log max{|ynlo, 1, [2a[;"} — log max{1, [z,[;"} = logmax{[ynl|u, [xa[;"} — log(|znl,")

< logmax{B,|z|)", |z, '} — log max(|z,|T") < log max{B,, 1}.

For all v € Sy, we have |z,|, < r, for all n > 0. There exists D, > 1 such that
|A;(x)|, < D, for all for all i = 1,--- ,dy. It follows that

da
|yn+1|v = | Z Az(%)yﬂv
=0

d2 d2
<D 1A lyal” < Dy Y fyal < Dylds + 1) max{]ya|, 1}
=0 1=0

It follows that max{|yn.1|v, 1} < Dy(dy + 1) max{|y,|, 1}9. Tt follows that there
exits D! > 0 such that log max{|y,|., 1} < (de+1/2)"D. for allv € S; and n > 0.
It follows that

log max{|y|,, 1, |z|7"} — logmax{1, |z|7"} < max{(dy + 1/2)"D., 1}

for all v € S;.
Then we have

ha(f™(p)) < ) (log max{|ys,

vEMEK

<Y max{(dy+1/2)" D}, 1} + Y logmax{B,,1}
vES] veES\S1

< (#S1 ) max{D], 1})(dy +1/2)" + Y logmax{B,,1}

vEST veS\S1

v L |2, [} — log max{1, [zn, [3'})

for all ¢ > 1. Since p is not preperiodic, we have S; # 0.
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On the other hand, there exists By > 0, such that log |F" ()], > Bed} for all
ve S\ S n>0andz > r, Then we have

(f(p) = Y logmax{ley |, 1}

VEMK

> > logmax{|zy, o, 1} > > Badi = #(S\ S1)Bady.
veS\S1 veS\S1
If #(S\ S1) = 0, hi(z,) is bounded, then zy is preperiodic. Since C' is not
a fiber, we have C' N U {x = x,} is finite and then p is preperiodic which
contradics to our assumption. Then we have #(S \ S1) > 0. It follows that
hao(f™ (p))/h1(f™(p)) — 0 as i — oo which contradicts to Lemma 9.1.

3) The case that t = 2, s = 2, ve, € W(0") and ve, € W(0*). We may
suppose that ve, > v;. See Figure 9.
By Theorem 8.1, we may suppose that there exists a sequence of curves {C"},<g
with 2 places at infinity such that
s 0% =,
° f(C'Z) — CiJrl;
e for all i € Z, the set {n > 0[f™(p) € C'} is infinite.
Let C’f’s be branches of CV, we may suppose that f(CZJ) = C’f“ for 7 < —1 and
1 <4 < 2. Observe that Vey > vy for all 7 <0.
The following lemma is a key ingredient of our proof in this case. It can be
viewed as a modified version of Lemma 16.2 to adapt this case.
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Lemma 17.9. If there exists an open set W of V, containing v, such that for
infinitely many j < 0 we have vy, € W for all i = 1,--- ,t, then Theorem 17.1

holds.

Proof of Lemma 17.9. Set ¢ := R_ geg.)0" € SH" (V), we have ¢(v) = 0 for all
v > vy, and (1,7) > 0. By Lemma 2.15 there exists M < 1 such that for any set
B of valuations satisfying

(1) B\ B({v1}) has at most 1 elements;
(2) B C B({ni}) U{v € Vel a(v) < M};
there exists a function ¢ € L*(V,,) satisfying ¢(v) = 0 for all v € B(B) and
(9,9) > 0.
By Proposition 17.7, we may suppose that e ¢ B{wl, -+ ,ws})° for all
j < 0. By Proposition 12.5, there exists N > 0 such that {v € V| a(v) > M} C
W)U B({wy, - ws})’. Set Wi = Voo \ (&Y (W) U B({wy, -, w3})°).
For all pair w = (wy,ws) € B({v1}) x Wi, there exist w} < wy,w) < wy and a
function ¢,, € L?(V,,) satisfying ¢,,(v) = 0 for all v € B({w},w)}) and (¢, ¢) > 0.
Set U, := B({w}})° x B({w)})°. By Theorem 2.13, there exists a polynomial
P, € klz,y] \ k, such that w}(P,) > 0 and w)(P,) > 0. Since B({v1}) x W; is
compact, there exist w!,--- ,w™ € B({v1}) x Wi, m € Z" such that B({v;}) x
Wy C U Uy It follows that for all (wy,we) € B({v1}) x Wy, there exists
i€ {l,---,m}, such that wy(P,i) > 0 and wy(P,:) > 0.
There exists a infinite sequence of negative integers {j; > jo > ---} such that
¢ W for all ¢ > 0. Then we have VgsiN Z foN(W) for all i > 0. Then

-~ € Wy for all i > 0. There exists I; € {1,--+ ,m} such that
2

Vi (B,) > 0 and v (P,) > 0. Tt follows that P,
1 2

irreducible component of { P, = 0}. Since there are only finitely many irreducible
components of {[[;~, P, = 0}, we conclude that C' is periodic. O

we have v

ci; = 0 and then CY is an

3.1). If v, is nondivisorial, by [12, Theorem 3.1], there exists an open set W of
V. containing v, such that

* vy €W,

s fo(W)CW.
Then we have W C f/(W) for all j < 0. It follows that Veq g W for all j < 0.
Apply Lemma 17.9, we conclude our proposition in this situation.

3.2). If v, is divisorial. There exists a smooth projective compactificaition X
of A? containing a divisor E satisfying vg = v,. By [12, Lemma 4.6], we may
suppose that for any point ¢ in I(f) N E, t is not a periodic point of f|g.
There exists a neighborhood W of v, in V,, such that

(i) for all valuation v € W, d(f,v) > 0 and the center of v is contained in E;

(ii) for any point t € E, we have fo(U(t) N W) C U(f|g(t)).
For any valuation v € W, denote by ¢(v) the center of v in £. By Lemma 17.9,
there exists jo < 0 such that ey € W for all j < jo. By replacing C by C7°, we
may suppose that jo = 0.
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3.2.1). We first treat the case that deg(f|z) = 1. By replacing f by a positive
iterate, we may suppose that all periodic points of f are fixed. By Lemma 16.6,
we may suppose that I is a nice neighborhood of v,. Recall that W satisfies the
following properties:

(i) for all valuation v € W, d(f,v) > 0 and the center of v is contained in FE;
(ii) for any point t € E, we have fo(U(t) N W) C U(f|g(t));
(iii) for all j < O there exists ¢ € {1,---,s} satisfying v; € W, we have
deg floi < A for all j < —1; Z
(iv) its boundary OW is finite;
(v) for any fixed point x € E, fe(U(x)NW) C U(z) N W.
For all j <0 and i = 1,2, set m] := (C/ - I.).

Lemma 17.10. There exists B > 0 such that (0* 2 mlz, J)) < B for all
J<0.

Remark 17.11. This Lemma holds also in the case that all branches C; of C
are not contained in W (6*) by the same proof.

Then we have m} +m} = degC’ and B > 37, mﬁ@*(%ﬂ') = mgﬁ*(vcj) By
Proposition 17.7, we may suppose that vy ¢ B({ws, - - ,&12}) for all j < 0.
Since V. \ V is compact and #* is continuous, there exists § > 0 such that 6* > ¢
on Voo \ B({ws, -+ ,ws})°. It follows that B > mé@*(vqj) > mié. Tt follows that
m} < 6~'B for all j < 0.

Since (R[- deg,u]0* R[— deg,v1)0) > 0, by Proposition 2.13, there exists a polyno-
mial P satisfying v;(P) > 0. Set r := v, (P), then UC{(P) > r for all j < 0. Then
P|cs has at least m{r zeros but P|Cj has max{0, —mgvcg (P)} poles. Observe that
—mgvcg(P) < m} deg(P). If mjr > m} deg(P), then P|c; = 0 and then €V is an
irreducible component of {P = 0}. Suppose that C' is not periodic. By replac—
mg replacing C' be some C7 for j negative enough we may suppose that mjr <

m3 deg(P) for all j < 0. Then we have m] < r~'deg(P)mj < r 1deg(P)(5 'B
and then deg C7 = m) + mj, < (1 4+ r~'deg(P))d~'B for all j < 0. We conclude
our theorem by Proposition 8.5.

Proof of Lemma 17.10. By Lemma 4.3, we have m? 'd(f, vp-1) = deg(f|ci-1)m
for all y <0 and ¢« = 1,2. It follows that

<9* 09 mzlzvcj_n) = (f*e* O mzlzw))

i=1 ¢

9 2
= )\1_1 (Q* : f*(z mg_lzvcj—1)> = )‘1_1 (6* ’ (Z mgd<f7 chfl)Z” J>>
i =1 ' “

=1

= A\ tdeg(flei1) < chjz > < (3*'(2”10{2%5))'
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Then B := <Zf:1 mchvCQ)) is what we require. O

3.2.2). Then we suppose that deg f|g > 2. There exists a number field K such
that X, E, f,C,p are all defined in K. For all j < 0, since C” is rational and
contains infinitely many K-points, we have that C7 is defined over K. Then we
have that c(v(C3)) € f7(c(v(CY))) is defined over K. By Northcott property, we
have that the set {C(’U(Cg))}jgo is finite. By replacing f by a suitable iterate, we
may suppose that ¢(v(C})) = ¢(v(CY)) for all j < 0. Set ¢ := c¢(v(CY)). Let W’
be a neighborhood of v, in W satisfying

* veo & WY

* fo(Ul@) W) CU(g) N W'
It follows that Ve g W' for all j < 0. By Lemma 17.9, we conclude our theorem
in this case.

4). Finally we treat the case that ve, W (0*) for all branches C; of C' at infinity.
By Theorem 8.1, we may suppose that there exists a sequence of curves {C} ¢z

with at most 2 branches at infinity such that

$ V=0

° f(Cz) — Cz—f—l;

*vei W(O") for j=1,--- s

* for all i € Z, the set {n > 0|f"(p) € C*} is infinite.
Let C’ij’s be branches of C7, we may suppose that f(C’Z) = C’f“ for y < —1 and
i = 1,2. Since for branches C?, we have v, & W(0*), we have d(f,v;) > 0. It
follows that the number of branches of C7 at infinity are the same for all j < 0.

Remark 17.12. When ¢t = 1, it is possible that there exists jo < —1 such that
the number of branches of C7 at infinity equals to 2 for all j < jo. In this case, we
may replace C' by C% and then we may also suppose that the number of branches
of C7 at infinity are the same for all j < 0.

The following lemma is a key ingredient of our proof in this case. It plays the
same role as Lemma 16.2 does in the case #SuppAf* > 3.

Lemma 17.13. Let L be a nonnegative integer. If there exists an open set W of
Vi containing v, such that for infinitely many j < 0 we have v, ¢ ﬂlL:Of,_l(W),
then the pair (A%, f) satisfies the DML property for the curve C.

Remark 17.14. This Lemma holds also when ¢ = 1 by the same argument as in
the case t = 2.

Proof of Lemma 17.13. By Proposition 17.7, we may suppose that for all 7 <0
and all branches C} of C7 at infinity, vy & B({ws, -, w5})°.

By Proposition 12.5, there exists N > 0 such that {v e Vel alv) > M} C
(mlL:Ofo_N_l(W)) U B({wéa e 7w§})o‘
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Set Wy = Voo \ (NEofSN7W)) U B({ws, - ,ws}))°. For all pair w =
(wy,wy) € W2, there exist w, < w; for all i = 1,2 and a function ¢, €
L?(V,.) satisfying ¢, (v) = 0 for all v € B({w],w}}) and (¢, ¢) > 0. Set U, :=
H?:l B({w.})°. By Theorem 2.13, there exists a polynomial P, € klz,y] \ k,
such that wi(P,) > 0 for all i = 1,---,s. Since W} is compact, there ex-
ist wl, -+ Jw™ € W2, m € Z*, such that W2 C U™, U,:. Tt follows that for
all (wy,wy) € WE, there exists i € {1,---,m}, such that w(P,:) > 0 and
w;j(Pyi) >0 forall j =1,2.

There exists a infinite sequence of negative integers {j; > jo > - -+ } such that
Vs =4 ﬁlLZOf,_lW for all + > 0. Then we have Vgdi=N ¢ ﬂlL:Of,_l_NW for all « > 0.

Then we have v -~ € Wy for all i > 0. There exists [; € {1,---,m} such that

oy
Vi (B,) > 0 forall r = 1,--- ¢ and v, (F,) > 0. It follows that P,[cs = 0
s . 1
and then C7¢ is an irreducible component of {P, = 0}. Since there are only
finitely many irreducible components of {[[;", P, = 0}, we conclude that C' is
periodic. O

4.1). If v, is nondivisorial, by [12, Theorem 3.1], there exists an open set W of
V. containing v, such that

* veo & W for all v =1,2;

« fo(W)CW.
Then we have W C f/(W) for all j < 0. It follows that vy € W for all i = 1,2
and 7 < 0. Apply Lemma 17.13, we conclude our propositic;n in this situation.

Remark 17.15. In the case ¢ = 1, we can use the same argument as in the case
t=2.

4.2). If v, is divisorial. There exists a smooth projective compactificaition X of
A? containing a divisor E satisfying vg = v,. We may suppose that for any point
xin I(f) N E, x is not a periodic point of f|g.
There exists a neighborhood W of v, in V,, such that

(i) for all valuation v € W, d(f,v) > 0 and the center of v is contained in E;

(i) for any point = € E, we have fo(U(z) N W) C U(f|g(x));
For any valuation v € W, denote by ¢(v) the center of v in E. By Lemma 17.9,
there exists jo < 0 such that for all j < jg, there exists a branch Cij of C7 at
infinity such that Vei € W. By replacing C by C7°, we may suppose that j, = 0.

4.2.1). We first treat the case that deg(f|g) = 1. By Lemma 16.6, we may
suppose that W is a nice neighborhood. By Lemma 17.9 and by replacing C' by a
suitable C% j, < 0, we may suppose that for all j < 0, there exists a branch CY
of C7 at infinity such that ves € W. Then we have deg fles < A forall j < —1.

For all j < 0andi=1,2, set m! := (C? -15). Then we have m} +m} = deg C7
for all 7 < 0. '
By Lemma 17.10, there exists B > 0 such that B > 37 m{@*(vcg). By

Proposition 17.7, we may suppose that vy & B({ws,--- ,w5})° for all j <0 and



90 JUNYI XIE

i =1,2. Since V, \ V is compact and 6* is continuous, there exists 0 > 0 such
that 6* > & on Vi, \ B({ws, -+ ,w3})°. Tt follows that B > 327 ml0*(v.) >
637 m! = ddeg(CY). Tt follows that deg(C7) < 6~'B for all j < 0. Then we
conclude our theorem by Proposition 8.5.

Remark 17.16. In the case t = 1, we can use the same argument as in the case
t=2.

4.2.2). Then we may suppose that deg(f|g) > 2. There exists a number field
K such that X, E, f,C, p are all defined in K. For all j < 0, since C7 is rational
and contains infinitely many K-points, we have that C7 is defined over K. Then if
there exists a point x € C/NE, we have [K(z) : K] < 2. Let P be the set of points
x € E such that f|(x) € I(f) for some n > 0 and satisfying [K(z) : K| < 2.
Observe that for all x € P, x is not periodic. By Northcott property, we have
that P is a finite set. Set L := #P.

By Lemma 17.13, we may suppose that there exists jo < 0 such that for all
j < jo, there exists a branch CY of C at infinity satisfying v,; € W. By replacing
C by C’°, we may suppose that jo = 0.

Remark 17.17. When ¢t = 1, we are always in the following case 4.2.2.1) and
the argument is the same as the case t = 2.

4.2.2.1). If there exists jo < 0 for which v,; € W for all branches C’ij of C7 at
infinity and j < jo, by replacing C by C’, we may suppose that jo = 0.
Fori=1,2and all j <0, we have [K(c(v.s)) : K] < 2. By Northcott property,
the set {c(v.y),j < 0} is finite. It follows that c(veo) is periodic for i = 1,2. By
replacing f By some positive iterate, we may suppose that there exists z; € F
which is fixed by f|g and satisfying x; = C(Ucf) for all j < 0. Let W’ be a
neighborhood of v, in W satisfying
* veo €W/ fori=1,--- t;
o folU(z) "W CU() N W' fori=1,--- ,t.
It follows that v, & W' for all i = 1,2 and j < 0. By Lemma 17.13, we
conclude our theorem in this case.

4.2.2.2). If there exists i € {1,2} and jo < 0 such that v,; € W for all j < jo,
i

we may suppose that i; = 1 and by replacing C' by C%, we may suppose that
Jo = 0.

By the argument in the previous paragraph, we may suppose that there exists
an infinite set S of index j7 < 0 such that ey ¢ W. By the same argument in the
previous paragraph, we may suppose that there exists € E which is fixed by
f|e and satisfying x = C(Uc{) for all 7 < 0. Let W’ be a neighborhood of v, in W
satisfying

* veo & W
* fo(U(x)NW") CU(z)nW".
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It follows that Ve g W' for all 7 < 0. By Lemma 17.13, we conclude our theorem
in this case.

4.2.2.3). Otherwise, there exists j; < 0 such that Ui ¢ W for all i = 1,2 Pick
Jo = min{jy, jo} — 1. It follows that for all i = 1,2 and j < jo, if v, € W, we
have ¢(v,i) € P. By replacing C' by C7°, we may suppose that jo = 0.

If there exists i € {1,2} and j < —L, such that Uei € N ofe (W), then we
have {C(ch)v e ,C(’ch-&-L)} C P. Since there are not periodic points in P, we get
a contradiction.

It follows that v, ¢ NE_ fo ¥(W) for alli = 1,2 and j < —L. Then we conclude
our theorem by Lemma 17.13.
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